HTML AESTRACT * LINKEES

Complementarity of the Maldacena and
Karch-Randall Pictures '

M. J. Duff, James T. Liu and H. Sati

Michigan Center for Theoretical Physics
Randall Laboratory, Department of Physics, University of Michigan
Ann Arbor, MI 48109-1120, USA

Abstract. We perform a one-loop test of the holographic interpretation of the Karch-Randall model,
whereby a massive graviton appears on an AdS; brane in an AdS; bulk. Within the AdS/CFT
framework, we examine the quantum corrections to the graviton propagator on the brane, and
demonstrate that they induce a graviton mass in exact agreement with the Karch-Randall result.
Interestingly enough, at one loop order, the spin 0, spin 1/2 and spin 1 loops contribute to the
dynamically generated (mass)? in the same 1 : 3 : 12 ratio as enters the Weyl anomaly and the 1/
corrections to the Newtonian gravitational potential.

1. INTRODUCTION

An old question is whether the graviton could have a small but non-zero rest mass.
If so, it is unlikely to be described by the explicit breaking of general covariance that
results from the addition of a Pauli-Fierz mass term to the Einstein Lagrangian. This
gives rise to the well-known Van Dam-Veltman-Zakharov [1, 2] discontinuity problems
in the massless limit, that come about by jumping from five degrees of freedom to two.
Moreover, recent attempts [3, 4] to circumvent the discontinuity in the presence of a non-
zero cosmological constant work only at tree level and the discontinuity re-surfaces? at
one loop [6]. On the other hand, in analogy with spontaneously broken gauge theories,
one might therefore prefer a dynamical breaking of general covariance, which would
be expected to yield a smooth limit. However, a conventional Higgs mechanism, in
which a scalar field acquires a non-zero expectation value, does not yield a mass for
the graviton. The remaining possibility is that the graviton acquires a mass dynamically
and that the would-be Goldstone boson is a spin one bound state. Just such a possibility
was suggested in 1975 [7].

Interestingly enough, the idea of a massive graviton arising from a spin one bound
state Goldstone boson has recently been revived by Porrati [8] in the context of the
Karch-Randall brane-world [9] whereby our universe is an AdS, brane embedded in an
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2 A similar quantum discontinuity arises in the “partially massless” limit as a result of jumping from five
degrees of freedom to four[5].
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AdS; bulk. This model predicts a small but finite four-dimensional graviton mass
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in the limit L, — oo, where L, and Ly are the ‘radii’ of AdS, and AdS,, respectively.
From the Karch-Randall point of view, the massive graviton bound to the brane arises
from solving the classical D = 5 linearized gravity equations in the brane background
[9]. Furthermore, holography of the Karch-Randall model {10, 11] consistently predicts
an identical graviton mass.

In a previous paper [12], the complementarity between the Maldacena AdS/CFT cor-
respondence [13, 14, 15] and the Randall-Sundrum [16] Minkowski braneworld picture
was put to the test by calculating the 1/ 7 corrections to the Newtonian gravitational
potential arising from the CFT loop corrections to the graviton propagator. At one loop

we have [17] G G
mom [0
V(=202 (14 =4), @

where G, is the four-dimensional Newton’s constant,

1

and where ng, n, P and n; count the number of (real) scalars, (Majorana) spinors and

vectors in the multiplet. The coefficient « is the same one that determines that part of
the Weyl anomaly involving the square of the Weyl tensor [18). The fields on the brane
are given by .4 = 4 supergravity coupled to a .4 = 4 super-Yang-Mills CFT with
gauge group U (N), for which (1,1, 5,n9) = (N%,4N2,6N?). Using both the AdS/CFT

relation, N2 = 7rL53 /2G5, and the brane world relation, G, = 2G5/Ls, we find
_GL 2L

Cir=736, =3 @)

where Gj is the five-dimensional Newton’s constant. Hence

Gmm 2L2
=9 1,2

which agrees exactly with the Randall-Sundrum bulk result.

This complementarity can be generalized to the Karch-Randall AdS braneworld pic-
ture. From an AdS/CFT point of view, one may equally well foliate a Poincaré patch
of AdS; in AdS, slices. The Karch-Randall brane is then such a slice that cuts off the
AdS, bulk. However, unlike for the Minkowski braneworld, this cutoff is not complete,
and part of the original AdS5 boundary remains [9, 11]. Starting with a maximally su-
persymmetric gauged .4 = 8 supergravity in the five dimensional bulk, the result is a
gauged A4 = 4 supergravity on the brane coupled to a .4 = 4 super-Yang-Mills CFT
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with gauge group U(N), however with unusual boundary conditions on the CFT fields
{10, 11, 19, 8, 20].

As was demonstrated in Ref. [8], the CFT on AdS, provides a natural origin for the
bound state Goldstone boson which turns out to correspond to a massive representation
of SO(3,2). However, while Ref. [8] considers the case of coupling to a single conformal
scalar, in this letter we provide a crucial test of the complementarity by computing the
dynamically generated graviton mass induced by a complete .4 = 4 super-Yang-Mills
CFT on the brane and showing that this quantum computation correctly reproduces the
Karch-Randall result, (1).

We begin by providing a general framework for the dynamical generation of gravi-
ton mass. We are mainly interested in the properties of the one-loop graviton self-energy,
Z v.ap (x,y). As emphasized in Refs. [7, 8], mass generation is compatible with the grav-

itational Ward identity arising from diffeomorphism invariance. Thus the self-energy re-

mains transverse, V¥ Zuv = V;"Zuv af = = 0. One is then able to write X as a non-local

expression evaluated at point x#, compatible with transversality

where [8]
88 +v,vB/2A

A 3 1 aB , 3 cauB

3(&uv+ AV"VV)3A—4A(g +"A"V vF) M
is the transverse-traceless projection and

1
K% = 3A 4Adwda3 Aoy =guv+ 51— VuVv 8)

is the transverse but trace projection. Here, A = -3 /Lﬁ is the four-dimensional cos-

mological constant and A is the general Lichnerowicz operator which commutes with
covariant derivatives. Symmetrization on (uv) and (af3) is implied throughout.
In Feynman gauge, the tree-level massless graviton propagator in AdS takes the form
Duvaﬁ = A_ 2A(8ﬁ6v %guvgaﬁ)* 9
Using the self-energy written in the form (6), the quantum corrected propagator may be
summed to yield

_ 1 A—A
D aﬁ — [29 ﬂ — lXB
uv A-2A-PB (5" % = A" andHvE

1 1 A-A
ap 1
TACAYY/2 (23A an8uve ) (19
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when evaluated between conserved sources. This indicates that a constant piece in the
traceless self-energy, B = —M?, will shift the spin-2 pole in the propagator, thus yielding
a non-zero graviton mass. The second term, involving the trace, may combine with the
scalar part of the first. However a potentially dangerous scalar ghost pole at 3A = 4A
may appear. This ghost is absent whenever the residue of the pole vanishes, i.e. provided
¥ = Bl4a=3a- This is in fact the case, as may be seen by explicit computation below.
Although the field theory is conformal, the presence of K is demanded by the Weyl
anomaly [18]. However, this trace piece is entirely contained in the local part of Z,
and does not contribute directly to the mass. The net result is a pure massive spin-2
propagator

~ 1 1 (2A—-2M?
af _ asB _ — Sl ap
Duv A—2A+M2(5“6" 2(2A—3M2>g’”g ) (D

where we have taken § = —M>.

The scalar loop contribution to the self energy was partially computed in Ref. [8].
There, the proper role of boundary conditions was emphasized. We find it convenient
to work in homogeneous coordinates, which corresponds to the embedding of AdS,
in RS with pseudo-Euclidean metric, 1,y = diag(—,+,+,+,—). AdS, is then given
by the restriction to the hyperboloid X¥XNn,,, = —Lﬁ. Note that we denote homoge-
neous coordinates as X¥,Y¥ ... (M,N = 0,...,4) and intrinsic coordinates as x*,y#, ...
(u,v = 0,...,3). Maximally symmetric scalar functions, ¢(X,Y), are simple and can
only depend on the invariant |X —Y|?/12 = —2(Z+ 1) where Z=X - Y /L2.

A normalized scalar propagator has short-distance behavior

1 1 1 1

S S 12
s Z+ 1 AR X YP (12)

Ao(XaY)N

and reduces properly in the flat space limit. However, boundary conditions must still be
satisfied by the addition of an appropriate solution to the homogeneous equation. For
AdS energy Ej = 1 or 2, and for mixed boundary conditions encoded by parameters &, ,
0_, the scalar propagator takes the form [21]

1 (04 o
Al = + - ). 1
Y 87:2L§ (Z+1+Z—1 (13)

Although normalization demands ¢, = 1, we nevertheless find it illuminating to keep
o, arbitrary, as it highlights the symmetries in the latter expressions for the graviton self
energy computation. Note that o_ = 0 corresponds to transparent boundary conditions,
while o = %1 corresponds to ordinary reflecting ones.
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Using this general form of the scalar propagator, we compute the two-point function
of the stress tensor to be [22]

1 a2 (3Z2+1
Ty ) Tog(F))o = 48n4L§[(Z+1)4< ; T1+T2+ZT3>
2 2
as 3Z°+1
T,+T,—
()
2 oo

e 2 2 )
+3(22—1)3(5(3Z +1)T,+ (32 - 1)T, - 10Z T3)](14)

(up to contact terms, which we drop). Here we have found it useful to define the three
traceless combinations

1

= 160, —4
Tl 3(3z2+ l) [ﬁl +16 2 ﬁ4]a
T, = ~30,+30,+305+30,+;0s,
1
where the ;s are a set of basis bi-tensors [23]
01 = 8un8po> 0, = nynynpny, Oy = 2§M(P§NQ)’
Oy = gunnpng +nynngpg, O =48y nyyn?. (16)

This follows the notation of Ref. [24], except that tensor quantities have been converted
to homogeneous coordinates.

A computation for spins 1/2 and 1 with mixed boundary conditions yields a similar
result, except for overall factors and the fact that the mixed «, o_ term is not present.
Specializing to the supersymmetric case, to preserve supersymmetry, the boundary
conditions on all fields in the multiplet have to be chosen consistently [25]. This means
a single set of o, (actually always 1) and o_ suffices for specifying the boundary
conditions. Furthermore, for a complex scalar in a Wess-Zumino multiplet, the scalar
and pseudoscalar transform with opposite boundary conditions (even when the parity
condition is relaxed). Since this corresponds to opposite signs for ¢«_ between the scalar
and pseudoscalar, we see that the mixed term in (14) always drops out when considering
pairs of spin-0 states as members of supermultiplets. As a result, we find a simple
universal structure for the graviton self-energy

ZynpoX,Y) = 871G (Tyyn(X)Tpo(Y))

not3n ,+12nm 1 g2 37241
487° L% [(z+1)4( 4

ar  (37%2+1

+<z—1)4( 3

= 871G, T, + T2+ZT3>

T, +T2—ZT3>] : an
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We now extract the induced graviton mass from the long distance behavior of the
self energy (17). We first note that the three terms of IT in Eq. (7) correspond to local
tensor, non-local spin-1 and spin-0 exchange, respectively. The mass can be read off
by identifying in X the spin-1 Goldstone boson exchange, given by the second term.
Working in homogeneous coordinates, and using the explicit form of the Goldstone
vector propagator, the spin-1 term in I'T may be rewritten as a bi-local tensor

2Z

= ST CE + )+ 20, =S )Ty ()
4

To read off the correctly induced graviton mass, we expand both expressions for large Z
and match the asymptotic behavior. We find [22]

ny+ 3n1/2 +12n,
16072L4

M?=28nG, (a2 —a?). (19)

This expression is our main result, and generalizes that obtained in Ref. [8]°. Note that
the spin-0 term in IT has a different structure. However this term is canceled by the non-
local part of K. The absence of spin-0 exchange in X is in agreement with the AdS Higgs
mechanism [8], and yields the massive spin-2 propagator (11) without ghosts.

While we have focused on the dynamical breaking of general covariance, as evidenced
by a mass for the graviton, in a supersymmetric Karch-Randall model, a dynamical
breaking of local supersymmetry and local gauge invariance also occurs, as evidenced
by a mass for the gravitinos and the gauge bosons.

For the Karch-Randall braneworld [9], where the CFT fields are that of A4 =4 U(N)
super-Yang-Mills, we substitute transparent boundary conditions (&, = 1, a_ = 0) into
the expression for the graviton mass, (19), and find simply

_ 26,

2
M= iz ®

(20)
which reproduces exactly the Karch-Randall result of Eq. (1) on using Eq. (4). Although
we focused on the .4 = 4 SCFT to relate the coefficient « to the central charge, the result
(4) is universal, being independent of which particular CFT appears in the AdS/CFT
correspondence. This suggests that « plays a universal rdle in both the Minkowski and
AdS braneworlds, as indicated in (20) and (5), and that our result is robust at strong
coupling. This presumably explains why our one-loop computation gives the exact
Karch-Randall result. However, we do not know for certain whether this persists beyond
one loop.

3 We note that this result differs by a factor of 160 from that of Ref. [8]. However we believe the procedure
we have followed in extracting the appropriate long-range piece of Z, which differs from that of [8], leads
to the proper mass expression of (19).
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