Synchrotron-sideband snake depolarizing resonances e

T. Kageya^a, V. Anferov^a, B. Blinov^a, C. Chu^b, Ya. Derbenev^a,
A. Krisch^a, S. Lee^b, W. Lorenzon^a, T. Rinckel^b, H. Sato^c,
P. Schwandt^b, D. Sivers^a, K. Sourkont^a, F. Sperisen^b,

B. von Przewoski^b, V. Wong^a, S. Youssof^a

Abstract. We recently created a snake depolarizing resonance using an rf solenoid magnet in a ring containing a nearly 100 % Siberian snake. We found that the primary snake rf resonance also had two weaker synchrotron sidebands, which are second-order snake resonances; they were probably caused by the energy-dependent strength of the solenoid snake due to the Lorentz contraction of its longitudinal $\int B \cdot dl$. This was the first observation of an rf synchrotron-sideband depolarizing resonance in the presence of a nearly full Siberian snake.^[d]

[a] Randall Lab of Physics, University of Michigan, Ann Arbor, MI 48109-1120, USA

[b] Indiana University Cyclotron Facility, Bloomington, IN 47408-0768, USA

 $\left[c\right]$ KEK, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan

[d] B.B. Blinov et al., Phys. Rev. ST-AB 2, 064001 (1999)

[e] Supported by research grants from the U.S. Department of Energy and U.S. NSF

Beam-line Polarimeter for Intermediate-Energy Deuteron

T. Uesaka,^a H. Sakai,^b H. Okamura,^a A. Tamii,^b Y. Satou,^c N. Sakamoto,^c T. Ohnishi,^c T. Wakasa,^d K. Itoh,^e K. Sekiguchi,^b K. Yako,^b K. Suda,^a S. Sakoda,^b

^a Department of Physics, Saitama University, Saitama 338-8570, Japan
 ^b Department of Physics, University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan
 ^c RIKEN (The Institute of Physical and Chemical Research), Saitama 351-0198, Japan
 ^d Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan
 ^e Tandem Center, Tsukuba University, Ibaraki 305-8577, Japan

We have developed a beam-line polarimeter for intermediate energy deuterons at RIKEN Acclearator Research Facility. The d + p elastic scattering is used as polarimetry. Recently, calibration measurement has been carried out at $E_d = 140$ and 200 MeV. The values of A_y (A_{yy}) are -0.519 ± 0.005 (0.541 ± 0.005) and -0.332 ± 0.005 (0.306 ± 0.006) at 140 MeV and 200 MeV, respectively.

CP570, SPIN 2000, 14th International Spin Physics Symposium, edited by K. Hatanaka et al. © 2001 American Institute of Physics 0-7354-0008-3/01/\$18.00