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In this paper, we consider the problem of the controllability of a finite-dimensional
quantum system in both the Schrödinger and interaction pictures. Introducing a
Quantum Transfer Graph, we elucidate the role of Lie algebra rank conditions and
the complex nature of the control matrices. We analyze the example of a sequen-
tially coupledN-level system: a spin-1

2 particle coupled to a finite quantum har-
monic oscillator. This models an important physical paradigm of quantum
computers—the trapped ion. We describe the control of the finite model obtained,
under the right conditions, from the original infinite-dimensional system. ©2005
American Institute of Physics.fDOI: 10.1063/1.1852701g

I. INTRODUCTION

The control and controllability of finite-dimensional quantum systems are of topical interest to
the chemical dynamics, coherent control and quantum computing communities.1–9 Indeed, several
methods of proving controllability of quantum systems3,4,10–13have been developed from corre-
sponding techniques used in the control of finite-dimensional classical systems. In these treat-
ments, specifically in the graphical methods, the role of the driftsor field-freed Hamiltonian is not
obvious. In quantum mechanics, it is fairly standard to use an interaction picture, where the drift
term does not appear explicitly in the Schrödinger equation. In these cases, the presence of only
one matrix, namely the control matrix in the interaction picture, makes it not amenable to use of
the rigorous Lie algebraic method11 to determine controllability.

In this paper, we present fresh insights into the controllability and control of quantum systems
both in the Schrödinger and interaction pictures. We propose a new graphical method—the Quan-
tum Transfer Graph—that will explicitly demonstrate both the roles of the drift and control ma-
trices, and also the importance of considering the control matrix as one with complex entries. Then
we analyze a very interesting example of a sequentially coupledN-level system: a spin-1

2 particle
coupled with a quantum harmonic oscillator. This models an important physical paradigm of
quantum computers—the trapped ion. The analysis in this paper expands on our earlier work on
the trapped-ion problemsRef. 17d and illustrates the key role played by the Quantum Transfer
Graph in understanding the complex matrices that describe the interactions between the field and
the ion. To our knowledge this is the only example of a quantum control problem where the
interaction matrices are complex. Our general analysis of a sequentially connected system can also
be extended to understanding the control ofN-level chain systems used in adiabatic schemes such
as STIRAP,14 as well as the control of transitions between sequentially connected Zeeman states.

II. SCHRÖDINGER PICTURE

The Schrödinger equation for a particle in a static and dynamic potentialsin atomic units,
whereine=m="=1d is written as
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ıuĊl = sH0 + HIduCl. s1d

Here, H0 is the Hamiltonian of the particle in the static potential, with a finite numbersNd of
eigenvaluesEn corresponding to the eigenvectorsfn. The interaction with the time-dependent
potential is given by the control HamiltonianHI, which includes the time dependence. In general,
we consider problems where the time dependence is separable and linear, for example,HI

=oiuistd* mi. Here the operatormi represents the transition couplings between the various eigen-
states ofH0 due to the time-dependent fielduistd. Unitarity demands thatH0 andHI be Hermitian.
The eigenvalues ofH0 are therefore real. In the control literature, the Schrödinger equation is
written equivalently as

Ẋ = SA + o
i

uistdBiDX. s2d

In vector representation,X is the state vector,A is the drift matrix,Bi are the control matrices and
uistd are controls, generally chosen to be piecewise smooth. In the eigenbasis ofH0, A is −ı times
a real matrix with only diagonal terms. Each matrixBi is skew-Hermitian. It can, in general, be
written as a sum of aı times a real symmetric matrix and a skew-symmetric matrix,Bi = ı* Bi

S

+Bi
K. More generally,A, Bi [susNd. In most quantum applications considered up to this point2,4,15

the matrix elements of theBi are of the formı times a symmetric matrix. Consider a special case,
where the eigenstates ofH0 are sequentially coupled by control fieldsuistd. It is well known3,9,11

that a sufficient condition for controllability is that the dimension of the span of the Lie algebra
generated byA and theBi be equal to the dimension ofsusnd. Rather than take the specific values
for the matrix elements of the control matrices,Bi, it will be instructive to consider its general
structure—a skew-Hermitian, tridiagonal matrix with zero diagonal elements. In the case whereB
is of the formı times a symmetric matrix, this matrix can be decomposed intoN−1 matrices—
simple roots of the Lie algebrasusnd, as shown below. These matrices represent the nearest-
neighbor couplings. We want to elucidate how these nearest-neighbor couplings generate the Lie
algebra. Note that we do not have control over each individual coupling. Nevertheless, one can see
how decomposing the control matrix into the simple roots is a powerful way to examine the
controllability properties of the system.

Using standard notation for a basis ofsusNd, let ei,j denote the matrix with uniti j entry and
zeros elsewhere. Definexi,j =ei,j −ej ,i and yi,j = ısei,j +ej ,id. B is decomposed into the
ı-times-symmetric roots

S1 = y1,2= ı1
0 1 0 0 0 0 …
1 0 0 0 0 0 …
0 0 0 0 0 0 …
0 0 0 0 0 0 …
0 0 0 0 0 0 …
0 0 0 0 0 0 …
] ] ] ] ] ] �

2 , s3d

S2 = y2,3, s4d

S3 = y3,4, s5d

¯ . s6d

The Lie bracket of these roots with each other give theN−2 skew-symmetric matrices that
represent next-nearest-neighbor coupling as shown below. These matrices form a closed Lie alge-
bra with the matrices from which they were formed, for example,S1, S2 and their commutator
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KN=fS1,S2g form a Lie subalgebra, similarly forS2, S3 and their commutatorKN+1, and so on. This
generation of alternate symmetric and skew-symmetric elements of the algebra has been observed
earlier,3,13

fS1,S2g = x1,3 ; KN, s7d

KN+1 = x2,4, s8d

¯ . s9d

Similarly,

fx1,3,x2,4g = y1,4 ; S2N−1. s10d

Carrying on in a similar fashion through the matrix that represents the coupling between the first
andNth stateshereN is assumed evend,

SNsN−1d/2 = y1,N. s11d

It can be shown that the number of linearly independent commutators formed by this set of
matrices isNsN−1d /2. Thus, the roots of the control Hamiltonian can be used to produceNsN
−1d /2 independent elements of the algebra.

An interesting observation can be made if the control matricesBi representing the nearest-
neighbor couplings are all skew-symmetric. The Lie algebra generated by these matrices consists
of the skew-symmetric matrices, i.e., the symmetric matricesSn are not generated. These matrices
also numberNsN−1d /2. This is the set of generators for the rotation groupOsNd, each pairwise
coupling representing an independent rotation inN-dimensions.16

Thus, if the eigenstates are sequentially connected by the transition matrix elementssusually
reald, then the Lie algebra generated by the roots of the control terms alone span a space of
NsN−1d /2. If the drift matrix is strongly regular,12 it can be decomposed intoN linearly indepen-
dent traceless diagonal matriceshi =ei,i −ei+1,i+1. The Lie brackets formed by the drift matrix and
the NsN−1d /2 matrices computed above yield anotherNsN−1d /2 matrices of the opposite sym-
metry. For example,fA,S1g givesK1, etc. Thus the total number of linearly independent matrices
are 2*NsN−1d /2+N=N2, which is sufficient to show controllability.

III. QUANTUM TRANSFER GRAPHS

Graphical methods used to analyze controllability of quantum systems4,17 are drawn from
similar techniques used in the controllability analysis of classical systems.12 These methods are
very elegant. However, they do not bring out two features intrinsic to the controllability of
quantum systems—the special role of the drift matrix, and the intrinsically skew-Hermitian nature
of the control matrices. To address these issues, we propose that transfer graphs representing the
control of quantum systems should be drawn with each eigenstate represented by a double node,
representing the real and imaginary parts of the complex wave function. The transition matrix
elements are represented by edges of the graph. However, a real matrix element will couple the
real part of one state with the real part of the other; and the imaginary part of one state with the
imaginary part of the other. A purely imaginary matrix element will couple the real part of one
state with the imaginary part of the other. This graph will truly be transitively connected only if the
transition matrix elements are complex numbers with both real and imaginary parts. Otherwise the
presence of a strongly regular drift matrixswhich in time produces a rotation from real to imagi-
nary spaced can generate the “missing” elements of the Lie algebra, i.e., complete the transitivity
of the Quantum Transfer Graph. These features of Quantum Transfer Graphs are shown in Fig. 1.
Other modifications introduced in a recent paper17 such as ordering the state in energy and the
thickness of the edges representing the strength of the couplings are retained.
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IV. CONTROL IN THE INTERACTION PICTURE

In quantum physics, one often uses the interaction picture by making a unitary transformation
that is very similar to transforming into the rotating frame in classical physics. Remembering that
A is diagonal and =ıH0, this is carried out as follows:

Y = exps− AtdX, s12d

Ẏ = − A exps− AtdX + exps− AtdẊ s13d

=− A exps− AtdX + exps− AtdsA + o
i

uistdBidX s14d

=o
i

uistdexps− AtdBiX s15d

=o
i

uistdexps− AtdBi expsAtdY s16d

=o
i

uistdFBi +
− t

1!
fA,Big +

s− td2

2!
fA,fA,Bigg + ¯GY s17d

=o
i

uistdBi
˜ Y. s18d

The transformed state vectorY evolves on an adjoint orbit ofUsnd with a span ofNsN−1d. The
last expansionsBaker–Campbell–Hausdorff expansiond contains the Lie algebra formed by the
drift and control matrices. In the case that the system is controllable, these matrices span a space
of dimensionNsN−1d. Therefore, the presence of a strongly regular drift matrix, and a transitively

FIG. 1. Features of a Quantum Transfer Graph. Three nondegenerate eigenstates of the field-free Hamiltonian are repre-
sented by double nodes, representing the realsleftd and imaginarysrightd parts of the complex wave function. States that
are transitively connected in the classical sense are not necessarily connected when the doublet structure is employed. A
control matrix withı times symmetric structure connects nodes as shown insad. A control matrix with real, skew-symmetric
structure connects nodes as shown insbd. The drift Hamiltonian causes rotations between the real and imaginary nodes of
each eigenstate as inscd. The control matrix with a general complex, skew-Hermitian structure transitively connects the
real and imaginary parts of the eigenstates as insdd.

032106-4 C. Rangan and A. M. Bloch J. Math. Phys. 46, 032106 ~2005!



connected set of eigenstates is sufficient to show controllability. In exactly the same manner, if a
set of eigenstates is transitively connected in the interaction picture, and the drift matrix is strongly
regular, then these are sufficient conditions to establish controllability as well.

We note that if we have a control matrix that has both symmetric and skew-symmetric parts
as in Fig. 1sdd, we know that we can generate theNsN−1d elements of the algebra. The Quantum
Transfer Graph is transitively connected even without the consideration of the drift matrix. In such
a case the demand for the strongly regular drift matrix can be relaxed, and controllability can be
shown even with drift matrices that are not strongly regular.12

V. SPIN-1
2 PARTICLE COUPLED TO FINITE HARMONIC OSCILLATOR

We now apply controllability analysis to a quantum system that is one of the scalable para-
digms of a future quantum computer. The system is also interesting from the viewpoint of control,
because the control matrices contain both symmetric and skew-symmetric elements. Our analysis
can be extended to other systems with sequentially connected eigenstates such as those inN-level
STIRAP, and the control of Zeeman states.

In a recent paper,17 we showed that under certain circumstances, the model of a spin-1
2 particle

coupled to finite harmonic oscillator is a good representation of a trapped ion with two essential
internal states. The spin-1

2 model represents a two-level atom with an energy splitting"v0, where
the frequencyv0/2p is in the several GHz range. The atomic levels are coupled to the motion of
the ion in a harmonic trap.18 These quantized vibrational energy levels are separated by a fre-
quencyvm/2p in the MHz range. The Hamiltonian of this system without a control field applied
to it sin atomic unitsd is

H0 = v0
sz

2
+ vmn̂. s19d

The Pauli operators describes the equivalent spin-1
2 system, and the operatorn̂ is the number

operator of the quantized simple harmonic oscillator. The eigenstates of the field-free system are
characterized by two quantum numbersSz, andn. When a bichromatic field is applied that causes
transitions between statesu↓ ,nl and u↑ ,nl scarrier transitionsd, and between statesu↓ ,nl and
u↑ ,n−1l sred sideband transitionsd, the system is sequentially connected. An important parameter
of this system is the Lamb–Dicke parameterhm that describes the extent of the ion’s motion
compared to the wavelength of the applied electromagnetic field. It is possible to adjust the
strength of the trapsthereby adjustinghmd such that one of the transition couplings goes to zero,
and the state space is truncated toN-levels as shown in Fig. 2.

FIG. 2. Trapped-ion quantum states coupled by control fields with frequenciesvc andvr. They cause transitions denoted
by solidscarrierd and dashedsred sidebandd lines, respectively. By changing the strength of the trap, it is possible to reduce
one of the transition strengths to zero, thus truncating the infinitely large Hilbert space.
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In the case when the extent of the ion’s motion is comparable to the wavelength of the applied
field, a matrix element of the control Hamiltonian in the field-free eigenbasis in the interaction
picture can be written as17

kS8n8uHI8uSnl = Vstd2 RefkS8us+uSl ^ kn8uexpsıshmsam + am
† dddunlg. s20d

The harmonic oscillator part of this matrix element18 is written as

kn8uexpsıshmsam + am
† dddunl = exps–hm/2dÎn,!

n.!
sıhmdun8−nuLn

un8−nushm
2 d. s21d

The symboln. refers to the larger ofn andn8, andn, refers to the smaller ofn andn8. Ln
asxd is

the associated Laguerre polynomial. When the applied field connects statesu↓ ,nl and u↑ ,nl
scarrier transitionsd, n8=n, and when the applied field connects statesu↓ ,nl and u↑ ,n−1l sred
sideband transitionsd, n8=n−1. The matrix elements are zero for all other values ofn8. The
strength of the ion trap can be adjustedsthereby adjustinghmd so that the coupling strength of one
of the sred or carrierd transitions becomes zero, the system is transformed into a finite closed
subsystem, and a remaining infinite subsystem. For example, if the argument of the Laguerre
polynomialhm

2 is adjusted to 0.527 667 so thatL6
1shm

2 d=0, theu↓ ,6l to u↑ ,7l transition is turned
off.

The truncated finite system is now anN-level sequentially dipole coupled system. The electric
field corresponding to the frequencies that cause the carrier and red transitions are dubbedEc and
Er, respectively. The eigenstates can be ordered asu↑ ,0l, u↓ ,0l, u↑ ,1l, u↓ ,1l ,… . The drift
HamiltonianH0 of this system can be written in matrix form as

1
0 0 0 0 0 0 … 0 0

0 v0 0 0 0 0 … 0 0

0 0 vm 0 0 0 … 0 0

0 0 0 v0 + vm 0 0 … 0 0

0 0 0 0 2vm 0 … 0 0

0 0 0 0 0 v0 + 2vm … 0 0

] ] ] ] ] ] �

0 0 0 0 0 0 … SN

2
− 1Dvm 0

0 0 0 0 0 0 … 0 v0 + SN

2
− 1Dvm

2 . s22d

In the interaction picture, the Schrödinger equation is written as

Ẏ = sustdBc + vstdBrdY. s23d

In general, we can assume that fieldsEcstd andErstd do not have a phase difference between them.
Then,

ustd = c1Ecstd = 0.25m0 exps− h2/2dEcstd, s24d

vstd = c2Erstd = 0.25hm0 exps− h2/2dErstd, s25d
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Bc = ı1
0 L0sh2d 0 0 0 0 …

L0sh2d 0 0 0 0 0 …
0 0 0 L1sh2d 0 0 …
0 0 L1sh2d 0 0 0 …
0 0 0 0 0 L2sh2d …
0 0 0 0 L2sh2d 0 …
] ] ] ] ] ] �

2 . s26d

Br =1
0 0 0 0 0 0 …
0 0 L0

s1dsh2d 0 0 0 …
0 − L0

s1dsh2d 0 0 0 0 …
0 0 0 0 L1

s1dsh2d 0 …
0 0 0 − L1

s1dsh2d 0 0 …
0 0 0 0 0 0 …
0 0 0 0 0 − L2

s1dsh2d …
] ] ] ] ] ] �

2 . s27d

The associated Laguerre polynomialsLn
asxd can be written as

Ln
asxd = o

k=0

n

s− 1dkSn + a

n − k
Dxk

k!
. s28d

The argument of the polynomials is the square of the Lamb–Dicke parameterh which gives a
measure of how much the ion moves in the harmonic potential as compared to the wavelength of
the light applied. We note that the control matrices for this system are different from the usual

control matrices in quantum physics problems. The control matrixB̃c has the usualı times sym-

metric structure. The control matrixB̃r has a real, skew-symmetric structure. If we take the Lie
algebra formed by these two matrices, we getNsN−1d /2 independent matrices. As the drift matrix
is strongly regular this system is completely controllable. We can further analyze this behavior in
a four-dimensional model problem.

A. Example: A model four-dimensional system

Using a simple four-dimensional example,2,19 we show how the Lie algebra produces succes-
sive elements, and spans the space. Consider a general matrixA for a four-dimensional Hilbert
space with sequentially coupled eigenstates. In particular, we have

A =1
a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d
2 , s29d

Bc = ı1
0 a 0 0

a 0 0 0

0 0 0 g

0 0 g 0
2 , s30d
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Br =1
0 0 0 0

0 0 b 0

0 − b 0 0

0 0 0 0
2 . s31d

Taking the Lie brackets ofBc and Br, we produce four more linearly independent matricesC
=fBc,Brg /b, D=sfBc,Cg−Br * sa2+g2d /bd / s2agd, E=fBc,Dg, andF=fE,Brg / s−bd. Thus the con-
trol matrices themselves produceNsN−1d /2=6 elements of the Lie algebra. Taking the Lie brack-
ets of these six matrices with the drift matrixA, we get six more independent matrices with the
opposite symmetry as the first six. Further Lie brackets of the two sets of six matrices produce the
remaining four diagonal traceless matrices into which the strongly regular drift matrix can be
decomposed.

B. Graphical analysis

We create a Quantum Transfer Graph to represent and analyze this system. We represent the

various eigenstatesuŜ,nml by double-vertices of a graph as shown in Fig. 3. When a resonant
electromagnetic field is applied, the coupling between two eigenstates caused by the interaction
form the edges. The eigenstates are ordered in energy, and the edges on the graph will represent
the matrix elements of the interaction between the eigenstatessnot a population flow between
themd, their thickness qualitatively indicating the strength of the coupling. The carrier fieldswith
frequencyvcd acting on an ion connects statesu↓nl and u↑nl. As the coupling matrix consists of
real elements, this field connects the real parts to the real parts and the imaginary parts to the
imaginary parts. The red sideband fieldswith frequencyvrd connects statesu↓nl and u↑n−1l.
Since the coupling matrix consists of imaginary elements, this field connects the real parts to the
imaginary parts and vice versa. When both fields are applied simultaneously, we see that the
Quantum Transfer Graph splits into two very interesting subgraphs. In the sense of the usual
transfer graph,4,20 all eigenstates are transitively connected. However, we can directly see the role
of the drift Hamiltonian in moving this system from one subgraph to the other, and truly making
the eigenstates transitively connected.

VI. SPECIFIC CONTROL SCHEME

We now discuss a specific control scheme for theinfinite system, and show how the Quantum
Transfer Graph helps us to describe the roles of the control and drift matrices in this scheme. In
1996, Law and Eberly21 showed that by using the carrier and red fieldsalternatelyit is possible to
produce arbitrary superpositions of a finite number of harmonic oscillator states. References 22
and 23 show that the same scheme can be used to generate arbitrary finite superposition states in

FIG. 3. Quantum Transfer Graph of a model four-level system. Control fields with frequenciesvc andvr cause transitions
denoted by solidscarrierd and dashedsred sidebandd lines, respectively. The dotted lines insbd demonstrate the effect of the
drift Hamiltonian in rotating between the real and imaginary parts of each eigenfunction.
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a spin-12/harmonic oscillator system. This scheme works by designing a sequence of alternately
applied carrier and red sideband fields interspersed with a waiting timesaction of the driftd in order
to transfer the population from an arbitrary superposition to the ground state of the systemu↓ ,n
=0l. As seen by the Quantum Transfer Graph in Fig. 3sbd, there are many combinations of the drift
and control matrices that can be applied in order to get to the ground statesboth in the finite and
the infinite systemsd. The optimal combination will be one that time-optimizes the process subject
to the constraint on the fields’ intensities. This time-optimized Law–Eberly scheme is an interest-
ing avenue for future work. Aspects of the controllability of the infinite-dimensional problem are
discussed in related work by the authors.24

VII. CONCLUSION

A Quantum Transfer Graph is an effective tool in elucidating the controllability of finite
quantum systems both in the Schrödinger and interaction pictures. We have shown the equivalence
of sufficient conditions for controllability in both pictures, and explicitly presented the role of the
drift matrix. We analyze the example of a sequentially connectedN-level system as implemented
by suitably designed quantum states of a trapped ion. Showing the mechanism of control, we
explain how the specific Law–Eberly control scheme can be efficiently implemented.
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