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In this paper, we consider the problem of the controllability of a finite-dimensional
quantum system in both the Schrodinger and interaction pictures. Introducing a
Quantum Transfer Graph, we elucidate the role of Lie algebra rank conditions and
the complex nature of the control matrices. We analyze the example of a sequen-
tially coupledN-level system: a spié— particle coupled to a finite quantum har-
monic oscillator. This models an important physical paradigm of quantum
computers—the trapped ion. We describe the control of the finite model obtained,
under the right conditions, from the original infinite-dimensional systen2005
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I. INTRODUCTION

The control and controllability of finite-dimensional quantum systems are of topical interest to
the chemical dynamics, coherent control and quantum computing commdnitiedeed, several
methods of proving controllability of quantum systéfid***have been developed from corre-
sponding techniques used in the control of finite-dimensional classical systems. In these treat-
ments, specifically in the graphical methods, the role of the (hiffield-free Hamiltonian is not
obvious. In quantum mechanics, it is fairly standard to use an interaction picture, where the drift
term does not appear explicitly in the Schrédinger equation. In these cases, the presence of only
one matrix, namely the control matrix in the interaction picture, makes it not amenable to use of
the rigorous Lie algebraic methtdto determine controllability.

In this paper, we present fresh insights into the controllability and control of quantum systems
both in the Schrddinger and interaction pictures. We propose a new graphical method—the Quan-
tum Transfer Graph—that will explicitly demonstrate both the roles of the drift and control ma-
trices, and also the importance of considering the control matrix as one with complex entries. Then
we analyze a very interesting example of a sequentially cougienel system: a spié—particle
coupled with a quantum harmonic oscillator. This models an important physical paradigm of
quantum computers—the trapped ion. The analysis in this paper expands on our earlier work on
the trapped-ion problenfRef. 17 and illustrates the key role played by the Quantum Transfer
Graph in understanding the complex matrices that describe the interactions between the field and
the ion. To our knowledge this is the only example of a quantum control problem where the
interaction matrices are complex. Our general analysis of a sequentially connected system can also
be extended to understanding the controNekvel chain systems used in adiabatic schemes such
as STIRAP* as well as the control of transitions between sequentially connected Zeeman states.

Il. SCHRODINGER PICTURE

The Schrodinger equation for a particle in a static and dynamic potditia@tomic units,
whereine=m=#=1) is written as
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1[W) = (Ho + H))|W). (1)

Here, Hy is the Hamiltonian of the particle in the static potential, with a finite nuni{bgrof
eigenvaluesE, corresponding to the eigenvectogg. The interaction with the time-dependent
potential is given by the control Hamiltoniath, which includes the time dependence. In general,
we consider problems where the time dependence is separable and linear, for exdmple,
=2,ui(t)* u;. Here the operatog; represents the transition couplings between the various eigen-
states oH, due to the time-dependent fialgt). Unitarity demands thatl; andH,; be Hermitian.

The eigenvalues o, are therefore real. In the control literature, the Schrddinger equation is
written equivalently as

X=<A+;ui(t)8i)x. 2)

In vector representatioiX is the state vecto# is the drift matrix,B; are the control matrices and
u;(t) are controls, generally chosen to be piecewise smooth. In the eigenbékjsfofs -1 times
a real matrix with only diagonal terms. Each matBxis skew-Hermitian. It can, in general, be
written as a sum of a times a real symmetric matrix and a skew-symmetric maBjx* B>
+BiK. More generallyA, B; € su(N). In most quantum applications considered up to this ﬁt‘)"i#ﬁ
the matrix elements of thB, are of the form times a symmetric matrix. Consider a special case,
where the eigenstates by are sequentially coupled by control fieldgt). It is well knowr? %1t
that a sufficient condition for controllability is that the dimension of the span of the Lie algebra
generated byA and theB; be equal to the dimension efi(n). Rather than take the specific values
for the matrix elements of the control matricé, it will be instructive to consider its general
structure—a skew-Hermitian, tridiagonal matrix with zero diagonal elements. In the caseBvhere
is of the form1 times a symmetric matrix, this matrix can be decomposed htd matrices—
simple roots of the Lie algebrsu(n), as shown below. These matrices represent the nearest-
neighbor couplings. We want to elucidate how these nearest-neighbor couplings generate the Lie
algebra. Note that we do not have control over each individual coupling. Nevertheless, one can see
how decomposing the control matrix into the simple roots is a powerful way to examine the
controllability properties of the system.

Using standard notation for a basis«if(N), let g ; denote the matrix with unij entry and
zeros elsewhere. Defineq;=¢e ;—€;; and y;;=1(g;+€;;). B is decomposed into the
I-times-symmetric roots

01000 O0..
1 00O0O0O..
0 0OO0OOODO0..
Si=yi,=if000000..| 3)
0 0OO0OOODO..
0 0O0OOO0O0..
$=Y23 (4)
S3= Y34, (5
(6)

The Lie bracket of these roots with each other give khe2 skew-symmetric matrices that
represent next-nearest-neighbor coupling as shown below. These matrices form a closed Lie alge-
bra with the matrices from which they were formed, for examfg,S, and their commutator



032106-3 Control of finite-dimensional quantum systems J. Math. Phys. 46, 032106 (2005)

Kn=[S:1,S,] form a Lie subalgebra, similarly f&,, S; and their commutatdfy.;, and so on. This
generation of alternate symmetric and skew-symmetric elements of the algebra has been observed
earlier*®

[S1.S]=x1,3= Ky, ()
Kns1=X2,45 (8)
9
Similarly,
[X1,3%2,4 = Y1,4= Son-1- (10

Carrying on in a similar fashion through the matrix that represents the coupling between the first
and Nth state(hereN is assumed even

SNN-172 = YIN- (11

It can be shown that the number of linearly independent commutators formed by this set of
matrices isN(N—1)/2. Thus, the roots of the control Hamiltonian can be used to prodlibe
-1)/2 independent elements of the algebra.

An interesting observation can be made if the control matrigiesepresenting the nearest-
neighbor couplings are all skew-symmetric. The Lie algebra generated by these matrices consists
of the skew-symmetric matrices, i.e., the symmetric matri&esme not generated. These matrices
also numbeiN(N-1)/2. This is the set of generators for the rotation gr@(N), each pairwise
coupling representing an independent rotatiolNidimensions-®

Thus, if the eigenstates are sequentially connected by the transition matrix eldoseratiy
real), then the Lie algebra generated by the roots of the control terms alone span a space of
N(N-1)/2. If the drift matrix is strongly reguld¥ it can be decomposed inte linearly indepen-
dent traceless diagonal matridgs-€ j—€.1j.;. The Lie brackets formed by the drift matrix and
the N(N-1)/2 matrices computed above yield anotthgN—1)/2 matrices of the opposite sym-
metry. For example,A, S;] givesK;, etc. Thus the total number of linearly independent matrices
are 2*N(N-1)/2+N=N?, which is sufficient to show controllability.

IIl. QUANTUM TRANSFER GRAPHS

Graphical methods used to analyze controllability of quantum syétjgnau;e drawn from
similar techniques used in the controllability analysis of classical sys]L%r“ﬁsnese methods are
very elegant. However, they do not bring out two features intrinsic to the controllability of
quantum systems—the special role of the drift matrix, and the intrinsically skew-Hermitian nature
of the control matrices. To address these issues, we propose that transfer graphs representing the
control of quantum systems should be drawn with each eigenstate represented by a double node,
representing the real and imaginary parts of the complex wave function. The transition matrix
elements are represented by edges of the graph. However, a real matrix element will couple the
real part of one state with the real part of the other; and the imaginary part of one state with the
imaginary part of the other. A purely imaginary matrix element will couple the real part of one
state with the imaginary part of the other. This graph will truly be transitively connected only if the
transition matrix elements are complex numbers with both real and imaginary parts. Otherwise the
presence of a strongly regular drift matiiwhich in time produces a rotation from real to imagi-
nary spacgcan generate the “missing” elements of the Lie algebra, i.e., complete the transitivity
of the Quantum Transfer Graph. These features of Quantum Transfer Graphs are shown in Fig. 1.
Other modifications introduced in a recent papauch as ordering the state in energy and the
thickness of the edges representing the strength of the couplings are retained.
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FIG. 1. Features of a Quantum Transfer Graph. Three nondegenerate eigenstates of the field-free Hamiltonian are repre-
sented by double nodes, representing the (le&) and imaginary(right) parts of the complex wave function. States that

are transitively connected in the classical sense are not necessarily connected when the doublet structure is employed. A
control matrix withi times symmetric structure connects nodes as shova.iA control matrix with real, skew-symmetric
structure connects nodes as showiflin The drift Hamiltonian causes rotations between the real and imaginary nodes of
each eigenstate as (o). The control matrix with a general complex, skew-Hermitian structure transitively connects the
realand imaginary parts of the eigenstates agdn

IV. CONTROL IN THE INTERACTION PICTURE

In quantum physics, one often uses the interaction picture by making a unitary transformation
that is very similar to transforming into the rotating frame in classical physics. Remembering that
A is diagonal and /H, this is carried out as follows:

Y = exp(- AHX, (12)
Y = - Aexp— A)X + exp(— A X (13)
=— Aexp(— A X + exp— At)(A+ Z u(t)B)X (14)
:; u;(t)exp(— At)B;X (15)
:2 u;(t)exp(— At)B; exp(At)Y (16)

_1\2
( t!) [AJAB]]+---|Y (17)

:gui(t) Bi+_1—!t[A,Bi]+ 5

=E U,(t)§|Y (18)

The transformed state vectd¥revolves on an adjoint orbit dfJ(n) with a span oN(N-1). The

last expansior(Baker—Campbell-Hausdorff expansjorontains the Lie algebra formed by the

drift and control matrices. In the case that the system is controllable, these matrices span a space
of dimensionN(N-1). Therefore, the presence of a strongly regular drift matrix, and a transitively
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FIG. 2. Trapped-ion quantum states coupled by control fields with frequeagiasd w,. They cause transitions denoted
by solid (carrie)) and dashedred sidebandlines, respectively. By changing the strength of the trap, it is possible to reduce
one of the transition strengths to zero, thus truncating the infinitely large Hilbert space.

connected set of eigenstates is sufficient to show controllability. In exactly the same manner, if a
set of eigenstates is transitively connected in the interaction picture, and the drift matrix is strongly
regular, then these are sufficient conditions to establish controllability as well.

We note that if we have a control matrix that has both symmetric and skew-symmetric parts
as in Fig. 1d), we know that we can generate tNeN-1) elements of the algebra. The Quantum
Transfer Graph is transitively connected even without the consideration of the drift matrix. In such
a case the demand for the strongly regular drift matrix can be relaxed, and controllability can be
shown even with drift matrices that are not strongly regfﬁar.

V. SPIN-% PARTICLE COUPLED TO FINITE HARMONIC OSCILLATOR

We now apply controllability analysis to a quantum system that is one of the scalable para-
digms of a future quantum computer. The system is also interesting from the viewpoint of control,
because the control matrices contain both symmetric and skew-symmetric elements. Our analysis
can be extended to other systems with sequentially connected eigenstates such asd\tHegelin
STIRAP, and the control of Zeeman states.

In a recent papeY, we showed that under certain circumstances, the model of a%smmﬂcle
coupled to finite harmonic oscillator is a good representation of a trapped ion with two essential
internal states. The spi%wnodel represents a two-level atom with an energy splitting, where
the frequencywy/ 27 is in the several GHz range. The atomic levels are coupled to the motion of
the ion in a harmonic traBa. These quantized vibrational energy levels are separated by a fre-
quencyw,,/ 27 in the MHz range. The Hamiltonian of this system without a control field applied
to it (in atomic unit$ is

Ho = wo%z + o, (19)

The Pauli operator describes the equivalent sp%nsystem, and the operatéris the number
operator of the quantized simple harmonic oscillator. The eigenstates of the field-free system are
characterized by two quantum numb&sandn. When a bichromatic field is applied that causes
transitions between statés,n) and|7,n) (carrier transitions and between stateg ,n) and
[1,n-1) (red sideband transitiopsthe system is sequentially connected. An important parameter
of this system is the Lamb-Dicke parametgy that describes the extent of the ion’s motion
compared to the wavelength of the applied electromagnetic field. It is possible to adjust the
strength of the trajthereby adjustingy,,) such that one of the transition couplings goes to zero,
and the state space is truncated\tdevels as shown in Fig. 2.
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In the case when the extent of the ion’s motion is comparable to the wavelength of the applied
field, a matrix element of the control Hamiltonian in the field-free eigenbasis in the interaction

picture can be written 45

(SN'H{IS = Q)2 Re(S |49 @ (0’ [expli (7m(@m + 2)) IM)]. (20)

The harmonic oscillator part of this matrix elemtris written as

(0 lex1rn(an + @RI = exp-mf2)y 0" LR (2D

The symboln.. refers to the larger ofi andn’, andn. refers to the smaller af andn’. L{(x) is
the associated Laguerre polynomial. When the applied field connects ktat®sand |1 ,n)
(carrier transitions n’=n, and when the applied field connects stdtesn) and|7,n-1) (red
sideband transitionsn’=n-1. The matrix elements are zero for all other valuesnbf The
strength of the ion trap can be adjust#tereby adjustingy,,) so that the coupling strength of one
of the (red or carriey transitions becomes zero, the system is transformed into a finite closed
subsystem, and a remaining infinite subsystem. For example, if the argument of the Laguerre
polynomial 7%, is adjusted to 0.527 667 so thigy(#2)=0, the|| ,6) to | 1,7) transition is turned
off.

The truncated finite system is now BHlevel sequentially dipole coupled system. The electric
field corresponding to the frequencies that cause the carrier and red transitions are Euabed
E,, respectively. The eigenstates can be ordereditas), ||,0), [1,1), ||,1),.... The drift
HamiltonianH, of this system can be written in matrix form as

0 0 O 0 0 0 0 0
0 wy O 0 0 0 0 0
0 0 wy 0 0 0 0 0
0 0 0 wy+tow,, O 0 0 0
0 0 O 0 2w, 0 0 0
0 0 O 0 0 wy+ 2wy 0 0 (22)
N
0 0 O 0 0 (— - 1) O 0
2
0 0 O 0 0 0 0 wy+ (— - 1) ®m
In the interaction picture, the Schroédinger equation is written as
Y = (u(t)B, + v(1)B,)Y. (23)

In general, we can assume that fielj$t) andE,(t) do not have a phase difference between them.
Then,

u(t) = c1Ec(t) = 0.25u0 exp(— 77/2)E(t), (24)

v(t) = CE(t) = 0.25u0 exp(— 7/2)E (1), (25
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0 Ly» O 0 0 0
Lo(75d O 0 0 0 0
0 0 0 L1(77) 0 0
2
B=1| O 0 Li» O 0 o .| (26)
0 0 0 0 0 Ly7)
0 0 0 0 L) O
0 0 0 0 0 0
0 0 LY () 0 0 0
0 -LYA o0 0 0 0
0 0 0 0 LY () 0
B=lo o 0 -0 o 0 @7
0 0 0 0 0 0
0 0 0 0 0 -LYGA
The associated Laguerre polynomiaf§x) can be written as
" n+a\x
Lex)=2> (-1 k( )—. 28
n(¥) kE(,) (-1 kK (28)

The argument of the polynomials is the square of the Lamb-Dicke parametdrich gives a
measure of how much the ion moves in the harmonic potential as compared to the wavelength of
the light applied. We note that the control matrices for this system are different from the usual
control matrices in quantum physics problems. The control m&gikas the usual times sym-

metric structure. The control matr®, has a real, skew-symmetric structure. If we take the Lie
algebra formed by these two matrices, we lgétl—1)/2 independent matrices. As the drift matrix

is strongly regular this system is completely controllable. We can further analyze this behavior in
a four-dimensional model problem.

A. Example: A model four-dimensional system

Using a simple four-dimensional examﬁlég, we show how the Lie algebra produces succes-
sive elements, and spans the space. Consider a general idbixa four-dimensional Hilbert
space with sequentially coupled eigenstates. In particular, we have

a0O00@O0
0Ob 0O
A= , (29
0 0cO
00O0d
0O «a OO0
a 0 0O0
BC=|0007, (30
00 yO
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FIG. 3. Quantum Transfer Graph of a model four-level system. Control fields with frequescéesl w, cause transitions
denoted by solidcarrie and dasheéred sidebanylines, respectively. The dotted lines(in) demonstrate the effect of the
drift Hamiltonian in rotating between the real and imaginary parts of each eigenfunction.

0O 0 OO0
0 0 0
B, = b (31)
0-800
0O 0 OO0

Taking the Lie brackets oB; and B,, we produce four more linearly independent matri€es
=[B,,B,]/B, D=([B.,C]-B,* (a®+y?/b)/(2ay), E=[B,,D], andF=[E,B,]/(-B). Thus the con-

trol matrices themselves produséN-1)/2=6 elements of the Lie algebra. Taking the Lie brack-

ets of these six matrices with the drift mati we get six more independent matrices with the
opposite symmetry as the first six. Further Lie brackets of the two sets of six matrices produce the
remaining four diagonal traceless matrices into which the strongly regular drift matrix can be
decomposed.

B. Graphical analysis

We create a Quantum Transfer Graph to represent and analyze this system. We represent the
various eigenstateS,n,y by double-vertices of a graph as shown in Fig. 3. When a resonant
electromagnetic field is applied, the coupling between two eigenstates caused by the interaction
form the edges. The eigenstates are ordered in energy, and the edges on the graph will represent
the matrix elements of the interaction between the eigenstatdsa population flow between
them), their thickness qualitatively indicating the strength of the coupling. The carrier(fieid
frequencyw,) acting on an ion connects stafgsn) and|1n). As the coupling matrix consists of
real elements, this field connects the real parts to the real parts and the imaginary parts to the
imaginary parts. The red sideband fidldith frequencyw,) connects stateg| ny and |1 n—1).

Since the coupling matrix consists of imaginary elements, this field connects the real parts to the
imaginary parts and vice versa. When both fields are applied simultaneously, we see that the
Quantum Transfer Graph splits into two very interesting subgraphs. In the sense of the usual
transfer grapﬁ;20 all eigenstates are transitively connected. However, we can directly see the role
of the drift Hamiltonian in moving this system from one subgraph to the other, and truly making
the eigenstates transitively connected.

VI. SPECIFIC CONTROL SCHEME

We now discuss a specific control scheme foritifmite system, and show how the Quantum
Transfer Graph helps us to describe the roles of the control and drift matrices in this scheme. In
1996, Law and Eberﬁ} showed that by using the carrier and red fiedtternatelyit is possible to
produce arbitrary superpositions of a finite number of harmonic oscillator states. References 22
and 23 show that the same scheme can be used to generate arbitrary finite superposition states in
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a spin%/harmonic oscillator system. This scheme works by designing a sequence of alternately
applied carrier and red sideband fields interspersed with a waiting &atien of the drift in order

to transfer the population from an arbitrary superposition to the ground state of the $ystem

=0). As seen by the Quantum Transfer Graph in Fip) Xhere are many combinations of the drift

and control matrices that can be applied in order to get to the ground(lstatein the finite and

the infinite systems The optimal combination will be one that time-optimizes the process subject
to the constraint on the fields’ intensities. This time-optimized Law—Eberly scheme is an interest-
ing avenue for future work. Aspects of the controllability of the infinite-dimensional problem are
discussed in related work by the authdfs.

VIl. CONCLUSION

A Quantum Transfer Graph is an effective tool in elucidating the controllability of finite
quantum systems both in the Schrédinger and interaction pictures. We have shown the equivalence
of sufficient conditions for controllability in both pictures, and explicitly presented the role of the
drift matrix. We analyze the example of a sequentially connebkdelvel system as implemented
by suitably designed quantum states of a trapped ion. Showing the mechanism of control, we
explain how the specific Law—Eberly control scheme can be efficiently implemented.
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