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Abstract 

Due to the increased responsibility for the end-of-life 
(EOL) treatments of products by the manufacturers, the 
ease of disassembly has become a key design issue for 
mass-produced products. As an extension of the 
conventional design for disassembly (DFD), this paper 
presents a computational method for designing 
assemblies that can be disassembled only in specified 
sequences. Given an ideal disassembly sequence that 
maximizes the profit in the absence of geometric 
constraints, the method simultaneously determines the 
spatial configurations of components, locaters, and joints, 
such that disassembly can occur only in the sequence. A 
multi-objective genetic algorithm  is utilized to search for 
Pareto-optimal designs in terms of the unique realization 
of the given disassembly sequence, the satisfaction of 
distance specifications among components, and the 
efficient use of locators on components. A case study on a 
simplified laptop computer assembly demonstrates the 
effectiveness of the method.  

1 Introduction 

The recent increase in the abandoned products prompted 
the regulatory (eg., EU’s WEEE directive) and voluntary 
initiatives for recycle and reuse around the world. 
Consequently manufacturers are becoming more 
responsible for the end-of-life (EOL) treatments of their 
products. Since both material recycling and component 
reuse typically requires the disassembly of products, 
Design for Disassembly (DFD) has become a key design 
issue in mass-produced, assembled products, such as 
consumer electronics products.  

The profitability of a disassembly process U can be 
determined by   
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where Ri is the revenue of the i-th disassembled 
components and Ci is disassembly cost of i-th disassembly 
operation. Although Ri depends only on the disassembled 
components, Ci generally depends on both the 
disassembled components and the spatial configuration 
among components.  

For modern consumer electronics products assembled 
predominantly in z-(vertical) direction, however, the cost 
of disassembling a component on top of an assembly 
(hence easily accessible from above) depends mainly on 

the number of fasteners [1]. If the arbitrary spatial 
arrangements of components are possible with minimum 
use of fasteners, therefore, an “ideal” disassembly 
sequence that maximizes the profitability U can be 
obtained by sorting the components in the descending 
order of its revenue until Ri – Ci becomes non-negative.  
The corresponding component configuration is a simple 
“stack” of the disassembled components in the reverse 
order of disassembly.  

Although this ideal disassembly sequence may not be 
realizable due to component geometry, distance 
specifications among components, and regulatory 
requirements for component/material removal, it is 
desired to design a product that disassembles in a similar 
sequence as possible. In order to reduce wrong operations 
during the disassembly process, it is further desired that 
the product (non-destructively) disassembles only in that 
sequence.  

The above thoughts motivated us to develop a concept 
of product embedded disassembly sequence, where the 
relative motions of components are constraint mostly by 
the locator features integral to the components, such that 
only the desired disassembly sequence is possible. Figure 
1 illustrates the concept. Upon the removal of the bolt that 
fixes component A and the container, components A, B, C 
can be disassembled only in a (desired) sequence <A, B> 
thanks to locator features 1 of component A and locator 
feature 2 on the container. Since components are 
“fixtured” by other components, the use of fasteners is 
minimized, satisfying the assumption to allow the a-priori 
specification of a desired disassembly sequence for 
maximum profitability. If a product allows only one 
disassembly sequence as illustrated in this figure, we call 
that the disassembly sequences is embedded in the 
product.  

 

Figure 1:  Concept of product embedded disassembly 
sequence. Integral locator features 1 and 2 allows only 

disassembly sequence of <A, B>. 
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This paper presents a computational method for 
designing assemblies with such embedded disassembly 
sequences. With an ideal disassembly sequence (IS) 
(assumed as given in this work) as an input, the method 
simultaneously determines the spatial configurations of 
components, locaters, and joints, such that disassembly 
can occur only in the sequence, while all components are 
completely fixed prior to disassembly. A multi-objective 
genetic algorithm (GA) [2,3] is utilized to search for 
Pareto-optimal designs in terms of the unique realization 
of the given disassembly sequence, the satisfaction of 
distance specifications among components, and the 
efficient use of locators on components. A case study on a 
simplified laptop computer assembly demonstrates the 
effectiveness of the method.  

2 Related Work 

2.1 Design for Disassembly  

Design for disassembly (DFD) is a class of design method 
and guidelines to enhance the ease of disassembly for 
product maintenance and/or EOL treatments. Many 
researchers proposed the general DFD guidelines from the 
viewpoint of practical disassembly processes [1]. Reap et 
al. [4] reported DFD guidelines for the robotic semi-
destructive disassembly, where detachable or breakable 
snap fits are preferred to screws due to their ease of 
disengagement. Matsui et al. [5] proposed a concept 
Products Embedded Disassembly Process, where a means 
of part separation that can be activated upon disassembly 
is embedded within a product. As an example, they 
developed cathode-ray tube (CRT) with a Nichrome wire 
embedded along the desired separation line, which can 
induce a thermal stress to crack the glass upon the 
application of current.  

While these works suggest redesigns to improve the 
ease of separation for individual joints, they do not 
address the issues of improving entire disassembly 
processes involving the removal of multiple joints and 
components.  

2.2 Disassembly Sequence Planning  

Disassembly sequence planning (DSP) aims at 
generating the disassembly sequences that are feasible for 
a given assembly, where the feasibility of a disassembly 
sequence is checked by the existence of collision-free 
motions to disassemble each component in the sequence. 
Since the disassembly sequence generation problem is 
NP-complete, the past researches have focused on the 
efficient heuristic algorithms to approximately solve the 
problem. Based on a number of important research results 
on assembly sequence planning [6, 7], several automated 
disassembly sequence generation approaches for 2/2.5D 
components have been developed [8]. More recent works 

are geared towards DSP with special attention to reuse, 
recycling, remanufacturing and maintenance [9, 10].  

These works, however, only address the generation and 
optimization of disassembly sequences for an assembly 
with a pre-specified spatial configuration of components. 
Since the accessibility of a component is heavily 
dependent on the spatial configuration of its surrounding 
components, this would seriously limit the opportunity for 
optimizing an entire assembly. In addition, these works do 
not address the design of locator and joint configurations, 
which also have profound impact on the feasibility and 
quality of a disassembly sequence.  

2.3 Configuration Design Problem 

While rarely discussed in the context of disassembly, the 
design of spatial configuration of given shapes has been 
an active research area by itself. Among the most popular 
flavors is bin packing problem (BPP), where the total 
volume (or area for 2D problem) the configuration 
occupies is to be minimized. Since this problem is also 
NP-complete, heuristic methods are commonly used.  
Fujita et al. [11] proposed hybrid approaches for 2D plant 
layout problem, where the topology and geometry of a 
layout are determined by simulated annealing (SA) [12] 
and generalized reduced gradient (GRG) method, 
respectively. Corcoran et al. [13] solved a 3D packing 
problem with GA using multiple crossover methods. Jain 
et al. [14] adopted discrete representation as the object 
expression and proposed a geometry-based crossover 
operation for 2D packing problem. Grignon et al. [15] 
proposed a configuration design optimization method by 
using multi-objective GA, where static and dynamic 
balance and maintainability considered in addition to 
configuration volume. 

These works, however, do not address the integration 
with DSP. 

3 Design for Product Embedded 
Disassembly Squence 

The proposed method can be summarized as the following 
optimization problem: 

• Given: component geometries, ideal disassembly 
sequence (IS), locator library (LL), distance 
specifications among components (DS) 

• Find: component configuration, locator 
configuration on each component, disassembly 
motion of each component 

• Subject to: no floating component, no over-lap 
among components, no unfixed component prior 
to disassembly, adjacency of components with 
interlocking locators 

• Minimizing: non-unique realization of IS, 
violation  of DS, redundant use of locator features 



Since the problem has three objectives and the design 
variables (component and locator configuration) are 
discrete a multi-objective genetic algorithm is utilized to 
obtain Pareto optimal solutions. The following sections 
will describe the method in detail. 

3.1 Inputs 

Discrete geometry representations, such as voxels and 
octrees, have been successfully applied to DSP [16, 17] 
and BPP [12, 14] due to their efficiency in checking 
contacts and intersections and simplicity in modifying 
component geometries. For this reason, this work also 
adopts voxel representation, where CAD inputs of 
component geometries are first voxelized using ACIS® 
solid modeling kernel.  

The ideal disassembly sequence (IS), and disassembly 
sequences in general, are represented as a linear sequence 
of subassemblies to be disassembled from an assembly. 
For example, disassembly sequence < {A, B}, C, A> of 
the assembly {A, B, C, D} represents the following series 
of disassembly operations: 

1. subassembly {A, B} from assembly {A, B, C, D} 

2. component C from subassembly {C, D} 

3. component A from subassembly {A, B} 
 

As illustrated in figure 1, locators on components 
constrain their relative motions. Locator library is a set of 
locating features that can be potentially added on each 
component. Figure 2 shows the seven (7) locators in the 
locator library used in the following case study. Since the 
addition of a locator on a component alters the component 
geometry, some locators in figure 2 cannot co-exist in the 
same configuration relative to a component. For example, 
FaceRest, FaceSlot, and FaceTab cannot co-exist on the 
same face and edge, whereas FaceRest and Boss, or 
FaceRest and EdgeRest can co-exist.  Based on the 
observation, the seven locators are classified to three 
types, Face (figures 2 (a) – (c)), Facefit (figure 2 (d)), and 
Edge (figures 2 (e) – (g)), to indicate the fact no locator of 
the same type can co-exist on the same face and edge of a 
component.  

 

Figure 2: Locator library used in the case study: (a) 
FaceRest, (b) FaceSlot, (c) FaceTab, (d) Boss, (e) 

EdgeRest, (f) EdgeSlot, and (g) EdgeTab. 

Distances or adjacency among components are often 
constrained by their functional relationship. For example, 
the cooling fan should be positioned near the CPU in the 
component configuration of a laptop computer. Since the 
distance between some pairs of components are more 
important than the others, the distance specification (DS) 
is a set of the weights of importance for the distances 
between two components (measured between two 
designated voxels) that needs to be minimized. If the 
weight between to two components is zero, the distance 
between the two components is considered as unimportant 
and can be arbitrary chosen. Figure 3 shows an example 
of the distance specifications among three components.  

 

Figure 3: Example of distance specification (DS). The 
labeled lines between two voxels indicate distance 

specifications.   

3.2 Design variables 

There are two design variables for the problem. The first 
variable, configuration vector, is a vector of the 
translations of components relative to the global reference 
frame: 

x = (x0, y0, z0, x1, y1, z1, …., xn-1, yn-1, zn-1) 
 
(1) 

where n is the number of components in the assembly, 
and xi, yi, and zi, (i = 0, 1, … n-1) are the translation of the 
i-th component in x-, y-, and z-directions, respectively. 
Note that no rotational motions are considered in the 
present work.  

The second variable, locator vector, is a vector of the 
locator id# of each type in LL, for each pair of a face and 
its adjacent edge for components:  

y = (fa0, ff0, ed0, fa1, ff1, ed1…., fa m-1, ff m-1, edm-1) (2) 

where m is the number of potential locator positions in the 
assembly (pairs of a face and its adjacent edge in all 
components), and fai, ffi, and edi (i = 0, 1, … m-1) are the 
locator id#’s of type Face, Facefit, and Edge in LL, 
respectively.  

Variables x and y are simply concatenated to form a 
chromosome in multi-objective genetic algorithm used to 
solve the optimization problem. Since the information in x, 
y are linked to the geometry of a candidate design, the 
conventional one point or multiple point crossover for 
linear chromosomes are ineffective in preserving high-
quality building blocks. Accordingly, a geometry-based 

(a) (b) (c) (d)
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crossover operation [14] is adopted in the proposed 
method. 

3.3 Constraints 

The locations of components as specified by x, whose 
geometries are altered by adding the locators as specified 
by y, must satisfy the following four constraints:  

• No floating component 

• No over-lap among components 

• No unfixed component prior to disassembly 

• Adjacency of components with interlocking 
locators. 

 
The last constraint is necessary since locators FaceSlot, 

FaceTab, Boss, EdgeRest, EdgeSlot and EdgeTab require 
an adjacent component with interlocking features, which 
is not specified by y. If a component with these locators 
lacks an adjacent component to which the interlocking 
feature should be added, the configuration is considered 
as infeasible. Figure 4 illustrates an example. 

 

Figure 4: An example of the feasibility of interlocking 
locators: (a) feasible, and (b) infeasible. 

3.4 Objective Functions 

The configurations of components and locators on each 
component as specified by x and y are evaluated 
according to three criteria: 1) unique realization (i.e., 
embedment) of IS, 2) satisfaction of DS, and 3) efficient 
use of locator features.  

The first objective function (to be minimized) is for the 
embedment of IS defined as: 

f1(x,y) = invalidity(x,y) + non_uniqueness(x,y) (3) 

where the first term returns the degree to which IS is 
invalid, and the second term returns the degree to which 
the disassembly sequences other than IS is allowed.  

Function invalidity(x, y) is the number of infeasible 
disassembly operations in IS. The infeasibility of 
disassembly operation of subassemblies s and t is checked 

by 2-disassembleability criterion (if s can be disassembled 
within two consecutive motions) as follows [16]: 

1. For each mating surfaces between s and t 
(including the ones of the locators), obtain a set of 
constrained directions as a subset of six possible 
translational directions D = {+x, -x, +y, -y, +z, -z}. 

2. Compute constrained directions CDst between s 
and t as a union of all constrained directions 
obtained in step 1.  

3. If D\CDst = Ø, return infeasible.  

4. If there exist a direction in D\CDst along which s 
can be moved infinitely without a collision, return 
feasible (s is 1-disassembleable).  

5. Select a direction d in D\CDst. If all have been 
selected, return infeasible. Otherwise, go to the 
next step. 

6. Move s by unit length along the direction. If s 
collides with other components, go to step 5.  

7. If s is 1-disassembleable at the current location, 
return feasible (s is 2-disassembleable). Otherwise, 
go to step 6.  

 

Checking for the non-uniqueness of IS by directly 
searching for all other feasible disassembly sequences will 
be prohibitively expensive to compute. Therefore, 
function non_uniqueness(x, y) approximate this as the 
number of directions in which subassemblies can be 
locally removed in a different manner from IS: 

1. n = 0.  

2. Select subassembly s in IS. If all have been 
selected, return n. 

3. Select subassembly t ≠ s from the parent assembly 
r of s. If all have been selected, go to step 2. 

4. n = n + |D\CDst|. 

5. Go to step 3.  
 

The second objective function (to be minimized) is for 
the satisfaction of DS, given as: 

f2(x, y) =∑
i

iidw  (4) 

where wi is the weight of the i-th distance specifications in 
DS and di the distance between two designated voxels. 

Finally, the third objective function (to be minimized) 
is for the efficient use of locator features, given as the 
total increase in manufacturing cost due to the addition of 
locators to components:   

f3(x, y) =∑
i

ic  (5) 

where ci is the manufacturing cost of the i-th locators in 
the assembly.  

 target component (a) feasible

base feature 

 target feature (b) infeasible

base  
component 



4 Case Study 

The proposed method is applied to a simplified laptop 
computer assembly composed of 10 components. DS is 
shown in figure 5 (a), where components A, D and E are 
fixed. IS is given as <B, C, F, G, H, I, J>, and the 
corresponding disassembly tree with the order of 
disassembly operations is shown in figure 5 (b), where 
each disassembly operation disassembles one component. 
LL in figure 3  is used.  

Figure 6 (a) shows the 115 Pareto optimal solutions for 
f1, f2, and f3, obtained by a muiti-objective genetic 
algorithm [2,3] with population of 250 and at generation 
800. These numbers are chosen so that GA runs return 
with consistent results. Figures 7 (a)-(c) show the three 
solutions with f1 = 0 (i.e., IS is perfectly embedded) in 
figure 6 (b). These solutions indicate trade-offs between 
the satisfaction of DS and the efficient use of locators. For 
example, compared with solution 2 (figure 7 (b)), solution 
3 (figure 7 (c)) uses less locators due to the utilization of 
the contacts between E and G, F and H, and G and H at 
the expense of the satisfaction of DS. 

Figure 7 (d) illustrates the disassembly process of the 
solution 2. It can be seen that the assembly can only be 
disassembled in  IS. 

 

Figure 5: Simplified laptop computer assembly. (a) 
component geometries and DS, and (b) the disassembly 

tree corresponding to IS.  

 

Figure 6: Pareto optimal solutions of the case study. 
(a) all 115 solutions, and (b) three solutions with f1 = 0. 

5 Conclusion 

This paper presented a computational method for 
designing assemblies that could be disassembled only in 
specified sequences to accomplish easy EOL disassembly. 
A multi-objective genetic algorithm was utilized to search 
for Pareto-optimal designs in terms of the unique 
realization of the given disassembly sequence, the 
satisfaction of distance specifications among components, 
and the efficient use of locators on components. A case 
study on a simplified laptop computer assembly 
demonstrates the effectiveness of the method. While 
cannot be used to obtain the final design due to a number 
of other design factors, the proposed method would 
provide early insights on designers during the conceptual 
design stages. 

The future work will address the discovery of ideal 
disassembly sequence as an outcome of maximizing the 
profit of the disassembly process.   
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Figure 7: Three Pareto solutions with f1 = 0 shown in figure 6 (b). (a) solution 1, (b) solution 2, (c) solution 3, and (d) 
disassembly process of solution 2. Solutions 1-3 differ at the interfaces among E, F, G, H, and I.
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