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SUMMARY. We introduce an approximation to the Gaussian copula likelihood of Song, Li, and Yuan (2009, Biometrics
65, 60-68) used to estimate regression parameters from correlated discrete or mixed bivariate or trivariate outcomes. Our
approximation allows estimation of parameters from response vectors of length much larger than three, and is asymptotically
equivalent to the Gaussian copula likelihood. We estimate regression parameters from the toenail infection data of De Backer
et al. (1996, British Journal of Dermatology 134, 16-17), which consist of binary response vectors of length seven or less from
294 subjects. Although maximizing the Gaussian copula likelihood yields estimators that are asymptotically more efficient than
generalized estimating equation (GEE) estimators, our simulation study illustrates that for finite samples, GEE estimators

can actually be as much as 20% more efficient.
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1. Introduction

Song, Li, and Yuan (2009) presented a new joint regression
analysis for multivariate outcomes based on Gaussian copu-
las and illustrate the technique in two examples. In the first
example, one element of the bivariate response is continu-
ous and the other is discrete. The response in the second
example is a triple of dichotomous outcomes. For discrete
multivariate outcomes the model is only tractable if the re-
sponse vector is no more than four- or five-variate. In this
article, we introduce an approximation to the model that al-
lows larger-dimensional response vectors. We illustrate our
model by analyzing the toenail infection data of De Backer
et al. (1996) in which each subject was observed on up to
seven occasions.

Song et al. (2009) compare the asymptotic efficiency of re-
gression parameters estimators between their model and a
standard generalized estimating equation (GEE) analysis. For
this article, we conducted a simulation study to compare the
observed efficiency between our estimator and the GEE es-
timator. The study shows that for finite samples, the GEE
estimator is up to 20% more efficient than that obtained from
the Gaussian copula model.

2. The Gaussian Copula with Continuous Extension
Song et al. (2009) arrive at the Gaussian copula as a
convenient special case of vector generalized linear models
(VGLMs). Here, we present a brief discussion of copula mod-
els and their utility in constructing multivariate distribu-
tion functions. For a more thorough introduction, see Nelsen
(2006).
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A bivariate copula is a joint distribution function C(u,v)
with uniform marginals. Sklar’s theorem (Sklar, 1959; Nelsen,
2006, Section 2.3) establishes the correspondence between
copulas and joint distribution functions. The theorem states
that given any random variables Y; and Y, with marginal
distributions F; and F, and joint distribution function H,
there exists a copula C with H (y1,y2) = C{Fi(y1), Fa(y2)} for
any yi,v» in R?, and that conversely, given any copula C
and univariate distribution functions F; and Fy, H(y1,ys2) =
C{Fi(y1), Fa(ys)} defines a joint distribution function with
marginals F} and F5. If the F; are continuous, C'is unique.

The bivariate Gaussian copula model is C(y,yq; ) =
O, [0 HF (y1)}, @ H{Fy(y2)}], where @ is the standard nor-
mal cumulative distribution function (cdf) and @, is the bi-
variate normal cdf with correlation a. The parameter « is
not the correlation between Y; and Y, but does determine
the degree of dependence. Song (2007, p. 130) calls « the
“normal scoring” between nonnormal Y; and Y; and discusses
the connection between a and two other measures of mono-
tone association, Spearman’s p and Kendall’s 7. Joe (1997,
pp. 140-141) notes that o = 1 corresponds to maximal posi-
tive dependence and o« = —1 corresponds to maximal negative
dependence.

Nelsen (2006, pp. 116-117) catalogs a number of bivari-
ate copula models but later notes that constructing mul-
tivariate copulas is “difficult.” The Gaussian copula is an
exception, and has the additional advantage of allowing a
flexible parametric dependence structure. Suppose Yi,...,Y,
have marginal distributions F;. Let X be a symmetric, non-
negative definite matrix with diagonal entries equal to 1.
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A joint distribution function of Yj,...,Y, is C(y;X) =
Ox[@Y{Fi(y1)},--., 2 {F,(y.)}], where @y is the multivari-
ate normal cdf with covariance matrix X. If the Y; have
marginal density functions f;, the joint density function is
obtained by differentiating C(y; X) with respect to y:

c(y;Z) = 37?2 eXP{éZ’(E1 - In)z} Jlrw), @

where z = [® HF(y1)}, ..., @ H{F.(y.)}]' and I, denotes
the n x n identity matrix.

If the Y; are discrete, C'is uniquely determined only on the
range of F} x --- x F,, and the joint probability mass function
of Y1,...,Y, is

2 2
P(}/l :yh...’)/n = yn) = ZZ(_l)J1+]71

Jji=1

X @E{Qfl(uljl ), N @71(“"]‘71 )}7

(2)

where u;; = F;(y;) and w;9 = F;(y;—), the limit of F; at y;

from the left (Song et al., 2009). We restrict our attention to
integer-valued Y;, so F;(y;—) = F;(y; — 1).

Expression (2) contains 2" terms, becoming unmanageable
for m larger than four or five. Our model avoids the n-fold
summation in (2) by using a continuous extension of the Y;
proposed by Denuit and Lambert (2005), which we now de-
scribe. With integer-valued Y;, associate a continuous random
variable Y* = Y; — U;, where U; is uniform on (0,1) and in-
dependent of Y; and of U; for j # . This process “jitters” Y;
filling in the gaps between the discrete elements of the support
of F; and producing continuous random variable Y;* with dis-
tribution function Fj(y) = Fi([y]) + (v — [y])P(Y; = [y + 1])
and density function ff(y) = P(Y; = [y + 1]), where [y] de-
notes the nearest integer less than or equal to y. Note that the
parameters of F;* and f; are exactly those of F;, and that Y;
can be recovered from Y;* as Y; = [Y;* 4 1], so no information
is lost. Furthermore, Y;" and Y] have the same dependence
relationship as Y; and Y; (Denuit and Lambert, 2005).

Substituting f and F; into (1) yields a joint probabil-
ity density function for Yj",...,Y . Averaging this density
over the jitters U = (Uy, ..., U, ) yields joint probability mass
function for Y7,...,Y,:

h(y; %)

Jn =1

I

= EU [|2|]/26Xp {7%Z*/(271 - III)Z*}Hf1*(y1 - U1)

i=1

(3)

where Z* = [0 YFy(y; —U1)},..., o YF (y, —U,)}. A
proof that (3) is equal to the joint probability mass function
(2) is given in the Web Appendix.

3. Maximum Likelihood Estimation

Given discrete multivariate observations y; = [y, ..,
yie]T ;i =1...n, where n denotes the number of subjects and
¢ denotes the number of observations per subject, suppose
the marginal means E(y,;) = p;; depend on a vector of
covariates X;; via a vector of parameters 8 and a link
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function. Following Song et al. (2009), suppose the objective
is to estimate (3 and the dispersion parameters ¢ of the
marginal distributions of the y;;, while accounting for the
dependence between the observations on a single subject.

Equation (3) can be used as a likelihood for the param-
eters of the model in the following way. Model the copula
association matrix 3; for the ith subject as a function of
a vector of parameters a. The method can accommodate
different X;, but for simplicity, assume ¥; = ¥ is the same
for all 4, for example, 3 describes an exchangeable correlation
structure. The expected likelihood is L(B,¢,o;y) = Ey
T, (%172 exp{—12 (5 = 1)2} [T, P(Y, = i),
where  Z7 = [@"HE (yin — Ui}, @ HE, (yic — Uic) 1]
The expected likelihood can be approximated by averaging
over a large number of jitters:

LB, 3 y)

B 1 m n 71/2 1 L B .
=~ (H [m exp{ -5, (57~ L)z, |

k=1 i=1

<[P = ymD , 4)

where Z:,k = [¢71{E*1 (yil _Uil,k:)}, RN @—1{}7*1»; (yic _uiC,k)}]/7
and the u;;; are generated as independent uniform on (0,1)
fori=1,...,n,5=1,...,c,and k = 1,...,m. Maximum like-
lihood (ML) estimates B,é&, and ¢ can be found by maxi-
mizing the log of (4) with respect to parameter vector & =
[ﬂ? a? ¢j| N

Under standard regularity conditions, as m and n go to
infinity, the ML estimators will be consistent and asymptoti-
cally normal with asymptotic covariance matrix given by the
Fisher information —{F(H )}~ where the #jth element of H
is Hij = 82 1Og(L)/(8&8£J)

The variance of ML estimator é based on approximate like-
lihood (4) includes extra variance due to the jitters. When m
is sufficiently large, this jittering variance will be small rela-
tive to the sampling variance, but “sufficiently large” depends
on the model and data. For a particular data analysis, the
choice of m can be justified by results obtained by repetition
of the estimation procedure. For the analysis in Section 4,
m = 1000 was chosen by inspecting the increased variance for
the estimated parameter of interest over 500 repetitions of the
algorithm. Details are given in Section 4.

4. Example

In this section, we analyze the toenail infection data of De
Backer et al. (1996). Molenberghs and Verbeke (2005) use
these data to illustrate GEE and generalized linear mixed
model analyses. The data consist of up to seven binary ob-
servations on each of 294 subjects who had been randomly
assigned to one of two treatment groups. The observations,
taken at regularly scheduled time points, are coded as 1 if
the subject’s infection was severe and 0 otherwise. The in-
ferential goals are to determine if the two treatments differ
and if the percentage of severe infections decreased over time.
We restrict our attention to the 224 subjects observed at all
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Table 1
Estimates and standard error from GEE and ML analyses of
the toenail data. The adjusted SE accounts for the variance
introduced by approzimating the likelihood using m = 1000
jitters per observation in (4).

GEE ML
8 B SE B Unadj. SE  Adj. SE
Int.  —0.6472 0.2081 —0.6490  0.1380 0.1439
T 0.0019 0.3068  0.0748  0.1890 0.1992
t —0.2166 0.0427 —0.2120  0.0304 0.0313
Txt —0.048 0.0688 —0.0363  0.0438 0.0458

seven time points, though our approach accommodates differ-
ing cluster sizes.

Let Y;; denote the jth observation on the ith subject.
Assume Y;; ~ Bernoulli(r;;) and logit(m;;) = By + 6115 +
Bati; + BsTit;;, where T; indicates the treatment for subject
i, and t;; represents the jth time point for the ith subject
(Molenberghs and Verbeke, 2005). Assuming an exchangeable
correlation structure, we fit the GEE2 “alternating logistic
regression” model of Molenberghs and Verbeke (2005) using
SAS PROC GENMOD. Parameter estimates and standard errors
are given in Table 1. These differ from Molenberghs and Ver-
beke (2005) because we use only the data from subjects with
all seven observations.

Table 1 compares GEE estimates and ML estimates of
Br,k=0,...,3. ML estimates were obtained by maximizing
the log of (4) with respect to & = [, By, b1, B2, B3], where «
represents the off-diagonal elements of the exchangeable ML
copula association matrix 3.

We used m = 1000 jitters to approximate the likelihood.
To verify that the chosen m is sufficiently large for the data
and model, we calculated an adjusted standard error to ac-
count for the extra variance due to jittering. Table 1 gives
two ML standard errors, unadjusted and adjusted. The unad-
justed standard error was derived from a numerical approxi-
mation to the Hessian H for the single realization of (4) used
to obtain the Bk The adjusted standard error was calculated
as follows. The sampling variance of Bk can be decomposed
as

var(By) = E{var(3|U)} + var{E(3: |U)}. (5)

We estimate these two components by repeating the estima-
tion procedure 500 times, producing 500 ML estimates of ;.
and 500 variance estimates. Each ML estimate was obtained
by maximizing the log of (4) for a different random U. Each
variance estimate was the appropriate diagonal element of
the approximated inverse Hessian of the log of (4) given U.
The first component of (5) was estimated by averaging the
500 variance estimates, and the second component was esti-
mated by the sample variance of the 500 ML estimates. The
adjusted standard error is the sum of these two estimated
components. Table 1 shows that adjusted standard errors are
all less than 105% of the unadjusted standard errors, except
for SE(f3;). Molenberghs and Verbeke (2005) point out that
the randomization of treatments implies 5; = 0 but include it
in the model for generality. For the parameter of interest (s,
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the ratio of adjusted SE to unadjusted SE was less than 103%,
so that inference is practically unchanged after accounting for
the jitters. Increasing m will reduce the additional variance,
but this reduction must be balanced with increased compu-
tational burden.

Matlab code for the ML analysis is available in the Web
Appendix.

5. Simulations

Song et al. (2009) compared the efficiency of the ML (VGLM)
estimators BML to the GEE estimators ,BCEE by calculating
the asymptotic relative efficiency for a hypothetical three-
period crossover trial with binary response at each trial.
Marginal means for the ith subject at the jth trial are modeled
as

= By + iz + Bo(j — 1),

where the true value of 3 is [Gy, 31, 32]) = [0,0.5,0.5]. Co-
variate x;; indicates whether at time j subject 4 received a
placebo (x;; = 0) or an active drug (x;; = 1), each of which
was equally likely. The GEE working correlation structure
was modeled as either exchangeable or independent, and the
VGLM association was modeled as exchangeable. Because the
response for each subject was trivariate, Song et al. (2009)
were able to derive closed-form expressions for the asymp-
totic variances of [S’ML and ,@GEE as functions of association
parameter «.

Section 2 introduced an approximation to the model of
Song et al. (2009) that is feasible for larger cluster sizes. Be-
cause the asymptotic variances for this approximation are not
available in closed form, we conducted a simulation study.
We simulated longitudinal binary responses for n = 50 and
n = 250 subjects, where each subject is observed on ¢ = 10
occasions. We assumed model (6) but without the carry-
over effect (32, that is, marginal means for the ith subject
at the jth trial are logit(m;;) = By + fiz;;,j = 1,...10, where
the true value of 3 is [Gy, £1] = [0, 0.5]. The correlation struc-
ture was simulated as exchangeable using four correlation val-
ues, p € {0.01,0.26,0.63,0.84}. These correlation values are
the observed Monte Carlo correlations of the simulated data,
not the association parameter of the Gaussian copula. For
each of the eight combinations of p and n, 500 data sets were
simulated. GEE estimates of the parameters were obtained
using the procedure in Section 4 with exchangeable working
correlation, and again with independent working correlation.
ML estimates were obtained by maximizing the log of (4). The
number of jitters for the likelihood approximation was set at
m = 1000, because the results appeared nearly unchanged for
m = 5000. Performing repeated estimations with each simu-
lated data set and calculating an adjusted standard error, as
in Section 4, was not computationally feasible, but informal
exploration suggests that smaller m is sufficient when either
the sample size is large or the dependence is weak, that is,
when the information content of the sample is high.

Observed relative efficiencies RE(f;) = Zjool (Boyr —

500 _
ﬂl ML [Zf 1 51 GEE —51GEE)2] ! versus p are plotted in
Figure 1. The simulations reveal an interesting phenomenon

not apparent when only asymptotic relative efficiencies are
considered. Song et al. (2009) observed that the asymptotic

1Ogit(ﬂ'7‘]‘) .7 = 172737 (6)
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Figure 1. Observed efficiency of the ML estimator relative
to the GEE estimators of 3, the coefficient of the treatment
indicator in the simulated data, as a function of increasing
correlation.

performance of the ML estimator is only slightly better than
that of the GEE estimator and only at high correlations, when
the GEE models the working correlation as exchangeable. The
asymptotic performance of the ML is noticeably better when
the GEE assumes an independent working correlation struc-
ture. Our simulations show that for moderate to high correla-
tions, provided the correlation is not ignored, GEE estimators
are actually more efficient than ML estimators. This pattern is
apparent at sample sizes of both n = 50 and n = 250 subjects,
though for n = 250, the observed relative efficiency drops as
correlation increases from p = 0.63 to p = 0.84.

This apparent contradiction can be explained by the shrink-
ing effective sample size as the degree of dependence increases.
Although Song et al. (2009) showed that the ML estimator is
asymptotically more efficient than the GEE estimator, in fi-
nite samples the amount of independent information decreases
as dependence increases, widening the discrepancy between
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observed and asymptotic quantities. The GEE estimator is
apparently less sensitive to this loss of information, and per-
forms better at high correlations.

To compare variance estimators for the two procedures, we
calculated the coverage rate of nominal 95% confidence inter-
vals of ;. The ML variance estimator was the appropriate
diagonal entry of a numerical approximation of the observed
inverse information matrix. The GEE variance estimator was
the robust sandwich variance estimator as calculated by the
gee function of R (Carey, Lumley, and Brian, 2007; R Develop-
ment Core Team, 2008). Confidence intervals were calculated
as (1 % 1.96 - SE(Bl). Table 2 lists the results. All coverage
rates were close to 95% except for ML intervals with high
dependence, where the coverage was about 89%.

To assess if the confidence coverage was high due to positive
bias in variance estimators, we calculated the percentage of
intervals containing 0 (recall the true parameter is 3; = 0.5).
These rates are shown in Table 3. For GEE assuming indepen-
dence and n = 50, well over 90% of intervals contained zero,
whereas for n = 250 and GEE (independence), only one out of
500 intervals contained zero. GEE (exchangeable) and ML in-
tervals for n = 250 all excluded zero. For n = 50, and p = 0.01,
about 20% of both GEE (exchangeable) and ML intervals con-
tained zero. For higher correlations, the rates dropped, but
substantially fewer GEE intervals contained zero.

6. Conclusion

This article gives an approximation to the Gaussian cop-
ula VGLM of Song et al. (2009), allowing ML estimation of
model parameters for larger clusters. The approximation en-
joys the same advantages as the VGLM, such as the ability to
model multivariate data where dependent observations have
marginal distributions from different families, as well as the
strengths of a ML approach. However, for parameter estima-
tion from longitudinal data, our simulations suggest that the
GEE estimator can be more efficient in finite samples, and
that its robust variance estimator gives good confidence cov-
erage without inordinate positive bias.

The Gaussian copula model has shown more promise in the
spatial setting. Spatial data sets typically consist of over 100
observations, all of which are assumed dependent, so imple-

Table 2
Nominal 95% confidence coverage from simulation study
p=0.01 p=0.26 p=0.63 p=0.84
n = 50 n = 250 n =50 n = 250 n = 50 n = 250 n =50 n = 250
ML 0.948 0.949 0.946 0.951 0.982 0.968 0.886 0.888
GEE exch. 0.933 0.947 0.934 0.940 0.952 0.962 0.932 0.940
GEE indep. 1.000 0.945 1.000 0.938 1.000 0.964 1.000 0.952
Table 3
Rates of nominal 95% confidence intervals containing 0
p=0.01 p=0.26 p=0.63 p=0.84
n = 50 n = 250 n =50 n = 250 n = 50 n = 250 n =50 n = 250
ML 0.197 0.000 0.198 0.000 0.078 0.000 0.060 0.000
GEE exch. 0.197 0.000 0.140 0.000 0.010 0.000 0.008 0.000
GEE indep. 0.960 0.000 0.978 0.000 0.970 0.000 0.940 0.002
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mentation of the copula likelihood (2) is not feasible. Our ap-
proximated likelihood gives a model for discrete spatial data
that is appealingly similar to a traditional geostatistical model
and, unlike a spatial GEE approach, is able to model high de-
pendence among counts (Madsen, 2009). Simulation results
in Madsen (2009) show that ML estimators are more efficient
than GEE estimators for data with strong spatial dependence,
contradicting the results of the simulation study in Section 5.
This suggests that the superior asymptotic efficiency of ML
over GEE estimators may manifest for larger clusters than
¢ = 10 considered here.

7. Supplementary Materials

A Web Appendix containing the proof of the equivalence
of equations (2) and (3), as well as Matlab code and data
for the analysis in Section 4, are available under the Pa-
per Information link at the Biometrics website http://www.
biometrics.tibs.org.
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The authors replied as follows:

This short note discusses the efficiency and computational
issues of the maximum likelihood estimator for vector general-
ized linear models proposed in Song, Li, and Yuan (2009, Bio-
metrics 65, 60-68). A simulation study is further performed to
evaluate the relative efficiency of the proposed vector gener-
alized linear model with the generalized estimating equations
(GEE).
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1. Introduction

A major contribution of Madsen and Fang (2010) is the ap-
plication of Denuit and Lambert’s (2005) idea of “continuous
fill-in” (CFI), which essentially fills simulated continuous val-
ues in a gap between two adjacent integer values given by
a discrete random variable. As a result, discrete-valued ob-
servations are then converted into continuous ones. An ad-
vantage of this approach is that the likelihood function can
be derived under the copula model with continuous margins,
which is known to be analytically more convenient and com-
putationally simpler. In particular, we are pleased to learn
this new approach as an alternative to Song et al.’s (2009)
direct maximum likelihood estimation (MLE) for correlated
discrete data.

Although we appreciate very much the novelty of Denuit
and Lambert’s CFI idea, we do see some potential confusion
and dilemmas of this approach, which could complicate re-
lated data analysis and interpretations. In our views, Denuit
and Lambert’s CFI may be regarded as an approach of data
augmentation, which is widely applied in various statistical
analyses. What appears special in Madsen and Fang’s paper
is that their data augmentation method leads to a different
likelihood function from that of the original data, and thus
additional effort is needed to integrate out those filled val-
ues. As shown in their paper, such effort of integration turns
out to be a highly nontrivial and computationally tedious op-
eration. Several approximations have been taken in the im-
plementation of this method. We found that the simulation
method proposed in their paper is similar to the method of
importance sampling (Robert and Casella, 1999, Section 3.3).
It is known that the Monte Carlo expectation—-maximization
(EM) algorithm is another popular method to handle aug-
mented data. Our experience suggests that the Monte Carlo
EM works better in most cases than the importance sampling
due to the use of posterior distribution. Thus, we wonder if
the authors ever considered the Monte Carlo EM algorithm
in their implementation of the CFI idea.

The computational burden in the direct MLE considered
in Song et al. (2009) lies in the choice of precisely evaluating
the cumulative multivariate normal distribution. There ex-
ist other choices of carrying out such evaluation, e.g., Monte
Carlo simulation as considered in Madsen and Fang’s paper.
Thus, when the Monte Carlo method is adopted to modify
Song et al.’s direct MLE, the resulting method would han-
dle correlated discrete data of large dimension. As a mat-
ter of fact, a similar idea has been explored by Pitt, Chan,
and Kohn (2006). Also, as suggested in Song et al. (2009),
composite likelihood approach (Varin, 2008) is a promis-
ing alternative to extend the direct MLE of Song et al.
(2009) to deal with correlated discrete data of arbitrary
dimensions.

In addition, we are concerned with the quality control of
numerical implementation in Madsen and Fang’s approach,
because most of the key terms need to be evaluated via in-
tensive simulation. In their paper, the likelihood function is
evaluated by simulation, and the standard errors are calcu-
lated via bootstrap. It is not clear to us if the simulation
error has been carefully assessed before final conclusions are
delivered.
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Table 1
Observed relative efficiency of direct MLE versus GEE based
on 500 simulated data sets

Correlation parameter

Parameter 0.02 0.25 0.50 0.75 0.98
n = 50

Bo 0.933 0.906 0.942 0.755 0.511

061 0.971 0.896 0.913 0.737 0.526

Ba 0.935 0.929 0.944 0.798 0.593
n = 80

Bo 0.905 0.932 0.936 0.711 0.558

061 0.958 0.884 0.923 0.725 0.533

B2 0.906 0.932 0.943 0.761 0.633
n = 250

Bo 0.938 0.912 0.921 0.751 0.715

061 0.932 0.904 0.910 0.757 0.705

Ba 0.935 0.911 0.923 0.787 0.828

2. Simulation Study

We are particularly concerned with the authors’ conclusion
“Our simulations show that... GEE estimators are actually
more efficient than ML estimator,” which contradicts the the-
oretical asymptotic results that ML estimators are more ef-
ficient than the GEE estimators (Song et al., 2009). Thus,
we conducted a simulation study to assess the efficiency of
MLE estimator in comparison to GEE estimator under both
small and large sample sizes. Because the authors’ simula-
tion cannot be reproduced, due to lack of information on the
simulation model, and because it is rare to use a 10-period
crossover trial design in practice, we have chosen to conduct
a set of simple yet plausible simulations. Specifically, under
the setting of two-arm randomized trials, we simulated lon-
gitudinal binary responses for n = 50, 80, and 250 subjects.
We assumed that the subjects were equally randomized into
two arms and each subject was measured repeatedly three
times. We generated data from the Gaussian copula model
(involving a total of eight cases), in which the marginal means
for the ith subject at the jth measurement time were given
by

logit(m;;) = Bo + Brxn + Boaij,

where x1; is a binary treatment indicator defined as x1; =1
for treatment and 0 for control, and x;; is the measurement
time with Toij = j,] = 1,2,3,4. We set (ﬂo,ﬁl,ﬁg) = (05,
0.9, —0.4) and considered five values for the correlation pa-
rameter of the Gaussian copula, p=0.02, 0.25, 0.50, 0.75,
and 0.98. We simulated 500 data sets and reported the

observed relative efficiencies RE ZZ?S)] (Bk MLE 7Bk‘ wre)’/

Z:g}](ﬁk cer — By opp)? in Table 1. In both estimation
methods, we used exchangeable working correlation matrix.
Note that Song et al. (2009) calculated the RE directly us-
ing available analytic formulas. Here the simulation-based RE
would provide confirmative evidence for or against that ob-
tained from the formulas.

As shown in Table 1, our simulation result confirms that
the direct MLE is clearly more efficient than the GEE under

finite samples, and such efficiency gain increases when the
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within-subject correlation increases. For example, even under
the small sample size of n = 50, when estimating the treat-
ment effect parameter 3;, the RE of the direct MLE against
the GEE are 0.971, 0.913, and 0.526, respectively, with the
correlation parameter equal to 0.02, 0.5, and 0.98. This result
is fully consistent with the theoretical asymptotic RE that
derived in Song et al. (2009) (see Equation 14 and Figure 1),
and also is in full agreement with the results of Liang and
Zeger (1986).

3. Conclusion

We found the development given in Madsen and Fang’s pa-
per interesting. It provides a potential approach to address
the computational challenge in the direct MLE. However, in
terms of the relative efficiency of the GEE estimator and the
MLE estimator in the Gaussian copula joint model, for theo-
retical reasons, and based on our simulation study, we reach
a different conclusion, which is certainly worth more explo-
ration.

The authors thank the editor for the helpful comments and
the invitation for this rejoinder.
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