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Abstract

Phobic fear is accompanied by intense bodily responses modulated by the amygdala. An amygdala moderated psy-
chophysiological measure related to arousal is electrodermal activity. We evaluated the contributions of electrodermal
activity to amygdala-parahippocampal regional cerebral blood flow (rCBF) during phobic memory encoding in
subjects with spider or snake phobia. Recognition memory was increased for phobia-related slides and covaried with
rCBF in the amygdala and the parahippocampal gyrus. The covariation between parahippocampal rCBF and rec-
ognition was related to electrodermal activity suggesting that parahippocampal memory processes were associated with
sympathetic activity. Electrodermal activity further mediated the amygdala effect on parahippocampal activity.
Memory encoding during phobic fear therefore seems contingent on amygdala’s influence on arousal and parahip-

pocampal activity.
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Specific phobia is characterized by excessive and unreasonable
fear of objects (e.g., spiders and snakes) that initiates a cascade of
behaviors including increased autonomic arousal (Fredrikson,
1981) and avoidance (Hamm, 2009). Phobic stimulation further
enhances recognition memory (Muhlberger, Wiedemann,
Herrmann, & Pauli, 2006) whereas memory for nonphobic ob-
jects equals that of healthy controls (Airaksinen, Larsson, &
Forsell, 2005). While nonphobic emotional memory enhance-
ment seems due to amygdala’s modulation of brain areas in the
medial temporal lobe (MTL) memory system (LaBar & Cabeza,
2006; McGaugh, 2004; Wais, Wixted, Hopkins, & Squire, 2006;
Winters, Saksida and Bussey, 2008), the neural mechanisms of
phobic memory are largely unknown.

Emotional stimuli can be characterized along the dimensions
of arousal and valence. It has been suggested that arousal, rather
than valence, associated with emotional stimulation preferen-
tially enhances memory (Bradley, Greenwald, Petry, & Lang,
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1992). When the encoding material is arousing, the amygdala is
engaged in the memory process as shown by correlations between
memory and amygdala activity (Cahill et al., 1996; Canli, Zhao,
Brewer, Gabrieli, & Cahill, 2000; Hamann, Ely, Grafton, &
Kilts, 1999). Arousing pictures increase the functional connec-
tivity between the amygdala and the hippocampus and parahip-
pocampal cortex (Kilpatrick & Cahill, 2003), supporting a
modulatory role for the amygdala in emotional memory en-
hancement (McGaugh, 2004).

Arousal can be indexed by psychophysiological measures of
electrodermal activity (Bradley et al., 1992; Lang & Bradley,
2010). Individual differences in electrodermal activity is corre-
lated to amygdala activity (Cheng, Knight, Smith, & Helms-
tetter, 2006; Furmark et al., 1997), and electrical stimulation of
the amygdala in subjects undergoing surgery can evoke increased
electrodermal activity and emotional experiences (Halgren, Wal-
ter, Cherlow, & Crandall, 1978; Lanteaume et al., 2007). Elec-
trodermal activity further seems to capture individual differences
along the arousal dimension (Bradley, Lang, & Cuthbert, 1993;
Lang & Bradley, 2010).

In studies on arousal enhancement of memory, stimulus
characteristics other than arousal, such as visual complexity,
could potentially influence memory processes. Therefore, the aim
of the present study was to isolate the memory-enhancing effect
of emotion by keeping visual content constant between the pho-
bic and nonphobic conditions. This was achieved by selecting
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half of the participants to exhibit phobia for spiders but not
snakes, and the other half to exhibit phobia for snakes but not
spiders. Because memory for nonphobic material is unaffected in
specific phobia (Airaksinen et al., 2005) and since individuals
with spider phobia show unbiased memory for snakes (Reinecke,
Rinck, & Becker, 2008), spider and snake phobic individuals can
serve as each other’s controls. Thus, the nonphobic condition
consisted of showing pictures of spiders to subjects with snake
phobia and snakes to subjects with spider phobia with the op-
posite pattern of stimulation during the phobic condition.

Although it seems clear from previous reports that the
amygdala modulates MTL memory systems under nonphobic-
arousing encoding conditions (Kensinger & Corkin, 2004), this
hypothesis has not been tested under phobic states. The present
study investigated effects of phobic stimulation on memory and
neural activity in the amygdala and the parahippocampal gyrus.
Sixteen participants watched phobic and nonphobic pictures
while regional cerebral blood flow (rCBF) was measured simul-
taneously with electrodermal activity. Based on previous re-
search on amygdala involvement in arousal memory (Cahill et
al., 1996; Hamann et al., 1999) and autonomic activity (Furmark
et al., 1997, Davis, 2006), it was hypothesized that amygdala
rCBF would be more strongly correlated to memory perfor-
mance and electrodermal activity during phobic as compared to
nonphobic stimulation. We further predicted that parahippo-
campal activity would be correlated to recognition memory for
phobic pictures due to stronger arousal. This prediction was
tested by removing shared variance between electrodermal ac-
tivity and recognition memory and observing if that would re-
duce the shared variance between recognition memory and
parahippocampal activity. Finally, path analysis was used to test
whether electrodermal activity mediated amygdala’s influence on
parahippocampal activity.

Method
Subjects

Sixteen right-handed female volunteers (mean age=22.8,
SD = 4.1) fulfilling the DSM-IV (American Psychiatric Associ-
ation, 1994) criteria for either specific spider or snake phobia
participated. Diagnosis was determined through a clinical inter-
view. Exclusion criteria were current psychiatric disorder other
than specific snake or spider phobia; ever having sought help or
undergone treatment for specific phobia, either medical or psy-
chological; ever having been treated for mental disorder; med-
icating against anxiety; substance abuse; claustrophobia;
pregnancy; left-handedness. For a detailed description of the re-
cruitment procedure, see Pissiota et al. (2003). Briefly, subjects
were included if they were phobic of one but not the other class of
stimuli. Thus, for snake phobic individuals snake pictures in-
duced negative affect and spider pictures acted as nonphobic
control stimuli, while the reverse was true for spider phobics.
Screening included Swedish versions (Fredrikson, 1983) of the
Snake Anxiety Questionnaire (SNAQ, 0-30 points) and the Spi-
der Phobia Questionnaire (SPQ, 0-31 points) (Klorman, Weerts,
Hastings, Melamed, & Lang, 1974). Spider phobic participants
had a mean SPQ score of 23.3 and a SNAQ score of 2.4 cor-
responding to >95% and <25% percentiles. Snake phobic
subjects had scores of 23.9 and 3.2 for the SNAQ and SPQ,
respectively, corresponding to >95% and <50% percentiles.
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The SPQ score of subjects phobic of spiders did not differ from
the SNAQ score of subjects phobic of snakes (#(14)=0.63,
p =.53). The study was approved by the local ethics and radi-
ation safety committees. Written informed consent was obtained
from all subjects.

Stimuli and Procedure

Subjects were presented with pictures of snakes and spiders on a
computer screen during scanning. Two sets of pictures for each
stimulus category were presented, once with and once without
startle probes. Each presentation contained 25 pictures of either
snakes or spiders, randomly presented for 2—4 s with an interval
of 1-3 s. Thus, subjects saw a total of 50 phobic and 50 non-
phobic slides. Subjects were instructed that they would see pic-
tures of spiders or snakes, but were not told that recognition
memory would be tested afterwards. Brain imaging was per-
formed on two separate days, with phobic stimuli shown on one
day and nonphobic stimuli on the other. The order of conditions
was counterbalanced between the subjects. Imaging was per-
formed using PET scans with ['*O] water. The effect of the startle
manipulation has been reported by Pissiota et al. (2003), and the
effect of phobic versus nonphobic stimuli on rCBF was presented
in Ahs et al. (2009). In addition, one 60-min [''C]JGR205171
PET scan was performed with symptom provocation on the same
days as the ['°O] water scans in order to measure effects on the
substance P Neurokinin-1 receptor system as reported by Mi-
chelgard et al. (2007). The [''C]JGR205171 PET scans were al-
ways conducted after the ['°O] water scans.

Recognition Memory

A set-up similar to that used during brain imaging was used
during a recognition memory test with pictures being presented
on a computer screen while subjects indicated whether they rec-
ognized the presented slide or not. Recognition was tested using a
forced choice yes/no format. Thirty-six randomly drawn spider
and snake pictures of the original 50 shown during the rCBF-
assessments were presented together with 12 new spider and
snake pictures. Thus, all in all 96 slides were presented during the
recognition test (36 old phobic and 36 old nonphobic as well as
12 new phobic and 12 new nonphobic slides). A recognition test
was performed on each day of scanning 1.5 h after scanning was
completed. Scans were separated by 7 days. We used signal de-
tection theory to calculate d’ (Macmillan & Creelman, 2005),
which served as an unbiased measure of recognition memory for
phobic and nonphobic pictures. Memory performance (d’) was
correlated to rCBF in the amygdala, parahippocampal gyrus,
and hippocampus.

Emotional State Measures and Analysis

After each presentation block, subjects rated the distress expe-
rienced during picture presentations on a visual analogue scale
(0 = min, 100 = max). Skin conductance was recorded with two
Ag-AgCl electrodes filled with isotonic electrolytic gel using
commercially available equipment (Contact Precision Instru-
ments Inc., London, UK). The signal was high-pass filtered at
0.1 Hz and analyzed oft-line. Electrodermal activity was scored
as number of fluctuations larger than 0.05 puS per minute using
commercial software (Contact Precision Instruments Inc., Lon-



Amygdala, arousal, and emotional memory

don, UK). Probability values for pairwise comparison of recog-
nition memory, electrodermal activity, and distress ratings dur-
ing the phobic and nonphobic condition were calculated using ¢
tests in SPSS 16.0 (SPSS Inc., Chicago, IL).

Image Acquisition and Analysis

Scans were performed using an ECAT EXACT HR +PET scan-
ner (CTI/Siemens, Knoxville, TN) operated in 3D mode with a
155-mm axial field of view and an axial resolution of approx-
imately 5 mm, producing 63 planes with 2.5-mm plane spacing.
Subjects were positioned in the scanner with their head gently
fixated. Then, a 10-min transmission scan was performed. Ap-
proximately 10 MBq/kg bodyweight of ['°O] water was injected
during the emission scans and data were collected in three 30-s
frames, starting at bolus arrival to the brain. Data were corrected
for attenuation and scatter and reconstructed to a 128 x 128
matrix using back projection and an 8 mm Hanning filter. The
three 30-s frames for each scan were summed to produce a 90-s
image for each individual and condition to obtain a better sta-
tistical reference for realignment and subsequent analyses.

PET images were realigned and normalized to the Montreal
Neurological Institute’s (MNI) stereotactic template ICBM 152,
using SPM2 (Wellcome Department of Cognitive Neurology,
London, UK). Images were smoothed using a 12-mm Gaussian
kernel and scaled to give all scans the same global value. Voxel
size was 2 x 2 x 2 mm. Data were statistically evaluated using
within-group comparisons in SPM2 with rCBF data fitted to the
general linear model (Friston et al., 1994). All co-ordinates (X, y,
z) are given in Talairach space (Talairach & Tournoux, 1988),
transformed from MNI space using a nonlinear transformation
(http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach).

Bilateral a priori region of interest (ROI) volumes for the
amygdala, parahippocampal gyrus, and hippocampus were cre-
ated in MNI space using the WFU PickAtlas Toolbox (Maldjian,
Laurienti, Kraft, & Burdette, 2003). The parahippocampal gyrus
was defined as Brodmann’s areas 35 and 36 dilated by 4 mm to
include all circumscribed voxels. The hippocampus proper was
also included in this ROI. Statistical images were thresholded at
an uncorrected p-level of p<.005 and an extent threshold of 10
consecutive voxels, which provide an optimal balance between
type I and type II errors in cognitive and affective neuroimaging
studies (Lieberman and Cunningham, 2009). Criteria for statis-
tical significance for voxels surviving the uncorrected threshold
was set to p<.05 familywise error-corrected for multiple com-
parisons within these bilateral ROIs.

Increases to phobic as compared to nonphobic stimuli were
analyzed using 7-contrasts. Voxels within the a priori ROIs that
covaried with d’ during each condition were identified entering
d’; as a covariate in the design matrix. The same procedure was
used to evaluate the covariation between electrodermal activity in
relation to amygdala rCBF. To test whether the influence of pa-
rahippocampal activity on d’ was statistically dependent on elec-
trodermal activity, d’ was orthogonalized (Andrade, Paradis,
Rouquette, & Poline, 1999) to these variables, using a custom
Matlab (Mathworks, Inc.) script, before the covariation analysis
was run anew. If orthogonalizing d’ to electrodermal activity
would decrease the parameter estimates for voxels in the para-
hippocampal gyrus to a statistically nonsignificant level, statis-
tical dependence could be inferred (Baron & Kenny, 1986). To
further test whether memory-related amygdala modulation of
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the parahippocampal gyrus was mediated by the emotional state,
a path analysis was performed using the software Mplus 4.0
(Muthén & Muthén, 2004). Mplus 4.0 uses bootstrapping meth-
ods that can provide more robust tests in small samples such as
ours because they do not rely on assumptions of normality
(Shrout & Bolger, 2002). Bootstrapping was performed using
1000 iterations. The fit of each path model was evaluated using y>
as well as standardized root mean square residual (SRMR).
SRMR is the standardized difference between the observed co-
variance and predicted covariance. A value of zero indicates
perfect fit and a value less than .08 is considered good fit. Mean
rCBF from the phobic condition was extracted from clusters of
voxels in the amygdalae and parahippocampal cortices that
showed a positive covariation (p <.01 uncorrected) with recog-
nition memory. One path model was evaluated in each hemi-
sphere. We tested whether electrodermal activity, indexing
arousal, mediated the effect of the amygdala on the parahippo-
campal gyrus by computing the indirect effect via electrodermal
activity between these two variables. In this path model,
amygdala rCBF was treated as an exogenous variable with a
direct path to electrodermal activity that in turn had a path to
rCBF in the parahippocampal gyrus. Parahippocampal rCBF
also had a direct path to d’.

Results
Recognition Memory and Emotional State Measures

A single subject was classified as outlier (d’ over 3 standard de-
viations from the mean) for nonphobic stimuli. Subsequently, her
data was excluded from analyses that involved d’ for the nonphobic
condition. Overall, recognition memory as indexed by d’ was better
for phobic than nonphobic pictures (#(14) = 2.21, p = .04; Figure
1). The number of nonspecific skin conductance fluctuations
(NSF) indexing autonomic arousal, as well as distress ratings, were
larger during phobic than nonphobic stimuli (Electrodermal ac-
tivity: #(15) = 2.98, p = .009; Distress: #(15) = 11.18, p = 1¥10~%)
as has previously been reported in Pissiota et al. (2003).

Amygdala rCBF During Phobic and Nonphobic Stimulus
Presentation

During phobic as compared to nonphobic stimulus presentation,
rCBF increased in the right amygdala (Table 1). Bilateral

i

do

Mon-phobic Phobic

Figure 1. Mean recognition (d’) following nonphobic and phobic
pictures. Error bars represent standard error of the mean.
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Table 1. Increased rCBF During Phobic as Compared to Nonphobic Picture Presentation

Region Talairach coordinates z p corrected Voxels
Right amygdala 26, —3, —12 4.08 .001 40
Right parahippocampal gyrus 16, —41, —10 4.53 .001 30
Left parahippocampal gyrus —28, —45, —10 4.87 <.001 177

amygdala rCBF also covaried positively with the index of rec-
ognition memory (d") during phobic, but not nonphobic, pictures
(Table 2). Psychophysiological interaction (PPI) analysis re-
vealed that the difference in magnitude of the covariation be-
tween conditions was significant for both amygdalae (Table 2;
Figure 2B).

PPI analysis was also used to investigate whether there were
stronger couplings between amygdala activity and electrodermal
activity during phobic than nonphobic stimuli presentation. Elec-
trodermal activity covaried more strongly with right amygdala
activity during phobic than nonphobic stimulus presentation
(x=28,y= —8,z= —13,z=3.28, p=.01; Figure 2A).

Parahippocampal rCBF During Phobic and Nonphobic Stimulus
Presentation

During phobic stimulation, rCBF increased bilaterally in the
parahippocampal cortices (Table 1). Recognition memory (d’)
also covaried positively with rCBF bilaterally in parahippocam-
pal cortices (Table 2). Clusters of activated voxels were located in
the anteromedial part of the parahippocampal gyrus. During
nonphobic stimulation, recognition memory covaried positively
with rCBF in the left parahippocampal gyrus in an area posterior
to the cluster of voxels that covaried with memory for phobic
pictures (Table 2). PPI analysis indicated that the difference in
covariation with recognition memory between phobic and non-
phobic pictures was borderline significant in the left, but did not
fully reach statistical criterion in the right hemisphere (Table 2;
Figure 3A and B).

Influence of Electrodermal Activity on Amygdala-
Parahippocampal Connectivity

To examine the contribution of arousal and valence to the ob-
served covariation between d’ and parahippocampal rCBF dur-
ing phobic picture presentation, d’ was orthogonalized to

electrodermal activity. When shared variance with electrodermal
activity was partialed out from d’, only a few voxels survived the
uncorrected threshold of p<.005, and no voxels survived at a
corrected p-level indicating that parahippocampal involvement
in memory encoding was related to arousal level (right hemi-
sphere: x=14, y= —31, z= -7, z=3.31, p=.1, 17 voxels;
Figure 3¢ and d). To test whether arousal was mediating
amygdala influences on parahippocampal activity, a path anal-
ysis was performed with paths from the amygdala to the para-
hippocampal gyrus via electrodermal activity. The model tested
also included a path between parahippocampal activity and rec-
ognition memory (Figure 4). Electrodermal activity mediated the
effect of amygdala rCBF on parahippocampal rCBF in both
hemispheres (Right: 4B=0.26, SE=0.14, p = .05, Figure 4a;
Left: AB=0.24, SE=0.10, p = .02, Figure 4b). Both models
showed adequate fit (Right: y*(3) = 5.88, p = .12, SRMR = 0.10;
Left: x*(3) = 4.57, p= .21, SRMR = 0.077).

Discussion

The present study investigated the neural correlates of memory
for phobic stimuli. Using ['°0] water PET with simultaneous
recordings of electrodermal activity, we investigated the contri-
bution of this arousal-related psychophysiological measure to
amygdala and parahippocampal activity at the time of encoding.
The emotional effect on memory was isolated by keeping visual
inputs constant between phobic and nonphobic conditions. Re-
sults can be summarized in 4 main findings: (1) During encoding,
phobic stimulation enhanced the correlation between amygdala
and electrodermal activity; (2) Amygdala and parahippocampal
activity predicted subsequent recognition of phobic pictures; (3)
Parahippocampal activity no longer predicted recognition mem-
ory when the variance shared with electrodermal activity was
partialed out; (4) Path-analysis confirmed that arousal mediated
the effect of amygdala activity on parahippocampal activity.
Collectively, results suggest that amygdalae-related arousal

Table 2. Covariation Between Recognition Memory (d') and rCBF in the MTL During Phobic and Nonphobic Picture Presentation

Talairach coordinates z p corrected Voxels

Nonphobic pictures

Left parahippocampal gyrus —48, —34, —20 3.55 .049 49
Phobic pictures

Left amygdala —18, -5, =22 3.16 .016 10

Right amygdala 24, —6, —11 4.00 .005 104

Left parahippocampal gyrus —-28, —15, =21 3.96 .013 322

Right parahippocampal gyrus 14, =31, -7 4.02 .01 115
Phobic > Nonphobic pictures

Left amygdala —16, -8, —11 3.02 .022 14

Right amygdala 18, —6, —13 3.70 .003 59

Left parahippocampal gyrus —14, -5, -23 3.47 .053 49

Right parahippocampal gyrus 14, -2, -29 3.18 12 30
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Phobic > Non-phobic

Phobic > Non-phobic

Figure 2. Coronal images showing (A) increase in intersubject
covariations between amygdala rCBF and nonspecific fluctuations in
electrodermal activity; (B) increase in intersubject covariations between
amygdala rCBF and recognition memory (d") during phobic as compared
to nonphobic pictures. Statistical maps overlaid on an MR image shown
at y= — 6 and thresholded at p<.005, uncorrected. The color bars
represent f-values. Only voxels surviving this threshold within the
amygdala are shown.

influence parahippocampal memory processes in phobic fear.
Individual differences in electrodermal activity were associ-
ated with amygdala activity during encoding of phobic stimuli.
This suggests that amygdala processing of phobic stimuli is as-
sociated with sympathetic activity associated with arousal. The
amygdala might therefore be involved in the production of bodily
arousal responses, possibly through interaction with brainstem
areas such as the locus coeruleus (Sterpenich et al., 2000).
Amygdala activity was further correlated to memory for phobic
material. These results link memory and arousal to amygdala
activity. A previous study found that electrodermal activity at
encoding was positively associated with memory for emotional
material (Buchanan, Etzel, Adolphs, & Tranel, 2006). Thus,
bodily arousal seems to be associated with facilitation of mem-
ory. The correlative evidence is supported by a lesion study in
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humans (Ahs, Frans, Tibblin, Kumlien, & Fredrikson, 2010). In
that study, controls showed a linear increase in memory perfor-
mance with increasing stimulus arousal. Patients with resections
to the anterior medial temporal lobe, on the other hand, did not
show arousal enhanced memory. These data suggest that ante-
romedial temporal lobe structures, such as the amygdala, are
necessary for emotional memory enhancement. Taken together
with the current findings, it seems that amygdala activation pre-
dicts individual differences in arousal level as well as memory,
and that memory facilitation is related to sympathetic activation.
While previous studies have varied extrinsic stimulus arousal
to study effects on amygdala activity memory, a recent study has
directly manipulated the intrinsic arousal state of the partici-
pants. The arousal state, as indexed by electrodermal activity,
can be decreased by inhalation of the anesthetic gas sevoflurane
(Ledowski, Paech, Storm, Jones, & Schug, 2006). Alkire et al.
(2008) studied the effect of sevoflurane on emotional memory
and amygdala-hippocampal connectivity. They found a dose-
dependent relationship between sevoflurane concentration and
memory for arousing material. This relation was associated with
decreased functional coupling between the amygdala and the
hippocampus and suggests that altering intrinsic arousal has
similar effects on amygdala processing of emotional stimuli as
extrinsically driven processes. These amygdala processes, in turn,
seem to have effects on hippocampal memory function.
Parahippocampal activity at the time of encoding predicted
phobic memory in the present study. The variance in phobic
memory that could be explained by parahippocampal activity was
related to electrodermal activity. These results suggest that
arousal level modulates activity in the parahippocampal gyrus
and enhance the probability for stimuli to be remembered. The
hypothesis that arousal would mediate the effect of amygdala
activity on parahippocampal activity was further strengthened by
a path analysis. While previous results have shown a functional

Co-variations during phobic stimulation

Left MTL

d’ orthogonalized to

Right MTL

Figure 3. Covariation between recognition memory (d’) and parahippocampal rCBF during phobic stimuli presentation in (A) the left, and (B) the right
parahippocampal gyrus. Covariation when d’ was orthogonalized to electrodermal activity in (C) the left, and (D) the right parahippocampal gyrus.
Colorbars represent ¢-values. Statistical maps overlaid on an MR image thresholded at p <.005, uncorrected. Only voxels surviving this threshold within

the parahippocampal gyrus and hippocampus are shown.
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R Amygdala Recognition
\0.1 1(0.037) 0.14(0.045)7, T
e3
Arousal 2.41(1.10)* R Para-
»  hippocampal
el &2
B
L Amygdala Recognition
e3
Arousal 1.79(0.81)=* L Para-
»  hippocampal
el &2

Figure 4. Path model testing if amygdala effects on parahippocampal rCBF during phobic picture presentation are mediated by arousal as indexed by
electrodermal activity. Arrows are labeled with unstandardized path coefficients and standard errors in parenthesis. Residuals of endogenous variables
are illustrated by el, e2, and e3. (A) Indirect effects of amygdala on parahippocampal gyrus mediated by electrodermal activity indexing arousal reached
borderline significance in the right hemisphere (4B = 0.26, SE = 0.14, p = .05). (B) Indirect effects of amygdala on parahippocampal gyrus mediated by
arousal were significant in the left hemisphere (4B = 0.24, SE = 0.10, p = .02). L = left; R = right; *p <0.05.

coupling between amygdala activity and parahippocampal/hip-
pocampal activity during encoding of emotional pictures (Dolcos,
LaBar, & Cabeza, 2004; Richardson, Strange, & Dolan, 2004),
the present results suggest that this coupling is related to arousal.
This proposition is consistent also with a number of studies in-
dicating that the amygdala responds to biologically salient stimuli
regardless of hedonic tone (c.f. Fusar-Poli et al. 2009).

Recognition memory for nonphobic pictures was correlated
to activity in the parahippocampal gyrus but, notably, not to
amygdala activity. This is in accordance with previous studies in
monkeys and humans that have mapped recognition memory to
the parahippocampal gyrus (Richardson et al., 2004; Zola-
Morgan, Squire, Amaral, & Suzuki, 1989). The maximum
covariation between rCBF during encoding and memory perfor-
mance during neutral cues was observed in an area posterior to
the maximum correlation during the highly arousing condition, a
response pattern previously observed to segregate emotional from
nonemotional memory encoding (Dolcos et al., 2004).

A limitation of the present study is that results might not
generalize to subjects without animal phobia. However, memory

function does not seem to be altered in animal phobia (Wais et al.,
2006). Also, the pattern of activation seems to overlap well with
previous studies on emotional memory conducted in nonphobic
individuals (Bradley et al., 1992). Therefore, results could reflect
memory processes under intense distress that might be present
during traumatic events also in nonphobic subjects.

In conclusion, we found that amygdala activity predicted
phobic memory. This finding parallels previous reports on non-
phobic arousal enhancement of memory and might imply quan-
titative rather than qualitative differences between memory for
mildly and intensely arousing emotions. Further, a memory-
related influence of the amygdala on the parahippocampal gyrus
was mediated by physiological arousal during encoding of pho-
bic, but not nonphobic, stimuli. The results contribute to the
understanding of how arousal interacts with memory systems
and imply that arousal is related to amygdala-parahippocampal
connectivity. This suggests that the association between amyg-
dala activity and phobic memory operates through arousal
mediated amygdala-hippocampal connectivity.
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