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Abstract. As the number of applications of micro electro mechanical systems, or MEMS, increase, the variety
of flow geometries that must be analyzed at the micro-scale is also increasing. To date, most of the work on
MEMS scale fluid mechanics has focused on internal flow geometries, such as microchannels. As applications
such as micro-scale flyers are considered, it is becoming necessary to consider external flow geometries.
Adding a slip-flow condition to the Blasius boundary layer allows these flows to be studied without extensive
computation.

BOUNDARY LAYER WITH SLIP
The Blasius boundary layer solution for flow over a flat plate is among the best know solutions in fluid

mechanics [1]. The boundary layer equations assume the following: (1) steady, incompressible flow, (2)
laminar flow, (3) no significant gradients of pressure in the x-direction, and (4) velocity gradients in the x-
direction are small compared to velocity gradients in the y-direction. Only the last assumption is
questionable for MEMS scale flows.

No-Slip Boundary Layer Equations

The simplified Navier-Stokes Equations based on these assumptions, known as the boundary layer
equations, are given as:

du dv
— + — = 0 (1)
dx dy

du du d 2u
u — +v — =v — - (2)

dx dy dy
where u and v are the x and y components of the velocity, and \) is the kinematic viscosity of the fluid.

In the Blasius solution, a non-dimensional position T| combines both the x and y position:

_ y
(**)1/2 (x/L)1/2 (

where x* and y* are non-dimensional coordinates, u0 is the free stream velocity, and L is an arbitrary length
scale that cancels itself out. The non-dimensional velocities u* and v* are then functions of the non-
dimensional stream function/
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(4)

A governing equation for/can be found by substituting (3) and (4) into the x-momentum equation (2):

1) = 0 (5)

For flow at non-rarefied length scales, the boundary conditions for the problem are no-slip, and no
through flow at the wall, and u = u,, as y approaches infinity. In non-dimensional variables, these become:

M*(y=0)=0=>/'(n = 0)=0

u * (y = l

Slip Boundary Conditions

(6)

(7)

(8)

When the flow becomes rarefied, the no-slip condition (6) at the wall is replaced by a slip-flow
condition [2]. For an isothermal wall, the slip condition is given by

(2-Q) . 3u
Uwall =—————— A ——

a dy (9)
wall

where X is the mean free path, and a is the tangential momentum accommodation coefficient. This can be
non-dimensionalized to obtain

/'(O) = Knx Rex1

a
= K1 /"(O) (10)

where Knx and Rex are the Knudsen and Reynolds numbers based on x, and KI is a non-dimensional
parameter that describes the behavior at the surface:

KI =
a (U)

NUMERICAL SOLUTION

These equations are solved using a shooting method, just as the no-slip boundary layer equations are
solved. There is one unique value of/ " (0) and/' (0) for each value of KI. / " (0) is shown in figure 1:
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As the analysis is expanded to large values of KI,/ " (0) will asymptotically approach zero.
Figure 2 shows/ ' (0), or the non-dimensional slip velocity, as a function of KI:
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Figure 2. u*wan versus KI

As the Knudsen number approaches zero, KI also approaches zero, and the no-slip condition, and the
classical boundary layer solution, are recovered. As the Knudsen number becomes large, KI approaches
infinity, and the non-dimensional slip velocity approaches 1, indicating 100 percent slip at the wall.

The velocity profile within the boundary layer will also change as a function of KI. Because the initial
value off" changes as we move along the plate, the self-similarity of the Blasius solution is lost. However,
because conservation of mass and momentum are satisfied in the same approximate manner as in the
Blasius solution, the approach remains valid. Figure 3 below shows the normalized velocity profile in the
boundary layer for various values of KI:
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Figure 3. u* versus T| for various values of KI

One result that can be seen in figure 3 is that even as the wall velocity changes drastically, the overall
boundary layer thickness does not change as rapidly. The physical thickness of the boundary layer is

-n-TJ99 (12)
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Equation (12) can be substituted into (11) to obtain a KI based on boundary layer thickness:

K = (2-a)Kn&

a T]99
(13)

For equilibrium flows, T|99 is a constant with a value of 4.9. For a non-equilibrium boundary layer, T|99

varies along the plate. Figure 4 shows the value of r|99, where u* is equal to .99, as a function of KI:
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Figure 4. T|99 versus KI

The non-equilibrium behavior at the wall, as measured by KI, will be proportional to the boundary layer
thickness, which is a measure of the velocity gradient near the wall. However, since r|99 is a function of KI,
the original form of KI is more suitable for analyzing real flows.

The friction at the surface will change due to non-equilibrium behavior. The wall friction is given by:

T- = M- V =ay ) ay 1 / 2
„_
(0) (14)

The friction is proportional to the value o f f " (0) given in figure (1), and the percent reduction in
friction due to non-equilibrium behavior is given by

(%Reduction) = 100%(f'(0)|K =Q -/'(0)j=100%(.3321-/'(0)) (15)

The percent reduction in friction for a plate with a chord of 50 microns, and freestream conditions of a
u0 of 100 m/s, a pressure of 0.1 atmospheres, and a temperature of 298 K, is show as figure 5:
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Figure 5. Percent Reduction in Friction

These results show that the reduction in friction will be very large in the initial portion of the plate, and
still may be measured downstream on the plate.
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There are two limitations in using this simple model to study flow around a MEMS scale flat plate. The
first restriction is the singularity that appears at x=0. Typically this problem is solved by combining the
Blasius solution with a Stokes flow solution at the leading edge of the plate. Because the Stokes flow
region scales with plate thickness, it becomes less significant in boundary layer growth as the plate
thickness decreases to the order of one micron. Figure 6 shows the contours of x-velocity for freestream
conditions of a velocity of 100 m/s, a pressure of 0.1 atmospheres, and a temperature of 298 K.
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Figure 6. X-Velocity contours for u0 = 100 m/s, P= 0.1 atm, T=298 K

The next concern in the Blasius model is the importance of the velocity gradients in the x-direction.
Equation (2) can only be used to describe the flow field when 32u/3y2 is much larger than 32u/3x2. Figure 7
shows the ratio of these derivatives, suggesting that the solution is valid for all but the extreme leading edge
of the plate.
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Figure 7. Ratio of 32u/3y2 versus 32u/3x2 for u0 = 100 m/s, P= 0.1 atm, T=298 K

CONCLUSIONS

The results show that the boundary layer equations can be used to study flow at the MEMS scale, and to
judge when non-equilibrium effects become important. While the self-similarity of the Blasius boundary
layer is lost, the boundary layer equations continue to provide useful information to study the effects of
rarefaction on the shear stress and structure of the flow. They also show the weakness of using a simple
geometric Knudsen number in describing the flow, and provide a new flow parameter, KI, for describing
non-equilibrium behavior.

A Navier-Stokes flow solver [3], incorporating the effects of slip conditions at the boundary, is being
used to study the accuracy of these solutions for flow over thin flat plates.
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These results are being used to evaluate test conditions for an experimental study of MEMS scale
airfoils. The results of this model, and additional computational studies, suggest that the reduction in drag
due to these effects should be measurable for flat plates with chords of 10-40(im, at pressures ranging from
0.1 to 1.0 atmospheres.
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