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THE LIE ALGEBRAIC INTERPRETATION OF 
THE COMPLETE INTEGRABILITY OF THE ROSOCHATIUS SYSTEM 

Tudor Ratiu*) 
University of Michigan, Ann Arbor, MI 48109 

ABSTRACT 

The present note answers a question posed by A.G, Reyman [5] as 
to the Lie algebraic reasons of the complete integrabi l i ty  of a 
system studied by E. Rosochatius [6]. 

I. The Rosochatius System 

Consider the motion of a particle on the sphere S n-l c]R n 
under the influence of the potential 

u(x) : �89 x - I I c / ~ l l  2) 

where A = diag(a I . . . . .  a n ) , C = diag(c I . . . . .  c n) and Clx denotes 

the vector (Cl/X l . . . . .  Cn/X n) The equations of motion are 

c. 2 

f i = -  aU/ax i + ~x i = - ( a i x  i + 1-]--)+~x. ( l . l )  x. 3 1 
1 

where ~ is the Lagrange mult ipl ier defined by the condition that 

x ~ S n-l during the motion. To find ~ , multiply ( l . l )  by x i 

and sum over i , taking into account that IIxll 2=I , and therefore 

2 S ' ~ : o ,  I1~112 + ,.,x'~,., : 0 .  Thus ~, : Ax-x.~ . + I I c / x l l  2 - I1~112 

Set y =~ ; with X just found ( l . l )  becomes 

{ ~.~ =Yi ' I l x l 1 2 : l  , . x . ~ =  o 
( l  o2) 

Yi - a i x i  - c i / x ?  + ( ~  - x  + I I C ~ I I  2 -  I l y l l 2 ) x i  

This Hamiltonian system has been shown to be completely 
integrable by E. Rosochatius [6]. Moser [2] finds a Lax pair for 
these equations, which however is not equivalent to (I.2) but only 
implied by i t .  Moreover, Moser proves that the integrals in 
involution of (I .2) are eigenvalues of a matrix obtained by a rank 
two perturbation. Reyman asks what is the Lie algebraic interpre- 
tation of Moser's Lax pair, since i t  does not f i t  into a general 
framework developed by him [5]. 
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We shall prove the following; (1.2) is equivalent to a 
degenerate Euler-Poisson equation [ ~ ,  [4] on a minimal dimensional 
orbi t  of the semidirect product of so(n) with the space of 
symmetric traceless matrices. Introducing a parameter in Moser's 
Lax pair, i t  is shown that this Euler-Poisson equation is equi- 
valent to a Hamiltonian system on an invariant submanifold of a 
subalgebra in the Kac-Moody extension of sZ(n). This bihamiltonian 
formulation of the same problem, yields as usual, the complete 
in tegrabi l i ty  of the problem; see also Adler-van Moerbeke [ I ] .  

This system is very similar to the C. Neumann system [ I ] ,  [2] ,  
[4],  [5],  and many results here are implied by facts already proved 
for the Neumann system. What is new, however, is the fact that i t  
seems to be the f i r s t  completely integrable Euler-Poisson system 
with non-linear potential - at least to the knowledge of the author, 

I would l ike to thank H. Fleschka for drawing my attention to 
this problem. The exposition that follows is due to length con- 
siderations quite dense and hereby based on [4]. 

2. The Euler-Poisson Equations 

We start by reviewing a few known facts about orbits in semi- 
direct products. 
2.1 L e t ~  be a semisimple Lie algebra with K some constant 

multiple of the Killing form. The semidirect product of C~j_ with 

i tse l f  by the adjoint representation is a Lie algebra with under- 
lying vector space ~i x C~t and bracket 

[ (~ l ,q l ) , (~2,n2) ]  = ([~l,q2 ] ,  [~ l ,n2]- [~2,n l ] )  (2.1) 

There is a bi l inear,  symmetric, bi-var iant,  non-generate two form 
on this semidirect product induced by K and i t  is given by 

~s((~l ,nl) , (~2,q2)) : <(~l,q2) + ~(~2,ql) . (2.2) 

2.2 In the following considerations, the coadjoint orbi t  theory 
p l~s  a central role. I f  C~ is any Lie algebra, the K i r i l lov-  

Kostant-Souriau theorem states that i ts coadjoint orbits are 
symplectic manifolds. I f  g~. is semisimple, the equivariant diffeo- 

morphism induced by < makes the adjoint orbits symplectic manifolds. 
Suppose__ now that C~ = ~ @ I V  with~Yt , a Lie subalgebra. Then ~kl:* 

~a. ~ (z  with respect to <) so that the coadjoint orbits of 

"~Id* can be identi f ied with orbits in ~_• which by the above 

considerations are s3nnplectic manifolds. Tracing through al l  
the above diffeomorphisms, i t  can be shown [4] that the Poisson 

bracket in ~L • is given by 
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{ f ,g } (~ )  : -  ~([~li(grad f ) (~)  , El(grad g ) (~ ) ] ,  ~) (2.3) 
s 

for ~ E ~  , ~ : ~ - ~  I~ - the comonical pro ject ion along ~ and 

"grad" the gradient wi th respect to K . 

2.3 Euler-Poisson equations are Hamiltonian systems on ad jo in t  

o rb i ts  of the semidirect product ~ •  with Hamiltonian of the 
1 form H(~,n) = ~ <(Ln,n) + V(~) for V :O~ § IR a smooth funct ion,  

and L : ~ , o ~  a l inear  map. They are of  the form 

C: [~,kn] , ~ = [n,Ln] + [~,(grad V)(~) ]  ; (2.4) 

see [3] for  more information and the connection with reduction. The 
most famous example of such equations are the equations of the 
heavy r ig id  body with a f ixed point ;  in th is  caseC~ = so(3) which 

is i den t i f i ed  as Lie algebra with ~3 endowed with the cross- 
product. In th is  case V is a l inear  funct ion of ~. One sees 
thus, that in general, such Hamilton#an systems are not completely 
i nteg rabl e. 

1 Id 2.4 For x , ~  E IR n , I Ix I l= l  , x ' Z = o ,  set X = x |  -n ' 

P_=x^~, where ( x ~ )  i j : x i x j  ' ( x ^ ~ ) i j  =xiYi  -Y iX j  " Let 
sym denote the vector space of  symmetric traceless matr ices; then 

X E sym,_P ~ so(n) Sp l i t  the semidirect productO~=s~.(n)• = 

= ~ , ~ :  symxso(n))~z= so (n )xsym.  The underlying Lie groups 

of  O~ and ~ respect ive ly  are G = SL(n) xs~(n) , N= S0(n) • . 

1 Tr(AB) remark that  ~• = ~ where-I- is taken I f  K(A,B)=-  ~- , 

with respect to K s The fo l lowing has been proved in [4 ] .  

1 Id,0) ~ ~-~ 2.1 Theorem. The N-orb i t  through ( z ~ Z - n  

z = ( l  . . . . .  I ) / ~ ,  consists of  pairs (X,P) G- 5 . With the 

K i r i l lov-Kostant -Sour iau symplectic form, th is  ( 2n -2 ) -d imens iona l  

o r b i t  is symplect ica l ly  diffeomorphic ~ia (X,P)~+ (x,y) to the 

cotangent bundlenof S n-I wi th the symplectic s t ructure induced 

from ~2n by ~ dx.A i=l i dYi 
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c2. x.  
= 1 J +  

2.5 Let us re tu rn  to the system (1 .2 ) .  Put N i j  x" 3 

2c~ 2 n c. 2 ] 
Nii : x 2. n -~ and form N E sym with entries N i .  

�9 = J 
1 1 1 

l (Tr(A))IdCsym now on denote by A = diag(a I . . . . .  a n )-~- 

c2.x. 
J ] 
x 3. J 

From 

2.2 Proposition. The system (I.2) is equivalent to 

= [X,P], P = [A + N,X], II II : i ,  ~ .~  = o. (2.5) 

The proof is a direct, somewhat lengthy, verification. 
A comparison between the equations (2.4) and(2.5) shows that 

(2.5) are degenerate Euler-Poisson equations. Indeed, (2.5) i f  one 

identity and V(X) =-K(A,X) + �89 Tr@(X), where @(X) chooses L 

is chosen such that (grad V) (X) =-A-N, (2.5) becomes a special 
case of (2.4). The form Of @ is irrelevant; only its existence 
matters. Specifically, V(X) can be obtained by tracing through 
the diffeomorphism given by Theorem 2.1 and computing the expression 
of the push-forward of Rosochatius' potential. We proved the 
following. 

2.3 Theorem The Rosochatius system (I.2) is a Hamiltonian system 
on the N-orbit in so(n) x sym given by Theorem 2.1. Hamilton's 
equations coincide with the degenerate Euler-Poisson equations (2.5). 

3. Hamilton's equations in Kac-Moody Lie 
algegra setting and complete integrability. 

3.1. Introduce the matr ices M E s y m , M i j  = ( c i x j / x i ) + ( c j x i / x  j )  , 

n 1 ~ ic i / x~) id  E sy m Mii = 2ei-2( Z ei)/n, D=diag(el/x ~ . . . . .  Cn/Xn 2 ) -n  
i=l "= 

3.1 Lemma. I f  l l x l l : l ,  x . z = o ,  then 

[M,X] = [D,X]  , [D,M] = [N,X] 

I f  ~ = Z , then ~ : [D ,P] .  

The proof is a straight forward verification. Using these 
relations i t  is easy to show the following. 
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3.2 Proposit ion. I f  IIxll =I , ~ . ~  = 0 ,  the degenerate Euler- 

Poisson equations (2.5) are equivalent to 

( -X+(P+M)~+A~2) '= [ -X+(P+M)~+A~ 2,  P-D+M+A~]  ~3~I} 

I f  ~ : I ,  the above Lax equation coincides with the res t r i c t ion  

of Moser~s to the cotangent bundle of S n ' l .  Equation (3.1) has also 
a Hamiltonian in terpreta t ion,  but in the Kir i l lov-Kostant-Souriau 
structure of an i n f i n i t e  dimensional Lie algebra. 

3.2 Here is a quick review of how (3.1) is Hamiltonian in the 
Kac-Moody extension of s l (n) .  Let 

s~(n) = { ~ ~n~nl f in i te sum} 
n~77 

the bracket is defined by 

[ Z ~k ~k , ~ nn xn] = ~ ( Z [Ci,qj]) ~n 
k~7/ nET/ nET/ i+j=n 

be the Kac-Moody extension of s~(n) ; 

The form ~ defined by ~( ~ ~k ~k, Z nn~n) : Z K(Ck,nn) , 
kE7/ nEZZ n+k=-I 

1 for ~(A,B) =- ~-Tr(AB) , A,B~s~(n) is b i l i near ,  symmetric, 

b i - invar ian t  and weakly non-degenerate. Let K:  {~  {n xn} , 
n=O 

-I  
N = { Z  nn~n} ; then s~(n)=K~) N , K , N  are Lie subalgebras, 

n=-~ 
K ~= K , N  z =N. Denote by C~(s~(n)) those real values functions 

on s~(n) which have gradient with respect to ~" . The sub- 

manifold QA ={C+n~+A~21~'nEs~(n)}  is an invar iant  submanifold 

of KZ=K with respect to the Kir i l lov-Kostant-Sour iau structure 

given by ~ ( s ~ ( n ) )  . The submanifold { -X+(P+M)~+A~ 2} is not 

invar iant  but there exists an ad- invar iant  Hamiltonian whose 

~ - g r a d i e n t  projected onto K equals P+M-D+AX.  Thus (3.1) 

is of  the form ~.=[]IK(grad H)~,~] , for ~=-X+(P+M)~+A~ 2 which 

is the expression of a Hamiltonian vector f ie ld  on K z" see [ I ]  

[3 ] ,  [4 ] ,  [5] for more detai ls and related problems. 
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3.3. From (3.1) i t  follows that  the functions #<(X,P) = 

1 Tr(-X+(P+M)X +A~2) k+l are conserved along the flow of 
= 2-7i TT 

(3.1) and thus the coef f ic ients  ~(X,P) of ~2k+l in th is  

expansion are conserved along the flow of  (2.5).  

These functions are in involut ion.  Instead of carrying out 
here the long computations, we simply remark that the general 
out l ine in [4] w i l l  work. F i r s t ,  one shows that {r = 0 for  

every ~ in the semid~rect product s/(n) • s/(n) by using the 
proof of Theorem 3,2 ~n [4] and a d i rect  computation in which one 
expresses M as a function of X . Spec i f i ca l l y ,  using the 
expression of the Poisson bracket in the semidirect product for  
CK,~l , one gets the terms appearing in the proof of Theorem 3.2 

of [4] plus three other terms. The f i r s t  group is handled as in 
the above mentioned theorem and the last  three terms are easi ly  
seen to vanish by using the e x p l i c i t  expression of M as a function 
of X . Unfortunately, there is no simple involut ion theorem at 
hand which could s impl i fy  th is  step. Thus {~<,~/} = 0 ~n the 

Poisson bracket of s/(n) x s/(n) for  every ~ . In par t i cu la r ,  
the highest non-zero ~-coef f ic ients  in th is  expansion must also 
vanish, i . e .  { f K , f / }  = 0 in s/(n) • s / (n) .  Next, one uses 

Theorem 3.3 of [4] to conclude { f K , f / }  = 0 on the N-orbi t .  This 

somewhat laborious - but d i rect  - proof shows again how the 
bihamiltonian formulation of the same problem in Lie algebras is 
ul t imately responsible for  involut ion.  

The next step should be the proof of the generic independence 
of these integrals.  We simply refer  the reader to [4] for  a proof 
that  works - with minor technical modif ications - also in th is  case. 
F ina l ly ,  the Kac-Moody Lie algebraic formulations shows that the 

hypere l l i p t i c  curve det(-X + (P + M)~ + A~ 2 - zld) = 0 of genus 
n - 1 is isospectral .  Applying here the standard methods of  Adler- 
van Moerbeke [ I ] ,  or Moser [ 3 ] ,  the flow l inear izes on the Jacobian 
of th is  curve. 

We proved hence purely Lie a lgebraical ly  the fol lowing. 

3.3 Theorem. The Rosochatius system (2.5) is a completely integrable 
Hamiltonian system with non-l inear potent ial  of degenerate Euler- 
Poisson equations on a minimal dimensional o rb i t  of the semidirect 
product so(n) x sym. I ts  flow l inear izes in the Jacobian of a 
hypere l l i p t i c  curve given by i t s  in terpretat ion as a Hamiltonian 
vector f i e l d  on a submanifold in a subalgebra of the Kac-Moody 
extension of s / (n) .  
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