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Abstract. There are many reasons to believe the present mass density of the universe is dominated by
a weakly interacting massive particle (WIMP), a fossil relic of the early universe. Theoretical ideas and
experimental efforts have focused mostly on production and detection of thermal relics, with mass typically
in the range a few GeV to a hundred GeV. Here, I will review scenarios for production of nonthermal dark
matter. Since the masses of the nonthermal WIMPS are in the range 1012 to 1016 GeV, much larger than the
mass of thermal wimpy WIMPS, they may be referred to as WIMPZILLAS. In searches for dark matter it may
be well to remember that "size does matter."

I INTRODUCTION

There is conclusive evidence that the dominant component of the matter density in the universe is dark.
The most striking indication of the existence of dark matter is the dynamical motions of astronomical objects.
Observations of flat rotation curves for spiral galaxies [1] indicates that the dark component of galactic halos
is about ten times the luminous component. Dynamical evidence for DM in galaxy clusters from the velocity
dispersion of individual galaxies, as well as from the large x-ray temperatures of clusters, is also compelling
[2]. Bulk flows, as well as the peculiar motion of our own local group, also implies a universe dominated by
dark matter [3].

The mass of galaxy clusters inferred by their gravitational lensing of background images is consistent with
the large dark-to-visible mass ratios determined by dynamical methods [4].

There is also compelling evidence that the bulk of the dark component must be nonbaryonic. The present
baryonic density is restricted by big-bang nucleosynthesis to be less than that inferred by the methods dis
cussed above [5]. The theory of structure formation from the gravitational instability of small initial seed
inhomogeneities requires a significant nonbaryonic component to the mass density [6].

1) E-mail: rocky@rigoletto.fnal.gov
2) E-mail: djchung@feynman.physics.lsa.umich.edu
3) E-mail: riotto@nxth04.cern.ch

CP484, Trends in Theoretical Physics II, edited by H. Falomir, R. E. Gamboa Saravi, and F. A. Schaposnik
© 1999 American Institute of Physics 1-56396-894-0/99/$15.00

91



-5,....,-o
II
)C

>='-10
~.....
tlIIo
- -15

freeze out ...

y
o h2

X

(1)

- 201~--,-...........................'t'!::T-""""''''''''''''''''''''''''''M::r--'--'-''''''''''''''""''"'1"J1OS

x = Nx/T

FIGURE 1. A thermal relic starts in LTE at T ~ Mx. When the rates keeping the relic in chemical equilibrium
become smaller than the expansion rate, the density of the relic relative to the entropy density freezes out.

In terms of the critical density, Pc = 3H5M~)/87r = 1.88 X 1O-29g cm-3 with Hubble constant Ho == 100h
km sec-1Mpc-1 and Planck mass Afp), the dark-matter density inferred from dynamics is 0DM == PDMIPc ~

0.3. In addition, the most natural inflation models predict a flat universe, i.e., 0 0 = 1, while standard big-bang
nucleosynthesis implies that ordinary baryonic matter can contribute at most 10% to 0 0 • This means that
about 90% of the matter in our universe may be dark.

II THERMAL RELICS-WIMPY WIMPS

It is usually assumed that the dark matter consists of a species of a new, yet undiscovered, massive particle,
traditionally denoted by X. It is also often assumed that the dark matter is a thermal relic, i.e., it was in
chemical equilibrium in the early universe.

A thermal relic is assumed to be in local thermodynamic equilibrium (LTE) at early times. The equilibrium
abundance of a particle, say relative to the entropy density, depends upon the ratio of the mass of the particle
to the temperature. Define the variable Y == nx Is, where nx is the number density of WIMP X with mass
Mx, and 8 "V T3 is the entropy density. The equilibrium value of Y, YEQ, is proportional to exp(-x) for
x» 1, while YEQ "V constant for x « 1, where x =Mx IT.

A particle will track its equilibrium abundance as long as reactions which keep the particle in chemical
equilibrium can proceed rapidly enough. Here, rapidly enough means on a timescale more rapid than the
expansion rate of the universe, H. When the reaction rate becomes smaller than the expansion rate, then the
particle can no longer track its equilibrium value, and thereafter Y is constant. When this occurs the particle
is said to be "frozen out." A schematic illustration of this is given in Fig. 1.

The more strongly interacting the particle, the longer it stays in LTE, and the smaller its eventual freeze-out
abundance. Conversely, the more weakly interacting the particle, the larger its present abundance. The freeze
out value of Y is related to the mass of the particle and its annihilation cross section (here characterized by
£TO) by [7J

Y<x 1
MxmpLCTo

Since the contribution to 0 is proportional to Mxnx, which in turn is proportional to MxY, the present con
tribution to 0 from a thermal relic roughly is independent of its mass, l and depends only upon the annihilation
cross section. The cross section that results in Ox h2

"V 1 is of order 10-37cm2 , of the order the weak scale.

1) To first approximation the relic dependence depends upon the mass only indirectly through the dependence of the
annihilation cross section on the mass.
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ss scale.
rhe simple assumption that dark matter is a thermal relic is surprisingly restrictive. The largest the ai
:l.tion cross section can be is roughly MX2

• This implies that large-mass WIMPS would have such a Sl

lihilation cross section that their present abundance would be too large. Thus one expects a maximum n
a thermal WIMP, which turns out to be a few hundred TeV [8).
rhe standard lore is that the hunt for dark matter should concentrate on particles with mass of the 01

;he weak scale and with interaction with ordinary matter on the scale of the weak force. This has been
ving force behind the vast effort in dark matter direct detection described in this meeting by Cabrera
Ibarsky [10), Bernabei [11), Ramachers [12)' and Baudis [13).
n view of the unitarity argument, in order to consider thermal WIMPZILLAS, one must invoke, for exam
~-time entropy production to dilute the abundance of these supermassive particles [14), rendering
nario unattractive.

III NONTHERMAL RELICS-WIMPZILLAS

['here are two necessary conditions for the WIMPZILLA scenario. First, the WIMPZILLA must be sta
at least have a lifetime much greater than the age of the universe. This may result from, for instal
lersymmetric theories where the breaking of supersymmetry is communicated to ordinary sparticles via
lal gauge forces [15). In particular, the secluded and the messenger sectors often have accidental symmet
Llogous to baryon number. This means that the lightest particle in those sectors might be stable and "
ssive if supersymmetry is broken at a large scale [16]. Other natural candidates arise in theories \1

~rete gauge symmetries [17J and in string theory and M theory [18,19J.
t is useful here to note that WIMPZILLA decay might be able to account for ultra-high energy cosmic r
lve the Greisen-Zatzepin-Kuzmin cutoff [20,21J. A wimpy little thermal relic would be too light to do
, a WIMPZILLA is needed.
['he second condition for a WIMPZILLA is that it must not have been in equilibrium when it froze out (i.e., i
a thermal relic), otherwise Oxh2 would be much larger than one. A sufficient condition for nonequilibri

hat the annihilation rate (per particle) must be smaller than the expansion rate: nxalv/ < H, where O"/t
annihilation rate times the M011er flux factor, and H is the expansion rate. Conversely, if the dark mat

; created at some temperature T* and Oxh2 < 1, then it is easy to show that it could not have attail
lilibrium. To see this, assume X's were created in a radiation-dominated universe at temperature T*. Tl
h2 is given by

Oxh2 = 0'Y h2 (T*/To)mxnx(T*)/p'Y(T*) ,

~re To is the present temperature. Using the fact that p'Y(T*) = H(T*)MpIT;, nx(T*)/H(T*)
c/O-y)ToMpIT*/Mx . One may safely take the limit O"lvl < M X2, so nx(T*)alvl/H(T*) must be less tl
r/O-y)ToMpIT*/M'i. Thus, the requirement for nonequilibrium is

s implies that if a nonrelativistic particle with Mx 2: 200 TeV was created at T* < Mx with a density:
ugh to result in Ox :s 1, then its abundance must have been so small that it never attained equilibrit
~refore, if there is some way to create WIMPZILLAS in the correct abundance to give Ox '" 1, nonequilibri
utomatic.
lny WIMPZILLA production scenario must meet these two criteria. Before turning to several WIMPZILLA 1=

tion scenarios, it is useful to estimate the fraction of the total energy density of the universe in WIMPZILI

,he time of their production that will eventually result in n '" 1 today.
~he most likely time for WIMP ZILLA production is just after inflation. The first step in estimating the fract
he energy density in WIMPZILLAS is to estimate the total energy density when the universe is "reheat_
!r inflation.
:onsider the calculation of the reheat temperature, denoted as TRH. The reheat temperature is calcula
assuming an instantaneous conversion of the energy density in the inflaton field into radiation when
ay width of the inflaton energy, r (p, is equal to H, the expansion rate of the universe.
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The reheat temperature is calculated quite easily [7]. After inflation the inflaton field executes coherent
oscillations about the minimum of the potential. Averaged over several oscillations, the coherent oscillation
energy density redshifts as matter: P</> <X a-3, where a is the Robertson-Walker scale factor. If PI and aI
denotes the total inflaton energy density and the scale factor at the initiation of coherent oscillations, then the
Hubble expansion rate as a function of a is

H(a) = (4)

Equating H(a) and r </> leads to an expression for aI/a. Now if all available coherent energy density is instan
taneously converted into radiation at this value of aI/a, one can define the reheat temperature by setting the
coherent energy density, P</> = PI (aI/a)3 , equal to the radiation energy density, PR = (1r2/30)g.TAH' where g.
is the effective number of relativistic degrees of freedom at temperature TRH. The result is

(
90 ) 1/4 (200) 1/4

TRH = 81r3g. Jr</>Mpl = 0.2 g; Jr</>Mpl' (5)

The limit from gravitino overproduction is TRH ;S 109 to 1010 GeV.
Now consider the WIMPZILLA density at reheating. Suppose the WIMPZILLA never attained LTE and was

nonrelativistic at the time of production. The usual quantity Ox h2 associated with the dark matter density
today can be related to the dark matter density when it was produced. First write

(6)

where PR denotes the energy density in radiation, PX denotes the energy density in the dark matter, TRH is the
reheat temperature, To is the temperature today, to denotes the time today, and tRH denotes the approximate
time of reheating.2 To obtain px(tRH)lpR(tRH), one must determine when X particles are produced with
respect to the completion of reheating and the effective equation of state between X production and the
completion of reheating.

At the end of inflation the universe may have a brief period of matter domination resulting either from the
coherent oscillations phase of the inflaton condensate or from the preheating phase [22]. If the X particles are
produced at time t = t e when the de Sitter phase ends and the coherent oscillation period just begins, then
both the X particle energy density and the inflaton energy density will redshift at approximately the same rate
until reheating is completed and radiation domination begins. Hence, the ratio of energy densities preserved
in this way until the time of radiation domination is

PX(tRH) 81r px(te)
PR(tRH) ~ 3 M~IH2(te)'

(7)

(8)

where Mpl ~ 1019 GeV is the Planck mass and most of the energy density in the universe just before time
tRH is presumed to turn into radiation. Thus, using Eq. 6, one may obtain an expression for the quantity
Ox == px(to)/pc(to), where pc(to) = 3HJM~d81r and Ho = 100h km sec-1 Mpc-1

:

Oxh2 ~ ORh2 (TRH) 81r (Mx) nx(te) .
To 3 Mpl Mp1H2(te)

Here ORh2 ~ 4.31 X 10-5 is the fraction of critical energy density in radiation today and nx is the density of
X particles at the time when they were produced.

Note that because the reheating temperature must be much greater than the temperature today (TRH ITo ~

4.2 x 1014 ), in order to satisfy the cosmological bound Oxh2 ;S 1, the fraction of total WIMPZILLA energy
density at the time when they were produced must be extremely small. One sees from Eq. 8 that Oxh2 '"
1017(TRH /109GeV)(px (te)/p(te)). It is indeed a very small fraction of the total energy density extracted in
WIMPZILLAS.

2) More specifically, this is approximately the time at which the universe becomes radiation dominated after inflation.
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(9)

This means that if the WIMPZILLA is extremely massive, the challenge lies in creating very few of them.
Gravitational production discussed in Section IV A naturally gives the needed suppression. Note that if re
heating occurs abruptly at the end of inflation, then the matter domination phase may be negligibly short
and the radiation domination phase may follow immediately after the end of inflation. However, this does not
change Eq. 8.

IV WIMPZILLA PRODUCTION

A Gravitational Production

First consider the possibility that WIMPZILLAS are produced in the transition between an inflationary and a
matter-dominated (or radiation-dominated) universe due to the "nonadiabatic" expansion of the background
spacetime acting on the vacuum quantum fluctuations [23].

The distinguishing feature of this mechanism is the capability of generating particles with mass of the
order of the inflaton mass (usually much larger than the reheating temperature) even when the particles only
interact extremely weakly (or not at all) with other particles and do not couple to the inflaton. They may still be
produced in sufficient abundance to achieve critical density today due to the classical gravitational effect on the
vacuum state at the end of inflation. More specifically, if 0.04 :s M x / HI :s 2, where HI r-v mq, '" 1013GeV is the
Hubble constant at the end of inflation (mq, is the mass of the inflaton), WIMPZILLAS produced gravitationally
can have a density today of the order of the critical density. This result is quite robust with respect to the "fine"
details of the transition between the inflationary phase and the matter-dominated phase, and independent of
the coupling of the WIMPZILLA to any other particle.

Conceptually, gravitational WIMPZILLA production is similar to the inflationary generation of gravitational
perturbations that seed the formation of large scale structures. In the usual scenarios, however, the quantum
generation of energy density fluctuations from inflation is associated with the inflaton field that dominated the
mass density of the universe, and not a generic, sub-dominant scalar field. Another difference is that the usual
density fluctuations become larger than the Hubble radius, while most of the WIMPZILLA perturbations remain
smaller than the Hubble radius.

There are various inequivalent ways of calculating the particle production due to interaction of a classical
gravitational field with the vacuum (see for example [24], [25], and [26]). Here, I use the method of finding
the Bogoliubov coefficient for the transformation between positive frequency modes defined at two different
times. For Mx / HI :s 1 the results are quite insensitive to the differentiability or the fine details of the time
dependence of the scale factor. For 0.04 :s Mx / HI :s 2, all the dark matter needed for closure of the universe
can be made gravitationally, quite independently of the details of the transition between the inflationary phase
and the matter dominated phase.

Start with the canonical quantization of the X field in an action of the form (with metric ds2 = dt2 
a2(t)dx2 = a2(1]) [d1]2 - dx2] where 1] is conformal time)

S =Jdt Jd3x ~ (X2 - (V'a~)2 - MkX2 - ~RX2)

where R is the Ricci scalar. After transforming to conformal time coordinate, use the mode expansion

(10)

where because the creation and annihilation operators obey the commutator [ak 1 ' at] = 8(3) (k1 - k2), the hks

obey a normalization condition hkh~* - h~hk = i to satisfy the canonical field commutators (henceforth, all
primes on functions of 1] refer to derivatives with respect to 1]). The resulting mode equation is

(11)

where

(12)
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FIGURE 2. The contribution of gravitationally produced WIMPZILLAS to Qxh2 as a function of Mx/HI. The shaded
area is where thermalization may occur if the annihilation cross section is its maximum value. Also shown is the
contribution assuming that the WIMPZILLA is present at the end of inflation with a temperature T =HI/27r.
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FIGURE 3. The evolution of the Bogoliubov coefficient with conformal time for several wavenumbers. TI = TIl
corresponds to the end of the inflationary era.

96



The parameter ~ is 1/6 for conformal coupling and 0 for minimal coupling. From now on, ~ = 1/6 for simplicity
but without much loss of generality. By a change in variable TJ --7 k / a, one can rewrite the differential equation
such that it depends only on H(71)' H'(71)/k, k/a{TJ), and Mx. Hence, the parameters HI and aI correspond
to the Hubble parameter and the scale factor evaluated at an arbitrary conformal time TJI, which can be taken
to be the approximate time at which Xs are produced (i.e., TJI is the conformal time at the end of inflation).

One may then rewrite Eq. 11 as

(13)

where r, = TJaIHI , ii = a/aI, and k = k/(aIHI). For simplicity of notation, drop all the tildes. This differential
equation can be solved once the boundary conditions are supplied.

The number density of the WIMPZILLAS is found by a Bogoliubov transformation from the vacuum mode
solution with the boundary condition at 71 = 710 (the initial time at which the vacuum of the universe is
determined) into the one with the boundary condition at TJ = TJl (any later time at which the particles are no
longer being created). TJo will be taken to be -00 while TJl will be taken to be at +00. Defining the Bogoliubov
transformation as hZ1 (TJ) = (XkhZo (TJ) + {3kh:1)O (TJ) (the superscripts denote where the boundary condition is
set), the energy density of produced particles is

(14)

where one should note that the number operator is defined at TJl while the quantum state (approximated to
be the vacuum state) defined at TJo does not change in time in the Heisenberg representation.

As one can see from Eq. 13, the input parameter is Mx/HI. One must also specify the behavior of a(TJ)
near the end of inflation. In Fig. 2 (from [23]), I show the resulting values of Oxh2 as a function of Mx / HI
assuming the evolution of the scale factor smoothly interpolates between exponential expansion during inflation
and either a matter-dominated universe or radiation-dominated universe. The peak at Mx / HI '" 1 is similar
to the case presented in Ref. [27]. As expected, for large Mx/HI, the number density falls off faster than any
inverse power of M x / HI.

Now most of the action occurs around the transition from inflation to the matter-dominated or radiation
dominated universe. This is shown in Fig. 3. Also from Fig. 3 one can see that most of the particles are created
with wavenumber of order HI.

To conclude, there is a significant mass range (O.lHI to HI, where HI '" lOl3GeV) for which WIMPZILLAS

will have critical density today regardless of the fine details of the transition out of inflation. Because this
production mechanism is inherent in the dynamics between the classical gravitational field and a quantum field,
it needs no fine tuning of field couplings or any coupling to the inflaton field. However, only if the particles
are stable (or sufficiently long lived) will these particles give contribution of the order of critical density.

B Production during Reheating

Another attractive origin for WIMPZILLAS is during the defrosting phase after inflation. It is important to
recall that it is not necessary to convert a significant fraction of the available energy into massive particles; in
fact, it must be an infinitesimal amount. I now will discuss how particles of mass much greater than TRH may
be created in the correct amount after inflation in reheating [28].

In one extreme is the assumption that the vacuum energy of inflation is immediately converted to radiation
resulting in a reheat temperature TRH. In this case Ox can be calculated by integrating the Boltzmann equation
with initial condition Nx = 0 at T = TRH. One expects the X density to be suppressed by exp(-2Mx/TRH);
indeed, one finds Ox '" 1 for Mx/TRH '" 25 + 0.5In(m3;(alvJ)), in agreement with previous estimates [20]
that for TRH '" 1Q9GeV, the WIMPZILLA mass would be about 2.5 x 101OGeV.

A second (and more plausible) scenario is that reheating is not instantaneous, but is the result of the slow
decay of the inflaton field. The simplest way to envision this process is if the comoving energy density in the
zero mode of the inflaton decays into normal particles, which then scatter and thermalize to form a thermal
background. It is usually assumed that the decay width of this process is the same as the decay width of a free
inflaton field.
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(15)

There are two reasons to suspect that the inflaton decay width might be small. The requisite flatness of the
inflaton potential suggests a weak coupling of the inflaton field to other fields since the potential is renormalized
by the inflaton coupling to other fields [29]. However, this restriction may be evaded in supersymmetric
theories where the nonrenormalization theorem ensures a cancelation between fields and their superpartners.
A second reason to suspect weak coupling is that in local supersymmetric theories gravitinos are produced
during reheating. Unless reheating is delayed, gravitinos will be overproduced, leading to a large undesired
entropy production when they decay after big-bang nucleosynthesis [30].

It is simple to calculate the WIMPZILLA abundance in the slow reheating scenario. It will be important to
keep in mind that what is commonly called the reheat temperature, TRH, is not the maximum temperature
obtained after inflation. The maximum temperature is, in fact, much larger than TRH. The reheat temperature
is best regarded as the temperature below which the universe expands as a radiation-dominated universe, with
the scale factor decreasing as g;1/3T - 1. In this regard it has a limited meaning [7,31]. One implication of
this is that it is incorrect to assume that the maximum abundance of a massive particle species produced after
inflation is suppressed by a factor of exp(-M/TRH)'

To estimate WIMPZILLA production in reheating, consider a model universe with three components: inflaton
field ~nergy, p¢, radiation energy density, PR, and WIMPZILLA energy density, PX. Assume that the decay rate
of the inflaton field energy density is r ¢. Also assume the WIMP ZILLA lifetime is longer than any timescale in
the problem (in fact it must be longer than the present age of the universe). Finally, assume that the light
degrees of freedom are in local thermodynamic equilibrium.

With the above assumptions, the Boltzmann equations describing the redshift and interchange in the energy
density among the different components is

P¢ + 3HP¢ + r ¢P¢ = 0

PR + 4HpR - r ¢P,p - (~;) [Pir - (p~Q) 2] = 0

PX + 3Hpx + (~;) [Pir - (p~Qr] = 0,

where dot denotes time derivative. As already mentioned, (alvl) is the thermal average of the X annihilation
cross section times the M011er flux factor. The equilibrium energy density for the X particles, p~Q , is determined
by the radiation temperature, T = (30PR/rr2g*?/4.

It is useful to introduce two dimensionless constants, a¢ and ax, defined in terms of r ¢ and (alvl) as

(16)

(18)

For a reheat temperature much smaller than M¢, r ¢ must be small. From Eq. (5), the reheat temperature in

terms of ax and Mx is TRH := a~/2 JM¢Mpl' For M¢ = 1013GeV, a¢ must be smaller than of order 10-13
.

On the other hand, ax may be as large as of order unity, or it may be small also.
It is also convenient to work with dimensionless quantities that can absorb the effect of expansion of the

universe. This may be accomplished with the definitions

<P == p,pM;l a3; R == PRa4
; X == PXM"X1a3 . (17)

It is also convenient to use the scale factor, rather than time, for the independent variable, so one may define
a variable x = aM,p. With this choice the system of equations can be written as (prime denotes d/dx)

I x ""
<P = -C1 .j<px + R ':i"

x2

R' = C1 <P + C2
.j<px + R

-2

X' = -C3 .j:x + R (X
2

- x1Q ) .

The constants Cl, C2, and C3 are given by

f3MPI
Cl = VS; M¢ a¢

M,pax
C2 = C1---

Mx a¢

98

(19)



XEQ is the equilibrium value of X, given in terms ofthe temperature T as (assuming a single degree offreedom
for the X species)

M3 (1) 3/2 (T) 3/2
XEQ=.--2£ - x3

- exp(-Mx/T).
MJ 211" Mx

The temperature depends upon Rand 9*, the effective number of degrees of freedom in the radiation:

T _ ( 30 )1/4 M¢ R1
/
4

Mx - 9*1r2 Mx ---;-.

(20)

(21)

It is straightforward to solve the system of equations in Eq. (18) with initial conditions at x = XI of
R(XI) = X(XI) = 0 and W(XI) = WI. It is convenient to express p¢(x = XI) in terms of the expansion rate at
X I, which leads to

(22)

The numerical value of XI is irrelevant.
Before numerically solving the system of equations, it is useful to consider the early-time solution for R.

Here, early times means H » f ¢' i.e., before a significant fraction of the comoving coherent energy density is

converted to radiation. At early times W~ WI, and R ~ X ~ 0, so the equation for R' becomes R' = C1X3/2Q;V2.
Thus, the early time solution for R is simple to obtain:

(H» f¢) . (23)

Now express T in terms of R to yield the early-time solution for T:

(H» f¢). (24)

Thus, T has a maximum value of

(25)

(26)

which is obtained at X/XI = (8/3)2/5 = 1.48. It is also possible to express a¢ in terms of TRH and obtain

TMAX = 0.77 (+)1/8 (HI.t;tPl) 1/4 .
TRH 511" g* TRH

For an illustration, in the simplest model of chaotic inflation HI '" M¢ with M¢ ~ 1013GeV, which leads to
TMAX/TRH '" 103 (200/g*)1/8 for TRH = 109GeV.

We can see from Eq. (23) that for X/XI> 1, in the early-time regime T scales as a-3/8, which implies that
entropy is created in the early-time regime [31]. So if one is producing a massive particle during reheating it
is necessary to take into account the fact that the maximum temperature is greater than TRH , and that during
the early-time evolution, T IX a-3/ 8 •

An example of a numerical evaluation of the complete system in Eq. (18) is shown in Fig. 4 (from [28]).
The model parameters chosen were M¢ = 1013GeV, a¢ = 2 x 10-13 , Mx = 1.15 x 1012GeV, ax = 10-2 , and
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FIGURE 4. The evolution of energy densities and T/Mx as a function of the scale factor. Also shown is X/XEQ.

g. = 200. The expansion rate at the beginning of the coherent oscillation period was chosen to be HI = M<I>'
These parameters result in TRH = 109GeV and Oxh2 = 0.3.

Figure 4 serves to illustrate several aspects of the problem. Just as expected, the comoving energy density
of ¢> (i.e., a3p<l» remains roughly constant until r <I> ~ H, which for the chosen model parameters occurs around
alaI ~ 5 x 108• But of course, that does not mean that the temperature is zero. Notice that the temperature
peaks well before "reheating." The maximum temperature, TMAX = 1012GeV, is reached at alaI slightly
larger than unity (in fact at alaI = 1.48 as expected), while the reheat temperature, TRH = 109GeV, occurs
much later, around alaI '" 108 . Note that TMAX ~ 103TRH in agreement with Eq. (26).

From the figure it is clear that X « XEQ at the epoch of freeze out of the comoving X number density,
which occurs around alaI ~ 102. The rapid rise of the ratio after freeze out is simply a reflection of the fact
that X is constant while XEQ decreases exponentially.

A close examination of the behavior of T shows that after the sharp initial rise of the temperature, the
temperature decreases as a-3/8 [as follows from Eq. (24)] until H ~ r <1>, and thereafter T ex: a-I as expected
for the radiation-dominated era.

For the choices of M<I>' a<I> , 9., and ax used for the model illustrated in Fig. 4, Oxh2 = 0.3 for Mx =
1.15 x 1012GeV, in excellent agreement with the mass predicted by using an analytic estimate for the result
[28]

(27)

Here again, the results have also important implications for the conjecture that ultra-high cosmic rays, above
the Greisen-Zatsepin-Kuzmin cut-off of the cosmic ray spectrum, may be produced in decays of superheavy
long-living particles [19-21,32]. In order to produce cosmic rays of energies larger than about 1013 GeV, the
mass of the X-particles must be very large, Mx ~ 1013 GeV and their lifetime TX cannot be much smaller
than the age of the Universe, TX ~ 1010 yr. With the smallest value of the lifetime, the observed flux of
ultra-high energy cosmic rays will be reproduced with a rather low density of X-particles, OX'" 10-12. It has
been suggested that X-particles can be produced in the right amount by usual collisions and decay processes
taking place during the reheating stage after inflation if the reheat temperature never exceeded Mx [32].
Again, assuming naively that that the maximum number density of a massive particle species X produced
after inflation is suppressed by a factor of (Mx /TRH )3/ 2 exp(-Mx /TRH) with respect to the photon number
density, one concludes that the reheat temperature TRH should be in the range 1011 to 1Q15GeV [20]. This is
a rather high value and leads to the gravitino problem in generic supersymmetric models. This is one reason
alternative production mechanisms of these superheavy X-particles have been proposed [23,33,34]. However,
our analysis show that the situation is much more promising. Making use of Eq. (27), the right amount of
X -particles to explain the observed ultra-high energy cosmic rays is produced for
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(
TRH ) ( g* ) 3/14 ( Mx )

1010 GeV ~ 200 1015 GeV '
(28)

where it has been assumed that (alvl) '" M;2. Therefore, particles as massive as 1015 GeV may be generated
during the reheating stage in abundances large enough to explain the ultra-high energy cosmic rays even if the
reheat temperature satisfies the gravitino bound.

C Production During Preheating

Another way to produce WIMPZILLAS after inflation is in a preliminary stage of reheating called "preheating"
[22], where nonlinear quantum effects may lead to an extremely effective dissipational dynamics and explosive

particle production.
Particles can be created in a broad parametric resonance with a fraction of the energy stored in the form of

coherent inflaton oscillations at the end of inflation released after only a dozen oscillation periods. A crucial
observation for our discussion is that particles with mass up to 1015 GeV may be created during preheating
[33,35,36), and that their distribution is nonthermal. If these particles are stable, they may be good candidates
for WIMPZILLAS [37].

The main ingredient of the preheating scenario introduced in the early 1990s is the nonperturbative resonant
transfer of energy to particles induced by the coherently oscillating inflaton fields. It was realized that this
nonperturbative mechanism can be much more efficient than the usual perturbative mechanism for certain
parameter ranges of the theory [22]. The basic picture can be seen as follows. Suppose there is a scalar field
X with a coupling g2¢2 X 2 where ¢ is a homogeneous classical inflaton field. The mode equation for X field
then can be written in terms of a redefined variable n == Xka3/2 as

h(t) + [A + 2qcos(2t)]n(t) = 0 (29)

where A depends on the energy of the particle and q depends on the inflaton field oscillation amplitude. When
A and q are constants, this equation is usually referred to as the Mathieu equation which exhibits resonant mode
instability for certain values of A and q. In an expanding universe, A and q will vary in time, but if they vary
slowly compared to the frequency of oscillations, the effects of resonance will remain. If the mode occupation
number for the X particles is large, the number density per mode of the X particles will be proportional to
In12 • If A and q have the appropriate values for resonance, n will grow exponentially in time, and hence the
number density will attain an exponential enhancement above the usual perturbative decay. This period of
enhanced rate of energy transfer has been called preheating primarily because the particles that are produced
during this period have yet to achieve thermal equilibrium.

This resonant amplification leads to an efficient transfer of energy from the inflaton to other particles which
may have stronger coupling to other particles than the inflaton, thereby speeding up the reheating process
and leading to a higher reheating temperature than in the usual scenario. Another interesting feature is that
particles of mass larger than the inflaton mass can be produced through this coherent resonant effect. This has
been exploited to construct a baryogenesis scenario [35] in which the baryon number violating bosons with
masses larger than the inflaton mass are created through the resonance mechanism. A natural variation on
this idea is to produce WIMPZILLAS by the same resonance mechanism.

Interestingly enough, what was found [37] is that in the context of a slow-roll inflation with the potential
V(¢) = m~¢2 /2 with the inflaton coupling of g2¢2X 2 /2, the resonance phenomenon is mostly irrelevant to
WIMPZILLA production because too many particles would be produced if the resonance is effective. For the tiny
amount of energy conversion needed for WIMPZILLA production, the coupling g2 must be small enough (for a
fixed Mx) such that the motion of the inflaton field at the transition out of the inflationary phase generates just
enough nonadiabaticity in the mode frequency to produce WIMPZILLAS . The rest of the oscillations, damped
by the expansion of the universe, will not contribute significantly to WIMPZILLA production as in the resonant
case. In other words, the quasi-periodicity necessary for a true resonance phenomenon is not present in the
case when only an extremely tiny fraction of the energy density is converted into WIMPZILLAS. Of course, if
the energy scales are lowered such that a fair fraction of the energy density can be converted to WIMPZILLAS

without overclosing the universe, this argument may not apply.
The main finding of a detailed treatment [37] is that WIMPZILLAS with a mass as large as 103HI, where HI

is the value of the Hubble expansion rate at the end of inflation, can be produced in sufficient abundance to
be cosmologically significant today.

101



If the WIMPZILLA is coupled to the inflaton ¢ by a term g2¢2X 2/2, then the mode equation in Eq. 12 is now
changed to

(30)

again taking ~ = 1/6.
The procedure to calculate the WIMPZILLA density is the same as in Section IV A. Now, in addition to

the parameter Mx/HI, there is another parameter gMpdHI' Now in large-field models HI '" 1013GeV, so
MpdHI might be as large as 106 . The choice of 9 =10-3 would yield gMptiHI =103 .

Fig. 5 (from [37]) shows the dependence of the WIMPZILLA density upon Mx / HI for the particular choice
gMpdHI = 106 . This would correspond to 9 '" 1 in large-field inflation models where MpdHI = 106 , about
the largest possible value. Note that Ox '" 1 obtains for Mx / HI ~ 103 . The dashed and dotted curves are two
analytic approximations discussed in [37], while the solid curve is the numerical result. The approximations
are in very good agreement with the numerical results.

Fig. 6 (also from [37]) shows the dependence of the WIMPZILLA density upon gMpdHI. For this graph
Mx/HI was chosen to be unity. This figure illustrates the fact that the dependence of Oxh2 on gMpdHI is
not monotonic. For details, see [37].

D Production in Bubble Collisions

WIMPZILLAS may also be produced [34] in theories where inflation is completed by a first-order phase
transition [38], in which the universe exits from a false-vacuum state by bubble nucleation [39]. When
bubbles of true vacuum form, the energy of the false vacuum is entirely transformed into potential energy in
the bubble walls. As the bubbles expand, more and more of their energy becomes kinetic as the walls become
highly relativistic.

In bubble collisions the walls oscillate through each other [40] and their kinetic energy is dispersed into
low-energy scalar waves [40,41]. We are interested in the potential energy of the walls, Mp = 41r"lR2, where
"l is the energy per unit area of a bubble wall of radius R. The bubble walls can be visualized as a coherent
state of inflaton particles, so the typical energy E of the products of their decays is simply the inverse thickness
of the wall, E '" ~ -1. If the bubble walls are highly relativistic when they collide, there is the possibility of
quantum production of nonthermal particles with mass well above the mass of the inflaton field, up to energy
~ -1 = '}'M¢, with'}' the relativistic Lorentz factor.

Suppose for illustration that the WIMPZILLA is a fermion coupled to the inflaton field by a Yukawa coupling
g¢XX. One can treat ¢ (the bubbles or walls) as a classical, external field and the WIMPZILLA as a quantum
field in the presence of this source. The number of WIMPZILLAS created in the collisions from the wall potential
energy is Nx '" Ix Mp/Mx, where Ix parametrizes the fraction of the primary decay products in WIMPZILLAS.

The fraction Ix will depend in general on the masses and the couplings of a particular theory in question.
For the Yukawa coupling g, it is Ix ~ g21n ('}'M¢/2Mx) [41,42]. WIMPZILLAS may be produced in bubble
collisions out of equilibrium and never attain chemical equilibrium. Even with TRH as low as 100 GeV, the
present WIMPZILLA abundance would be nx '" 1 if 9 '" 1O-5a 1/ 2 . Here a-1 « 1 is the fraction of the bubble
energy at nucleation in the form of potential energy at the time of collision. This simple analysis indicates that
the correct magnitude for the abundance of WIMPZILLAS may be naturally obtained in the process of reheating
in theories where inflation is terminated by bubble nucleation.

V CONCLUSIONS

In this talk I have pointed out several ways to generate nonthermal dark matter. All of the methods can
result in dark matter much more massive than the feeble little weak-scale mass thermal relics. The nonthermal
dark matter may be as massive as the GUT scale, truly in the WIMPZILLA range.

The mass scale of the WIMPZILLAS is determined by the mass scale of inflation, more exactly, the expansion
rate of the universe at the end of inflation. For large-field inflation models, that mass scale is of order 1013GeV.
For small-field inflation models, it may be less, perhaps much less.

The mass scale of inflation may one day be measured! In addition to scalar density perturbations, tensor
perturbations are produced in inflation. The tensor perturbations are directly proportional to the expansion
rate during inflation, so determination of a tensor contribution to cosmic background radiation temperature
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FIGURE 7. Dark matter may be much more massive than usually assumed, much more massive than wimpy WIMPS,

perhaps in the WIMPZILLA class.

fluctuations would give the value of the expansion rate of the universe during inflation and set the scale for the
mass of the WIMPZILLA.

Undoubtedly, other methods for WIMPZILLA production will be developed. But perhaps even with the present
scenarios one should start to investigate methods for WIMPZILLA detection. While wimpy WIMPS must be color
singlets and electrically neutral, WIMPZILLAS may be endowed with color and electric charge. This should open
new avenues for detection and exclusion of WIMPZILLAS.

The lesson of the talk is illustrated in Fig. 7. WIMPZILLAS may surprise and be the dark matter, and we may
learn that size does matter!

ACKNOWLEDGEMENTS

This work was supported by the Department of Energy and NASA (grant number NAG5-7092).

REFERENCES

1. B. Fuchs, "DARK98 Proceedings of the Second International Conference on Dark Matter in Astro and Particle
Physics," eds. H V Klapdor-Kleingrothaus and L. Baudis, (Institute of Physics Publishing, Bristol and Philadelphia,
1999).

2. G. Evrard, "DARK98 Proceedings."
3. See, e.g., A. Dekel, in Proceedings of the 3rd ESO-VLT Workshop on "Galaxy Scaling Relations: Origins, Evolution

and Applications," ed. L. da Costa (Springer).
4. See, e.g., J. A. Tyson, G. P. Kochanski, and I. P.. Dell'Antonio, astro-phj9801193.
5. S. Sarkar, "DARK98 Proceedings."
6. G. Boerner, "DARK98 Proceedings."
7. E. W. Kolb and M. S. Turner, The Early Universe, (Addison-Wesley, Menlo Park, Ca., 1990).
8. K. Griest and M. Kamionkowski, Phys. Rev. Lett. 64, 615 (1990).
9. B. Cabrera, "DARK98 Proceedings."

10. I. Liubarsky, "DARK98 Proceedings."
11. R. Bernabei, "DARK98 Proceedings."
12. y. Ramachers, "DARK98 Proceedings."
13. L. Baudis, "DARK98 Proceedings."
14. J. Ellis, J.L. Lopez and D.V. Nanopoulos, Phys. Lett. B247, 257 (1990).
15. See, for instance, G. F. Giudice and R. Rattazzi, hep-phj9801271.
16. S. Raby, Phys. Rev. D 56, (1997).
17. K. Hamaguchi, Y. Nomura and T. Yanagida, hep-phj9805346.
18. K. Benakli, J. Ellis and D.V. Nanopoulos, hep-phj9803333.

104



19. D. V. Nanopoulos, "DARK98 Proceedings."
20. V. A. Kuzmin and V. A. Rubakov, Phys. Atom. Nucl. 61, 1028 (1998).
21. M. Birkel and S. Sarkar, hep-phj9804285.
22. L. A. Kofman, A. D. Linde and A. A. Starobinsky, Phys. Rev. Lett. 73, 3195 (1994); S. Yu. Khlebnikov and 1. 1.

Tkachev, Phys. Rev. Lett. 77, 219 (1996); Phys. Lett. B390, 80 (1997); Phys. Rev. Lett. 79, 1607 (1997); Phys.
Rev. D 56, 653 (1997); G. W. Anderson, A. Linde and A. Riotto, Phys. Rev. Lett. 77, 3716 (1996); see L. Kofman,
The origin of matter in the Universe: reheating after inflation, astro-phj9605155, UH-IFA-96-28 preprint, 16pp.,
to appear in Relativistic Astrophysics: A Conference in Honor of Igor Novikov's 60th Birthday, eds. B. Jones and
D. Markovic for a more recent review and a collection of references; see also L. Kofman, A. D. Linde and A. A.
Starobinsky, Phys. Rev. D 56, 3258 (1997); J. 'I'raschen and R. Brandenberger, Phys. Rev. D 42, 2491 (1990); Y.
Shtanov, J. 'I'raschen, and R. Brandenberger, Phys. Rev. D 51, 5438 (1995).

23. D. J. H. Chung, Edward W. Kolb, and A. Riotto, hep-phj9802238.
24. S. Fulling, Gen. ReI. and Grav. 10, 807 (1979).
25. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge,

1982).
26. D. M. Chitre and J. B. Hartle, Phys. Rev. D 16, 251 (1977); D. J. Raine and C. P. Winlove, Phys. Rev. D 12, 946

(1975); G. Schaefer and H. Dehnen, Astron. Astrophys. 54, 823 (1977).
27. N. D. Birrell and P. C. W. Davies, J. Phys. A:Math. Gen. 13, 2109 (1980).
28. D. J. H. Chung, E. W. Kolb, and A. Riotto, hep-phj9809453.
29. D. H. Lyth and A. Riotto, hep-phj9807278.
30. J. Ellis, J. Kim and D. V. Nanopoulos, Phys. Lett. B145, 181 (1984); L. M. Krauss, Nucl. Phys. B227, 556 (1983);

M. Yu. Khlopov and A. D. Linde, Phys. Lett. 138B, 265 (1984); J. Ellis, D. V. Nanopoulos, and S. Sarkar, Nucl.
Phys. B461, 597 (1996).

31. R. J. Scherrer and M. S. Turner, Phys. Rev. D31, 681 (1985).
32. V. Berezinsky, M. Kachelriess and A. Vilenkin, Phys. Rev. Lett. 79, 4302 (1997).
33. V. Kuzmin and 1. 1. Tkachev, hep-phj9802304.
34. D. J. H. Chung, E. W. Kolb and A. Riotto, hep-ph/9805473.
35. E. W. Kolb, A. D. Linde and A. Riotto, Phys. Rev. Lett. 77, 4290 (1996).
36. E. W. Kolb, A. Riotto and 1. 1. Tkachev, Phys. Lett. B423, 348 (1998).
37. D. J. H. Chung, hep-ph/9809489.
38. D. La and P. J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989).
39. A. H. Guth, Phys. Rev. D 23, 347 (1981).
40. S. W. Hawking, 1. G. Moss and J. M. Stewart, Phys. Rev. D 26, 2681 (1982).
41. R. Watkins and L. Widrow, Nucl. Phys. B374, 446 (1992).
42. A. Masiero and A. Riotto, Phys. Lett. B289, 73 (1992).

105


