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Abstract.  Tether electron current collection in the Orbital Motion Limited regime is the key mechanism allowing
for power and/or thrust generation applications of space electrodynamic tethers. This paper presents a new approach,
based on a kinetic model, for the accurate analysis of the electron collection problem to a bare tether moving in a
collisionless plasma. The drift velocity associated with the translational speed of the tether is incompatible with 1-D,
cylindrically symmetric models (Laframboise, 1966; Sanmartin and Estes, 1999) and its effects on current collection
are not well understood. A kinetic model is developed for the two-dimensional plasma surrounding the tether. Tt
consists in solving, self-consistently, the Vlasov and Poisson equations through a semi-analytical, semi-numerical
process. A Maxwellian velocity distribution is assumed for the plasma species (electrons and ions) at the outer
boundary of the solution space; no assumption is made regarding the velocity distributions in the vicinity of the tether.
Initial results are validated with Langmuir cylindrical probe theory in the ion and electron saturation regimes as well
as the electron retardation regime. Work is underway to allow the use of the model for cases with a drifting plasma.

INTRODUCTION

Bare electrodynamic space tethers are under consideration for applications such as power generation and propellantless
propulsion for orbiting spacecraft. In these applications, one of the primary concerns is the ability of the system to
collect electrons from the surrounding ionospheric plasma in order to maximize the amount of electrical power or
thrust provided. This value increases with the magnitude of the current flowing on the tether, which in turn is, in part,
limited by the tether’s ability to collect electrons from the surrounding plasma.

Analytical models are available (Laframboise, 1966; Sanmartin and
Estes, 1999) for the electron current collection problem in the limit-
ing case of the Orbital Motion Limit regime and a stationary plasma
with respect to the probe. A numerical model was also devel-
oped (Laframboise, 1966) for the general case which was based on a
self-consistent, 1-D solution of Vlasov and Poisson’s equations for
a cylindrically symmetric structure and boundary conditions. This
model did not restrict its application to the OML regime, however it
did not allow the inclusion of a plasma drift or modeling of probes
with arbitrary geometries.
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This paper presents a novel approach, based on a poly-energetic ki- +
netic model, for the accurate analysis of the electron/ion current col- \{) ‘
lection problem to a bare tether in a collisionless, drifting plasma. - ’
This technique is a 2-D extension of the self-consistent 1-D numer- =
ical model shown in (Laframboise, 1966), and allows inclusion of a

drift velocity to the background plasma as well as opening the pos-

sibility for accurate modeling of tethers of arbitrary cross-sections.

We will first provide a physical and mathematical description of FIGURE 1. Basic Geometry of the Artificial Tether
the problem under consideration. The proposed iterative resolution Problem.

Electrons & Ions at outer boundary:
Shifted Maxwellian velocity distribution
(accounts for tether drift speed)
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scheme will then be introduced, together with the associated computational issues. Finally, we will show the com-
putation results that were obtained in the initial validation of the proposed algorithm and compare them with known
analytical results. Although cases featuring a drifting plasma are supported by the theory presented here, work is
underway to obtain results for such cases.

DESCRIPTION OF THE 2-D CONDUCTING TETHER PROBLEM

Figure 1 presents the basic geometry being considered lr - e .
here. The tether is assumed to be a cylinder of infinite * Charge Samples |:
length, surrounded by a plasma comprised of electrons 0.8F [__] Potential Mesh
and ions. In the simulation, an outer equipotential shell
is placed at a radius rp. from the center of the tether, in 0.6F
order to simulate the background plasma potential and 04l
limit the computational region. A potential V; with re- )
spect to the plasma potential is specified at the probe sur- 02
face. Although no assumptions are made concerning the E
velocity distributions of the plasma species within the = O
computational region, it is assumed that both the ion and >
electron populations have a drifting Maxwellian velocity =0.2
distribution at the outer shell, that is, in the background
plasma: —04r
_ Mg, Me i . 2 2 1 —0.6/-

fe,i(lv.\’: v)‘) - 2TE€Tg=,' exXp {_ ZeTe’[ ((V.\’ - Vd) H v_y) } ( ) 08
In order to simplify the initial development of the mod- -1! - : —
eling technique, we assume a collisionless, unmagne- -1 =05 0 0.5 1
tized quiescent plasma. Additionally, it is assumed that X (m)

the electric field vanished for r > r,,. and that the poten-
tial distribution is piecewise bilinear. In other words, it
varies bilinearly within any of the triangles of the mesh.

FIGURE 2. Triangulation Schemes for the Potential and Charge
Distributions.

As the last assumption specifies, the potential and charge density distributions are sampled on two separate fixed grids
of points, which together form a set of adjacent triangles. Figure 2 illustrates the triangulation schemes for both the
potential and charge density distributions. The meshes are spaced logarithmically along the radial direction, which
is justified by the expected large variations near the tether as opposed to the smoother variations further out. The
consequence of the bilinearity assumption for the potential is that both components of the electric field, E, and E,, will
be piecewise constant (constant on any single triangle).

ITERATIVE CONSISTENT 2-D PLASMA SOLVER

In order to obtain a consistent solution for the electric fields and the density distributions for both the ion and electron
species, we need to solve, self-consistently, Vlasov’s equation for each species and Poisson’s equation for the electric
potential and charges, while satisfying the above-mentioned boundary conditions.

An iterative scheme was developed using both a Vlasov solver and a Poisson solver. In the following we will describe
both solvers and present the iterative scheme that was used.

Vlasov solver
For a collisionless species in a quiescent, unmagnetized plasma, Vlasov’s equation in 2-D can be written as:

df _ dfei

. afe,i Qe,iEx(ixa)’j a_fe_,i I qe.iEy(x»)’) afe,i
dt T ox

dy Me vy Me vy

+Hvy

-0 @)

Given a known electric field distribution E{x.y) and the outer “drifting Maxwellian” boundary condition for the ve-
locity distributions, equation (2) can be used to solve for the velocity distributions f, ;{x,y, vy, vy) of both the electrons
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and ions. The species densities are then obtained by integration over all velocity space:

hes = / / Fo iy vy Jdvadv, 3)

and the total charge density results from p{x,y} = g;n; — en,..

Equation (2) specifies that the distribution function f, ;(x,y,vy,vy) is constant along particle orbits in a given electric
field distribution. Using the specified boundary condition for the velocity distribution at the outer shell, the value
for f,;(x,y,vx,vy) for any point and velocity located on a trajectory originating from the outer shell can be inferred.
This can be done by tracking the particle’s trajectory back in time until it hits the outer boundary. Any trajectory not
originating from the outer shell is deemed unpopulated (Laframboise, 1966). Such is the case for those trajectories
originating from the tether itself, which does not emit charged particles, as well as trapped trajectories which have no
sources of particles in the collisionless case.

Figure 3 illustrates the particle tracking process. The x 107

trajectories are tracked analytically from one edge of !

the mesh to another, assuming a constant electric field lA

within any given triangle of the mesh. Every sub- » (

trajectory is thus resolved by computing the intersection \ ‘\‘“ ll‘ ‘ A
emm————

of a quadratic parametric curve with a segment on the

mesh. This technique is much more efficient than usinga - 'A‘ Qﬁﬁgﬁ;&%ﬁ%‘.
fixed time step particle pusher, since the amount of com- é 0 ’ﬁ";}@fg%“«@%%‘ ~.
putations necessary for one trajectory depends on the > %‘*&ﬁ%ﬂmﬁ%‘&\\
number of edges being crossed rather than the number of r /%ﬁﬂﬂ"‘“

time steps necessary to reach a boundary. Also, given the 4‘“"

assumption of a piecewise-bilinear potential distribution, A‘,ﬂ‘»
it provides exact (nearly exact if we account for roundoff v’,

errors) conservation of energy along orbits, which con- N

tributes to the accuracy of the overall approach.

To obtain a value for the particle density at a given -1 0 %1
point, one needs to integrate the values obtained for X (m) x 10
fe.ifx,y, vy, vy) using the integral shown in equation (3).
To limit the computational task, the domain of integra-
tion is restricted to a limited region outside of which the
velocity distribution function is known to be very low. Knowing that the velocity distribution function anywhere on
the outer boundary is given by equation (1), we can use conservation of energy to restrict the integration domain to a
certain range of Kinetic energies. At the outer boundary, a range of integration K., = T, ; (units of eV’s) is specified
in terms of the species temperature (typically, K = 10). At this location, the integral could be performed accurately

over a disk of radius:
Ap— \/ZeKmax _ \/ZeKTeJ @
Me i Me.i

centered around the center of the Maxwellian distribution, located at v, = v4,v, = 0. This disk is located between 2
rings of velocity magnitudes [V, | and |vpay| given by:

FIGURE 3. Example of the Semi-analytical Particle Tracking
Process Through the Potential Mesh.

Viin = Max (0,vg — AV)  Vygx — Vg HAV 5)
. 2 .
which correspond to kinetic energy values (expressed in units of eV’s) of Ky — ~52 and Kjpgy = —52. Since

energy is conserved along particle trajectories, we can infer the following limits of integration along the kinetic energy
axis at a location situated at a potential V (in volts):

o = (0’ S @V) ©)
€ e
2 ]
Kooy — max (0: Me.iVimax ﬂV) o
2e e
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(a) | (b)

FIGURE 4. (a) Domain of Integration of the Velocity Distribution Function at the Outer Boundary (V' = 0). The shaded region

corresponds to the bulk of the drifting Maxwellian population. (b) Domain of Integration of the Velocity Distribution Function at
any Given Point in Space.

which can be expressed in terms of velocity magnitudes:

2el{m in 2eKmax
Vmin = — Vimax = A 77— 3
Me i Me i
Figure 4 shows the corresponding velocity domains of integration. The 2-D integration is performed in cylindrical
coordinates, using 2 embedded 7-point adaptive Newton-Cotes quadrature rules (the integration routine “DQNC79”
was used from the SLATEC Common Mathematical Library, distributed by Netlib at www.netlib.org). The dynamic

integration routine is performed at all nodes on the charge density mesh.

This process described above constitutes the “Vlasov solver” which computes the charge density distribution from a
known potential distribution. It accounts for the largest part of the computational complexity of the technique presented
here.

Poisson solver

The Poisson solver is a routine which computes the potential distribution produced by the sum of a given plasma charge
density distribution and the surface charge distributions which are required to obtain an equipotential outer boundary
(Eg — 0) and meet the potential boundary condition (V — Vj at the probe surface). Surface charges are located on the
probe surface as well as on the surface of the outer boundary.

As a first step, Poisson’s equation and the outer boundary condition:

eoV2V(x,y) =plx,y), V|._, —O0 Volts )

r=Tpc

_can be solved for to obtain the “plasma contribution” to the complete potential distribution:

(10)

—1 2 12 Y
Voiasma i, 0) = Feo//r’dr‘de’xp(%,e‘) ln( r*Hr'* —2r'rcos (0 —6') )

rﬁc +r'? —2r'ry.cos (6 —6"

where we find the logarithmic dependence characteristic of the infinite cylinders of charge represented in a 2D prob-
lem (Cheng, 1989). A point-matching technique is then used in order to find the required surface charge distributions
on the probe and the outer boundary that will result in a total potential Vj at all nodes located on the surface of the
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probe, as well as a vanishing total tangential electric field £¢ — O at the outer boundary. The *“probe surface charge”
and “outer boundary surface charge” contributions to the complete plasma distribution are, respectively:

_ 2 2_2 o_ o)
Ve (1, 0) — — //dr'dé)’xp: (rO,G’)ln( rHry = 2rorcos(6 — ) ) (11

4ey rgc +r3 —2rgrpecos {8 —6)
and
2 2 i ’
—Tpe reHr; —2rp.rcos(0—0)
Voo (1, 0) = / / dr'd®’ x p (rpe.8') In be 12
obse (1,6) 4me ps (e, ) ri.+r? —2rk cos(6—6%) (12)

where p; (79,8) and p; (7., 8) are obtained using a point-matching technique (Stutzman and Thiele, 1981) that enforces
Vise (70,0) + Vobse (10,0) = Vo — Viprasma (10, 0) at all nodes on the probe surface as well as a vanishing total tangential
electric field Eg — O at the outer boundary.

The total potential distribution is obtained from the sum of equations (10), (11) and (12). Since the integrals are
performed over piecewise bilinear functions, the complete Poisson solver (including the point-matching operation)

can be written in the form of a linear matrix operator, which makes it computationally trivial compared to the Vlasov
solver.

Iterative Resolution Technique

Using the Poisson and Vlasov solvers, we would like to find a solution ‘
for the potential and charge distributions which simultaneously satisfies ‘/;7?1 T, y)
the Poisson and Vlasov equations. Figure 5 depicts the general fixed-point
operator composed of both the Poisson and Vlasov solvers. The fixed-
point operator takes a potential distribution V at its input and generates a
new estimate V':

Vlasov

Solver
There are known difficulties arising in solving such a problem (Lafram- |
boise, 1966). Simple iteration of the fixed point operator does not in gen-

1
]
1
1
V=3 (V/) a3y
'
)
)
eral yield convergence, since it is a non-contractive mapping (Sikorski, p(SC, y)
1
1
)

2001). Instead, we have used the Newton method which necessitates the *
Jacobian matrix of the fixed point operator and is equivalent to iterating
the following fixed point function:

. Poisson |
PP )0 E50) o | Sover |k
where Jg (V) is the Jacobian matrix of operator g{-] evaluated at V. If * ______ _l_ _______ E

there are N unknowns (N potential nodes), the Jacobian matrix is a N x N
matrix and is defined by:

dg; ‘/owﬂ(xny)
Jolinj) — ==, i=1,.,N, j=1,..,N. (15)

av;’ FIGURE 5. Fixed Point Operator Comprised

. . . . . . . . f Both iss d Vi1 lvers.
Solving equation (14) is equivalent to finding the solution to the linearized of Both the Poisson and Viasov Solvers

operator g near an operating point V. Successive linearizations should lead to the solution to the nonlinear prob-
lem. Using finite differences to compute an approximation for J; would be prohibitively expensive computationally.
Instead, it was decided to implement the computation of J, directly. This involves combining the Jacobians of ev-
ery sample of the velocity distribution function that was taken at that particular iteration using all the operators that
were applied to those sample results. To obtain the Jacobians of velocity distribution samples, the analytical Jacobians
obtained at the outer boundary using equation (1) have to be propagated and transformed along each particle trajectory.

Software Implementation

The iterative resolution high-level algorithm and the Poisson solver, both fairly light computationally, were imple-
mented in Matlab. The Vlasov solver, being much heavier computationally, was implemented in Fortran 90 using a
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parallel processing scheme based on the Parallel Virtual Machine library (www.epm.ornl.gov/pvm/pvm_home.html).
20 to 50 workstation nodes were used concurrently to form the Vlasov solver. Simulation times were on the order of
15-30 minutes for the results presented in the following section.

SIMULATION RESULTS & VALIDATION

In order to gain confidence in this modeling tool, — i ;*
some validation runs were performed with simple 1500t | * Simulated Data A
cases that can be checked against known theories. T glel\/lclgr (1: ;elc{lizct;lr(zlr;tion Predict ﬁ%"*
Figure 6 presents the results obtained for the I-V 1000+ .

curve of a Langmuir cylindrical probe of radius rp =~
0.14 mm in a Xenon plasma (m; — 2.18 x 10~ kg) E
with a density ngp — 1.42 x 10'® m~ and a tempera- <
ture of 7, — 7; = 1.07 eV. The I-V curve has been é
split in two separate parts to emphasize the small &
variation in the ion saturation region.

500

In both the ion and electron saturation regions, our *
results are in good agreement with the Orbit Mo- ol * -
tion Limit theory, which is valid in the present case
for large voltages due to the fact that the probe ra-
dius is fairly small in terms of the Debye length o . B . ) ‘

(Mg — 0.062 mm). The OML expression used for -30 220 —10 0 10 20
comparison is (Sanmartin and Estes, 1999):

EXE 3

— Ay H*

\" -V (Volts)
probe  plasma
2e|V|
Lom = 2roeno . (16) ' FIGURE 6. 1-V Characteristic Curve of a Langmuir Probe. Note that
o the ion and electron saturation regions are displayed on two separate
where m, and m; were used, respectively, in the elec- linear scales, since the variations in the ion saturation regions are very
tron and ion saturation regions. small.

The behavior of the response in the electron retardation region (near V = 0 Volts) is also as predicted by Langmuir
cylindrical probe theory, as can be seen on figure 6. The expression used for comparison here was (Brace, 1998):
el, 1%

Xp = 17
—— (17
This initial validation of the proposed algorithm confirms that the important physical mechanisms involved are being
accurately represented in the model.

1, = 21tngrpe

Additionally, further qualitative confirmation of the validity of the model is provided by figures 7 and 8, which depict
the consistent solution that was obtained for the potential distribution and the ion and electron density distributions.
The figures shown here correspond to the simulation parameters mentioned previously, with an applied potential of 21
volts. Note that the x and y axes are displayed on a logarithmic scale to allow proper viewing of the important features,
which occur mostly near the tether itself.

PRESENT STATUS AND CONCLUSIONS

A novel approach based on kinetic theory was presented for the 2-D modeling of the tether problem. The proposed
algorithm was validated with the well-documented Langmuir cylindrical probe theory by simulating a 1-D problem.
As mentioned in (Laframboise, 1966), one of the important difficulties in finding self-consistent solutions for such
problems is finding an appropriate algorithm that will yield convergence in order to find the fixed point of the Vlasov-
Poisson operator. To address this issue, a numerical algorithm for computing the Jacobian matrix of the Vlasov-Poisson
operator was developed which allowed use of the Newton root finding method. This has dramatically increased the
rate of convergence for the cases that were tested and shown here. Further improvements to the iterative root-finding
process as well as the Vliasov-Poisson operator are needed in order to allow similar convergence for cases including
a nonzero drift velocity in the background plasma. Future developments include the accurate modeling of tethers of
arbitrary cross-sections, as well as magnetic field and time variation effects.
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FIGURE 7. Potential and Charge Density Distributions Around the Probe used in figure 6 (biased at V,, = 21 V).
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(b) Ion Number Density Distribution

FIGURE 8. Electron and fon Number Density Distributions Around the Probe used in figure 6 (biased at V, =21 V).

OML theory-predicted collection current (A)
Electron current to the probe (A)
Jacobian matrix of operator g(-).

Range of kinetic energies accounted for
on the outer boundary (eV)

Electron mass (kg)

Ton mass (kg)

Background plasma density (m~>)
Orbital Motion Limit

Electron charge = +1.6021 x 10~1°C
Ion charge (C)

Probe radius (m)

NOMENCLATURE
Av Range of velocities accounted for on the Tomi
outer boundary (m /s) L.
E, x component of the electric field (V /jm) Je
E, y component of the electric field (V /m) Ko
fe Electron velocity distribution
fi Ton velocity distribution m,
g Fixed-point nonlinear operator composed mj
of a combination of the Vlasov and Poisson 1o
solvers (input in Volts, output in Volts) OML
E() Fixed-point nonlinear operator based on the ge,€
Newton method q;
Torobe Net collection current to the probe (4) o
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r Radial distance measured from the

center of the tether conductor (m) Vix.y)
The Radius of outer equipotential shell (m) Volasma
p(x,y)  Net charge density distribution (C/m?)
ps{x,y)  Surface charge density distribution (C/m) Vobse
p Vector containing samples of the charge
density distribution at mesh nodes (C/m?) Vipse
T, Electron temperature (eV)
T; Ion temperature (eV) 1%
Ve x component of velocity (m/s)
Vy y component of velocity (m/s)
Vd x-directed plasma drift velocity (m/s)
Vp Probe voltage (V)

Viminmax ~ Minimum/maximum velocity accounted for

at any given position (m/s)

Electric potential distribution (V)

Plasma contribution to the electric potential
distribution (V)

Outer boundary surface charge contribution
to the electric potential distribution (V)
Probe surface charge contribution to the
electric potential distribution (V)

Vector containing samples of the potential
distribution at the specified nodes (V)
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