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The mass transport of a pulsatile free-stream flow past a single circular cylinder is investigated as
a building block for an artificial lung device. The free stream far from the cylinder is represented by
a time-periodic �sinusoidal� component superimposed on a steady velocity. The dimensionless
parameters of interest are the steady Reynolds number �Re�, Womersley parameter ���, sinusoidal
amplitude �A�, and the Schmidt number �Sc�. The ranges investigated in this study are 5�Re
�40, 0.25���4, 0.25�A�0.75, and Sc=1000. A pair of vortices downstream of the cylinder is
observed in almost all cases investigated. These vortices oscillate in size and strength as � and A are
varied. For ���c, where �c=0.005A−1.13Re1.33, the vortex is always attached to the cylinder
�persistent�; while for ���c, the vortex is attached to the cylinder only during part of a time cycle

�intermittent�. The time-averaged Sherwood number, Sh�, is found to be largely influenced by the

steady Reynolds number, increasing approximately as Re1/2. For �=0.25, Sh� is less than the steady

��=0, A=0� value and decreases with increasing A. For �=2 and �=4, Sh� is greater than the steady
value and increases with increasing A. These qualitatively opposite effects of pulsatility are
discussed in terms of quasisteady versus unsteady transport. The maximum increase over steady
transport due to pulsatility varies between 14.4% and 20.9% for Re=10-40, �=4, and A=0.75.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2164475�
I. INTRODUCTION

An artificial lung is currently being developed as a
bridge to lung transplantation for patients suffering from

chronic lung disease.1–4 This device is perfused by the pul-
sating blood flow leaving the right heart and is designed to
provide complete gas exchange support. It consists of a
chamber containing hollow, microporous fibers through
which air flows. Deoxygenated blood enters the center of the
device and flows radially across the fiber bundle, where oxy-
gen from inside the fibers is exchanged with carbon dioxide
from the blood flowing over them. The oxygenated blood
then exits the device.

As a fundamental study for the artificial lung, the fluid
dynamics and mass transfer associated with pulsatile flow
past a single fiber or cylinder can be studied for the operating
parameter range of the artificial lung, namely small Reynolds
number �Re� and large Schmidt number �Sc�, where Re
=2aUo� /� and Sc=� /�D, with cylinder radius a, free-
stream velocity Uo, fluid density �, fluid viscosity �, and
molecular diffusivity D. Other engineering applications for
pulsatile flow past a cylinder with its associated mass/heat
transport include hot-wire anemometry, heat exchangers, and
corrosion of horizontal cylinders, among others. Most of the
relevant heat transfer measurements of the Nusselt number
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have been done in air and water, i.e., at a low Prandtl number
�0.7�Pr�6�, where Pr is analogous to Sc with the molecu-
lar diffusivity replaced by the thermal diffusivity. Few data
are available for mass/heat transfer in the high Schmidt/
Prandtl number range that would correspond to our
application.

The available data for high Schmidt number concern
steady flow past a single cylinder. Many correlations for the
mean Sherwood/Nusselt number have been developed for
steady flow past a cylinder based on experimental measure-
ments and can be applied for a large range of Schmidt num-
bers, including high Schmidt numbers. One of the classic and
simplest correlations was developed by Hilpert.5 It expresses
the Nusselt number as Nu=C Ren Pr1/3, where the constants
C and n are specified for different Reynolds number ranges
and are valid for Re=0.4–4�105 and Pr�0.7; for 4�Re
�40, C=0.911 and n=0.385. Vogtlander and Bakker6 ex-
perimentally studied mass transfer from a liquid to a wire for
5�Re�400 and 1300�Sc�2000. They showed good
agreement between their data and a correlation by Van der
Hegge Zijnen,7 Sh=0.38Sc0.2+ �0.56Re0.5+0.001Re�Sc0.33,
which is valid for 1000�Sc�2000. For 1�Re�100, it is
found that Sh�Re1/2Sc1/3 in Ref. 6. Gnielinski8 proposed a
correlation for forced convection flow past a cylinder in the
laminar regime, Nu=0.664Re1/2Pr1/3, valid for 10�Re
�107 and 0.6�Pr�1000. Kurdyumov and Fernandez9 de-
veloped a correlation formula for Nusselt number based on

an asymptotic expansion for Pr→	 for steady flow past a
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cylinder. This analysis is only valid for small Reynolds num-
bers Re
5. Recently, Sparrow10 considered the archival cor-
relations for noncircular and circular cylinders and spheres in
cross flow. He provides a new correlation for a cylinder that
better represents gases for O�1� Schmidt numbers and liquids
for higher Schmidt numbers: Nu=0.25+ �0.4Re1/2

+0.06Re2/3�Pr0.37�� /�wall�1/4, where � is the viscosity of the
free-stream fluid and �wall is the viscosity of the fluid at the
cylinder surface. It is valid for 1�Re�105.

One of the earliest studies of the effect of oscillations on
heat transfer was performed by Van der Hegge Zijnen.7 He
experimentally studied cross flow of air past a thin wire in a
flow with steady and fluctuating components. He observed a
decrease in Nu due to the fluctuations compared to the steady
Nu for small Reynolds numbers �Re
5� with a maximum
decrease of 4.3% for the highest fluctuation amplitude of
45% of the free-stream velocity. However, the frequency of
the oscillation is not provided by the author. Leung et al.11

experimentally studied air cross flow past a cylinder oscillat-
ing in-line with the flow for Re=3000–50 000 for two oscil-
lation amplitudes, 0.5 and 0.25 mm, and two frequencies, 10
and 30 Hz, relative to those for stationary cylinders. They
observed that heat transfer is enhanced for both frequencies
for Re�15 000, with further enhancement for larger oscilla-
tion amplitudes. However, at large Reynolds numbers �Re
�25 000�, oscillations resulted in a decrease in the heat
transfer rate. Karanth et al.12 numerically studied heat trans-
fer for flow past an oscillating cylinder for Re=200 and Pr
=1 for velocity amplitudes �Ax� of 0.25 and 0.5 relative to
the free-stream velocity and a Strouhal number of 0.2 de-
fined as St=�a /Uo, where � is the angular frequency of
oscillation. They reported an increase in the mean Nusselt
number due to cylinder oscillations and found the mean Nus-
selt number to increase with oscillation amplitude, 5.6% for
Ax=0.25 and 5.8% for Ax=0.5 relative to the steady state. In
their work, asymmetrical vortex shedding was induced by
slightly rotating the cylinder counterclockwise and then
clockwise with a constant angular velocity. The asymmetry
of the vortex shedding had little effect on the isotherm fields
near the cylinder, which are shown to be nearly symmetric.

The effect of a pulsating free-stream air flow past a sta-
tionary cylinder on heat transfer has been experimentally
studied by Perwaiz and Base13 for Re=2000–14 000, ampli-
tude of oscillation of 35% relative to the free-stream velocity,
and a Strouhal number, based on the mean free-stream ve-
locity, of �0.01–0.15. They found a decrease in heat transfer
compared to the steady state for the lower pulsation frequen-
cies in their range, and the opposite for the higher pulsation
frequencies. Sung et al.14 experimentally studied mass trans-
fer from a sublimating naphthalene cylinder in pulsatile flow
for 4500�Re�12 450 �Sc�2.5�, amplitude of pulsation
�0.08–0.23, and frequency �10–40 Hz. Their measure-
ments in the downstream separation region indicated an aug-
mentation in mass transfer due to flow pulsation, with greater
augmentation found for higher frequencies. Local mass
transfer also increased with pulsation amplitude. In addition,
it was found that at large Reynolds numbers the effect of
pulsation on mass transfer decreases. Badr15 numerically

studied the effect of free-stream fluctuations on the time-
averaged Nusselt number for Re=50–500 �Pr=0.7�, ampli-
tude of pulsation of 20% and 50% of the free-stream veloc-
ity, and St=� /4-�. He found that the Nusselt number
increased with increasing amplitude and decreased with in-
creasing frequency. In addition, a pulsating free stream had a
greater effect on Nusselt number for higher Reynolds num-
bers. In his analysis, symmetry about the center line of the
cylinder was imposed as part of the flow and thermal field
solution.

Unsteady heat transfer from a cylinder with constant
temperature in cross flow was numerically studied by
Karniadakis16 for Re�200 and Pr=0.7. Both constant heat
flux at the cylinder surface and constant cylinder surface
temperature cases were studied. Goldstein et al.17 experi-
mentally investigated the effect of a wall boundary layer on
mass transfer from a sublimating naphthalene cylinder �Sc
=2.5� in cross flow for Re=19 000. In particular, the effect
of three-dimensional secondary flows in the form of horse-
shoe vortices near the wall-attached ends of the cylinder is
discussed. In these areas, increases of 90% to 700% as com-
pared to two-dimensional flow mass transfer are found at the
front of the cylinder. Tiwari et al.18 numerically studied heat
transfer in a rectangular channel with a built-in cylinder for
Re�3000–7000 and Pr=0.7. In this case, both the walls and
cylinder were maintained at constant temperature. He also
found that the presence of horseshoe vortices enhanced heat
transfer due to better mixing in that region.

Mass transport studies for large Schmidt numbers for
time-periodic flows past a cylinder are not readily available
in the literature. This study focuses on pulsatile flow past a
single cylinder and its effect on the velocity field and mass
transfer at the cylinder surface. The parameter ranges inves-
tigated are 5�Re�40 and Sc=1000.

II. PROBLEM STATEMENT

We consider flow of a Newtonian fluid, with viscosity �
and density �, past an infinitely long horizontal cylinder
placed perpendicularly to an approaching unsteady stream in
the x-axis direction, u	� , with concentration C	=0 as shown
in Fig. 1. The cylinder has radius a and constant surface
concentration CS. A pulsatile free-stream velocity profile is

FIG. 1. Schematic of unsteady flow over and transport from a single
cylinder.
considered,
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u	� = Uo�1 + A sin��t��� , �1�

where Uo is the mean velocity, A is the dimensionless am-
plitude of velocity oscillation, � is the angular frequency of
oscillation, and t� is time. Steady flow represents the special
case of Eq. �1� when A=0. The flow is assumed to be two-
dimensional, and a polar coordinate system �r ,
� is used.

The conservation of momentum and mass equations can
be expressed as

�2�u�

�t
+

Re

2
�u� · �� �u� = − �� p + �2u� �2�

and

�� · u� = 0, �3�

where u� = �ur ,u
� is the velocity vector, p is the pressure, and
�� is the gradient operator, in polar coordinates, �� =� /�re�r

+1/r� /�
e�
.
Thus, three dimensionless parameters control this flow:

the oscillation amplitude, A; the Reynolds number, Re
=2aUo� /�; and the Womersley number, �=a��� /��1/2. The
variables used in the above conservation equations are all
dimensionless and are related to their dimensional quantities
�with primes� by

u� =
u��

Uo
, r =

r�

a
, �x,y� =

�x�,y��
a

, p =
p�

�Uo

a

,

and

t = �t�.

The boundary conditions on the surface of the cylinder
�r=1� are no slip and no penetration,

u
�r = 1� = 0 �4�

and

ur�r = 1� = 0, �5�

respectively. Free-stream conditions are imposed far away
from the cylinder �r→	�,

u� · e�x�r → 	� = 1 + A sin�t� �6�

and

u� · e�y�r → 	� = 0. �7�

The mass transport is governed by the convection-
diffusion equation,

�2Sc
�C

�t
+

Re

2
Sc�� · �u�C� = �2C , �8�

where C is the gas concentration. An additional dimension-
less parameter becomes important, the Schmidt number, Sc
=� /�D, where D is the molecular diffusivity. The concen-
tration in Eq. �8� has been scaled by the cylinder surface

concentration,
C =
C�

CS
.

The boundary condition on the surface of the cylinder �r
=1� is

C�r = 1� = 1. �9�

At the outer boundary �r→	�, inflow-outflow conditions are
prescribed,

C�r → 	� = 0, �/2 � 
 � 3�/2 �10�

and

� �C

�r
�

r→	

= 0, − �/2 � 
 � �/2. �11�

To simplify the problem further, the flow and concentra-
tion fields are assumed to be symmetric about y=0 for the
range of Reynolds numbers investigated, 5�Re�40. This is
consistent with previous experimental studies on a cylinder
oscillating in a tank of fluid,19 and numerical studies of os-
cillating flow around a cylinder20,21 and pulsatile flow past a
cylinder.15 In these studies, vortex shedding occurred in sym-
metric pairs and did not alter the flow-field symmetry. This
can be contrasted with steady laminar flow about a cylinder
in which three different regions exist: steady flow without
separation �Re
5�, steady flow with two stationary symmet-
ric vortices behind the cylinder �5
Re
46�, and steady
flow with asymmetric vortex shedding �Re�46�.22

The boundary conditions imposed at the symmetry line
�
=0,�� are

u
�
 = 0,�� = 0, �12�

� �ur

�

�

�
=0,��
= 0, �13�

and

� �C

�

�

�
=0,��
= 0. �14�

III. NUMERICAL SOLUTION METHOD

The SIMPLER method23 has been employed to numeri-
cally solve the coupled momentum and mass conservation
equations, Eqs. �2� and �3�. This method involves solving the
velocity and pressure fields iteratively from an initial flow
field. At each iteration, the algorithm consists of three steps:
the solution of the momentum, pressure, and pressure correc-
tion equations, respectively.

The momentum equations in this method are obtained by
integrating Eq. �2� over a control volume. The time deriva-
tive in Eq. �2� is approximated using a first-order implicit
scheme. This leads to the following approximation:

aCu�C = � aiu� i�i = E,W,N,S� + S�v − 	�� p	C. �15�

The coefficients a contain some of the convective and diffu-
sive flux terms and ac also contains part of the unsteady

acceleration term. They are evaluated by means of a power-
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law hybrid differencing scheme.23 Sv contains the remaining
convective and unsteady acceleration terms, which are con-
sidered as known quantities evaluated from the previous it-
eration. A staggered grid is used where the velocity compo-
nents are stored at C and at the four neighboring points, E,
W, N, and S, and the pressure is stored at e and w, midway
between C and E, and C and W, respectively, and at n and s,
midway between C and N, and C and S, respectively.

The pressure equation is obtained by substituting the
momentum equations into the continuity equation to give

bcpc = � bipi �i = e,w,n,s� − û
E
�r + û
W

�r − ûrN
rN�


+ ûrS
rS�
 , �16�

where e, w, n, and s are the pressure grid points neighboring
C and û� i represent temporary velocities defined by the mo-
mentum equation with the pressure term missing,

u�̂C =
1

aC
�� aiu� i�i = E,W,N,S� + S�v� . �17�

The pressure correction equation accounts for the imbal-
ance in mass in the control volume when the velocity field
does not satisfy the continuity equation. It is obtained by
substituting the following velocity correction equation into
the continuity equation, Eq. �3�:

u�C = 
u�C
* −

1

aC
	�� p*	C� . �18�

The pressure correction is very similar to the pressure
equation, Eq. �16�, as shown below,

TABLE I. Numerical and geometric information for computational grids us

Number of points �r�
�

Region I Region II Region III

Grid 1 75�112 190�112 56�112

Grid 2 75�112 250�112 44�112

Grid 3 75�112 190�112 65�112

FIG. 2. Schematic of computational grid with three distinct regions.
bcpc
* = � bipi

* �i = e,w,n,s� − u
E

* �r + u
W

* �r − urN

* rN�


+ urS

* rS�
; �19�

the difference is that p has been replaced with p* and û� with
u�*, the predicted velocities.

In summary, for each time step the velocity and pressure
fields are calculated according to the following algorithm:
�1� The calculation starts from an assumed velocity profile;
�2� the pressure equation, Eq. �16�, is solved using the known
temporary velocities, û� , Eq. �17�; �3� the momentum equa-
tions, Eq. �15�, are solved using the calculated pressure field
in the previous step; �4� the pressure correction equation, Eq.
�19�, is solved using the predicted velocity field u�*, which is
the solution of the momentum equations obtained in the pre-
vious step; �5� the velocities are corrected with Eq. �18�. The
SuperLU solver24 is used to solve the linear systems in steps
�2�, �3�, and �4�. Steps �2�–�5� are repeated until convergence
is achieved as defined by

max��u�N − u�N−1�� � 10−4, �20�

where N is the number of iterations. Time is then incre-
mented and the process described above, beginning with step
�1�, is repeated. The computation was terminated when peri-
odic convergence was achieved. Periodic convergence was
defined as

max��u� �r�,t� − u� �r�,t − 2���� � 10−3, �21�

the maximum difference in the entire velocity field for con-
secutive time cycles.

The mass transport equation can also be integrated over
a control volume to give the approximation

dCCC = � diCi�i = e,w,n,s� + Sc, �22�

where the concentration is stored at the pressure points. As
for the momentum equations, the d coefficients in Eq. �22�
contain some of the convective and diffusive flux terms and
are evaluated by means of a power-law hybrid differencing
scheme;23 dc also contains part of the unsteady acceleration
term. Sc contains the remaining unsteady acceleration term,
which is based on quantities from the previous iteration. The
concentration field is thus solved iteratively using the con-
verged velocity field, where the linear system of equations
for each iteration is solved using SuperLU. The same conver-
gence criteria as listed above in Eqs. �20� and �21� were used
with u� replaced by C.

this study.

Radial domain

Total Region I Region II Region III

35 952 1 to 1.5 1.5 to 50 50 to 300

41 328 1 to 1.5 1.5 to 100 100 to 300

36 960 1 to 1.5 1.5 to 50 50 to 400
ed in
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Thus, the solution of the momentum equations and mass
transport equation are decoupled and the fluid is assumed to
have constant physical properties �i.e., density and viscosity�,
with Re based on the free-stream properties. In particular, the
additional mass entering the free stream from the cylinder is
relatively small as is its concentration in the free stream.
Hence, its influence on the free-stream fluid is considered
negligible. Studies investigating the influence of dissolved
gases on liquid density show very little change in density as
compared to gas-free liquids.25,26 Similar studies investigat-
ing the influence of dissolved gases on liquid viscosity are
not readily available, but it is reasonable to assume that the
change in viscosity due to dissolved gases would also be
small. Consequently, the combination of the small quantity
and concentration of dissolved gases in the fluid in our study,
combined with the small change in physical properties due to
dissolved gases, makes the assumption of constant properties

FIG. 3. Streamline and concentration fields �Sc=1000� for steady flow ov
Re=20; �d� Re=30; and �e� Re=40.
in the free stream reasonable.
IV. COMPUTATIONAL DOMAIN

In order to compute a numerical solution, it is necessary
to define a specific location for the outer boundary, which
will represent r=	. It was found that the region of flow
influenced by the cylinder increased as Reynolds number
decreased. This is consistent with the analysis of Lange
et al.22 for steady flow past a cylinder. They present recom-
mended outer domain lengths for a range of Reynolds num-
bers to achieve an error less than 1% for the drag coefficient.
This recommended outer boundary based on the smallest in-
stantaneous Reynolds number �Re�1−A�� was used as a
guideline. The actual outer boundary chosen was greater than
this guideline and was tested to ensure that it did not influ-
ence the flow field. The computational domains used in this

cylinder, top half and bottom half, respectively �a� Re=5; �b� Re=10; �c�
er a
study range from r=300 to r=400.
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V. GRID REFINEMENT AND NUMERICAL ACCURACY

For the Reynolds numbers investigated, vortices appear
at the rear of the cylinder. In addition, for large Schmidt
numbers, a thin boundary layer for the concentration near the
cylinder is expected. Consequently, a finer discretization of
the grid near the cylinder and in the cylinder wake is re-
quired. Three different computational grids are used. In each
grid, the computational domain is divided into three regions
as shown in Fig. 2. In each of these regions, the grid is
refined exponentially in the radial and angular directions to
achieve grid refinement near r=1 and 
=0, with each suc-
cessive region becoming more coarse. The total number of
points used ranges from �36 000 to �41 500. Specific de-
tails for the three computational grids are shown in Table I. It
can be noted that grid 3 is merely an extension in the radial
direction of grid 1, and grid 2 radially extends region II of
grid 1. Grid 3 was used for all Re=5 cases, grid 2 was used
for Re�10, ��2, and A=0.75 cases �for which the vortex
extended past r=50 during the cycle�, and grid 1 was used
for all other cases. All grids were tested for numerical accu-
racy by comparing the computed velocities and concentra-
tions for a representative unsteady case to those obtained
using grids additionally refined by 25% and 50% increases in
grid points. It was found that the difference between the
coarsest and finest grid was �3% and that the difference
between successively refined grids diminished. For the tran-
sient computations, a dimensionless time step of 2� /360,

TABLE II. Comparison between the drag coefficient,
the case of steady flow.

Re Present study

Hamielec and
Raul

�Ref. 28�

Dennis a
Chang

�Ref. 27

5 3.69 ¯ 4.116

10 2.62 2.75 2.846

20 1.87 ¯ 2.045

30 1.59 1.588 ¯

40 1.42 ¯ 1.522

TABLE III. Comparison between the time averaged
provided by other published predictive relations for

Re Present study
Hilpert
�Ref. 5�

Van der
Hegge Zijn

�Ref. 7�

5 13.43 16.93 13.80

10 18.46 22.11 18.92

20 27.37 28.87 26.18

30 34.20 33.75 31.78

40 39.40 37.70 36.52
corresponding to 360 time steps per cycle, was used and
found to be sufficiently small to produce accurate solutions.

VI. RESULTS AND DISCUSSION

The drag force, Fx, can be defined and calculated at the
cylinder surface �r=1� for any instant of time using

Fx = 


=0


=2�

��− pI= + „�� u� + ��� u� �T
…� · n� �r=1 · e�xd


= 


=0


=2� 
�− p + 2� �ur

�r
��

r=1
cos 
 − � �u


�r
�

r=1
sin 
�d
 ,

�23�

where n� is the unit vector normal to the cylinder surface, and
e�x is the unit vector in the x direction.

A maximum drag force, Fx−max, can then be defined as

Fx−max = max
t

�Fx� , �24�

which is the maximum Fx during the time cycle.
In addition, a drag coefficient for any instant of time can

be defined as

CD =
2Fx

Re
. �25�

btained in this study and other numerical studies for

D

D’Allesio and
Dennis

�Ref. 29�

D’Allesio and
Denis

�Ref. 30�
Lange et al.

�Ref. 22�

3.894 3.809 3.96

2.719 ¯ 2.76

2.024 1.941 2.00

1.673 ¯ 1.69

1.451 1.443 1.50

wood number, Sh�, obtained in this study and those
se of steady flow with Sc=1000.

Sh�

Gnielinski
�Ref. 8�

Kurdyumov
and

Fernandez
�Ref. 9�

Sparrow et al.
�Ref. 10�

14.85 14.12 14.03

21.00 ¯ 20.13

29.69 ¯ 28.99

36.37 ¯ 35.94

42.00 ¯ 41.88
CD, o

C

nd

�

Sher
the ca

en
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Local, surface-averaged, and time-averaged Sherwood

numbers, Sh, Sh, and Sh�, respectively, can also be defined on
the cylinder surface �r=1�

Sh�
,t� =
D�n · �� C�r�=a

D�CS − C	�
2a

= 2� �C

�r
�

r=1
, �26�

Sh�t� =
1

2�




=0


=2�

Sh d
 , �27�

and

Sh� =
1

2�



t=0

t=2�

Sh dt . �28�

A. Steady-state flow

Prior to performing a parametric evaluation of the effect
of amplitude and oscillation frequency on flow past and

FIG. 4. Streamline and concentration field for Re=10, �=0.25, A=0.75, a
t=3� /2.
transport from a cylinder with an approaching pulsatile flow,
a steady approaching flow is considered and the results are
compared to those from other investigators. Figure 3 shows
the streamline and concentration profiles for Re=5, 10, 20,
30, and 40 and Sc=1000, where the streamlines are shown in
the top half of the figure and the iso-concentration lines are
shown in the bottom half. For Re=5, Fig. 3�a�, the flow
remains attached to the cylinder and no separation or vortex
is present at the rear of the cylinder; in addition, the iso-
concentration lines behind the cylinder closely mirror the
flow streamlines with the concentration decreasing with dis-
tance from the cylinder surface. For Re=10, 20, 30, and 40,
Figs. 3�b�–3�e�, a pair of standing vortices exists behind the
cylinder; the vortex size, length, and intensity increase as
Reynolds number increases. Also, the angle of flow separa-
tion on the cylinder surface increases as Reynolds number
increases. The streamline profiles in Fig. 3 are consistent
with those published in other numerical studies.22,27 In terms
of the concentration profile shown in Figs. 3�b�–3�e�, the
concentration gradient at the cylinder surface is smallest at

c=1000 plotted every quarter cycle �a� t=0; �b� t=� /2; �c� t=�; and �d�
nd S
the separation point where the mass is carried by the recir-
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culation into the center of the vortex, thus creating a local
concentration maximum. This local maximum decreases as
Reynolds number increases.

A comparison of the drag coefficients calculated in the
present study with other numerical results22,27–30 is shown in
Table II. Good agreement is observed. From Table II, it is
apparent that CD decreases as Re increases, though the actual
drag force increases. An analysis of the individual compo-
nents reveals that for small Reynolds numbers, the contribu-
tion of the pressure and viscous forces to the drag force is
approximately equal. However, as Reynolds number in-
creases, the pressure component of the drag force becomes
more important.

Forced convection mass/heat transfer with constant
concentration/temperature in laminar cross flow has been
studied by many investigators and many correlations have

�

FIG. 5. Streamline and concentration field for Re=10, �=2, A=0.75, and Sc
�e� expanded view for t=3� /2.
been suggested. The calculated Sh values for the present in-
vestigation are listed in Table III along with those provided
by published predictive relations. Table III shows good
agreement between the present and predicted results. It

shows that as Re increases the increase in Sh� is approxi-
mately proportional to Re1/2. From a boundary layer analysis
for steady laminar flow past a cylinder, the typical finding is
that most of the upstream side of the cylinder has a boundary
layer which varies as Re−1/2, and on the downstream side of
the cylinder the adverse pressure gradient forces the bound-
ary layer to depart from the surface. Beyond the separation
point, the boundary layer theory fails and there is no other
simple explanation or theory.31 Some authors have consid-

ered a two-term Nu� relationship, the first term proportional
to Re1/2 for the upstream side of the cylinder and the second
proportional to Re2/3 for the downstream side of the

32,33

0 plotted every quarter cycle �a� t=0; �b� t=� /2; �c� t=�; �d� t=3� /2; and
=100
cylinder. Based on the assumption that most of the trans-
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port occurs on the upstream side of the cylinder, it is reason-

able to conclude that Sh� should be approximately propor-
tional to Re1/2 as observed in Table III. Unfortunately,
correlations or data for local Sherwood numbers, Sh, corre-
sponding to large Sc are not readily available in the literature
to allow comparison with the present study.

B. Pulsatile flow

The influence of an approaching pulsatile flow on the
streamline and concentration fields near a cylinder is inves-
tigated for Re=5, 10, 20, 30, and 40 and Sc=1000 for all
cases. The amplitudes considered were A=0.25, 0.5, and
0.75 and the Womersley parameters considered were �
=0.25, 2, and 4.

A detailed depiction of the streamline and concentration
fields for Re=10, �=0.25, and A=0.75 is shown in Fig. 4.

FIG. 6. Streamline and concentration field for Re=40, �=2, A=0.75, and Sc
�e� expanded view for t=3� /2.
Figure 4�b� shows the streamlines and iso-concentration pat-
terns corresponding to maximum free-stream velocity, while
Fig. 4�d� corresponds to minimum free-stream velocity.
From Fig. 4, it can be seen that during one cycle the vortex
oscillates in size while remaining attached to the cylinder.
When the free-stream velocity is maximum at t=� /2, u	

=umax=1+A, the size of the vortex is greater and the en-
closed vortical motion is stronger; when the free-stream ve-
locity is minimum at t=3� /2, u	=umin=1−A, the vortex has
disappeared entirely. The oscillation in vortex size closely
corresponds to the pulsation of the free-stream velocity. For
the concentration field, the iso-concentration lines also grow
and shrink in the wake region corresponding to the growth
and reduction of the vortex.

The variation in the streamline pattern and iso-
concentration pattern for Re=10, �=2, and A=0.75 is shown
in Fig. 5. In this case, the vortex forms and begins to increase

0 plotted every quarter cycle �a� t=0; �b� t=� /2; �c� t=�; �d� t=3� /2; and
=100
in size shortly after u	=umax, Fig. 5�b�. At u	=umin, Figs.
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5�d� and 5�e�, it is much larger, has been propagated far
downstream, and has completely engulfed the cylinder with
vortical motion significantly weaker. Shortly afterward, the
vortex proceeds to rapidly decrease in size, detach from the
cylinder, and disappear before u	=1 at t=0, Fig. 5�a�, where
only traces of the detached and decayed vortex can be ob-
served. The concentration field in the cylinder wake also
oscillates during the cycle, being carried downstream when
u	�1 and carried upstream when u	
1.

The effect of a larger Reynolds number on the streamline
and concentration fields is shown in Fig. 6 for Re=40, �
=2, and A=0.75. In Fig. 6�a� �corresponding to t=0 and u	

=1�, a vortex has recently been shed from the cylinder sur-
face and is in the process of decaying. A new vortex then
forms near the rear stagnation point and continues to grow
during the latter half of acceleration and during deceleration,

FIG. 7. Streamline and concentration field for Re=40, �=4, A=0.75, and Sc
�e� expanded view for t=3� /2.
Figs. 6�b�–6�e�. At t=3� /2 �Figs. 6�d� and 6�e��, four vorti-
ces are observed inside the larger vortex. The movement of
high momentum fluid induces an adverse pressure gradient
which causes flow reversal of low momentum fluid near the
symmetry line and the creation of additional vortices. During
this process, each additional downstream vortex is sequen-
tially formed and incorporated into the larger vortex structure
as it continues to grow before the next additional vortex is
formed. Each additional vortex is weaker in strength than the
previous vortex. This process occurs during the latter half of
deceleration. The additional vortices then sequentially dimin-
ish and disappear, starting with the vortex farthest down-
stream, until only the original vortex remains and is subse-
quently shed from the cylinder surface. The variation in the
iso-concentration patterns is also shown in Figs. 6�a�–6�d�.
The increased Reynolds number greatly aids in the down-
stream propagation of mass from the cylinder surface; con-

0 plotted every quarter cycle �a� t=0; �b� t=� /2; �c� t=�; �d� t=3� /2; and
=100
sequently, a larger region is influenced. Mass from the cyl-
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inder surface is swept downstream in waves, with each cycle
releasing a small pocket of higher concentration fluid when
u	�umax, Fig. 6�b�. The effect of approximately two cycles
is shown in Fig. 6.

The streamline and concentration fields for Re=40, �
=4, and A=0.75 are shown in Fig. 7. Figure 7�a� �corre-
sponding to t=0 and u	=1� shows a vortex, which is larger
in size than the cylinder, in the process of being shed. At t
=� /2 when u	=umax, a new vortex is being formed as
shown in Fig. 7�b�. This vortex continues to grow in size and
its tail is simultaneously being swept downstream during the
deceleration phase of the cycle. Eventually, a secondary vor-

FIG. 8. Parameter space investigation for Re=10 and Re=40 showing spa-
tial regions where a persistent vortex exists, present during the entire time
cycle �left of curve�, and where an intermittent vortex exists, present only
during part of a time cycle �right of curve�.

FIG. 9. The effect of amplitude of pulsation on the local Sherwood numbe

t=� /2; and �d� �=2, t=3� /2.
tex is formed downstream of the first in the tail of the pri-
mary vortex as shown in Figs. 7�d� and 7�e� when u	=umin;
a saddle point is thus created. This secondary vortex is
weaker in strength than the primary vortex, and the entire
vortex structure extends far downstream from the cylinder,
which is enveloped by the vortex structure. During the ac-
celeration phase, the vortices decrease in size and the sec-
ondary vortex collapses into the primary vortex, which is of
increased strength, before later being shed from the cylinder
in Fig. 7�a�. The iso-concentration fields are also shown in
Figs. 7�a�–7�d�. The pattern is very similar to that observed
for Re=40, �=2, and A=0.75 in Fig. 7, with mass from the
cylinder surface being propagated downstream in waves. A
larger Womersley number results in the pockets of higher
concentration fluid being released with greater frequency
from the cylinder surface. The effect of approximately three
cycles is shown in Fig. 7.

The presence of multiple vortices was also observed by
Badr15 for pulsatile flow with Re=500, St=� /4 �or ��14�,
and A=0.5, where St is the Strouhal number. However, the
physics behind the vortices formation in that study is quite
different from the present study. In his study, convection
dominated the flow and two vortices were sequentially initi-
ated at the cylinder surface before being individually propa-
gated downstream. Thus, two vortices were formed and shed
during each cycle. When u	=umin, the two vortices are en-
veloped by a larger vortex structure which partially extends
over the top of the cylinder; this flow structure is similar to
that observed in the present study for Re=40, �=2, and A

Re=10 and Sc=1000 �a� �=0.25, t=� /2; �b� �=0.25, t=3� /2; �c� �=2,
r for
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=0.75 �Fig. 6�c�� and for Re=40, �=4, and A=0.75 �Fig.
7�c�� when u	=umin. However, in his study, for the majority
of the cycle the two vortices are distinct and separately grow
and diminish before being shed, whereas in the present study,
multiple vortices are observed only when the free-stream ve-
locity is near u	=umin and the multiple vortices are always
inside a larger vortex structure.

A parameter space analysis can be performed to better
characterize the flow. For Re=10, 20, 30, and 40, a vortex
exists downstream of the cylinder and it oscillates in size
during one time cycle; these oscillations are governed by the
Womersley parameter and the oscillation amplitude. In par-
ticular, a region of space where a vortex is attached to the
cylinder throughout the cycle and a region of space where
the vortex is intermittently attached to the cylinder during the
cycle can be defined as shown in Fig. 8 for Re=10 and Re
=40, with the demarcation curve for the critical � defined by
�c=0.005A−1.13Re1.33. For ���c, the vortex is always at-
tached to the cylinder �persistent�, while for ���c, the vor-
tex is attached to the cylinder only during part of a cycle
�intermittent�. As Re decreases, the demarcation curve shifts
to the left. Although not shown, a similar analysis is even
applicable for Re=5, for which no vortex is present in the
steady-state solution. The effect of pulsation, however, in-
duces a vortex during part of the cycle for almost all of the
combinations of � and A considered except the smallest, �
=0.25 and A=0.25. Thus, two regions would exist for Re

FIG. 10. The effect of amplitude of pulsation on the local Sherwood numb
t=� /2; and �d� �=2, t=3� /2.
=5, an intermittent region �to the right of the curve� and a
region where the flow remains attached to the cylinder with-
out the presence of a vortex �to the left of the curve�.

The effect of amplitude of pulsation on the local Sher-
wood number, Sh, is shown for Re=10 in Fig. 9 and for
Re=40 in Fig. 10 for half of the cylinder surface �
=0-�
where 
=0 defines the rear stagnation point and 
=� defines
the front stagnation point�. The steady-state case, A=0, is
also shown. Figures 9�a� and 9�c� correspond to maximum
free-stream velocity, u	=umax when t=� /2, and Figs. 9�b�
and 9�d� correspond to minimum free-stream velocity,
u	=umin when t=3� /2. For Re=10 and �=0.25, when t
=� /2 �Fig. 9�a��, Sh increases as the amplitude increases and
is higher than the steady-state value on almost all of the
surface; when t=3� /2 �Fig. 9�b��, Sh decreases as the am-
plitude decreases and is always lower than the steady-state
value on almost all of the surface. This same phenomenon is
observed for Re=40 and �=0.25 in Figs. 10�a� and 10�b�
and is consistent with a quasi-steady-state explanation in
which the higher/lower stream velocities lead to higher/lower
velocity and concentration gradients. For Re=10 and �=2,
the local Sherwood number distributions for t=� /2 �Fig.
9�c�� and t=3� /2 �Fig. 9�d�� are approximately the same. In
these figures, Sh is always higher than the steady-state value
at the rear part of the surface, where the vortex is attached to
the cylinder, and Sh increases with amplitude. At the front of
the cylinder, Sh approaches approximately the same value
irrespective of amplitude. In contrast, for Re=40 and �=2,

Re=40 and Sc=1000 �a� �=0.25, t=� /2; �b� �=0.25, t=3� /2; �c� �=2,
er for
the local Sherwood number distributions for t=� /2 �Fig.
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10�c�� and t=3� /2 �Fig. 10�d�� are quite different. In Fig.
10�c�, Sh is higher than the steady-state value on almost all
of the surface and increases with amplitude; this is consistent
with the higher stream velocities which are present. In Fig.
10�d�, Sh is higher than the steady-state value at the rear part
of the surface, increasing with amplitude, and lower than the
steady-state value at the front of the surface, decreasing with
amplitude. When t=3� /2 �Fig. 10�d��, the difference be-
tween Sh near the rear and front stagnation points becomes
smaller as amplitude increases; thus, transport near these
points is of approximately equal importance. In fact, for Re
=40, �=4, and A=0.75, Sh is actually higher at the rear
stagnation point instead of at the front stagnation point.

The effect of amplitude of pulsation on the surface-

FIG. 11. The effect of amplitude of pulsation on the surface averaged Sher-
wood number for one time cycle for Re=10 and Sc=1000 �a� �=0.25; �b�
�=2; and �c� �=4.
averaged Sherwood number, Sh, during one time cycle is
shown for Re=10 and Re=40 in Figs. 11 and 12, respec-
tively. The steady-state case, A=0, is also shown in the fig-
ures. For �=0.25 and both Re=10 and Re=40, as shown in
Figs. 11�a� and 12�a�, respectively, the oscillation in Sh
nearly corresponds to the free-stream velocity pulsation. This
is consistent with the previous quasi-steady-state explanation
in which the higher/lower instantaneous free-stream veloci-
ties lead to higher/lower velocity and concentration gradients
and correspondingly higher/lower instantaneous Sh values.
In contrast, for �=2 and �=4 in Figs. 11�b�, 11�c�, 12�b�,
and 12�c�, the oscillation in Sh has a phase lag behind the
pulsation in the free-stream velocity. This phase lag ap-
proaches approximately � /2 as Womersley number increases
irrespective of Reynolds number as shown in Figs. 11�b�,
11�c�, and 12�c�. This approach to a phase lag of about � /2

FIG. 12. The effect of amplitude of pulsation on the surface averaged Sher-
wood number for one time cycle for Re=40 and Sc=1000 �a� �=0.25; �b�
�=2; and �c� �=4.
is faster for smaller Reynolds numbers as shown by compar-
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ing the �=2 cases for Re=10, Fig. 11�b�, and for Re=40,
Fig. 12�b�. In the first the phase lag is about � /2, which is
consistent with the similar local Sherwood numbers observed
in Figs. 9�c� and 9�d�, and in the second the phase lag is
about � /4.

A summary of the calculated maximum drag force,

Fx−max, and the time-averaged Sherwood numbers, Sh�, is pro-
vided in Table IV. As shown in Table IV, Fx−max increases as
Reynolds number increases. Fx−max also increases with in-
creasing Womersley parameter and amplitude. For unsteady
flow when Fx=Fx−max, the boundary layer thickness is thin-
ner, which results in a larger viscous component of the drag
force; also at this instant the inertial forces are larger, which
creates a larger pressure difference across the cylinder and a
larger pressure component of the drag force. Fx−max is an
important consideration in the design of a system such as an

artificial lung which requires low Fx−max but high Sh�. A low
Fx−max is important to decrease the strain experienced by the
right side of the heart which pumps against the pressure drop

for the device, and a high Sh� is desired for maximum oxygen
transport.

From Table IV, it is apparent that the Reynolds number

has the largest impact on Sh�, which increases as Reynolds
number increases. This is consistent with that observed for
the steady-state case, �=0 and A=0, which is also shown in
the table. As described for steady flow using a boundary

layer analysis, it is reasonable to expect Sh� to be approxi-
mately proportional to Re0.5; this is observed. For �=0.25,

Sh� decreases with increasing amplitude and all Sh� are
smaller than their steady-state counterparts. This can be ex-
plained from a quasi-steady-state point of view in which
each instantaneous surface-averaged Sherwood number, Sh,
is based on an instantaneous Reynolds number, ReI=Re�1
+A sin�t��. Using this analysis, Sh� decreases with increasing

amplitude as observed for �=0.25. For �=2 and �=4, Sh�

increases with increasing Womersley parameter and ampli-
tude. The effect of pulsatility, as shown by varying the Wom-

ersley parameter and amplitude, on Sh� is relatively small as

compared to the effect of Reynolds number on Sh�. Within
the range of variables considered, the maximum improve-
ment due to pulsatility, as compared to the corresponding
steady state value, varies between 14.4% and 20.9% for Re
=10 to 40, �=4, and A=0.75.

The specific regime �no vortex, intermittent vortex, or
persistent vortex� for each parameter set studied is also

shown in Table IV. In general, by examining the Sh� data and
associated specific regime in Table IV, it can be observed
that better transport occurs for flow characterized by the in-
termittent region than flow characterized by the persistent
region.

VII. CONCLUSIONS

The influence of free-stream flow pulsation on the veloc-
ity and concentration fields around a cylinder is presented as
a fundamental study for an artificial lung whose blood flow
TABLE IV. The effect of a pulsatile free-stream velocity on the maximum

drag force, Fx−max, the time-averaged Sherwood number, Sh� �Sc=1000�, and
the vortex structure.

Re � A Fx−max Sh�
Vortex

structurea

5 0 0 9.22 13.56 NV

5 0.25 0.25 12.84 13.52 NV

5 0.25 0.5 16.95 13.30 IN

5 0.25 0.75 21.40 12.89 IN

5 2 0.25 20.86 13.51 IN

5 2 0.5 32.65 13.39 IN

5 2 0.75 44.40 14.03 IN

5 4 0.25 43.49 13.53 IN

5 4 0.5 77.93 13.53 IN

5 4 0.75 112.44 13.67 IN

10 0 0 13.02 18.46 PE

10 0.25 0.25 18.22 18.22 PE

10 0.25 0.5 24.25 18.14 IN

10 0.25 0.75 30.86 17.82 IN

10 2 0.25 24.52 18.58 IN

10 2 0.5 36.17 20.07 IN

10 2 0.75 48.04 21.80 IN

10 4 0.25 46.97 18.51 IN

10 4 0.5 81.09 19.60 IN

10 4 0.75 115.58 21.12 IN

20 0 0 18.79 27.37 PE

20 0.25 0.25 26.69 26.94 PE

20 0.25 0.5 35.72 26.64 PE

20 0.25 0.75 45.74 26.05 IN

20 2 0.25 31.51 27.97 IN

20 2 0.5 44.70 29.59 IN

20 2 0.75 58.59 31.67 IN

20 4 0.25 52.15 28.01 IN

20 4 0.5 85.58 30.01 IN

20 4 0.75 119.51 32.53 IN

30 0 0 23.72 34.20 PE

30 0.25 0.25 33.97 33.83 PE

30 0.25 0.5 45.68 33.30 PE

30 0.25 0.75 58.74 32.29 PE

30 2 0.25 38.70 34.69 IN

30 2 0.5 54.49 35.89 IN

30 2 0.75 72.04 38.32 IN

30 4 0.25 56.61 35.21 IN

30 4 0.5 89.43 37.85 IN

30 4 0.75 122.82 41.00 IN

40 0 0 28.14 39.40 PE

40 0.25 0.25 40.62 39.30 PE

40 0.25 0.5 54.78 38.64 PE

40 0.25 0.75 70.64 37.42 PE

40 2 0.25 45.62 39.88 PE

40 2 0.5 64.42 40.79 IN

40 2 0.75 85.55 43.63 IN

40 4 0.25 66.64 40.99 IN

40 4 0.5 93.29 44.10 IN

40 4 0.75 125.85 47.65 IN

aNV=No vortex, PE=persistent vortex, and IN=intermittent vortex.
is driven by the heart. Design considerations require a high
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Sh� but low Fx−max. For the artificial lung device which typi-
cally operates in the 1
Re
20 and ��0.25 range with A
based on the cardiac output and compliance of the device,
A�0.5–0.8, no improvement due to pulsatility is observed
when considering only a single cylinder, though better trans-
port is achieved with higher Reynolds numbers. However,
Fx−max, the drag force which the heart must pump against,
also increases with Reynolds number. An acceptable maxi-
mum Fx−max would provide an upper limit on the selection of
Re. In order to optimize the operating conditions and to pre-
dict the influence of flow pulsation on the transport of the
device, the influence of other neighboring fibers, which are
randomly placed in the fiber bundle, should be investigated
for its effect on the flow and mass transport fields.
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