
Design for Product Embedded Disassembly Sequence

Shingo Takeuchi Kazuhiro Saitou

University of Michigan
Department of Mechanical Engineering

Ann Arbor, Michigan, 48109-2125, United States

Abstract

Due to the increased responsibility for the end-of-life
(EOL) treatments of products by the manufacturers, the
ease of disassembly has become a key design issue for
mass-produced products. As an extension of the
conventional design for disassembly (DFD), this paper
presents a computational method for designing
assemblies that can be disassembled only in specified
sequences. Given an ideal disassembly sequence that
maximizes the profit in the absence of geometric
constraints, the method simultaneously determines the
spatial configurations of components, locaters, and joints,
such that disassembly can occur only in the sequence. A
multi-objective genetic algorithm is utilized to search for
Pareto-optimal designs in terms of the unique realization
of the given disassembly sequence, the satisfaction of
distance specifications among components, and the
efficient use of locators on components. A case study on a
simplified laptop computer assembly demonstrates the
effectiveness of the method.

1 Introduction

The recent increase in the abandoned products prompted
the regulatory (eg., EU’s WEEE directive) and voluntary
initiatives for recycle and reuse around the world.
Consequently manufacturers are becoming more
responsible for the end-of-life (EOL) treatments of their
products. Since both material recycling and component
reuse typically requires the disassembly of products,
Design for Disassembly (DFD) has become a key design
issue in mass-produced, assembled products, such as
consumer electronics products.

The profitability of a disassembly process U can be
determined by

∑ −=
i

ii CRU)((1)

where Ri is the revenue of the i-th disassembled
components and Ci is disassembly cost of i-th disassembly
operation. Although Ri depends only on the disassembled
components, Ci generally depends on both the
disassembled components and the spatial configuration
among components.

For modern consumer electronics products assembled
predominantly in z-(vertical) direction, however, the cost
of disassembling a component on top of an assembly
(hence easily accessible from above) depends mainly on

the number of fasteners [1]. If the arbitrary spatial
arrangements of components are possible with minimum
use of fasteners, therefore, an “ideal” disassembly
sequence that maximizes the profitability U can be
obtained by sorting the components in the descending
order of its revenue until Ri – Ci becomes non-negative.
The corresponding component configuration is a simple
“stack” of the disassembled components in the reverse
order of disassembly.

Although this ideal disassembly sequence may not be
realizable due to component geometry, distance
specifications among components, and regulatory
requirements for component/material removal, it is
desired to design a product that disassembles in a similar
sequence as possible. In order to reduce wrong operations
during the disassembly process, it is further desired that
the product (non-destructively) disassembles only in that
sequence.

The above thoughts motivated us to develop a concept
of product embedded disassembly sequence, where the
relative motions of components are constraint mostly by
the locator features integral to the components, such that
only the desired disassembly sequence is possible. Figure
1 illustrates the concept. Upon the removal of the bolt that
fixes component A and the container, components A, B, C
can be disassembled only in a (desired) sequence <A, B>
thanks to locator features 1 of component A and locator
feature 2 on the container. Since components are
“fixtured” by other components, the use of fasteners is
minimized, satisfying the assumption to allow the a-priori
specification of a desired disassembly sequence for
maximum profitability. If a product allows only one
disassembly sequence as illustrated in this figure, we call
that the disassembly sequences is embedded in the
product.

Figure 1: Concept of product embedded disassembly
sequence. Integral locator features 1 and 2 allows only

disassembly sequence of <A, B>.

2

(a)
container

BA
C

1

(c)
container

C
B

(b)
container

B
C

A

This paper presents a computational method for
designing assemblies with such embedded disassembly
sequences. With an ideal disassembly sequence (IS)
(assumed as given in this work) as an input, the method
simultaneously determines the spatial configurations of
components, locaters, and joints, such that disassembly
can occur only in the sequence, while all components are
completely fixed prior to disassembly. A multi-objective
genetic algorithm (GA) [2,3] is utilized to search for
Pareto-optimal designs in terms of the unique realization
of the given disassembly sequence, the satisfaction of
distance specifications among components, and the
efficient use of locators on components. A case study on a
simplified laptop computer assembly demonstrates the
effectiveness of the method.

2 Related Work

2.1 Design for Disassembly

Design for disassembly (DFD) is a class of design method
and guidelines to enhance the ease of disassembly for
product maintenance and/or EOL treatments. Many
researchers proposed the general DFD guidelines from the
viewpoint of practical disassembly processes [1]. Reap et
al. [4] reported DFD guidelines for the robotic semi-
destructive disassembly, where detachable or breakable
snap fits are preferred to screws due to their ease of
disengagement. Matsui et al. [5] proposed a concept
Products Embedded Disassembly Process, where a means
of part separation that can be activated upon disassembly
is embedded within a product. As an example, they
developed cathode-ray tube (CRT) with a Nichrome wire
embedded along the desired separation line, which can
induce a thermal stress to crack the glass upon the
application of current.

While these works suggest redesigns to improve the
ease of separation for individual joints, they do not
address the issues of improving entire disassembly
processes involving the removal of multiple joints and
components.

2.2 Disassembly Sequence Planning

Disassembly sequence planning (DSP) aims at
generating the disassembly sequences that are feasible for
a given assembly, where the feasibility of a disassembly
sequence is checked by the existence of collision-free
motions to disassemble each component in the sequence.
Since the disassembly sequence generation problem is
NP-complete, the past researches have focused on the
efficient heuristic algorithms to approximately solve the
problem. Based on a number of important research results
on assembly sequence planning [6, 7], several automated
disassembly sequence generation approaches for 2/2.5D
components have been developed [8]. More recent works

are geared towards DSP with special attention to reuse,
recycling, remanufacturing and maintenance [9, 10].

These works, however, only address the generation and
optimization of disassembly sequences for an assembly
with a pre-specified spatial configuration of components.
Since the accessibility of a component is heavily
dependent on the spatial configuration of its surrounding
components, this would seriously limit the opportunity for
optimizing an entire assembly. In addition, these works do
not address the design of locator and joint configurations,
which also have profound impact on the feasibility and
quality of a disassembly sequence.

2.3 Configuration Design Problem

While rarely discussed in the context of disassembly, the
design of spatial configuration of given shapes has been
an active research area by itself. Among the most popular
flavors is bin packing problem (BPP), where the total
volume (or area for 2D problem) the configuration
occupies is to be minimized. Since this problem is also
NP-complete, heuristic methods are commonly used.
Fujita et al. [11] proposed hybrid approaches for 2D plant
layout problem, where the topology and geometry of a
layout are determined by simulated annealing (SA) [12]
and generalized reduced gradient (GRG) method,
respectively. Corcoran et al. [13] solved a 3D packing
problem with GA using multiple crossover methods. Jain
et al. [14] adopted discrete representation as the object
expression and proposed a geometry-based crossover
operation for 2D packing problem. Grignon et al. [15]
proposed a configuration design optimization method by
using multi-objective GA, where static and dynamic
balance and maintainability considered in addition to
configuration volume.

These works, however, do not address the integration
with DSP.

3 Design for Product Embedded
Disassembly Squence

The proposed method can be summarized as the following
optimization problem:

• Given: component geometries, ideal disassembly
sequence (IS), locator library (LL), distance
specifications among components (DS)

• Find: component configuration, locator
configuration on each component, disassembly
motion of each component

• Subject to: no floating component, no over-lap
among components, no unfixed component prior
to disassembly, adjacency of components with
interlocking locators

• Minimizing: non-unique realization of IS,
violation of DS, redundant use of locator features

Since the problem has three objectives and the design
variables (component and locator configuration) are
discrete a multi-objective genetic algorithm is utilized to
obtain Pareto optimal solutions. The following sections
will describe the method in detail.

3.1 Inputs

Discrete geometry representations, such as voxels and
octrees, have been successfully applied to DSP [16, 17]
and BPP [12, 14] due to their efficiency in checking
contacts and intersections and simplicity in modifying
component geometries. For this reason, this work also
adopts voxel representation, where CAD inputs of
component geometries are first voxelized using ACIS®
solid modeling kernel.

The ideal disassembly sequence (IS), and disassembly
sequences in general, are represented as a linear sequence
of subassemblies to be disassembled from an assembly.
For example, disassembly sequence < {A, B}, C, A> of
the assembly {A, B, C, D} represents the following series
of disassembly operations:

1. subassembly {A, B} from assembly {A, B, C, D}

2. component C from subassembly {C, D}

3. component A from subassembly {A, B}

As illustrated in figure 1, locators on components
constrain their relative motions. Locator library is a set of
locating features that can be potentially added on each
component. Figure 2 shows the seven (7) locators in the
locator library used in the following case study. Since the
addition of a locator on a component alters the component
geometry, some locators in figure 2 cannot co-exist in the
same configuration relative to a component. For example,
FaceRest, FaceSlot, and FaceTab cannot co-exist on the
same face and edge, whereas FaceRest and Boss, or
FaceRest and EdgeRest can co-exist. Based on the
observation, the seven locators are classified to three
types, Face (figures 2 (a) – (c)), Facefit (figure 2 (d)), and
Edge (figures 2 (e) – (g)), to indicate the fact no locator of
the same type can co-exist on the same face and edge of a
component.

Figure 2: Locator library used in the case study: (a)
FaceRest, (b) FaceSlot, (c) FaceTab, (d) Boss, (e)

EdgeRest, (f) EdgeSlot, and (g) EdgeTab.

Distances or adjacency among components are often
constrained by their functional relationship. For example,
the cooling fan should be positioned near the CPU in the
component configuration of a laptop computer. Since the
distance between some pairs of components are more
important than the others, the distance specification (DS)
is a set of the weights of importance for the distances
between two components (measured between two
designated voxels) that needs to be minimized. If the
weight between to two components is zero, the distance
between the two components is considered as unimportant
and can be arbitrary chosen. Figure 3 shows an example
of the distance specifications among three components.

Figure 3: Example of distance specification (DS). The
labeled lines between two voxels indicate distance

specifications.

3.2 Design variables

There are two design variables for the problem. The first
variable, configuration vector, is a vector of the
translations of components relative to the global reference
frame:

x = (x0, y0, z0, x1, y1, z1, …., xn-1, yn-1, zn-1)

(1)

where n is the number of components in the assembly,
and xi, yi, and zi, (i = 0, 1, … n-1) are the translation of the
i-th component in x-, y-, and z-directions, respectively.
Note that no rotational motions are considered in the
present work.

The second variable, locator vector, is a vector of the
locator id# of each type in LL, for each pair of a face and
its adjacent edge for components:

y = (fa0, ff0, ed0, fa1, ff1, ed1…., fa m-1, ff m-1, edm-1) (2)

where m is the number of potential locator positions in the
assembly (pairs of a face and its adjacent edge in all
components), and fai, ffi, and edi (i = 0, 1, … m-1) are the
locator id#’s of type Face, Facefit, and Edge in LL,
respectively.

Variables x and y are simply concatenated to form a
chromosome in multi-objective genetic algorithm used to
solve the optimization problem. Since the information in x,
y are linked to the geometry of a candidate design, the
conventional one point or multiple point crossover for
linear chromosomes are ineffective in preserving high-
quality building blocks. Accordingly, a geometry-based

(a) (b) (c) (d)

(e) (f) (g)

crossover operation [14] is adopted in the proposed
method.

3.3 Constraints

The locations of components as specified by x, whose
geometries are altered by adding the locators as specified
by y, must satisfy the following four constraints:

• No floating component

• No over-lap among components

• No unfixed component prior to disassembly

• Adjacency of components with interlocking
locators.

The last constraint is necessary since locators FaceSlot,

FaceTab, Boss, EdgeRest, EdgeSlot and EdgeTab require
an adjacent component with interlocking features, which
is not specified by y. If a component with these locators
lacks an adjacent component to which the interlocking
feature should be added, the configuration is considered
as infeasible. Figure 4 illustrates an example.

Figure 4: An example of the feasibility of interlocking
locators: (a) feasible, and (b) infeasible.

3.4 Objective Functions

The configurations of components and locators on each
component as specified by x and y are evaluated
according to three criteria: 1) unique realization (i.e.,
embedment) of IS, 2) satisfaction of DS, and 3) efficient
use of locator features.

The first objective function (to be minimized) is for the
embedment of IS defined as:

f1(x,y) = invalidity(x,y) + non_uniqueness(x,y) (3)

where the first term returns the degree to which IS is
invalid, and the second term returns the degree to which
the disassembly sequences other than IS is allowed.

Function invalidity(x, y) is the number of infeasible
disassembly operations in IS. The infeasibility of
disassembly operation of subassemblies s and t is checked

by 2-disassembleability criterion (if s can be disassembled
within two consecutive motions) as follows [16]:

1. For each mating surfaces between s and t
(including the ones of the locators), obtain a set of
constrained directions as a subset of six possible
translational directions D = {+x, -x, +y, -y, +z, -z}.

2. Compute constrained directions CDst between s
and t as a union of all constrained directions
obtained in step 1.

3. If D\CDst = Ø, return infeasible.

4. If there exist a direction in D\CDst along which s
can be moved infinitely without a collision, return
feasible (s is 1-disassembleable).

5. Select a direction d in D\CDst. If all have been
selected, return infeasible. Otherwise, go to the
next step.

6. Move s by unit length along the direction. If s
collides with other components, go to step 5.

7. If s is 1-disassembleable at the current location,
return feasible (s is 2-disassembleable). Otherwise,
go to step 6.

Checking for the non-uniqueness of IS by directly
searching for all other feasible disassembly sequences will
be prohibitively expensive to compute. Therefore,
function non_uniqueness(x, y) approximate this as the
number of directions in which subassemblies can be
locally removed in a different manner from IS:

1. n = 0.

2. Select subassembly s in IS. If all have been
selected, return n.

3. Select subassembly t ≠ s from the parent assembly
r of s. If all have been selected, go to step 2.

4. n = n + |D\CDst|.

5. Go to step 3.

The second objective function (to be minimized) is for
the satisfaction of DS, given as:

f2(x, y) =∑
i

iidw (4)

where wi is the weight of the i-th distance specifications in
DS and di the distance between two designated voxels.

Finally, the third objective function (to be minimized)
is for the efficient use of locator features, given as the
total increase in manufacturing cost due to the addition of
locators to components:

f3(x, y) =∑
i

ic (5)

where ci is the manufacturing cost of the i-th locators in
the assembly.

 target component (a) feasible

base feature

 target feature (b) infeasible

base
component

4 Case Study

The proposed method is applied to a simplified laptop
computer assembly composed of 10 components. DS is
shown in figure 5 (a), where components A, D and E are
fixed. IS is given as <B, C, F, G, H, I, J>, and the
corresponding disassembly tree with the order of
disassembly operations is shown in figure 5 (b), where
each disassembly operation disassembles one component.
LL in figure 3 is used.

Figure 6 (a) shows the 115 Pareto optimal solutions for
f1, f2, and f3, obtained by a muiti-objective genetic
algorithm [2,3] with population of 250 and at generation
800. These numbers are chosen so that GA runs return
with consistent results. Figures 7 (a)-(c) show the three
solutions with f1 = 0 (i.e., IS is perfectly embedded) in
figure 6 (b). These solutions indicate trade-offs between
the satisfaction of DS and the efficient use of locators. For
example, compared with solution 2 (figure 7 (b)), solution
3 (figure 7 (c)) uses less locators due to the utilization of
the contacts between E and G, F and H, and G and H at
the expense of the satisfaction of DS.

Figure 7 (d) illustrates the disassembly process of the
solution 2. It can be seen that the assembly can only be
disassembled in IS.

Figure 5: Simplified laptop computer assembly. (a)
component geometries and DS, and (b) the disassembly

tree corresponding to IS.

Figure 6: Pareto optimal solutions of the case study.
(a) all 115 solutions, and (b) three solutions with f1 = 0.

5 Conclusion

This paper presented a computational method for
designing assemblies that could be disassembled only in
specified sequences to accomplish easy EOL disassembly.
A multi-objective genetic algorithm was utilized to search
for Pareto-optimal designs in terms of the unique
realization of the given disassembly sequence, the
satisfaction of distance specifications among components,
and the efficient use of locators on components. A case
study on a simplified laptop computer assembly
demonstrates the effectiveness of the method. While
cannot be used to obtain the final design due to a number
of other design factors, the proposed method would
provide early insights on designers during the conceptual
design stages.

The future work will address the discovery of ideal
disassembly sequence as an outcome of maximizing the
profit of the disassembly process.

Acknowledgement

The authors acknowledge funding provided by
National Science Foundation (BES-0124415) for this
research. Any options, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

Reference

[1] D. Shetty, K. Rawolle, and C. Campana, “A New
Methodology for Ease-Of-Disassembly in Production
Design,” Recent Advances in Design for Manufacture
(DFM), ASME 2000

[2] C. M. Fonseca and P. J. Fleming, “Genetic
Algorithms for Multiobjective Optimization:
Formulation, Discussion and Generalization”,
Proceedings of the Fifth International Conference on
Genetic Algorithms, San Mateo, California, 1993, pp.
416-423

[3] C. A. Coello, D. A. Veldhuizen, and G. B. Lamont,
"Evolutionary algorithms for solving multi-objective
optimization problems”, volume 5 of Book Series on
Genetic Algorithms and Evolutionary Computation,
2002, Kluwer Academic Publishers, ISBN-
0306467623.

[4] J. Reap and B. Bras, “Design for Disassembly and
The Value of Robotic Semi-Destructive
Disassembly,” Proceedings of DETC’02, ASME 2002
Design Engineering Technical Conferences, And
Computers and Information in Engineering
Conferences, September 29 – October 2, 2002,
Montreal, Canada

f1
Pareto solutions

(a) (b)

f3

f2

f3

f2

1
2
3

B
C

F

G

H

I J

A

D
E

(b) (a)

B

C

F

G

H

I

J A,D,E

1

2

3

4

5

6

7

A-H

[5] K. Matsui, K. Mizuhara, K. Ishii, and R. M.
Catherine, “Development of Products Embedded
Disassembly Process Based on End-Of-Life
Strategies,” EcoDesign 1999, First International
Symposium on Environmentally Conscious Design
and Inverse Manufacturing, February 1-3, 1999, pp.
570-575

[6] L. S. Homem dé Mello and A. C. Sanderson
“AND/OR Graph Representation of Assembly Plans,”
IEEE Transactions on Robotics and Automation, vol.
6, pp. 188-99, 1990

[7] T. L. De Fazio and D. E. Whitney, “Simplified
Generation of All Mechanical Assembly,” IEEE
Journal of Robotics and Automation, December, 1987,
vol. 3, No. 6

[8] T. C. Woo and D. Dutta, “Automatic Disassembly
and Total Ordering in Three Dimensions,” Journal of
Engineering for Industry, May, 1991, vol. 113, pp.
207-213

[9] K. Lee and R. Gadh, “Destructive Disassembly to
Support Virtual Prototyping,” Journal of Design and
Manufacturing, IIE, 1996

[10] A. J. D. Lambert, “Optimal Disassembly of Complex
Products,” Journal of Technovation, 1997, vol. 35,
No. 9, pp. 2509-2523

[11] K. Fujita, S. Akagi and S. Shimazaki, “Optimal
Space Partitioning Method Based on Rectangular
Duals of Planar Graphs,” JSME International Journal,
vol. 60, pp. 3662-3669, 1996

[12] A. Kolli, J. Cagan and R. Rutenbar, “Packing of
Generic, Three-Dimensional Components Based on
Multi-Resolution Modeling,” Proceedings of
DETC96, 1996 ASME Design Engineering Technical
Conferences and Computers in Engineering
Conference, August 18-22, 1996, Irvine, California.

[13] A. L. Corcoran III and R. L. Wainwright, “A Genetic
Algorithm for Packing in Three Dimensions,”
Proceedings of the 1992 ACM/SIGAPP Symposium
on Applied Computing, 1992, Kansas City, MO

[14] S. Jain and H. C. Gea, “Two-Dimensional Packing
Problems Using Genetic Algorithm,” Journal of
Engineering with Computers, 1998, vol. 14, pp. 206-
213.

[15] P. M. Grignon and G. M. Fadel, “Configuration
Design Optimization Method,” Proceedings of
DETC99, 1999 ASME Design Engineering Technical
Conferences, September 12-15, 1999, Las Vegas,
Nevada.

[16] D. Beasley and R. R. Martin, “Disassembly
Sequences for Objects Built from Unit Cubes,”
Journal of Compute-Aided Design, December, 1993,
vol. 25, No. 12.

[17] S. Minami, K. F. Pahng, M. J. Jakiela and A.
Srivastave, “A Cellular Automata Representation for
Assembly Simulation and Sequence Generation,”
IEEE International Symposium on Assembly and Task
Planning, August 10-11, 1995, pp.56-65, Pittsburgh,
PA

Figure 7: Three Pareto solutions with f1 = 0 shown in figure 6 (b). (a) solution 1, (b) solution 2, (c) solution 3, and (d)
disassembly process of solution 2. Solutions 1-3 differ at the interfaces among E, F, G, H, and I.

F G
H E I

F G
H E I

F G
H E

I

(c) (b) (a)

C

F G

H I J

B

D

(d)

	ligne: 0-7803-9080-6/05/$20.00 ©2005 IEEE.

