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Azimuthal clumping instabilities in a Z-pinch wire array
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A simple model is constructed to evaluate the temporal evolution of azimuthal clumping instabilities

in a cylindrical array of current-carrying wires. An analytic scaling law is derived, which shows that
randomly seeded perturbations evolve at the rate of the fastest unstable mode, almost from the start.
This instability is entirely analogous to the Jeans instability in a self-gravitating disk, where the
mutual attraction of gravity is replaced by the mutual attraction among the current-carrying wires.
© 2005 American Institute of PhysidDOI: 10.1063/1.1886828

I. INTRODUCTION Il. MODEL

The most intense x-ray pulses in the world, with x-ray. _ Consider an array dil wires, each carrying a currefy,

yield in the megajoule range and x-ray powers in the hun" the z direction, arranged in a circle of radi&s[Fig. 1(a)].

- We assume that the wire radiug is much smaller than the
dreds of terawatts have been generated by Winginches . S .
. . 15 . . wire separatiord=27R/N and that the mass per unit length
and the SandiZ machine'™ The energy conversion effi-

; . ) of the wire ism,. In addition tor,<d<R, we further as-
ciency, from wall plug to x rays, exceeds 10%. In virtually gme that the backposts of the return current are sufficiently
all Z-pinch experiments, ranging from low to high currents, f3; away so that they have negligible effects on the dynami-
and from low wire-number to high wire-number arrays, acal evolution. In a continuum description, this array carries a
host of hydromagnetic activities have been observed. Thesedirected surface currett=1,/d with a surface mass den-
experiments, and their simulations and modefsfocused  sity e=m_/d=Nm /27R. Without any perturbation, this cy-
mostly on the radial and axial perturbations of the wires, andindrical array undergoes a radially inward acceleratgpn
these perturbations are in the form of radial jets and axial9>0) as a result of the self-magnetic field,

e 711 . .
;tnau(;)ns, fohr of son:;e pelcullgé catﬁ_rplllar structufres on the o K2 _ uodK? _ wol? _ HoluK _ k2R
oundary o the metg ic plum __.Int is paper, we focus on Py om,  2dm  2m, Nm,
the azimuthal clumping instability that is unique to a high . 3 _
wire-number array. This instability is entirely analogous toWhere o is the free space permeability. In the Cartesian

the Jeans instability of self-gravitating systetsyith the =~ Model, th',? array lies orr: thg "’;,X',S [Fig. 1b)]. r;l’here IS a
gravitational attraction between matter being replaced by th ta'tlc equilibrium in such an infinite array. In the continuum
. : . . . limit, og becomes the pressure on the current sheet as a
mutual attraction of neighboring wires that carry currents in - ~ .
o L o ) result of the self-magnetic fieldy=K/2 [Fig. 1(b)].
the same direction. This instability was revealed in qun-

- ) ) - ) In the cylindrical array ofN wires, the displacement
published simulations of a 300-wire arrdj,and was previ- oy equilibrium of thenth wire, &, is related to that of the

ously studied by Samokhinand by Hammer and Ryutd¥. (n+1th wire by &,.,=&, exp(—-jm27/N) according to the
The analytic theory in Refs. 15 and 16 showed that the mostjoquet theorem on the eigenmodes in a periodic structure.
unstable azimuthal clumping mode was one in which twoThe azimuthal mode numbaeris restricted in the solution of
neighboring wires paired up. &

In this paper, we go one step further. We use a simple &= &e MmN m=012 .. N2, 2)
model to evaluate the temporal evolution of randomly seeded
perturbations which are composed of all azimuthal clumpingVhereé is an arbitrary constant. We may use the magnetron

modes in a high wire-number array. We show that after abouerminology to designate thre=0 mode as the 2 mode and

one e-fold, these azimuthal perturbations grow at a rate eéhe m=N/2 as them mode on account of the phase shift of

sentially determined by the fastest growing mode—one thatthe perturl_oanon in neighboring W'r&“_‘ Eq_. (2) and h_ere-
- . _ . . after,N/2 is to be replaced byN-1)/2 if N is an odd inte-
corresponds to pairing of two neighboring wires, i.e., the

o , ) ) - ger. In the Cartesian analog treated beldvig. 1(b)], the
mode Wh'ICh is described pelqw. A simple analytic scahngphase shift between neighboring wires ksd, where K,
law for this temporal evolution is constructed and the theory_ ,/r= 2mm/ (Nd) is wave number in thg direction andm
paper, we shall comment on the various aspects of this instahat there is no axial variation nor axial displacement of the

@

bility. wires.
To calculate the natural mode of oscillation in the Car-
dsandia National Laboratories, Albuquerque, NM 87185. tesian array[Fig. 1(b)], let (x,,Yy,) be the small signal dis-
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FIG. 1. (a) A circular array ofN metallic wires, each carrying a current in
the z direction, out of the plane of papeih) The Cartesian analog. Also
shown is the displacement, andy,, of thenth wire from its unperturbed

position (x,y)=(0,nd).

placement of thenth wire from its equilibrium coordinates
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FIG. 2. The vecto,, from the instantaneous coordinates of the zeroth wire
(Xg,Yo) to the instantaneous coordinates of tite wire (x,,,nd+y,).
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and obtain the linearized force law for the zeroth wire in
component form,

%:_4%[%(1—%)}(0, m=0,1,2,...N”2, (3

'}"024)’;[E<1—E>]y0, m=0,1,2, ... N/2, (4)
Yo~ \/727_3’ (5

where the dot denotes a time derivative. Note thats the
growth rate of ther mode(m=N/2) according to Eq(4). In

the above infinite sum, theth term decays like I? and it
represents the combined force on the zeroth wire bynthe
and the #th wire. Thus, a circular array dff wires may be
adequately represented by a Cartesian array of infinite num-
ber of wires if(N/4)>>1, as far as the azimuthal clumping
instability is concerned, since in this case the wire at the top

(0,nd), wheren takes on all positive and negative integers, of the circular array, say, will at most experience K&
and zero. It suffices to focus on the equation of motion forwires to its left, as well as thB/4 wires to its right.

just one wire, say tha=0 wire, sinces, in Eq. (2) stands for
both x,, andy,. Let S,=[X,—Xp,nd+y,~Y,] be the instanta-
neous vector from the zeroth wire to tiheh wire [Fig. 2.

From Egs.(3) and(4), we note that the andy compo-
nents of motions are decoupled. This is obvious from the
direction of F,,, which, being parallel t&, [Fig. 2], has a

The force per unit length on the zeroth wire, by the parallelnonzero component ir (y) only if x, (y,) is nonzero. Note

current on thenth wire, is easily shown to beF,
=(Sy/ S uol2/ (27) by the Biot—Savart law, whers, is the
magnitude ofS,,. Sincex, (y,,) is related tax, (o) in the form
of Eq. (2), S,, and thereforé-,,, are both functions of, and
Yo- LinearizeF, to first order inxy andygy, sumF, over all
integer values oh (positive and negatiyeo obtain the total

from Eg. (3) that in this planar model, thedirected(radial
motion is always stable. This is also obvious from Fig)1
which shows that there is no distinction if there were an
acceleration either in thextdirection or x direction. Thus,
the sign of this acceleration should not matter as far as
x-directed motions are concerned. The lateral motion, i.e.,
the y-directed or azimuthal motion, is unstable according to

force per unit length on the zeroth wire, apply the following Eq. (4). This is the clumping instability, simply due to the

formulas to this infinite sum:

fact that current filaments flowing in the same direction have
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a tendency to attract each other. The mechanism is entirely 10°
analogous to the Jeans instability in self-gravitating didks.
Including the exponential time dependence (@xp), in
Eq. (2), Eq. (4) then gives the growth rate of the lateral

(clumping instability of themth mode as 102} ]

m m
=2\ yl1y ) M=0.1.2. .. N2. (6)

10" E

amplitude squared

Equation(4) also admits damping modes whose amplitudes
vary as exp-ymt). The 2r mode(m=0) is stable, it corre- - — Aft)
sponds to a constant, static, azimuthal displacement on each - wun Aqgt)
wire and is thus ignored. From E(5), we see that all other Seneeg - At
modes withm>0 have the growth rate increasing monotoni- 10° : : . : . L :
cally with m, with the = mode(m=N/2) having the highest 0 05 1 15 2 25 3 35 4
growth ratey,. This 7 mode leads to the merging of two Bt

neighboring wires. Its.grovv.th rate is Id.emlcal to Eq. 6.6 of FIG. 3. Energy gain of randomly distributed initial perturbations itNa
Hammer and Ryum%ﬁ its being the maximum value, which =300 array according tA(t), A;(t), andAy(t). Note that ther mode growth
also agrees with the earlier work of SamokHirFor small  rate is observed almost from the start.

values ofm, Eq. (6) may be approximated by Ref. 16,

=2y,(m/N)*2=(k,g)*/?, which is the same expression of the

Jeans InStabI|Ity fOI’ a Self graV|tat|ng dlSk n the |Ong wave- the a 'S andb 'S |n Eq (7) W|" have the same magr“tude
length limit!® Note that this Jeans instability in the Wi  that is, |a|= |b |=|ay| for all i,j=1,2,3,...N/2. We next
pinch is robust, because tkiarge) value ofk, is fixedby the  take the inner product of Eq7) to obtain,

wire separatiord as shown in Eq(5).

Note that in a high wire-number array, the unstable MUK
modes are heavily crowded. For example, §br 300, all 50
modes withm=100-150 have their growth rates within 6% N2
of the most unstable mode, themode(m=150), according 2 m m

-—2 cos}‘[zlyp (1 )]

2 N/2
== cosh2y,t)
N m=1

(8)

to Eq.(6). Therefore, in the following section, we study the N N
temporal evolution of initial perturbations, which we assume
to be randomly and uniformly distributed among all modes,upon using the mutual orthonormality ¢} and{f,} and
i.e., the spectral equivalent of white noise. Eq. (6). Equation(8) gives the energy gain at tintefrom its
initial value at timet=0; its square root gives the amplitude
gain in the lateralazimuthal perturbations in the same time
interval, as a result of the clumpirdeans instability.
Useful estimates may be obtained when there is a large
number of wires. FON> 1, the finite sum in Eq(8) may be
The equations of motion for the lateral displacements irAPproximated by an integral. L&t=m/N. Equation(8) may
the N-wire array may be described by &2uple vector,y  then be approximated b§u(t), where
=(Y1,¥Y2, --- YN, DY1,DYo, ... ,.Dyy), Wherey, is the lateral 1/2
displacement anBy,, is the lateral velocity of theth wire at Aq(t) = 2f dx cosh4ytVx(1 -x)]. 9
time t. This state vectolY may be represented as a linear 0

superposition of the eigenvectaeg andfy, respectively, of A saddle point calculation of Eq9) yields a further approxi-

IIl. TEMPORAL EVOLUTION OF INITIAL RANDOM
PERTURBATIONS

the growing modes and decaying modes, mation A,(t) to this integral,
N/2 N/2 — 92th
Y= X anere’ + 3 bfpe @ A== (10
m=1 m=1 4 VYl

where the coefficienta,, and b,,, depend on the initial con- Shown in Fig. 3 are the plots @f(t), its approximatiorA,(t),
dition att=0, and all eigenvectors in the combined sets ofand its further approximatioA,(t), as a function ofy,t for
{e,} and{f} are independent and mutually orthonormal. Thean N=300 array. The excellent agreement betwéén and
nth component of the eigenvectaggandf,,is in the form of ~ A4(t) is apparent, and foy,t> 1, even the simple asymptotic
Eq. (2). form of A,(t) appears adequate. Figure 3 shows that the ran-
We now assume that at time 0, the wires are at rest but domly distributed initial perturbations evolve at the fastest
they have some initial random perturbations in their azi-growth ratey, of the = mode almost from the start, and that
muthal positions. The condition of zero initial velocity on the simple scaling law, Eq10), is valid after one e-fold.
each wire implies thala,|=|b,| for all min Eq. (7). If we We may use Eq(10) to estimate the amplitude gain for
further assume that the initial random azimuthal displacean inwardly accelerating array, for which the geometrical
ments are uniformly distributed among all modes, then alffactors such aR andd [Fig. 1(a)], and therefore the “grav-
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10’ r r \ equilibrium interwire gap over the course of the simulation,
~— Theory we adjust at each time step the square displacement calcula-
-~ - Constant Current Simulation tions accordingly. In Fig. 4, we show the square amplitude of
the gap displacements as calculated by the simulation plotted
along side the analytic theory we developed. As the figure
illustrates, the theory very closely matches the discrete wire
simulation, even though the theory is based on a linear wire
array and the simulation was a cylindrical model. Note that
the plotted simulation data covers 56 ns of simulation time,
and that the transient growth is accurately predicted by the
theory.

amplitude squared

10° IV. REMARKS

Y In the discrete wire-array model studied in this paper, the
d azimuthal wave number of the fastest growing mode in the
FIG. 4. Comparison of simulation of 300 wires with the analytic formula, ClUMPINg (Jeans instability is predeterminedby the wire
Eq. (8). separation, as shown in E(). This is a unique feature, not
shared by other types of instabilities whose axial wave num-
ber of the most virulent mode is often unknown. The most
ity” g are all functions of time. Taking the square root of Eq.unstable clumping mode, designated in this paper asrthe
(10), the expected amplitude gain over timeeads, mode, is heavily crowded in a high wire-number array. We
1/4 have constructed a time-domain solution which accounts for
(11 mode competition, establishes the transient growth, and pro-
vides the scaling law, all of which are confirmed by numeri-

— T
a(t) = VA(t) = A

where cal simulations.
¢ ‘ While our paper has focused only on the non-kink-type
r :f 'yp(t)dt:f A /&(t)dt (12)  modes withk=0, wherek is the axial wave number on the
0 o ¥ 2d(t) wire, Hammer and Ryutd% have shown that ther mode is

is the total number of e-folds associated with the amplitudethe most potent among all instabilities in a wire array, as long

o as kd<1, in which case ther-mode growth rate is also
gain in thes mode. Once more, we expect that E4l) . o : 2 X
. S . insensitive to the internal current distributions on each wire.
provides a good approximation wheneu&r 1 [Fig. 3.

. . . This does not mean that three-dimensional effects are unim-
Figure 4 shows a comparison between the analytic

. . . L portant, however.

theory, Eq.(8), and a numerical simulation of a cylindrical L . . o
arrayyof I\?=(32)O wires. The simulations were bas)(lad on the The driving mechanism of the Jeans instability is solely
discrete wire inductaﬁce cquations developed in Ref 14due to the axial current. In the wipinch experiments, this

. : € €4 pe " ~axial current, at some stage, may be shared or even predomi-
with a minor reformulation so that the total wire array cur- nantly carried by the plasma corona. When this haopens. the
rent could be externally imposed as a driving term, and with y cart y P ' ppens,
the addition of terms to account for the change in wire ge_metalllc wires may be detached from the plasma corona, as

: . S far th ns instability i ncerned. Attention shoul
ometry as the wires move. These time-dependent ordinary. 2> "¢ Jeans instability is concerned ention should

. : : . en be shifted to the plasma corona, and the Jeans instability
differential equations were simultaneously solved to mode . . L .
. : .~ ~may acquire rather different characteristics from what is de-
the motion of the wires under the force of the combined

L e .~ ~scribed in this paper. For example, the substantial thickness
magnetic fields. The geometry was chosen to mimic typica . - o
. ) ) . ) of the plasma coronécompared with the original wire size
experimental configuration used on Sandia’s Z maclhime . S .
. . is expected to have a stabilizing influence according to the
1 cm long array 2 cm diameter with three hundred 11 “ . . .
o : concept of “plasma reduction factor” in the dynamics of
tungsten wireé;* all surrounded by a 2.4—3.0 cm diameter o . :
. . electron sheetS and of self-gravitating disks. Without an
coaxial return conductor Rather than using a fast current

pulse as the driving current term, we used a constant totaﬁXp“CIt specification of the current profile in the plasma co-

current 18 MA(about 60 kA per wirgfor the simulation. We fona, one can no Ionger identify the azimuthal mode number
o ) . and possibly the radial mode numpef the most unstable
verified that each wire carried about the same current tcg

- : o : mode. The radial Rayleigh—Taylor instability, which is absent
within 5% maximum deviation over the course of our simu-. o . :

) T o . in the metallic wirearray[cf. Eq. (3)] but might occur in the
lation run. Also, we seed the clumping instability with an radially imolodinaplasmacorona. mav also mask or couple
initial randomly distributed azimuthal wire displacement y imp ap » May P

with a standard deviation of 11,dm (typical perturbations to the azimuthal instability that is studied in this paper.
from Ref. 2 are +21+4um). To find the squared amplitude
of the azimuthal clumping instability as a function of time,
we calculate at each time step the sum of the squares of each This work was supported by DOE through a subcontract
interwire gap displacement from equilibrium. To account forto the University of Michigan from the Sandia National
the fact that the wire array implodes, which changes the idedlaboratories. The research by one of the autf@rS,) was
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