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Subgroup identification from
randomized clinical trial data
Jared C. Foster,a Jeremy M.G. Taylora*† and Stephen J. Rubergb

We consider the problem of identifying a subgroup of patients who may have an enhanced treatment effect in
a randomized clinical trial, and it is desirable that the subgroup be defined by a limited number of covariates.
For this problem, the development of a standard, pre-determined strategy may help to avoid the well-known
dangers of subgroup analysis. We present a method developed to find subgroups of enhanced treatment effect.
This method, referred to as ‘Virtual Twins’, involves predicting response probabilities for treatment and control
‘twins’ for each subject. The difference in these probabilities is then used as the outcome in a classification or
regression tree, which can potentially include any set of the covariates. We define a measure Q. OA/ to be the
difference between the treatment effect in estimated subgroup OA and the marginal treatment effect. We present
several methods developed to obtain an estimate of Q. OA/, including estimation of Q. OA/ using estimated prob-
abilities in the original data, using estimated probabilities in newly simulated data, two cross-validation-based
approaches, and a bootstrap-based bias-corrected approach. Results of a simulation study indicate that the Vir-
tual Twins method noticeably outperforms logistic regression with forward selection when a true subgroup of
enhanced treatment effect exists. Generally, large sample sizes or strong enhanced treatment effects are needed
for subgroup estimation. As an illustration, we apply the proposed methods to data from a randomized clinical
trial. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

Confirmatory randomized clinical trials are designed to provide definitive information about treatments
and frequently compare a standard treatment with a new treatment. The conclusions from such a study
are applicable to the whole population that has been considered. However, with increasing use of tar-
geted therapies and with increasing understanding of the mechanisms of action of new agents and of
the human response to those agents, it is quite plausible that there are subgroups of patients for whom
the new treatment is especially effective. Likewise, there could be subgroups of patients for whom the
new treatment is not effective or less effective than the standard therapy. There is a strong desire to find
such subgroups if they exist [1]. From a statistical perspective, searching for subgroups is known to be
a dangerous exercise, with the high possibility of finding false positives. There is a large literature on
this topic, with many statisticians and clinical trialists writing about the dangers of subgroup analyses
[2–11]. The general opinion is that if subgroups are going to be examined they should be defined before
looking at the data and that post hoc mining of the data in an uncontrolled or undefined fashion is likely
to lead to unreliable results. On the other hand, there are those who believe that the biological rationale
for subgroups is so strong that the statistical concerns about mining the data have been emphasized too
much and are a barrier to progress [12].

An alternative strategy to predefining the subgroups is to predefine the statistical approach that is
going to be used to find subgroups [1]. Such an approach is reproducible, and its statistical proper-
ties can be understood. The research we present in this paper is to describe several different strategies
for finding subgroups. We believe the methodology described here would be particularly applicable for
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two situations: (i) those where a new treatment is shown overall to be slightly better than the standard
therapy but not sufficiently better to be widely adopted and (ii) those situations in which the new treat-
ment appears better, although not significantly, but where there may be a subgroup of patients for which
there is a substantial benefit of the new treatment. The challenge in such situations is finding such a
subgroup and then demonstrating that the benefit is likely to be real for future patients.

The setting we consider is a two-group randomized clinical trial with a binary outcome variable Y ,
treatment group, indicator T , and covariates X . The dimension of X is moderate, for example 8 to 100;
these covariates are measured pretreatment and could be demographic, laboratory, or questionnaire vari-
ables. The goal is to find a subgroup of patients defined by a region (denoted A) of the covariate space
of X , in which the treatment effect is substantially better than the average treatment effect or better than
some prespecified threshold. Because it is generally desirable to have a relatively simple way of defining
the subgroup, we want A to depend on a small number of variables. For example, the region A could be
X4 > 2 and X7 6 5.

The classical approach to identifying subgroups is nicely described by Kehl and Ulm [13] and involves
the fitting of a model which includes interactions between treatment and the covariates. For example, for
logistic regression, we could consider models of the general form

logit.P.Y D 1jTX//D ˛C ˇT C �h.X/C �Tw.X/;

for which the main interest would be in the term w.X/. One problem with such an approach is that only
those factors or combinations of factors that are included as interactions in the model may potentially
be identified as important in defining the subgroup of enhanced treatment effect. Additionally, even if
the form of interactions between factors is assumed to be linear, the order of such terms is unknown
[13]. Thus, this method is not very feasible when the dimension of X is even moderately large because
the number of potential interactions is massive even when one only considers one-way and two-way
interactions of T with the Xs. It is well known that large sample sizes are needed to find interactions
in models, so for similar reasons, we may expect large samples to be necessary to find and confirm the
existence of subgroups and accurately define them. Although subgroups and interactions in statistical
models are very related topics, they are not identical. What one means by a subgroup with enhanced
treatment effect depends on how one defines enhanced. What one means by an interaction in a model
depends on the scale of the observations because interactions on one scale can disappear when the data
have been transformed to another scale.

Much of the statistical literature on model building and validation has some relevance to the problems
of subgroup estimation and testing for subgroup effects. We will not review it here, except to mention that
tests for interactions in clinical trials [14–16] appear promising and that tree-based methods of directly
finding treatment–covariate interactions have been suggested [17–19].

In this paper, we develop and compare some different methods for defining a subgroup which shows
an enhanced treatment effect. A challenge in this setting is to give an accurate estimate of the enhanced
treatment effect in the subgroup. The procedures we develop essentially mine the data in a defined
way, so there is a considerable danger of overfitting. We will investigate a number of different schemes
for obtaining an honest estimate of the magnitude of the treatment effect in the subgroup, including
resampling schemes such as cross-validation [20].

2. Methods for estimating region A

2.1. Notation

The data consist of .Yi ; Ti ; X1i ; : : : ; Xpi /, i D 1; : : : ; n. Let nj D number of observations with Ti D j ,
j D 0; 1. We expect n0 and n1 to be close to n=2 in 1:1 randomized trial. We will focus on the situation
where Y is a binary outcome. The Xs could be continuous or categorical, and they may be correlated
with each other. There could be a marginal effect of the treatment on Y , and some of the Xs could be
prognostic in the sense that they are marginally associated with Y . The goal is to partition the covariate
space into two regions A and Ac , with A being defined by a relatively small subset of the Xs. Define
jAj j to be the number of observations with X i 2 A and Ti D j , j D 0; 1.

2.2. Forward logistic regression

As a standard and simple method, we consider forward selection in a logistic regression model. The
terms that are considered for inclusion in the model are main effects for all Xs and T , and all X � T ,
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X �X , and X �X �T interactions. The forward selection procedure starts with an intercept-only model
and, at each step, the term which gives the smallest Akaike information criterion is added to the model.
The final model is used to calculate OP1i D P.Yi D 1jTi D 1;Xi / and OP0i D P.Yi D 1jTi D 0;Xi / for
each person i . A new variable Zi D OP1i � OP0i is then created, and subjects are defined to be in group
OA if Zi is greater than some cutoff c, which we generally take to be either ıC 0:1 or ıC 0:05, where ı

is an estimate of the treatment effect P.Yi D 1jTi D 1/ � P.Yi D 1jTi D 0/. In addition, although all
Xs in the final model are needed to define OA, the Xs which are involved in first-order and second-order
interactions with T are noted, as these are the Xs which are most important in defining OA. If no Zi is
greater than c, then OA is the null set. An alternative approach to defining the treatment effect for each
subject is to define the difference on the logit scale, i.e., define Zi D logit. OP1i / � logit. OP0i /, and sub-
jects are defined to be in group OA if Zi is greater than some cutoff. The form of Zi that is preferred will
depend on the context. In this paper, we will only consider differences on the probability scale.

2.3. Virtual Twins method

This approach borrows concepts from counterfactual models, in which there are two possible outcomes
for each person (one under each treatment assignment), only one of which can be observed, and it
is the difference between the two outcomes that is important. We investigate two versions of Virtual
Twins, VT(R) and VT(C), which have the same first step but in the second step have either a regression
procedure or a classification procedure.

2.3.1. Step 1. Apply random forests to the data. A random forest [21] is an ensemble predictor based
on multiple regression trees. For our purposes, the random forest is simply a black box predictor which
takes as input covariate values (X i ; Ti ;X iI.Ti D 0/, and X iI.Ti D 1/ in our case) and gives as output
an estimate of P.Yi D 1/ for that set of covariate values. The inclusion ofX iI.Ti D 0/ andX iI.Ti D 1/
as covariates is not essential, but in numerical work we found that their inclusion improved the properties
of the method. Fitting of the random forest is done using the R function randomForest with all default
settings except for the number of trees per forest, which we set at 1000. As with the logistic method, the
random forest is used to predict OP0i and OP1i . If the actual treatment group for subject i is j , then OPj i is
obtained from the out-of-bag estimate from the random forest, whereas OP.1�j /i is obtained by applying
the random forest to that person’s data, with the treatment group switched. Once this is done, we define
Zi D OP1i� OP0i , which can be regarded as an estimate of the treatment effect for subject i . A variation of
this step would be to use two separate random forests, one for each treatment group, and predict for each
subject using the forest from the other group. All of these strategies for obtaining Zi involve some form
of extrapolation, that is, estimating the probability of an outcome in a treatment group that is different
from the treatment they actually received.

2.3.2. Step 2. Estimate a regression or classification tree. The purpose of this tree is to find a small
number of Xs that are strongly associated with Z and hence can define A. We consider two alternative
methods.

Virtual Twins (regression). In this method, denoted VT(R), we estimate a regression tree with Z as
the response variable and covariates X . The regression tree is then used to predict values of Zi for each
person. Then, subjects with predicted Zi greater than some threshold c are considered to be in OA. Thus,
OA is defined by the paths down the tree which lead to terminal nodes with predicted Zs greater than c.

We take c to be either ı C 0:1 or ı C 0:05. If none of the predicted Zi s are greater than c, then OA is
empty. We use the R function rpart with default settings, except that the minimal terminal node size is
20, and the complexity parameter is taken to be 0.02.

Virtual Twins (classification). Define a new binary variable Z�, as Z�i D 1 if Zi > c and Z�i D 0 if
Zi 6 c. The value of c for this method is generally the same as that used in VT(R) and will affect the
size of OA. Because Zi is a difference in probabilities, we are essentially creating a classification variable
immediately after the random forest stage. This Z� is used as the outcome in building the classification
tree, which is then used to classify individuals as being in OA or not; thus, all Xs in the tree define OA. This
method is denoted VT(C). Note that OA is empty if the classification tree has no splits.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 2867–2880
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3. Properties of the estimated region OA

For any region A in the covariate space, define

Q.A/D .P.Y D 1jTD 1;X 2 A/�P.Y D 1jTD 0;X 2 A//� .P.Y D 1jTD 1/�P.Y D 1jTD 0//
(1)

as the measure of the enhanced treatment effect in A compared with the average treatment effect. We
define Q.A/ to be zero if A is a null set. Let OA be the estimated region, as determined by one of the
methods described above. Because OA is the region that would be recommended for use, it is impor-
tant to understand how effective OA will be in defining a region of enhanced treatment effect for future
populations. Clearly large values of Q. OA/ are desirable if OA is to be useful.

3.1. Estimation of Q. OA/

Below we describe some approaches to obtaining an estimate OQ. OA/ of Q. OA/, which will be evaluated
in a simulation study. We consider six methods of estimatingQ. OA/. It is desirable that OQ. OA/ be as close
as possible to Q. OA/, rather than Q.A/, as Q. OA/ is the true measure of enhanced treatment effect for the
estimated region OA, whereas Q.A/ is the corresponding measure for the unknown true region A, which
in general will not be the same as OA.

Method 1. Resubstitution method. Estimate the four quantities P.Y D 1jT D 1;X 2 OA/; P.Y D

1jT D 0;X 2 OA/; P.Y D 1jT D 1/, and P.Y D 1jT D 0/ from the observed proportions in the data,
which are then substituted into equation (1) to give OQ. OA/. For this estimator, the same data that were
used to construct OA will be used to evaluate it. The methods of estimating OA may be overfitting the data
(i.e., modeling the noise), so a resubstituted estimate of Q. OA/ is likely to be biased, especially in small
samples and with many covariates.

Method 2. Simulate new data (SND). This method is a type of parametric bootstrap approach. For
both the logistic regression and Virtual Twins methods, the first step gives estimates of P1i and P0i , and
these estimates can be used to simulate new outcome data from Bernoulli distributions. The new data
.Y �i ;X i ; Ti / will ‘look like’ the original data in terms of marginal and conditional distributions but will
be statistically independent of the original data. Specifically if Ti D 1, then Y �i � Be. OP1i /, and if Ti D 0,
then Y �i � Be. OP0i /. We then obtain the estimates of the four quantities P.Y D 1jT D 1;X 2 OA/;

P.Y D 1jT D 0;X 2 OA/; P.Y D 1jT D 1/, and P.Y D 1jT D 0/ from the empirical proportions
in the simulated data Y �, from which we obtain OQ. OA/. Alternatively, we can avoid actually simulating
new data by simply taking an appropriate average of the estimates of P1i and P0i to get OQ. OA/:
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Compared with the resubstitution estimator, we expect this method to have less bias because it is not
based explicitly on the original data. However, it may not completely eliminate the bias because any
idiosyncracies in the observed data which are causing overfitting will still be present but to a lesser
degree in the estimates OP1i and OP0i .

Method 3. Cross-validation of OP1i and OP0i . A modification of method 2 is to obtain OP1i and OP0i via
cross-validation. In this method, the specific data for subject i are not used to obtain OP1i and OP0i . Using
10-fold cross-validation, we apply the random forest or logistic regression approach to 9/10 of the data
and use the resulting predictor to obtain estimates of P1i and P0i for the remaining 1/10 of the observa-
tions. This is repeated 10 times, then the simple averaging approach of method 2 is applied to give OQ. OA/.

Method 4. Full cross-validation. For all the methods, we apply the whole process of defining OA to 9/10
of the data, which gives a region OAk , and 1/10 is left out, which is used as an independent testing data
set. This is repeated 10 times. Each left-out observation is then either in OAk or not. We count the number
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of observations with Y D 1 for T D 1 and X 2 OAk and similarly the number with Y D 1 for T D 0 and
X 2 OAk . We pool the counts across the 10 values of k to give final estimates of P.Y D 1jT D 1;X 2 OA/
and P.Y D 1jT D 0;X 2 OA/, which are then used in equation (1) to give OQ. OA/. Note that in contrast to
method 3 in which OA is fixed, the estimate of OA in method 4 does vary.

Methods 5 and 6. Bootstrap bias corrected. The bootstrap is a method that can be used to evaluate
the bias in an estimator. The original estimator is then adjusted by this estimated bias. In this method,
the original data will be bootstrapped (resampled with replacement) 20 times, and for each data set a
new estimated region will be obtained. Then the estimate of Q. OA/ is given by (Q from original data
applied to original OA) + (Q from original data applied to new OA) � (Q from new data applied to new OA).
The justification for this adjusted estimate requires some notation. Let F D true unknown distribution
of the data, OF D distribution of bootstrapped data, A D true region, OAF D region estimated from the
observed data, and OA OF D region estimated from bootstrapped data (new OA). It is necessary to consider
three probability laws depending on whetherQ is applied to future data, the current data, or bootstrapped
data. Specifically, Q.:/ is governed by the probability law on the next data set (i.e., the true F ), OQF .:/

is governed by the probability law on the observed data (i.e., the empirical distribution), and OQ OF .:/ is
governed by the probability law from the bootstrapped data (i.e., the empirical bootstrap distribution).

The quantity of interest is Q. OAF /, which can be written as ŒQ. OAF / � Q.A/� CQ.A/ D RCS .
Using the bootstrap, we approximate R by Œ OQF . OA OF / �

OQF . OAF /�. To obtain S , we approximate
Œ OQF . OAF / � Q.A/� by Œ OQ OF .

OA OF / �
OQF . OAF /�, rearranging this to give an approximation to S of

OQF . OAF /�Œ OQ OF .
OA OF /�

OQF . OAF /�. Then adding approximations ofR and S givesQ. OAF /D OQF . OAF /C
OQF . OA OF / �

OQ OF .
OA OF /. Because the second term will tend to be smaller than the third term, the bias-

corrected estimate will likely be less optimistic than the original estimate OQF . OAF /. To implement this
bootstrap-corrected estimate, we use 20 bootstrap samples, and for the second and third terms, the aver-
age of the 20 values of Q is used. This bias correction can be applied to any method we have for
calculating Q. Method 5 consists of applying it to the resubstitution method, and method 6 consists of
applying it to the SND method.

3.2. Sampling variability of OQ. OA/

It may be desirable to attach standard errors to OQ. OA/. We suggest the following scheme. Simulate new
data sets using the estimates of P1i and P0i obtained from the random forest procedure. For new data
set j , find the new OAj , and calculate OQ. OAj / using one of the methods above. The standard deviation of
these quantities is an estimate of the standard error.

4. Simulations

4.1. Simulation study design

We generate data from a logistic model of the general form logit.P.Y D 1jT;X//D ˛CˇT C�h.X/C
�TI.X 2 A/, whereXs are independentN.0; 1/, and A is a known region in the covariate space defined
by two Xs. There are a number of aspects of the design that may be important to consider, including
sample size, dimension of X , number of Xs that determine A, size of A, values of the parameters, and
correlation between the Xs, as these might influence the performance of the methods. We only consider
some of these potential scenarios in this paper.

4.2. Criteria for evaluation and comparison of region A estimation methods

We use a number of criteria to evaluate each method’s ability to identify the region A.

Finding correct Xs. For VT(R) and VT(C), the total number of unique Xs in the tree is recorded. For
the logit method, we record the total number of unique X -by-T interactions in the selected model. For
the VT(R), VT(C), and logit methods, we record how often the methods find specific covariates, includ-
ing some that are important and some that are not associated with the outcome. For the VT methods, we
record whether each covariate is in the tree, and for the logit method, we record whether the one-way
X -by-T interaction is in the final model. To determine whether or not the trees are finding the correct

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 2867–2880
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Xs, we record whether or not the two Xs that define the true region A both occur in the first two levels
of the tree.
Closeness of OA to the true A. This is measured using sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and area under the ROC curve (AUC). Each estimation method
gives an OA, and because we know the true A we can calculate sensitivity, specificity, PPV and NPV for
each A estimation method and each value of the threshold c. Furthermore, the predicted differences in
probabilities from the logit model and the VT(R) approaches can be used along with true Amembership
to calculate AUC by varying c. When � ¤ 0 and OA is empty, the PPV is defined as zero. When � D 0, A
does not exist. In these cases, only specificity is meaningful and ideally should be close to 1.

Closeness of the size of OA to the size of the true A. To evaluate the closeness of j OAj to jAj, we record
j OAj. If OA does not exist, then j OAj is taken as zero.

Power. Another quantity of interest is the percentage of times our methods find a null OA when � ¤ 0 and
when � D 0. For VT(C), we consider the method to have found a null OA if the final tree consists only of
a single node, i.e., the method failed to find anyXs. For VT(R), OA is null if either the final tree is a single
node or if a tree exists but all predicted Zi s are less than c. For the logit-based method, we consider OA
to be null if all Zi < c. Lastly, to quantify if there are enough data to determine whether individuals in
true A have an enhanced treatment effect, we fit a logit model with the correct terms (i.e., only the terms
used to generate the data) and calculate the power by determining how often the A-defining term ( O�) is
significantly different from zero.

4.3. Properties of OQ. OA/ as an estimator of Q. OA/

For each simulated data set, we calculate OQ. OA/ for each A estimation procedure using the six methods
as described above in addition to calculating Q.A/ and Q. OA/. Because this is done for multiple data
sets, we can estimate the variability of the various Q.A/ estimates and can quantify how far OQ. OA/ is
from Q.A/ and Q. OA/. Thus, this allows us to estimate both the bias and the variability of OQ. OA/ and of
OQ. OA/�Q. OA/ for each A estimation procedure. Because they do not lead to any different conclusions,

we do not show the results for OQ. OA/�Q. OA/.

5. Simulation results

We consider a base-case simulation design and several modifications of this base case. In the base case,
we simulate randomized trials with 1000 patients, and the Xs are generated as independent Xj �
N.0; 1/; j D 1; : : : ; 15. We consider logit models for data generation logit.P.Y D 1//D�1C0:5X1C
0:5X2 � 0:5X7C 0:1T C 0:5X2X7C �TI.X 2 A/, where � determines the extent to which individuals
in region A have an enhanced treatment effect. For most models, the true region A is X1 > 0\X2 < 0,
which contains approximately 25% of the observations. Results are based on 100 simulated data sets.
We consider a null case (true � D 0) and a base case (true � D 0:9) chosen so that in most scenarios
the correct logit model has approximately 90% power in a test of � D 0. Simulation results for the
base case are summarized in Section 5.1 and the upper portions of Tables I, II, and III, the null-case
results are summarized in Section 5.2 and the lower portions of Tables I, II, and III, and results for other
modifications are presented in Section 5.3.

5.1. Base case results

From Table I, we can see that the tree-based methods tend to find too many Xs, whereas the logit-based
method tends to be too conservative, finding only about one X on average. Additionally, the tree-based
methods appear to be better able to identify main effects and covariates determining region A than the
logit-based method, although they also tend to identify non-important covariates (e.g., X3 and X4) as
important slightly more often than the logit-based method. Although the tree-based methods can typi-
cally identify one of the covariates determining subregionA, they are less able to simultaneously identify
both covariates that define region A as the two most important. Between the tree-based methods, VT(R)
finds the correct Xs in the top two levels more frequently than VT(C). Whereas VT(R) never fails to
find a tree and VT(C)0:05 almost never fails, VT(C)0:1 fails to find a tree 11% of the time. From Table II,
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Table I. ‘Finding A’ performance, results for base case (� D 0:90, true A D
fX1 > 0;X2 < 0g) and null case (� D 0, true A null).

Logit VT(R) VT(C)0:05 VT(C)0:1

� D 0:9

Mean (# unique Xs) 1.13 3.62 3.94 3.72
SD (# unique Xs) 0.97 1.04 1.40 1.75
Proportion found X1 (int�) 0.30 0.96 0.92 0.82
Proportion found X2 (int) 0.42 0.68 0.67 0.64
Proportion found X7 (main) 0.11 0.72 0.64 0.62
Proportion found X3 (absent) 0.02 0.14 0.12 0.17
Proportion found X4 (absent) 0.02 0.11 0.15 0.15
Proportion fX1; X2g in top 2 NA 0.51 0.39 0.32
Proportion found nothing 0.29 0.00 0.01 0.11

� D 0

Mean (# unique Xs) 0.18 3.29 3.73 2.08
SD (# unique Xs) 0.48 1.00 1.83 1.89
Proportion found X1 (main) 0.06 0.72 0.67 0.35
Proportion found X2 (main) 0.03 0.68 0.51 0.32
Proportion found X7 (main) 0.02 0.59 0.59 0.37
Proportion found X3 (absent) 0.00 0.14 0.17 0.05
Proportion found X4 (absent) 0.02 0.05 0.18 0.08
Proportion found nothing 0.85 0.00 0.07 0.38

Note: � indicates whether the variable is in the true data-generating model as only a main effect, an
interaction with T , or absent. Subscripts on VT(C) indicate the constant added to average treatment
effect for OA definition.

Table II. Comparison of A and OA for base case (� D 0:90, true AD fX1 > 0;X2 < 0g) and null case (� D 0,
true A null).

Logit0:05 Logit0:1 VT(R)0:05 VT(R)0:1 VT(C)0:05 VT(C)0:1

� D 0:9

Size of OA
Proportion OA null 0.29 0.29 0.07 0.32 0.01 0.11
5th percentile 0 0 0 0 99 0
50th percentile 199 73 189 114 222 103
95th percentile 327 194 397 252 333 186

Sensitivity 0.34 0.16 0.47 0.28 0.49 0.28
Specificity 0.89 0.96 0.89 0.95 0.87 0.96
PPV 0.37 0.41 0.55 0.45 0.56 0.59
NPV 0.81 0.78 0.84 0.81 0.84 0.80
AUC 0.69 0.69 0.77 0.77 – –

� D 0

Size of OA
Proportion OA null 0.84 0.85 0.25 0.65 0.07 0.38
5th percentile 0 0 0 0 0 0
50th percentile 0 0 131 0 162 40
95th percentile 188 55 308 142 274 118

Specificity 0.97 0.99 0.87 0.97 0.85 0.96

we can see that all tree-based methods except for VT(R)0:1 find null OAs less frequently than the corre-
sponding logit-based methods. Of the tree-based methods, VT(C) performs the best in this regard, and
defining OA by Zi > ı C 0:05 noticeably outperforms Zi > ı C 0:1. With one exception, the median
predicted subgroup size tends to be closer to 25% (i.e., 250) for the tree-based methods than for the
corresponding logit-based method. Also, although possibly lower than desirable, the sensitivities and
positive predictive values for the tree-based methods are noticeably better than those of the logit-based
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Table III. Q estimates for base case (�D0:90, true AD fX1>0;X2<0g) and null case (� D 0, true A null).

Logit0:05 Logit0:1 VT(R)0:05 VT(R)0:1 VT(C)0:05 VT(C)0:1

� D 0:9

Q.A/ 0.139 0.139 0.139 0.139 0.139 0.139
Q. OA/ 0.043 0.054 0.070 0.062 0.071 0.083
SD.Q. OA// 0.042 0.056 0.047 0.057 0.043 0.055
OQ. OA/

RS(Mean) 0.080 0.125 0.164 0.155 0.164 0.192
(SD) 0.063 0.127 0.078 0.122 0.062 0.106
SND(Mean) 0.073 0.104 0.111 0.101 0.115 0.144
(SD) 0.053 0.074 0.046 0.074 0.033 0.058
CV(Mean) 0.057 0.081 0.106 0.095 0.104 0.106
(SD) 0.045 0.063 0.045 0.070 0.041 0.079
FCV(Mean) 0.023 0.005 0.037 0.028 0.052 0.027
(SD) 0.088 0.163 0.110 0.164 0.091 0.182
RS(BC)(Mean) 0.060 0.096 0.103 0.118 0.105 0.133
(SD) 0.060 0.132 0.076 0.105 0.068 0.104
SND(BC)(Mean) 0.045 0.068 0.072 0.076 0.067 0.092
(SD) 0.043 0.060 0.044 0.061 0.041 0.049

� D 0

Q. OA/ 0.000 �0.001 0.010 0.009 0.008 0.012
SD.Q. OA// 0.006 0.016 0.023 0.023 0.025 0.024
OQ. OA/

RS(Mean) 0.012 0.010 0.124 0.084 0.109 0.114
(SD) 0.034 0.094 0.099 0.127 0.092 0.135
SND(Mean) 0.014 0.019 0.074 0.051 0.089 0.090
(SD) 0.033 0.049 0.054 0.072 0.040 0.074
CV(Mean) 0.009 0.013 0.069 0.047 0.069 0.046
(SD) 0.024 0.037 0.052 0.068 0.048 0.071
FCV(Mean) �0:040 �0.024 �0.020 �0.076 �0.014 �0.079
(SD) 0.149 0.188 0.132 0.232 0.105 0.219
RS(BC)(Mean) 0.004 0.002 0.068 0.062 0.043 0.068
(SD) 0.033 0.096 0.085 0.103 0.097 0.119

SND(BC)(Mean) 0.007 0.012 0.036 0.036 0.033 0.048
(SD) 0.019 0.031 0.045 0.054 0.041 0.047

Note: RS, SND, CV, and FCV indicate the resubstitution, simulate new data, cross-validation-based simulate new data, and
cross-validation-based resubstitution methods, respectively. BC indicates bootstrap bias-corrected method.

methods, whereas the specificities and negative predictive values for all methods are similar. The AUC
is better for the tree-based methods than for the logit-based methods.

From Table III, it is clear, because Q.A/ > Q. OA/, that all methods tend to identify subgroups that
have less of a true enhanced treatment effect than the true subgroup A. The tree-based methods out-
perform the logit-based method, finding subgroups which have larger values of Q. OA/. Also, VT(C)
slightly outperforms VT(R), particularly when Z�i > ıC 0:1 is used to define OA. With the exception of
the full cross-validation-based estimates, all estimates (and standard deviations) are essentially identical
between VT(R) and VT(C) when the threshold for defining OA is ı C 0:05; however, when OA is instead
defined using threshold ı C 0:1, the cross-validation-based and bias-corrected estimates show similar
levels of bias between VT(R) and VT(C), but the resubstitution and SND estimates are slightly less
biased for VT(R). For all methods, the resubstitution, SND, and cross-validation-based SND estimates
tend to overestimate Q. OA/, although the two SND methods are generally much closer to Q. OA/ than the
corresponding resubstitution estimates. The full cross-validation-based resubstitution estimates tend to
greatly underestimate Q. OA/ and are extremely variable. The two bootstrap bias-corrected estimates are
the best, with the bias-corrected SND estimate being the closest to Q. OA/ and having smaller variability
than other estimates.

From the magnitude of the standard deviations in Table III for SND with bootstrap bias correction
SND(BC), we can see that the value of OQ. OA/ would be considered greater than zero much more often
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for the � D 0:9 case than for the null case. The standard errors of OQ. OA/ were also evaluated using the
method outlined in Section 3.2. We found that for VT(R) and the SND method of estimating Q. OA/,
the estimated standard errors were close to the standard deviations in Table III (results not shown),
suggesting that these standard errors are reasonable measures of uncertainty to present along with the
estimate OQ. OA/.

5.2. Null-case results

From Table I, we can see that the tree-based methods again tend to identify too many covariates as
important, whereas the logit-based method finds almost zero. Moreover, none of the tree-based methods
fails to find a tree more than 38% of the time, whereas an intercept-only model is chosen 85% of the time
for the logit-based method. This could be due to the fact that the logit-based method uses the same scale
from which the data were generated, whereas the tree-based methods change to the probability scale.
Between the tree-based methods, VT(C) finds empty trees more frequently than VT(R), and defining OA
using Z�i > ı C 0:1 noticeably outperforms Z�i > ı C 0:05 . It appears that, even in the absence of
a region of enhanced treatment effect, the tree-based methods still identify main effects as important,
whereas the logit-based method does not. Similar results can be seen in Table II. The most conserva-
tive of the tree-based methods in this case (VT(R)0:1) still identifies a subgroup of enhanced treatment
effect 35% of the time, whereas the logit-based method identifies such a subgroup only about 15% of
the time. Between the tree-based methods, the classification methods tend to identify subgroups more
frequently than the corresponding regression-based methods. The specificities for all methods were rea-
sonably good, although again the logit-based method tended to outperform the tree-based methods. As
expected, specificities for OA defined by Zi > ıC 0:1 are better than those for Zi > ıC 0:05.

From Table III, we can see that, as expected, subgroups identified by all methods have essentially
no real enhanced treatment effect. The logit-based method has estimates ( OQ. OA/) which are generally
much closer to zero than the corresponding tree-based methods. Between the tree-based methods, VT(R)
appears to perform better for SND estimates, whereas the other estimates tend to be similar or slightly
better for VT(C). In addition, except for the SND estimates, defining OA using Zi > ı C 0:05 tends
to be similar or slightly better than Zi > ı C 0:1 for VT(R), whereas for VT(C) this relationship is
reversed. Also, the resubstitution, SND, and cross-validation-based SND methods tend to overestimate
Q. OA/, with the resubstitution method overestimating the most, whereas the full cross-validation-based
resubstitution underestimatesQ. OA/. The bias-corrected estimates are again the closest to the true values
ofQ. OA/; however, the bias-corrected estimates tend to somewhat overestimateQ. OA/, particularly in the
case of the tree-based methods.

5.3. Modifications to the base case

We also consider a number of modifications to the base case:

(i) 30 covariates instead of 15.
(ii) Correlated covariates, in which variables in the three clusters fX1; X3; X7g, fX2; X4; X15g, and
fall remaining covariatesg have internal correlations of 0.7 but are uncorrelated with variables
from the other clusters.

(iii) Subject-specific effects, using data generation models logit.P.Yi D 1// D ai � 1 C 0:5X1 C
0:5X2 � 0:5X7 C 0:1T C 0:5X2X7 C �TI.X 2 A/ and logit.P.Yi D 1// D ai � 1C 0:5X1 C
0:5X2 � 0:5X7 C 0:1T C biT C 0:5X2X7 C �TI.X 2 A/, where ai and bi are both normally
distributed with mean zero and variance 0.25.

(iv) Sample sizes of 400 and 2000.
(v) True A redefined to be X1 > �0:545\X2 6 0:545, so that A is approximately 50% of the data

set.
(vi) � D 1:5.

For all situations, we present only the results for VT(R) with threshold ıC0:05. This choice was made
for illustrative purposes. The approximate power in a test of � D 0 for the correct logit model ranged
between 90% and 100% for all situations except for the nD 400 case, in which the power was found to
be approximately 60%.

Results for these cases are compared with the base case in the upper sections of Tables IV and V, with
Table V being limited to the SND method for Q estimation. As expected, the average value of Q. OA/ is
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Table IV. ‘Finding A’ performance: variations of base case (� D 0:90, true AD fX1 > 0;X2 < 0g) and null
case (� D 0 true A null) for VT(R)0:05.

Proportion Median fX1; X2g # Unique
Sensitivity Specificity AUC PPV NPV OA null j OAj 2 tree Xs

� D 0:9

Base case 0.47 0.89 0.77 0.55 0.84 0.07 189 0.51 3.62
p D 30 0.48 0.89 0.78 0.51 0.85 0.15 213 0.52 2.89
Correlated 0.52 0.85 0.76 0.52 0.85 0.03 247 0.32 4.08
Subject-specific 0.54 0.89 0.79 0.60 0.86 0.04 218 0.62 3.59
(ai )
Subject-specific 0.50 0.89 0.76 0.57 0.85 0.05 216 0.48 3.61
(ai , bi )
nD 400 0.40 0.82 0.66 0.42 0.81 0.05 93 0.19 4.09
nD 2000 0.68 0.93 0.87 0.74 0.90 0.03 462 0.78 3.03
Larger jAj 0.41 0.91 0.78 0.77 0.61 0.06 233 0.54 3.35
� D 1:5 0.78 0.91 0.89 0.77 0.93 0.00 245 0.83 3.39

� D 0

Base case – 0.87 – – – 0.25 131 – 3.29
p D 30 – 0.88 – – – 0.27 103 – 2.90
Correlated – 0.82 – – – 0.09 164 – 4.19
Subject-specific – 0.84 – – – 0.17 152 – 3.44
(ai )
Subject-specific – 0.86 – – – 0.28 131 – 3.25
(ai , bi )
nD 400 – 0.78 – – – 0.05 86 – 4.10
nD 2000 – 0.88 – – – 0.25 230 – 2.84

Table V. SND Q estimation: variations of base case (� D 0:90, true A D fX1 > 0;X2 < 0g) and null case
(� D 0 true A null) for VT(R)0:05.

Q.A/ Q. OA/ OQ. OA/ OQ. OA/BC

� D 0:9

Base case 0.139 0.070 (0.047) 0.111 (0.046) 0.072 (0.044)
p D 30 0.137 0.062 (0.047) 0.092 (0.049) 0.069 (0.048)
Correlated 0.129 0.055 (0.040) 0.110 (0.035) 0.061 (0.036)
Subject-specific (ai ) 0.133 0.078 (0.043) 0.113 (0.043) 0.073 (0.046)
Subject-specific (ai , bi ) 0.126 0.072 (0.041) 0.106 (0.043) 0.064 (0.048)
nD 400 0.137 0.046 (0.052) 0.107 (0.050) 0.051 (0.056)
nD 2000 0.135 0.096 (0.044) 0.109 (0.036) 0.081 (0.042)
Larger jAj 0.094 0.066 (0.033) 0.105 (0.042) 0.065 (0.045)
� D 1:5 0.228 0.167 (0.057) 0.156 (0.040) 0.132 (0.056)

� D 0

Base case 0.000 0.010 (0.023) 0.074 (0.054) 0.036 (0.045)
p D 30 0.000 0.016 (0.026) 0.072 (0.053) 0.043 (0.043)
Correlated 0.000 0.006 (0.023) 0.095 (0.043) 0.041 (0.038)
Subject-specific (ai ) 0.000 0.010 (0.029) 0.079 (0.046) 0.037 (0.036)
Subject-specific (ai , bi ) 0.000 0.011 (0.028) 0.063 (0.049) 0.025 (0.037)
nD 400 0.000 0.010 (0.035) 0.099 (0.046) 0.038 (0.046)
nD 2000 0.000 0.003 (0.017) 0.064 (0.045) 0.035 (0.034)

Note: SD in parentheses.

noticeably smaller than Q.A/ when nD 400 and more similar to Q.A/ when nD 2000, indicating that
the ability to find subgroups with good properties decreases with decreasing sample size. From Table IV
we can see that, with the exception of the nD400 case, which is noticeably worse than the others, and the
nD2000 and �D1:5 cases, which are noticeably better, the method’s ability to find the correct subgroup
seems to be somewhat unaffected by moderate variations on the base case. The NPVs are quite good for
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all cases other than the Larger jAj case, and with the exception of the nD400 case, all cases lead to very
good AUC values. Furthermore, the method seems to find subgroups that are similar in size to the true
subgroup for all cases and rarely fails to find a subgroup of any sort. From the upper section of Table V,
we can see that, other than nD400 and nD2000 cases, the method appears to estimateQ. OA/with similar
accuracy under all cases when the bias correction is made. Although reasonably good, the bias-corrected
estimates for the nD2000 and �D1:5 cases are negatively biased, which is somewhat counterintuitive,
as one would expect increased sample size and increased signal to lead to more accurate estimates. The
SND estimates for all cases other than � D 1:5 show some positive bias, which is, for the most part,
removed once we implement the bias correction. Increasing the number of covariates to 30 does not
change the properties much, except for increasing the percentage of times that no subgroup is found.

Null cases (� D 0) for each of these modifications are also considered, and comparisons of these with
the null case are given in the lower sections of Tables IV and V. We can see from Table IV that for
specificity, median j OAj, and number of unique Xs, the method seems somewhat insensitive to variation
of the null case; however, the correlated and nD 400 cases show substantially fewer instances of j OAj D 0
than the other cases. Specificities under all cases are reasonably good; however, the method continues to
find subgroups even when no true subgroup exists, identifying a subgroup at least 72% of the time in all
cases. From Table V, we see that our method shows similar performance under all null cases, particularly
when the bias correction is used. As expected, the estimated subgroups for all cases have, on average,
no enhanced treatment effect. As we saw in the base case, the SND estimates are positively biased, but
in this case, although the bias correction somewhat reduces this positive bias, some bias still remains.
Although there is some positive bias, these estimates are relatively close to zero, so although the method
continues to identify subgroups when no true subgroup exists, it is unlikely that such subgroups would
be falsely identified as important.

6. Application to clinical trial data

The example is taken from a clinical trial conducted by Eli Lilly, and as the specific information is
still confidential, the problem and solution will be described in general terms. The data come from a
randomized, double-blind clinical trial in patients with a potentially fatal condition. Data from this study
include 1019 individuals, 517 of whom received the experimental treatment in addition to the standard
of care; the remaining patients received placebo with the standard of care. The intervention is a drug
that is intended to improve survival, and as such, the agreed upon endpoint with the Food and Drug
Administration was survival at 28 days post-randomization to treatment/placebo. We consider 44 covari-
ates (X1 �X44), including demographic, laboratory, medical history, and questionnaire data. Of these,
nine are binary, 14 are regarded as continuous, and 21 are categorical. The 21 categorical variables were
subdivided using dummy variables, giving an overall total of 60 Xs. The overall treatment effect is
0.069 (SE D 0:028), indicating a modest overall survival benefit for the experimental treatment. For all
methods, we define OA using the threshold ıC 0:05D 0:119.

Applying the forward logistic approach found 30 main effects, 77 X �X interactions, and 11 X � T
or X �X � T interactions. The Xs that have the most significant interactions with T are X1, X2, X11,
X18, X39, and X41, three of which are prognostic factors for survival and another two of which have
biological plausibility. The resubstitution estimate of Q. OA/ is 0.285, and the bias-corrected SND esti-
mate is�0:042. For this method, the resulting estimated subgroup contains 290 individuals (151 treated).
Although many main effects and interactions were included in the final logistic model, the bias-corrected
estimates of Q. OA/ are essentially zero, suggesting that no meaningful subgroup was found.

Applying VT(R) led to a tree in which OA D fX W X8 < 58:22 and X44 D 1; or X8 2
Œ58:22; 180:9/ and X12 > 9; 938g, and similarly, VT(C) led to a tree in which OA D fX W X8 <
59:19 and X44 D 1 and X1 > 70:01; or X8 < 59:19 and X44 D 1 and X1 < 70:01 and X12 > 3; 304g.
These subgroups for VT(R) and VT(C) included 233 (126 treated) and 143 (77 treated) individuals,
respectively. Although our analyses focus on the threshold ı C 0:05 for defining OA, it should be noted
that the Virtual Twins approaches failed to identify subgroups for the threshold ı C 0:1. The resub-
stitution estimates of Q. OA/ for VT(R) and VT(C) are 0.179 (SE D 0:107) and 0.197 (SE D 0:101),
respectively, and the bias-corrected SND estimates are 0.047 (SE D 0:048) and 0.041 (SE D 0:039).
The variables that appear to be potentially useful are X1, X8, X12, and X44, which include three labora-
tory biomarkers and one demographic variable. Three of these variables are related to the severity of the
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patient’s condition and are also prognostic for the survival outcome. All four variables have some bio-
logical plausibility. However, although the estimates of Q. OA/ for the Virtual Twins methods are larger
than the corresponding estimates for the logistic method, they are still modest in size and only slightly
larger than their standard errors. This suggests that there is insufficient evidence from this trial that the
subgroups found by the Virtual Twins methods have a significantly better outcome.

This example shows the benefits of the Virtual Twins method over the logistic method in three
respects: the results are more easily interpreted, many fewer variables are identified as important,
and OA has better properties. Additionally, the computational time for the Virtual Twins method was
substantially better than that for the logistic method.

7. Discussion

Clinical trial research often includes reports of subgroup analyses in order to explore differential treat-
ment effects, oftentimes as post hoc or exploratory analyses. With the advent of tailored therapeutics,
much has been published on genetic or other biomarkers that may be predictive of patient outcomes or
differential treatment effects and thus may be useful to define subgroups. There are many dimensions to
this problem (effect size in both the overall populations and in the subgroup of interest, subgroup size,
study sample size, the number of covariates of interest, the number of covariates that define the subgroup,
the correlation between covariates, etc.) that give it considerable complexity. Although many have com-
mented on the dangers of subgroup analyses, whether planned or unplanned, there has been little serious
investigation of methodologies for proper identification of subgroups and assessment of their reliabil-
ity other than routine, conservative multiplicity adjustments on the number of treatment-by-subgroup
interaction tests done.

In clinical drug development programs that are exploring an array of potential biomarkers, phase 2
trials usually include dozens or a few hundred patients at most. Our simulations of n D 400 patients
indicate that single trials are unlikely to find the right biomarkers when the effect size is important but
the subgroup size is modest. For satisfactory results, larger studies are needed, as would occur with phase
3 trials. Good results are within reach when the sample sizes are n D 2000, but such sample sizes are
not always used in clinical drug development except for the largest event-driven trials in a few disease
indications such as cardiovascular disease or osteoporosis. In trials of nD 1000 patients, the method we
propose demonstrates reasonably good properties for identification of meaningful clinical effect sizes.
Although in principle the methods we present could be viewed as providing definitive evidence for a
subgroup, in practice the methods are more useful for giving leads and suggestions for future work and
better than what one could achieve by simply looking for interactions. In reality, an actual new trial
would be required for the results to be confirmed and accepted.

As we show, identifying subgroups of enhanced treatment effect is a challenging problem that would
generally require large data sets. Verifying that the subgroups are real and are likely to be useful in
future data is even more challenging. The Virtual Twins method appears to be a promising approach and
better than a simple alternative for identifying a subgroup. For the cases we consider, the identified sub-
group had reasonable properties as measured by sensitivity, specificity, and magnitude of the enhanced
treatment effect; however, the method is less good at identifying the correct covariates. One reassuring
finding from the simulations is that increasing the number of potential covariates, making the covariates
correlated, or introducing between-subject heterogeneity does not appear to have much of an effect on
the properties of the estimated subgroup, although we doubt this finding would hold if there were hun-
dreds of covariates instead of the tens we had. One drawback of the Virtual Twins method is that it has
a tendency to identify a subgroup even when there should not be one. One strategy to use to mitigate
any consequence of this is to accept that an aggressive strategy may find subgroups too often but then to
accompany the subgroup with an estimate of how good it is and an associated measure of uncertainty.
To obtain an honest estimate of the enhanced treatment effect in the identified subgroup, we find that a
bias-corrected bootstrap procedure gives good but not perfect results.

In any real situation, there are likely to be a number of logistical and practical considerations. For
example, in the methods we have treated all the Xs equally; however, in reality they will not be equiva-
lent. For example, there may be an a priori biological rationale why some of the Xs are more likely to
have an interaction with treatment in a model. Another issue is that some Xs may be cheaper or easier
to measure than others. Thus, it could be desirable to have the region OA based on such Xs, provided this
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does not substantially harm the properties of OA. Another practical concern is the size of OA. Depending
on the context, it may be desirable to have a large OA with a modest enhanced treatment effect or a much
smaller OA with a larger treatment effect.

In the simulations, we report whether the methods find the ‘right’ Xs; however, in some contexts
this may not be such an important issue. The Xs are likely to be correlated with each other, so it is
quite plausible that a ‘wrong’ set of Xs could be quite effective at defining the subjects who do have an
enhanced treatment effect. The very concept of a set of ‘right’ Xs is itself too idealized. Although for
some treatments it may be possible to hypothesize an all-or-nothing situation where the treatment will
only work if the person has a certain set of attributes, it may be difficult to develop technology that can
accurately and reliably measure these attributes. On the other hand, if a subgroup is to be based on a
set of Xs, then to be accepted by the scientific community, these Xs would have to have at least some
biological plausibility.

We have chosen to summarize the properties of the estimated subgroup using a metric Q. OA/, which
is the treatment effect in the subgroup minus the marginal treatment effect. An alternative metric is the
treatment effect in OA minus the treatment effect in the complement of OA. From the perspective of the
drug developer, neither metric is totally satisfactory because they do not incorporate the size of OA. For
a given enhanced treatment effect, a larger OA is more desirable than a small OA. It is unlikely that a sin-
gle summary measure can capture all the costs and benefits of the identified subgroup from the drug
developer’s or society’s point of view.

Although we demonstrate that the Virtual Twins method appears promising, many variations could be
contemplated. For example, in the first step the random forest could be replaced by other non-parametric
regression methods, such as multivariate adaptive regression splines. This could give smoother forms
for the estimate of P.Y D 1jX; T / as a function of each continuous X , which could be plausible in
many applications. In the second step, a regression tree is appealing because of its simplicity and its
ability to select a small number of features. Other feature selection methods could also be considered.
For instance, Kehl and Ulm [13] developed a method for censored data in which the second step involves
the use of stabilized bump hunting rather than a regression tree. Variations on cross-validation and the
bootstrap could be used to assess the properties of the estimated subgroup.

We consider the situation of a binary outcome variable, which gives rise to some issues, specifically
whether one should consider treatment effects as measured on an absolute probability scale or on a logit
scale. Whereas we simulated data using models on a logit scale, we assessed the enhanced treatment
effect on the probability scale. It is likely that the methodology we describe would have looked better if
we had used the same scale for both. What scale one uses to assess enhanced treatment effect depends on
the specific application. The reason to use the probability scale for assessing the properties of the region
is because this would translate directly into a number of people who would benefit from the treatment.
If the outcome were a continuous measure, then the Virtual Twins methodology would still be applica-
ble, and for this situation there would be no reason to have any scale of measurement other than linear.
We hypothesize that the methods described in this paper would perform better for continuous outcome
data, not only because of the uniform definition of the scale but also because there is inherently more
information in continuous data than in binary data.

A subtle concern with the goal of finding subgroups using data from a specific randomized trial is that
the trial may have had exclusion criteria. For example, there may have been a strong suspicion that the
treatment would not be effective for low values of a certain covariate, and hence people with such low
values were excluded from the trial. Criteria such as these may hinder the ability to find a meaningful
interaction, either with this covariate or with others, that would be present in a broader population.

We have formulated the goal as finding a subgroup of patients based on a small number ofXs that have
an enhanced treatment effect. A related goal, which in the long run might be more useful for patients,
is giving each patient their predicted probability of response under each possible treatment, i.e., giving
them OP1i and OP0i .
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