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A b s t r a c t .  We discuss the analytical calculation of the renormalization group 
/?-function at the 4-loop order of perturbative Quantum Chromodynamics. In 
addition we have obtained the order a~ contribution to the Ellis-Jaffe sum rule 
for the structure function gl of polarized deep inelastic lepton-nucleon scattering. 

THE FOUR LOOP ~-FUNCTION IN QCD 

The renormalization group ~-function in Quantum Chromodynamics 
(QCD) has a history of more than 20 years. The calculation of the one-loop 
m-function in QCD has lead to the discovery of asymptotic freedom in this 
model and to the establishment of QCD as the theory of strong interactions 
[1]. The two-loop QCD fl-function was calculated in [2]. The three-loop QCD 
fl-function was calculated in Ref. [3] within the minimal subtraction (MS) 
scheme [4]. The MS-scheme belongs to the class of massless schemes where 
the m-function does not depend on masses of the thcory and (only) the first two 
coefficients of the [3-function are scheme-independent. In spite of its scheme 
dependence at higher orders the m-function is an important object since it 
governs (within a given scheme) the scale depcndence of the strong coupling 
constant which is the basic expansion parameter in perturbative calculations. 

In this section we discuss tile recent analytical four-loop calculation [5] of 
the QCD m-function in the MS-scheme. The definition of the 4-dimensional 
m-function is 

Oas 

0 In #2 
- ; ~ ( a , , )  

= -moa~, - m,a~ - m2a'.. - ~3a~ + o ( a ~ )  (1) 
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in which a, = c~,/47r = g2/167r2, g = g(# 2) is the renormalized strong coupling 
constant of the standard QCD Lagrangian. (We should note at this point that 
various other normalizations of the beta function coefficients ~i are often used.) 
# is the 't Hooft unit of mass, the renormalization point in the MS-scheme. 

To calculate the/3-function we need to calculate the renormalization con- 
stant Z,,  of the coupling constant 

= z ~  (2) 

where aB is the bare (unrenormalized) charge. We obtain this renormalization 
constant in the 4-loop order by calculating the following three renormalization 
constants of the Lagrangian: Zhh,j for the ghost-ghost-glnon vertex, Zh for the 
inverted ghost propagator and Z 9 for the inverted gluon propagator. Then 
by virtue of the Ward identities one has Z,, = Z~hg/(Z~Z~). This is from a 
calculational point of view one of the simplest ways to obtain Z,., at higher 
orders (but several other choices are possible as well) 

The actual calculation of the renormalization constants Zhhg , Z h and Z,~ in 
the 4-loop order is done using a technique based on the direct calculation of 4- 
loop massive vacuum (bubble) integrals (i.e. massive integrals with no external 
momenta). This technique which is described in more detail in Ref. [5] involves 
the introduction of an auxiliary mass parameter and provides a procedure 
that is well suited for the automatic evaluation of huge numbers of Feynman 
diagrams. This is of vital importance since there are approximately 50000 4- 
loop diagams contributing to the ghost-ghost-gluon vertex, ghost propagator 
and gluon propagator combined. The obtained MS fl-function for QCD reads 

2 
30 = 11 - ~n I 
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,'31 = 1 0 2 -  --~n S 
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+ Ci-  + --ffi "} + s 

(3) 

where n I is the number of (active) quark flavours and ~ is the Riemann zeta- 
function (G = 1.2020569...) . In Ref. [5] the beta-function was obtained 
for an arbitrary compact semi-simple Lie group, but we quoted here only the 
result for QCD (i.e. the group SU(3)). 

Another prominent renormalization group quantity, the quark mass anoma- 
lous dimension, has recently been calculated at 4-loops for an arbitrary com- 
pact semi-simple Lie group [6]. 
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THE a~ APPROXIMATION OF QCD TO THE 
ELLIS-JAFFE SUM RULE 

Polarized deep inelastic electron-nucleon scattering is described by the 
hadronic tensor 

1 f d4ze,q~(p, slJAz)g~(o)lp, ~> ~ W,, = ~ = w~pi, ~r ' Q2) + 

+i%~,,oqp Q2) + "(P : ' ~  g2(.z., Q2) (4) 

Here Ju is the electromagnetic quark current x = Q2/(2p. q) is the Bjorken 
scaling variable and Q2 = _q2 is the square of the transferred momentum. 
IP, s) is the nucleon state. The polarization vector of the nucleon is expressed 
as so = U(p, s)%75U(p, s) where V(p, s) is the nucleon spinor. 

In the present section we will focus on the first Mellin moment of the struc- 
ture function gl, the Ellis-Jaffe sum-rule. Moments of deep inelastic structure 
functions can be expressed [7] in terms of quantities that appear in the op- 
erator product expansion (OPE) of the two currents J, .  In particular the 
Ellis-Jaffe sum-rule is expressed as 

fo 1 dxd(n)(x, Q2) = C~(1, a,(Q2))(+ ~__~lgAi + 1 a s  ) 

+C~(1, a~(Q2)) exp \J",(u ~) fl(G) J (5) 

where the plus (minus) sign before IgAI corresponds to the proton (neutron) 
target. C a and C n~ are the flavour singlet and non-singlet coefficient functions 
that appear in the relevant Operator Product Expansion. 7~(a~) is the anoma- 
lous dimension of the axial singlet current (see further below), as = 4~ra~ is 
the strong coupling constant. The proton matrix elements of the axial currents 
are defined as 

IgAIs~ = 2(p, sljs,3lp, s ) = ( A u -  Ad)s~, 
ass~ = 2v~(p, sljS,Slp, s> = (Au + Ad--  2As)s~, 
aoOz2)s,, = (p, slJ2lp, s) = (Au + A d  + As)s~  = A~(~2)s~ .  

(6) 

Here IgAI is the absolute value of the constant of the neutron beta-decay 
, gA/gV = --1.2601 + 0.0025 [8]. as = 0.579 4- 0.025 [8,9] is the constant of 
hyperon decays. We use the notation Aq(#2)s~ = (p, sFq% v5qlp, s), q = u, d, s, 
for the polarized quark distributions. We omit the contributions of the nucleon 
matrix elements for quarks heavier than the s-quark but it is straightforward 
to include them. The matrix element of the singlet axial current a0(# 2) can 
be redefined in a proper invariant way as a constant/to 
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( f"~(v ~) "~'~(a']\ 
ao = exp ' " ' ''~' t -  J d a , ~ I  ..o(~. ~) :_ AS,ov (r) 

�9 , P ' k ' * s ]  / 

The singlet anomalous dimension 7"~(o,) determines the renormalization scale 
dependence of the axial singlet current i.e. d[J2]d(dln, 2) = ~ [ # ] R  where 
subscript R means that  a current is renormalized. Since fi0 is renormalization 
group invariant it should be considered as a physical constant on the same 
ground as the constants gA and as. 

The flavour non-singlet contribution to the Ellis-Jaffe sum rule is known in 
3 from [101 where the polarized Bjorken sum rule S~ dx(gf -9"~) was the order a, 

calculated in this order. To obtain the singlet contribution to the Ellis-Jaffe 
3 and ?~(a,) 3 order one needs to calculate C s in the order % sum rule in the a~ 

4 The most difficult part of this calculation is to obtain 7*(a.~) in the order %. 
4 order (since it is a 4-loop calculation) and this can be done with tile in the a, 

same method that was used to obtain the ~-function in the 4-loop order. 
Further details on the calculations can be found in Ref. [11] where we ob- 

tained the following result for the Ellis-Jaffe sum rule 

, o~ 3dn s s [1 (--~-)d~'S+ (-~-)2d~S (---~-) 3 ] i 1 + + (+~lgal+-~as) 

d~ s = - 1  
d~ _ 55 1 

- - ~  + gnf 
f 10339 61 5 --  2~ 115~ d3 "" = ,384,216 -~r + -~r + 'v~  ~ -~ -  + ~r - ~r * ' ~s~-~  

d~ = (1//3o)[-11 + us(S)] 

2 4 . ,  )] d2 = (1//3o)2[--5T - ,s  u l t ~  + ~r 

[46351373 312785r 113135~5 ) 4 = (1 /Zo)~[  ,~23~1 5 8 ~  + z ~  + ,v~  , - ~ -  + - 7 , 3  216 7 "  
--~n}(- 2353243432 30976/-~ ,3 Jr --~,5113310/- ~ ..~ ~ f  ~ l ] ~  _3/4647815 ..~ 2 ~  '322594/- _ '~-,5]220/- 

326 r- ~ n5 ( 386 +n}( 235S67,7496 27-~90~3 + 2--~,5] + f ~ + 7-~9r (8) 

where a~ = a,(Q2), /3o = 11 - 2/3n S is the l-loop coefficient of the be ta  
function and fi0 = AEi,~ is the invariant matrix element of the singlet axial 
current defined in Eq. (7). n S is the number of (active) quark fiavours and 
is the Riemann zeta-function. In particular, for nf = 3 we find 

fodxg~(n)l _ [1 _ ( ~ )  _ 3,583 ( ~ ) 2  _ 20.215 ( ~ ) 3 1  1(4_..~ [gAI + 3~a8 ) 

+ [ 1  0 . 3 3 3 3 ( - ~ ) - 0 . 5 4 9 6 ( - ~ ) 2 - 4 . 4 4 7 3 ( - ~ )  3] 1^ - ~a0  (0) 
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TABLE 1. Second and third-order coefficients for the Ellis-Jaffe sum rule. 

nf non-singlet singlet 
(~ /~ )  ~ (~/~)  ~ (~,/~)~ (~,/~)" 

-3.58333 -20.21527 -0.54959 -4.44725 
4 - 3 . 2 5 0 0 0  -13.85026 1.08153 4.87423 
5 -2.91667 -7.84019 2.97845 13.07103 
6 -2.58333 -2.18506 5.27932 20.73034 

In table 1 we have listed the numerical values of tile second and third-order 
coefficients for the Ellis-Jaffe sum rule for ny = 3, 4, 5, 6. One carl observe the 
sign-constant character of perturbative QCD series both for non-singlet and 
singlet contributions. The series tends to preserve its sign-constant character 
even when perturbative coefficients of the singlet contribution change their 
signs around the value ny = 4. 

One can see that  the obtained perturbative coefficients of the Ellis-Jaffe 
sum rule grow rather moderately. If we assume that the error of the truncated 
asymptotic series is determined by the last calculated term, then the obtained 
a3 approximation for this sum rule provides a good theoretical framework for 
extraction of the fundamental constant h0 = AEin~, the invariant axial proton 
charge, from experiment. 
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