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A simple model is constructed to evaluate the temporal evolution of azimuthal clumping instabilities
in a cylindrical array of current-carrying wires. An analytic scaling law is derived, which shows that
randomly seeded perturbations evolve at the rate of the fastest unstable mode, almost from the start.
This instability is entirely analogous to the Jeans instability in a self-gravitating disk, where the
mutual attraction of gravity is replaced by the mutual attraction among the current-carrying wires.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1886828g

I. INTRODUCTION

The most intense x-ray pulses in the world, with x-ray
yield in the megajoule range and x-ray powers in the hun-
dreds of terawatts have been generated by wireZ pinches
and the SandiaZ machine.1–5 The energy conversion effi-
ciency, from wall plug to x rays, exceeds 10%. In virtually
all Z-pinch experiments, ranging from low to high currents,
and from low wire-number to high wire-number arrays, a
host of hydromagnetic activities have been observed. These
experiments, and their simulations and models,6–8 focused
mostly on the radial and axial perturbations of the wires, and
these perturbations are in the form of radial jets and axial
striations,7–11or of some peculiar caterpillar structures on the
boundary of the metallic plumes.12 In this paper, we focus on
the azimuthal clumping instability that is unique to a high
wire-number array. This instability is entirely analogous to
the Jeans instability of self-gravitating systems,13 with the
gravitational attraction between matter being replaced by the
mutual attraction of neighboring wires that carry currents in
the same direction. This instability was revealed in oursun-
publishedd simulations of a 300-wire array,14 and was previ-
ously studied by Samokhin15 and by Hammer and Ryutov.16

The analytic theory in Refs. 15 and 16 showed that the most
unstable azimuthal clumping mode was one in which two
neighboring wires paired up.

In this paper, we go one step further. We use a simple
model to evaluate the temporal evolution of randomly seeded
perturbations which are composed of all azimuthal clumping
modes in a high wire-number array. We show that after about
one e-fold, these azimuthal perturbations grow at a rate es-
sentially determined by the fastest growing mode—one that
corresponds to pairing of two neighboring wires, i.e., thep

mode which is described below. A simple analytic scaling
law for this temporal evolution is constructed and the theory
is compared with our simulation. Toward the end of this
paper, we shall comment on the various aspects of this insta-
bility.

II. MODEL

Consider an array ofN wires, each carrying a currentIw

in thez direction, arranged in a circle of radiusR fFig. 1sadg.
We assume that the wire radiusrw is much smaller than the
wire separationd=2pR/N and that the mass per unit length
of the wire ismL. In addition torw!d!R, we further as-
sume that the backposts of the return current are sufficiently
far away so that they have negligible effects on the dynami-
cal evolution. In a continuum description, this array carries a
z-directed surface currentK= Iw/d with a surface mass den-
sity s=mL /d=NmL /2pR. Without any perturbation, this cy-
lindrical array undergoes a radially inward accelerationg
sg.0d as a result of the self-magnetic field,

g =
m0K

2

2s
=

m0dK2

2mL
=

m0Iw
2

2dmL
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m0IwK

2mL
=

m0K
2pR

NmL
, s1d

where m0 is the free space permeability. In the Cartesian
model, this array lies on they axis fFig. 1sbdg. There is a
static equilibrium in such an infinite array. In the continuum
limit, sg becomes the pressure on the current sheet as a
result of the self-magnetic fieldH0=K /2 fFig. 1sbdg.

In the cylindrical array ofN wires, the displacement
from equilibrium of thenth wire, jn is related to that of the
sn+1dth wire by jn+1=jn exps−jm2p /Nd according to the
Floquet theorem on the eigenmodes in a periodic structure.
The azimuthal mode numberm is restricted in the solution of
jn,

jn = j0e
−jnsm2p/Nd, m= 0,1,2, . . . ,N/2, s2d

wherej0 is an arbitrary constant. We may use the magnetron
terminology to designate them=0 mode as the 2p mode and
the m=N/2 as thep mode on account of the phase shift of
the perturbation in neighboring wires.17 In Eq. s2d and here-
after,N/2 is to be replaced bysN−1d /2 if N is an odd inte-
ger. In the Cartesian analog treated belowfFig. 1sbdg, the
phase shift between neighboring wires iskyd, where ky

=m/R=2pm/ sNdd is wave number in they direction andm
takes on the integer values specified by Eq.s2d. We assume
that there is no axial variation nor axial displacement of the
wires.

To calculate the natural mode of oscillation in the Car-
tesian arrayfFig. 1sbdg, let sxn,ynd be the small signal dis-adSandia National Laboratories, Albuquerque, NM 87185.
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placement of thenth wire from its equilibrium coordinates
s0,ndd, wheren takes on all positive and negative integers,
and zero. It suffices to focus on the equation of motion for
just one wire, say then=0 wire, sincejn in Eq. s2d stands for
both xn and yn. Let Sn=fxn−x0,nd+yn−y0g be the instanta-
neous vector from the zeroth wire to thenth wire fFig. 2g.
The force per unit length on the zeroth wire, by the parallel
current on the nth wire, is easily shown to beFn

=sSn/Sn
2dm0Iw

2 / s2pd by the Biot–Savart law, whereSn is the
magnitude ofSn. Sincexn synd is related tox0 sy0d in the form
of Eq. s2d, Sn, and thereforeFn, are both functions ofx0 and
y0. LinearizeFn to first order inx0 and y0, sumFn over all
integer values ofn spositive and negatived to obtain the total
force per unit length on the zeroth wire, apply the following
formulas to this infinite sum:

o
n=1

`
cossznd

n2 =
p2

6
−

puzu
2

+
z2

4
, − p ø zø p

and obtain the linearized force law for the zeroth wire in
component form,

ẍ0 = − 4gp
2Fm

N
S1 −

m

N
DGx0, m= 0,1,2, . . . ,N/2, s3d

ÿ0 = 4gp
2Fm

N
S1 −

m

N
DGy0, m= 0,1,2, . . . ,N/2, s4d

gp =Îpg

2d
, s5d

where the dot denotes a time derivative. Note thatgp is the
growth rate of thep modesm=N/2d according to Eq.s4d. In
the above infinite sum, thenth term decays like 1/n2 and it
represents the combined force on the zeroth wire by thenth
and the −nth wire. Thus, a circular array ofN wires may be
adequately represented by a Cartesian array of infinite num-
ber of wires if sN/4d2@1, as far as the azimuthal clumping
instability is concerned, since in this case the wire at the top
of the circular array, say, will at most experience theN/4
wires to its left, as well as theN/4 wires to its right.

From Eqs.s3d and s4d, we note that thex andy compo-
nents of motions are decoupled. This is obvious from the
direction of Fn, which, being parallel toSn fFig. 2g, has a
nonzero component inx syd only if xn synd is nonzero. Note
from Eq. s3d that in this planar model, thex-directedsradiald
motion is always stable. This is also obvious from Fig. 1sbd,
which shows that there is no distinction if there were an
acceleration either in the +x direction or −x direction. Thus,
the sign of this acceleration should not matter as far as
x-directed motions are concerned. The lateral motion, i.e.,
the y-directed or azimuthal motion, is unstable according to
Eq. s4d. This is the clumping instability, simply due to the
fact that current filaments flowing in the same direction have

FIG. 1. sad A circular array ofN metallic wires, each carrying a current in
the z direction, out of the plane of paper.sbd The Cartesian analog. Also
shown is the displacement,xn andyn, of the nth wire from its unperturbed
position sx,yd=s0,ndd.

FIG. 2. The vectorSn, from the instantaneous coordinates of the zeroth wire
sx0,y0d to the instantaneous coordinates of thenth wire sxn,nd+ynd.
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a tendency to attract each other. The mechanism is entirely
analogous to the Jeans instability in self-gravitating disks.13

Including the exponential time dependence expsgmtd, in
Eq. s2d, Eq. s4d then gives the growth rate of the lateral
sclumpingd instability of themth mode as

gm = 2gpÎm

N
S1 −

m

N
D, m= 0,1,2, . . . ,N/2. s6d

Equations4d also admits damping modes whose amplitudes
vary as exps−gmtd. The 2p modesm=0d is stable, it corre-
sponds to a constant, static, azimuthal displacement on each
wire and is thus ignored. From Eq.s6d, we see that all other
modes withm.0 have the growth rate increasing monotoni-
cally with m, with thep modesm=N/2d having the highest
growth rategp. This p mode leads to the merging of two
neighboring wires. Its growth rate is identical to Eq. 66 of
Hammer and Ryutov,16 its being the maximum value, which
also agrees with the earlier work of Samokhin.15 For small
values ofm, Eq. s6d may be approximated by Ref. 16,gm

=2gpsm/Nd1/2=skygd1/2, which is the same expression of the
Jeans instability for a self-gravitating disk in the long wave-
length limit.13 Note that this Jeans instability in the wireZ
pinch is robust, because theslarged value ofky is fixedby the
wire separationd as shown in Eq.s5d.

Note that in a high wire-number array, the unstable
modes are heavily crowded. For example, forN=300, all 50
modes withm=100–150 have their growth rates within 6%
of the most unstable mode, thep modesm=150d, according
to Eq. s6d. Therefore, in the following section, we study the
temporal evolution of initial perturbations, which we assume
to be randomly and uniformly distributed among all modes,
i.e., the spectral equivalent of white noise.

III. TEMPORAL EVOLUTION OF INITIAL RANDOM
PERTURBATIONS

The equations of motion for the lateral displacements in
the N-wire array may be described by a 2N-tuple vector,Y
=sy1,y2, . . . ,yN,Dy1,Dy2, . . . ,DyNd, where yn is the lateral
displacement andDyn is the lateral velocity of thenth wire at
time t. This state vectorY may be represented as a linear
superposition of the eigenvectorsem and fm, respectively, of
the growing modes and decaying modes,

Ystd = o
m=1

N/2

amemegmt + o
m=1

N/2

bmfme−gmt, s7d

where the coefficientsam andbm depend on the initial con-
dition at t=0, and all eigenvectors in the combined sets of
hemj andhfmj are independent and mutually orthonormal. The
nth component of the eigenvectorsem andfm is in the form of
Eq. s2d.

We now assume that at timet=0, the wires are at rest but
they have some initial random perturbations in their azi-
muthal positions. The condition of zero initial velocity on
each wire implies thatuamu= ubmu for all m in Eq. s7d. If we
further assume that the initial random azimuthal displace-
ments are uniformly distributed among all modes, then all

the am’s andbm’s in Eq. s7d will have the same magnitude;
that is, uaiu= ubju= ua1u for all i , j =1,2,3, . . . ,N/2. We next
take the inner product of Eq.s7d to obtain,

Astd ;
uYstdu2

uYs0du2
=

2

N
o
m=1

N/2

coshs2gmtd

=
2

N
o
m=1

N/2

coshF4gptÎm

N
S1 −

m

N
DG , s8d

upon using the mutual orthonormality ofhemj and hfmj and
Eq. s6d. Equations8d gives the energy gain at timet from its
initial value at timet=0; its square root gives the amplitude
gain in the lateralsazimuthald perturbations in the same time
interval, as a result of the clumpingsJeansd instability.

Useful estimates may be obtained when there is a large
number of wires. ForN@1, the finite sum in Eq.s8d may be
approximated by an integral. Letx=m/N. Equations8d may
then be approximated byA1std, where

A1std = 2E
0

1/2

dxcoshf4gptÎxs1 − xdg. s9d

A saddle point calculation of Eq.s9d yields a further approxi-
mationA2std to this integral,

A2std =
Îp

4

e2gpt

Îgpt
. s10d

Shown in Fig. 3 are the plots ofAstd, its approximationA1std,
and its further approximationA2std, as a function ofgpt for
an N=300 array. The excellent agreement betweenAstd and
A1std is apparent, and forgpt.1, even the simple asymptotic
form of A2std appears adequate. Figure 3 shows that the ran-
domly distributed initial perturbations evolve at the fastest
growth rategp of thep mode almost from the start, and that
the simple scaling law, Eq.s10d, is valid after one e-fold.

We may use Eq.s10d to estimate the amplitude gain for
an inwardly accelerating array, for which the geometrical
factors such asR andd fFig. 1sadg, and therefore the “grav-

FIG. 3. Energy gain of randomly distributed initial perturbations in aN
=300 array according toAstd, A1std, andA2std. Note that thep mode growth
rate is observed almost from the start.
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ity” g are all functions of time. Taking the square root of Eq.
s10d, the expected amplitude gain over timet reads,

astd ; ÎAstd <
p1/4

2

eG

G1/4, s11d

where

G =E
0

t

gpstddt =E
0

tÎpgstd
2dstd

dt s12d

is the total number of e-folds associated with the amplitude
gain in thep mode. Once more, we expect that Eq.s11d
provides a good approximation wheneverG.1 fFig. 3g.

Figure 4 shows a comparison between the analytic
theory, Eq.s8d, and a numerical simulation of a cylindrical
array of N=300 wires. The simulations were based on the
discrete wire inductance equations developed in Ref. 14,
with a minor reformulation so that the total wire array cur-
rent could be externally imposed as a driving term, and with
the addition of terms to account for the change in wire ge-
ometry as the wires move. These time-dependent ordinary
differential equations were simultaneously solved to model
the motion of the wires under the force of the combined
magnetic fields. The geometry was chosen to mimic typical
experimental configuration used on Sandia’s Z machinesa
1 cm long array 2 cm diameter with three hundred 11.5mm
tungsten wires,2,4 all surrounded by a 2.4–3.0 cm diameter
coaxial return conductord. Rather than using a fast current
pulse as the driving current term, we used a constant total
current 18 MAsabout 60 kA per wired for the simulation. We
verified that each wire carried about the same current to
within 5% maximum deviation over the course of our simu-
lation run. Also, we seed the clumping instability with an
initial randomly distributed azimuthal wire displacement
with a standard deviation of 11.1mm stypical perturbations
from Ref. 2 are ±21±4mmd. To find the squared amplitude
of the azimuthal clumping instability as a function of time,
we calculate at each time step the sum of the squares of each
interwire gap displacement from equilibrium. To account for
the fact that the wire array implodes, which changes the ideal

equilibrium interwire gap over the course of the simulation,
we adjust at each time step the square displacement calcula-
tions accordingly. In Fig. 4, we show the square amplitude of
the gap displacements as calculated by the simulation plotted
along side the analytic theory we developed. As the figure
illustrates, the theory very closely matches the discrete wire
simulation, even though the theory is based on a linear wire
array and the simulation was a cylindrical model. Note that
the plotted simulation data covers 56 ns of simulation time,
and that the transient growth is accurately predicted by the
theory.

IV. REMARKS

In the discrete wire-array model studied in this paper, the
azimuthal wave number of the fastest growing mode in the
clumping sJeansd instability is predeterminedby the wire
separation, as shown in Eq.s5d. This is a unique feature, not
shared by other types of instabilities whose axial wave num-
ber of the most virulent mode is often unknown. The most
unstable clumping mode, designated in this paper as thep
mode, is heavily crowded in a high wire-number array. We
have constructed a time-domain solution which accounts for
mode competition, establishes the transient growth, and pro-
vides the scaling law, all of which are confirmed by numeri-
cal simulations.

While our paper has focused only on the non-kink-type
modes withk=0, wherek is the axial wave number on the
wire, Hammer and Ryutov16 have shown that thep mode is
the most potent among all instabilities in a wire array, as long
as kd,1, in which case thep-mode growth rate is also
insensitive to the internal current distributions on each wire.
This does not mean that three-dimensional effects are unim-
portant, however.

The driving mechanism of the Jeans instability is solely
due to the axial current. In the wireZ-pinch experiments, this
axial current, at some stage, may be shared or even predomi-
nantly carried by the plasma corona. When this happens, the
metallic wires may be detached from the plasma corona, as
far as the Jeans instability is concerned. Attention should
then be shifted to the plasma corona, and the Jeans instability
may acquire rather different characteristics from what is de-
scribed in this paper. For example, the substantial thickness
of the plasma coronascompared with the original wire sized
is expected to have a stabilizing influence according to the
concept of “plasma reduction factor” in the dynamics of
electron sheets18 and of self-gravitating disks.19 Without an
explicit specification of the current profile in the plasma co-
rona, one can no longer identify the azimuthal mode number
sand possibly the radial mode numberd of the most unstable
mode. The radial Rayleigh–Taylor instability, which is absent
in themetallic wirearrayfcf. Eq. s3dg but might occur in the
radially implodingplasmacorona, may also mask or couple
to the azimuthal instability that is studied in this paper.
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