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THE LIE ALGEBRAIC INTERPRETATION OF
THE COMPLETE INTEGRABILITY OF THE ROSOCHATIUS SYSTEM

Tudor Ratiu*)
University of Michigan, Ann Arbor, MI 48109

ABSTRACT
The present note answers a question posed by A.G, Reyman [5] as
to the Lie algebraic reasons of the complete integrability of a
system studied by E. Rosochatius [6].
1. The Rosochatius System

Consider the motion of a particle on the sphere Sn'] cR"
under the influence of the potential

U(x) = 5+ x- fle/xli2)

where A = diag(a],...,an) , C = diag(c],...,cn) and C/x denotes

the vector (c]/x],...,cn/xn) . The equations of motion are
c,?
ii = - BU/axi X -(aixi + ;?5) X, (1.1)
where X 1is the Lagrange multiplier defined by the condition that
x € g1 during the motion. To find x , multiply (1.1) by X;

and sum over i , taking into account that |[[x||2=1, and therefore
350, [1%12 + x+% =0. Thus = Ax-x + {[c/x]|2- [I%]]2 .
S

et y = 5 ; with A just found (1.1) becomes

0

2 - .
yi oo lxlZ=1, x-y

(1.2)

™
8.
n n

- ayxg - cy/x (A x+ [C/xlZ - HIvl2)xg

This Hamiltonian system has been shown to be completely
integrable by E. Rosochatius [6]. Moser [2] finds a Lax pair for
these equations, which however is not equivalent to(1.2) but only
implied by it. Moreover, Moser proves that the integrals in
involution of (1.2) are eigenvalues of a matrix obtained by a rank
two perturbation. Reyman asks what is the Lie algebraic interpre-
tation of Moser's Lax pair, since it does not fit into a general
framework developed by him [5].
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We shall prove the following; (1.2) is equivalent to a
degenerate Euler-Poisson equation [3], [4] on a minimal dimensional
orbit of the semidirect product of so(n) with the space of
syrmetric traceless matrices. Introducing a parameter in Moser's
Lax pair, it is shown that this Euler-Poisson equation is equi-
valent to a Hamiltonian system on an invariant submanifold of a
subalgebra in the Kac-Moody extension of s£(n). This bihamiltonian
formulation of the same problem, yields as usual, the complete
integrability of the problem; see also Adler-van Moerbeke [1].

This system is very similar to the C. Neumann system [1], [2],
[4], [5], and many results here are implied by facts already proved
for the Neumann system. What is new, however, is the fact that it
seems to be the first completely integrable Euler-Poisson system
with non-linear potential - at least to the knowledge of the author,

I would Tike to thank H. Fleschka for drawing my attention to
this problem. The exposition that follows is due to length con-
siderations quite dense and hereby based on [4].

2. The Euler-Poisson Equations

We start by reviewing a few known facts about orbits in semi-
direct products.
2.1 Lete§, be a semisimple Lie algebra with « some constant

multiple of the Killing form. The semidirect product ofda. with
itself by the adjoint representation is a Lie algebra with under-
lying vector space Q; xt%} and bracket

There is a bilinear, symmetric, bi-variant, non-generate two form
on this semidirect product induced by x and it is given by

2.2 1In the following considerations, the coadjoint orbit theory
plays a central role. If & is any Lie algebra, the Kirillov-

Kostant-Souriau theorem states that its coadjoint orbits are
symplectic manifolds. If &4 is semisimple, the equivariant diffeo-

morphism induced by « makes the adjoint orbits symplectic manifolds.
Suppose now that&y_ = {}011/ with -1+ a Lie subalgebra. Then 1L.*

g .t . .. .
%} (L with respect to k) so that the coadjoint orbits of
*
MW" can be identified with orbits in %}l which by the above

considerations are symplectic manifolds. Tracing through ail
the above diffeomorphisms, it can be shown [4] that the Poisson

bracket in 4%} is given by
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tf.gh(e) = - ([ (grad £)(c) . 0 (grad g)(e}], €)  (2.3)

L . . -
for ¢ E{} s Hﬂ':g,+ t1- the comonical projection along 43, and
"grad" the gradient with respect to « .

2.3 Euler-Poisson equations are Hamiltonian systems on adjoint
orbits of the semidirect product CJ, X% with Hamiltonian of the
form H(g,n) = % «(Ln,n) + v(g) for V :Cg, + R a smooth function,
and L :a;-»cg, a linear map. They are of the form

£=[g,tn), f=[n,Ln] + [£,(grad V)(£)] ; (2.4)

see [3] for more information and the connection with reduction. The
most famous example of such equations are the equations of the
heavy rigid body with a fixed point; in this case®f = so(3) which

is identified as Lie algebra with ]R3 endowed with the cross-
product. In this case V is a linear function of &. One sees

thus, that in general, such Hamiltonian systems are not completely
integrable. —

1
2.4 For x,y € R, |Ixll=1, x-y=0, set X=x@x- —~1Id,

P=xay, where (x8x) i %% (5Al)ij SXYy-Yyxg e let

sym denote the vector space of symmetric traceless matrices; then
X €sym,P € so(n) . Split the semidirect productg=s£(n)xs£(n)=
=é@%, 6,= symxso(n))ﬂ’= so(n) xsym. The underlying Lie groups
of OJ' and ¥ respectively are G = Si(n) xse(n) , N=S0(n) xsym .
If «(A,B)=- JZ-Tr(AB) , remark that {j =é where 1 is taken
with respect to K - The following has been proved in [4].

2.1 Theorem. The N-orbit through (z @5-:7 1d,0) € é,,
2=(1,...,1)//0, consists of pairs (X,P) €4 . With the
Kirillov-Kostant-Souriau symplectic form, this (2n-2) - dimensional
orbit is symplectically diffeomorphic sia (X,P)~> (5,3') to the
cotangent bundlenof Sn'1 with the symplectic structure induced

from R2D by }:dxi/\dyi
i=1
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ch. c?xi
2.5 Llet us return to the system (1.2). Put Nij =-;3;~+ ;;—— s
2c$ o N c% i J
=1 _<cy 1 i i . m
Ny 2 2;1 ) and forn N € sym with entries N, . Fro
=17

Y (Tr(A))1d€ sym .

row on denote by A = diag(al,...,an)- y

2.2 Proposition. The system (1.2) is equivalent to

£= [P, P=[A+NX], [Ixl[=1,x-y=0. (2.5)

The proof is a direct, somewhat lengthy, verification.
A comparison between the equations %2.4) and(2.5) shows that
(2.5) are degenerate Euler-Poisson equations. Indeed, (2.5) if one

chooses L = identity and V(X) =-x(A,X} + ! Tro(X), where ¢(X)
?

is chosen such that (grad V) (X) =-A-N, (2.5) becomes a special
case of (2.4). The form of ¢ 1is irrelevant; only its existence
matters. Specifically, V(X) can be obtained by tracing through

the diffeomorphism given by Theorem 2.1 and computing the expression
of the push-forward of Rosochatius' potential. We proved the
following.

2.3 Theorem The Rosochatius system (1.2) is a Hamiltonian system
on the N-orbit in so(n) x sym given by Theorem 2.1. Hamilton's
equations coincide with the degenerate Euler-Poisson equations (2.5).

3. Hamilton's equations in Kac-Moody Lie
algegra setting and complete integrability.

3.1. Introduce the matrices M E sym ’Mij = (Cixj/xi)+(cjxi/xj)’

n n
1
- - 2 2y_ 1 2
Mis = 2ci-2(iz]ci)/n, D= d1ag(e]/x],...,cn/xn) ngzlci/xi)Ide sym .
3.1 lemma. If |lx]|=1, x-y=0, then

[va] = [DaXJ s [DaM] = [N’X]

If %=y, then M= [D,P].

The proof is a straight forward verification. Using these
relations it is easy to show the following.
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3.2 Proposition. If ||x[l=1, x+y=0, the degenerate Euler-

Poisson equations (2.5) are equivalent to
(-X+ (P+M)x +AX2) = [-X + (P+M)A+ AR, P-D+M+AN] (3.1)

If X =1, the above Lax equation coincides with the restriction

of Moser's to the cotangent bundle of Sn'l. Equation (3.1) has also
a Hamiltonian interpretation, but in the Kirillov-Kostant-Souriau
structure of an infinite dimensional Lie algebra.

3.2 Here is a quick review of how (3.1) is Hamiltonian in the
Kac-Moody extension of s&(n). Let

~_

se(n) = { ) gnknlfim’te sum} be the Kac-Moody extension of s2(n) ;
nEzZZ

the bracket is defined by

[ ] ek, A" = o DA
ngZ k ngzzn” ] ngl(iz;i:n[[:] SR

The form ¥ defined by %( § gkAk s, )N A"y = ) K(ik,n ),
kEZ nz " ntk=-1 n
for «(A,B) =- —;—Tr(AB) , A,BEsz(n) is bilinear, symmetric,

bi-invariant and weakly non-degenerate. Let K= {X gnx"} s
n=0

-1 n ~/ .
N={] nx'}; then s2(n)=K® N,K,N are Lie subalgebras,
n

- ~

K= k ,N* =N. Denote by Lg(sz(n)) those real values functions
on sifn) which have gradient with respect to % . The sub-
manifold Q, ={g+nr+Ax2|g,n€se(n)} is an invariant submanifold
of KL=K with respect to the Kirillov-Kostant-Souriau structure
given by %(sz(n)) . The submanifold {-X+(P+M)x+Ax2} is not
invariant but there exists an ad-invariant Hamiltonian whose

% - gradient projected onto K equals P+M-D+Ax. Thus (3.1)

is of the form % =[n (grad H)E,E] , for T=-X+(P+M)r+AN2 which
is the expression of a Hamiltonian vector field on K‘L; see [1],
[3], [4], [5] for more details and related problems.
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3.3. From (3.1) it follows that the functions ¢K(X,P) =

)k+] are conserved along the flow of

2k+1

= §T%:TT Tr{-X+{P +M)) +Ax2
(3.1) and thus the coefficients fK(X,P) of

expansion are conserved along the flow of (2.5).

in this

These functions are in involution. Instead of carrying out
here the long computations, we simply remark that the general
outline in [4] will work. First, one shows that {¢K,¢£} = 0 for

every X in the semidirect product s£(n) x s£(n) by using the
proof of Theorem 3,2 in [4] and a direct computation in which one
expresses M as a function of X . Specifically, using the
expression of the Poisson bracket in the semidirect product for
¢K,¢£ , one gets the terms appearing in the proof of Theorem 3.2

of [4] plus three other terms. The first group is handled as in
the above mentioned theorem and the last three terms are easily
seen to vanish by using the explicit expression of M as a function
of X . Unfortunately, there is no simple involution theorem at
hand which could simplify this step. Thus {¢K,¢£} = 0 1in the

Poisson bracket of sf(n) x s£(n) for every A . In particular,
the highest non-zero X-coefficients in this expansion must also
vanish, i.e. {fK,fz} =0 din sf(n) x s&(n). Next, one uses

Theorem 3.3 of [4] to conclude {fK,fz} = 0 on the N-orbit. This

somewhat laborious - but direct - proof shows again how the
bihamiltonian formulation of the same problem in Lie algebras is
ultimately responsible for involution,

The next step should be the proof of the generic independence
of these integrals. We simply refer the reader to [4] for a proof
that works - with minor technical modifications - also in this case.
Finally, the Kac-Moody Lie algebraic formulations shows that the

hyperelliptic curve det(-X + (P + M)x + AAZ - zId) = 0 of genus
n - 1 is isospectral. Applying here the standard methods of Adler-
van Moerbeke [1], or Moser [3], the flow linearizes on the Jacobian
of this curve.

We proved hence purely Lie algebraically the following.

3.3 Theorem. The Rosochatius system (2.5) is a completely integrable
Hamiltonian system with non-linear potential of degenerate Euler-
Poisson equations on a minimal dimensional orbit of the semidirect
product so(n) x sym. Its flow linearizes in the Jacobian of a
hypereliiptic curve given by its interpretation as a Hamiltonian
vector field on a submanifold in a subalgebra of the Kac-Moody
extension of s&(n).
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