ABSTRACT

For $\text{Fe}_{3-x}\text{Sn}_x0_4$ at 300 K and x > 0.1, a paramagnetic quadrupole doublet pattern, in addition to the usual two magnetic patterns, is observed in the ^{57}Fe NGR spectra. This doublet is due to A site Fe^{2+} whose concentration for $0.1 \leq x \leq 0.5$ is such that approximately equal amounts of Fe^{2+} and Fe^{3+} are on the B site. The 200 kG field at the Sn^{4+} site at 300 K is smaller than that in NiFe₂0₄. At 80 K a paramagnetic quadrupole doublet is observed in the 119 Sn NGR spectrum and is due to Sn²⁺.

INTRODUCTION

Most nuclear gamma ray resonance (NGR) studies of doped Fe₃O₄ have been concerned with materials for which there is a decrease in the Fe²⁺ content.¹ We have, therefore, synthesized Sn-doped Fe₃O₄, Fe_{3-x}Sn_xO₄ for which Fe²⁺ increases with increasing x and obtained their 5^{7} Fe and ¹¹⁹Sn NGR spectra at 300 K and 80 K. Questions of particular interests are: (1) effect of a Fe²⁺Fe³⁺ ratio > 1 on the conduction mechanism and the role of Sn⁴⁺, (2) confirmation of A site Fe²⁺, hereafter noted as Fe²⁺(A), for x < 0.5, and (3) perturbation by Sn of the electron localization at the Verwey transition.

EXPERIMENTAL

 $Fe_{3-x}Sn_x0_4$ with x = 0, .05, .1, .2, and .5 were synthesized by firing mixtures of spectroscopic grade Fe₂O₃, Fe, and ¹¹⁹Sn enriched SnO₂ in evacuated and sealed silica tubes at 1273 K. X-Ray diffraction analysis with a Guinier focusing camera showed the samples to be single phase and with lattice parameters for x = 0, 0.05, 0.1, and 0.2 of 0.8395 nm, 0.8411 nm, 0.8241 nm, and 0.8453 nm, respectively, in good agreement with earlier measurements.²

Standard transmission NGR techniques and leastsquares curve fitting techniques were employed. 25 mCi $^{57}Co/Rh$ and 0.5 mCi $^{119}Sn/CaSnO_3$ sources were used and were always at the same temperature as the absorber. The lines were assumed to be lorentzian for both nuclei and the $-1/2 \rightarrow -1/2$ transition was used to obtain the relative occupancies of the A and B sites by Fe since the corresponding lines were the most well resolved.

Table I

Fe NGR Parameters of	Fe	sSn_	0,	at	300	K
----------------------	----	------	----	----	-----	---

	JAAT				
x	Pattern	H eff (kG)	IS _{II} -IS _I (mm s ⁻¹)	Area Ratio II/I	
0	I	493	0.40	1.80	
	II	463			
0.05	I	399	0.36	2.20	
	II	379			
0.1	I	I 400 0.31	0.31	2,04	
	11	375			
0.2	I	395	0.32	2.8	
	II	366			
0.5	I	389	0.33	3.2	
0.5	II	358			

Fig. 1. ⁵⁷Fe NGR spectra of $\text{Fe}_{3-x}\text{Sn}_x^0$, x = 0.05, and 0.1, at 302 K. Pattern III for x = 0.1 is to be noted.

RESULTS

 57 Fe spectra at 300 K for x = 0.05 and 0.01 are given in Fig. 1 and those for 119 Sn at 300 K and 80 K for x = 0.1 are given in Fig. 2. In order to account for the 57 Fe spectra for x > 0.1, it is necessary to introduce a quadrupole doublet (Pattern III) with an isomer shift, δ , of 0.83 mm s⁻¹ w.r.t. Fe and a quadrupole splitting, ΔE_0 , of 2.35 mm s⁻¹. The NGR parameters of patterns I and II (cf. Fig. 1) for all samples are given in Table I. The III/I area ratio is 0.12 for x = 0.1 and 0.37 for x = 0.2. An accurate fit of pattern III for x = 0.5 has not been possible. The Verwey transition has been determined using ⁵⁷Fe NGR and is above 100 K and rather sharp for x = 0.05. For x > 0.05, the transition commences above 120 K and is smeared over a temperature interval of at least 40 K. The ¹¹⁹Sn NGR parameters of the magnetic hyperfine pattern at 300 K and 80 K for x < 0.5 are given in Table II. The absorption line at 0 mm s⁻¹ is believed to be due to a SnO₂ impurity undetected in the X-ray diffraction analysis. For x > 0.05, a quadrupole doublet (Pattern II of Fig. 2) appears in the 80 K spectra and is to be associated with the low temperature phase of Fe₃O₄. This pattern has a δ of 3.0 mm s⁻¹ w.r.t. CaSnO₃ and a ΔE_0 of 2.06 mm s⁻¹ and is, therefore, characteristic of Sn²⁺. The II/I area ratio is 0.06 and 0.25 for x = 0.1 and 0.2, respectively.

Fig. 2. ¹¹⁹Sn NGR spectrum of $Fe_{2.9}Sn_{0.1}O_4$ at 302 K and 77 K (below the Verwey transition). The paramagnetic pattern II and its large isomer shift in the 77 K spectrum is to be noted.

Table II

119 Sn NGR Parameters of ${\rm Fe}_{3\neg x}{\rm Sn}_x{}^0{}_4$ at 300 K and 80 K

x	H eff at 300 K (kG)	H _{eff} at 80 K (kG)	Isomer shift at 80 K (mm s ⁻¹)	Area Ratio II/I			
0.05 0.1 0.2	195 197 184	243 229 232	+0,14 +0,17 +0,22	0.06			
DISCUSSION							

The significant findings of this study are: (1)

the large II/I, apparently (A site)/(B site), area ratios of the 57 Fe spectrum, (2) the presence of paramagnetic Fe²⁺ at 300 K, and (3) the existence of Sn²⁺ in the low-temperature phase. If all the A and B site cations contributed to patterns I and II, respectively, the II/I area ratio should decrease with increasing x since Sn⁴⁺ occupy the B site;² this is not the case. The increase in the II/I area ratio with x is due to the partial occupation of the A site by Fe²⁺, with the fractional occupation increasing with increasing x² and to the fact that these Fe²⁺(A) ions contribute to neither pattern I nor II. The Fe²⁺(A) gives rise to pattern III. If it is assumed that all Fe²⁺(A) ions contribute to pattern III, then good agreement is obtained between the II/I area ratio and the fraction of A sites occupied by Fe²⁺ for x = 0.1 and 0.2. The cation distributions for these two cases are (Fe²⁺ .88^{Fe} .12) [Fe³⁺ .92^{Fe} .98^{Sn} .1] and .88^{Fe} .12) [Fe³⁺ .97^{Fe} .83^{Sn} .2]. For x = 0.5, .63^{Fe} .37) [Fe³⁺ .97^{Fe} .83^{Sn} .2]. the cation distribution determined from the II/I area ratio is $(Fe^{3+}, 3Fe^{2+}, 7)$ $[Fe^{3+}, 8Fe^{2+}, 7Sn, 5]$. The remarkable feature of these results is the apparent adjustment in the A site Fe^{2+} concentration to give approximately equal amounts of Fe^{2+} and Fe^{3+} on the octahedral site. A similar phenomenon was observed in $Fe_{3-x}Cr_xO_4$.³ The paramagnetic character of $Fe^{2+}(A)$ is due perhaps to clustering of B site Sn^{4+} ions about such A site fons, 119-

The magnetic ¹¹⁹Sn pattern exhibits somewhat larger linewidths and hyperfine fields at 80 K than at 300 K. The larger fields are due simply to the increase in the magnetization but the larger linewidths may be due to the lower symmetry of the low-temperature phase, as expected. The quadrupole doublet due to Sn²⁺ is unexpected and suggests that the conduction electrons are localized on the Sn sites below the Verwey transition. Further support for this suggestion is found in the increase in the intensity of the Sn²⁺ pattern with increasing x. While the ⁵⁷Fe area ratio results are suggestive

While the 5^{4} Fe area ratio results are suggestive of pair-wise hopping at 300 K, the localization of electrons on the Sn⁴⁺ sites at low temperatures is more readily explicable in terms of band conduction.

REFERENCES

- Support of this study by the National Science Foundation, Grant GH-41419 is gratefully acknowledged.
- 1. B. J. Evans, AIP Conf. Proc. <u>24</u>, 73 (1975) and references therein.
- F. Basile, C. Djega-Mariadassou and P. Poix, J. Phys. Chem. Solids <u>35</u>, 1067 (1974).
- M. Robbins, G. K. Wertheim, R. C. Sherwood, and D. N. E. Buchanan, J. Phys. Chem. Solids <u>32</u>, 717 (1971).