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The recombination dynamics of geminate polaron pair (PP) states are investigated by monitoring
electric-field-induced delayed fluorescence in thin films consisting of the green laser dye,
Coumarin-6 (C6) doped at 1 wt % into 4,4'-bis(N-carbazolyl)biphenyl. We find that the PP decay
follows 7 (with m ~0.1), where 7is the time that the PPs are held in the field. This sublinear decay
suggests the possibility for accumulation of PPs over time that can then be reconverted into excitons
upon field removal. We demonstrate the generation of short (~50 ns full width at half maximum)
bursts of C6 fluorescence with peak intensities >20 times the steady-state fluorescence intensity
(corresponding to a C6 singlet exciton density Ng>4 X 10'> cm?) when pumped continuously by a
low intensity (<1 W/cm?) laser in the presence of a pulsed electric field. © 2006 American

Institute of Physics. [DOI: 10.1063/1.2385840]

The past several years have witnessed substantial
progressl‘ in the development of optically pumped organic
semiconductor lasers (OSLs), with the ultimate goal of
achieving electrically pumped lasing. Efforts to create an
electrically pumped OSL are driven by the broad wavelength
tunability and high temperature stability of their emission
characteristics that have been demonstrated in optically
pumped devices.® Several factors have prevented the realiza-
tion of an electrically pumped OSL, including singlet-triplet
and singlet-polaron annihilation,” increased cavitsy loss re-
sulting from polaron and excited state absorption,” and high
waveguide loss due to incorporation of injecting electrodes
into the cavity.1

In contrast to optical excitation, electrical injection intro-
duces polarons in addition to forming three triplet excitons
for every singlet.ﬁ’7 Both singlet-triplet and singlet-polaron
annihilation reactions®™ can dramatically quench the radia-
tive singlet density under high electrical injection.4 Quench-
ing by these species is worsened under electrical excitation
since triplet and polaron densities are ~1000 times higher
than the singlet density due to their comparatively longer
lifetimes (=10 us). Attaining high singlet density in the ab-
sence of triplets and polarons, as in the case of optically
pumped OSLs, is crucial to reaching the lasing threshold.”*

Here, we investigate the recombination dynamics of
metastable geminate polaron-pair (PP) states by monitoring
the electric-field-induced delayed fluorescence produced by
the guest/host system of Coumarin-6 (C6) doped into
4,4’ -bis(N-carbazolyl)biphenyl (CBP). We use low intensity,
continuous-wave (cw) optical pumping in the presence of a
pulsed electric field to accumulate a high density of meta-
stable PP states over time, that are then rapidly reconverted
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into excitons upon removal of the electric field, leading to
peak singlet densities of ~4 X 10'5 cm™3. This suggests a
method to reach laser threshold excitation densities’
(~10'7 cm™) by continuously pumping with a low intensity
(<1 W/cm?) optical source. In comparison with direct elec-
trical injection, free polaron densities should be reduced by
this process, and triplet exciton formation is expected to be
minimal based on previous work concerning the spin-
conserving nature of geminate pair recombination.®!°

Field-induced delayed fluorescence has been observed
previously in ladder-type poly(para-phenylene)
polymers.lo’]l In those studies, samples were excited by a
laser pulse in the presence of an electric field, and at times
long after the natural photoluminescent (PL) decay, a burst of
luminescence was observed upon removal of the field. It was
concluded that a portion of the initially generated singlet
excitons forms interchain PPs that can be stabilized against
geminate recombination by the external electric field, which
acts to screen the PP Coulomb potential. When the field is
removed, rapid reformation into singlet excitons occurs,
which then radiatively decay in a fluorescence burst. Here,
we study this phenomenon in the small molecule guest/host
system consisting of 1 wt % C6 doped into the host material
CBP.

Devices consisted of a symmetric organic insulator
(50 nm)/organic semiconductor active layer
(100 nm)/organic insulator (50 nm) stack sandwiched be-
tween two electrodes to form a capacitor. Commercially
available Teflon AF was used for the insulating layers due to
its  high thin-film dielectric = breakdown strength
(>2 MV/cm) (Ref. 12) and optical transparency in the ul-
traviolet. The organic layers were thermally evaporated in
sequence onto a precleaned13 indium tin oxide (ITO) coated
glass substrate under a vacuum of 1077 Torr. The active layer
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FIG. 1. Luminescence transients for CBP (A <400 nm, dashed line) and C6
(N>490 nm, solid line) measured in the vicinity of voltage turnoff. The
timing relationship between excitation and voltage pulse is shown at lower
left. Inset: Spectrum of the prompt photoluminescence.

consists of CBP coevaporated with C6 at a 100:1 weight
ratio. The devices were completed by depositing a 100 nm
thick Al cathode through a shadow mask with an array of
1 mm diameter openings. For testing, samples were loaded
into an electrically and optically accessible cryostat evacu-
ated to 50 mTorr. Luminescent transients were collected by
focusing light from each device into a Hamamatsu C4334
streak camera. Electrical pulses were provided at a rate of
17 Hz by an HP4114A pulse generator, connected in parallel
to the 50 ) termination of an oscilloscope to monitor the
voltage transient. Device capacitances were measured to
be ~260 pF at 1 MHz, resulting in a RC time constant of
~13 ns.

Approximately 1 us after the application of a V=40 V
pulse, a A\=337 nm wavelength N, laser pulse (600 ps dura-
tion, 6.8 uJ energy, focused to a 1 mm diameter spot) was
incident on the device through the ITO contact. This wave-
length is strongly absorbed in CBP (a=2X10° cm™! at
337 nm), but not in C6 (A,=450 nm). Accounting for the
dielectric constants of the organic layers (etefon=1.9, &or,
=3.0), this applied voltage translates into a uniform field of
1.6 MV/cm across the active layer. The streak camera detec-
tion window was synchronized to observe the point of volt-
age turnoff, occurring at a time 7 following laser excitation.

As shown in Fig. 1 for 7=115 ns, a burst of only C6
luminescence appears (rise time ~20 ns) upon field removal,
independent of bias polarity. The large fraction of CBP lumi-
nescence in the prompt spectrum (Fig. 1, inset) arises from
incomplete CBP—C6 Forster transfer that results from
donor/acceptor spectral mismatch. Note that the long lifetime
component of the CBP transient is likely the result of re-
population of the CBP singlet from triplet-triplet
annihilation."* The C6 transient also contains this component
as a result of the CBP— C6 transfer.

After background subtracting the long-time component
from the C6 transient, we find that the burst decay is mo-
noexponential with lifetime 7p=13+2 ns. This is signifi-
cantly longer than the natural lifetime of C6, 7¢q
=2.1+0.1 ns, measured in these devices. However, it corre-
sponds well with the calculated RC time constant. Thus, for
short holding times (7<<10 ws), the burst dynamics are
likely limited by the discharge of the electric field across the
device."
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FIG. 2. Decay of the time-integrated burst intensity vs holding electric field
time 7. The decay is fitted with a power law 77", where m=0.10+0.02.
Inset: Fluorescent burst transients for 7=0.115, 7, and 100 us.

Figure 2 shows the energy of the C6 burst as a function
of 7. The burst energy declines over four orders of magnitude
in time according to 7", where m ~0.1. This is qualitatively
similar to the behavior found in polymers;“’ls_ ” however,
the exponent in that case was m~0.5. The slow power law
decay and the low degree of dispersion in burst transients
with variation in 7 are reflective of the stability of the PPs
against dissociation. Indeed, energetic disorder is crucial to
the burst phenomenon since PPs that relax into the tail of the
density of states have their motion restricted, increasing the
likelihood that they will remain correlated while in the elec-
tric field.

The field-delayed burst was not observed in neat CBP
films. Nor does it occur in CBP-C6 devices if the excitation
wavelength is below the optical gap of CBP, where only C6
molecules are excited. Thus, the use of a guest/host system is
critical to generate the stable PP states that create the fluo-
rescence burst. Here, the energetic difference in the highest
occupied molecular orbital (HOMO) levels of C6 and CBP
(5.4 and 6.3 eV, respectively'g’lg) provides a driving force to
break the strongly bound [Ez~ 1 eV (Ref. 20)] CBP Frenkel
excitons. The hole is then localized on the C6 HOMO in the
potential well created by the surrounding CBP molecules.
This further stabilizes the PP against complete dissociation,
since only the low mobility electron is capable of hopping
out of the mutual Coulomb potential.

Due to the sublinear decay in density, PPs can accumu-
late at a rate of roughly 7'~ by continuous optical pumping.
To accomplish this, we use the A=325 nm line of a cw HeCd
laser, focused to a 1 mm diameter spot (0.9 W/cm?) on the
same devices as in the N, pumped experiments. Voltage
pulses of 45 V were superimposed upon a —5 V dc bias. The
interpulse reverse bias offset removes free charges resulting
from fully dissociated PPs generated during the pulses by
aiding their recombination. For detection, sample lumines-
cence is filtered (long pass cutoff at N >450 nm) to isolate
the C6 emission. The PL is focused onto a Hamamatsu
C5460 Si avalanche photodiode (APD)/preamplifier module
(f.=10 MHz).

Figure 3(a) shows the APD output for 7=10, 20, 40, and
80 us. A postpulse burst of luminescence that grows in pro-
portion to 7is observed. A magnified view of the increase in
burst intensity is shown in the inset; the burst transients are
limited by the APD frequency response.

We quantify the intensity of the burst through the en-
hancement factor M, equal to the ratio of the burst intensity,
Iyurss to the steady-state luminescence intensity, /gg. Figure
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FIG. 3. (a) Measured APD output showing the growth in burst intensity for
7=10, 20, 40, and 80 us. Inset: Burst transients shown at increased time
resolution. (b) Plot of M, for two devices with different insulating barrier
thicknesses xj,,. The solid lines show fits to Eq. (2) with m=0.1 and
Nppg/ Ngs=0.014£0.002 and 0.033+0.003 for x;,,=20 nm and x;,;=50 nm,
respectively.

3(b) shows M plotted versus pulse width 7 for two devices of
differing insulating barrier thickness, x;,,, but with identical
total device thicknesses. Here, the excited state density of the
burst, N,,, shown on the right-hand scale, is calculated by
estimating the steady-state C6 singlet density Ngg as

_ IO()\/hc)[086] ¢C6TC6
2Labs

ss (1)
and scaling as N.,=MNgg. In Eq. (1), I is the incident laser
intensity (W/ cm?) and & is Planck’s constant. Since the ac-
tive layer thickness, x,;=100 nm, is double the CBP absorp-
tion length, L,=50nm at A=325nm, roughly
(1—exp(—xy/Ly,,) =0.86) of the incident pump is absorbed in
a single pass through the active layer, making cathode reflec-
tion and other microcavity effects negligible. The fraction,
¢ce=78%, of CBP excitations is transferred to C6 mol-
ecules, as estimated from the relative magnitudes of CBP and
C6 emission in the PL spectrum (see Fig. 1, inset).

The early 7 portions of each curve are fitted using the PP
decay power law with m=0.1. That is,

Nss + Nppp7' ™"
M= S5 TPROT

=1+ (Nppg/Nss) 7", (2)
Ngs

where Nppg is the number of initially generated singlets that
can undergo the singlet— PP — singlet chain of conversions.
The roll-off onset in M occurring at 7, [see Fig. 3(b)] re-
sults from a buildup of space charge over time due to those
PPs that completely dissociate. The resulting space charge
creates an opposing internal field that cancels the applied
field, reducing M. Thinning the insulating barriers to
Xins=20 nm [Fig. 3(b)] allows some of the accumulated space
charge to tunnel out of the device. The result is an improve-
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ment of 7. by a factor of 6, and an increase in the peak
enhancement to M =22, corresponding to a C6 singlet den-
sity of N,=4X 10" cm™. Electrical generation of compa-
rable singlet density would require a current density
J>30 A/cm?, where it has been shown that both pump-
induced absorption5 and annihilation losses are already
signiﬁcant.4

In summary, we have investigated the decay dynamics of
external-field-stabilized geminate polaron pairs in the C6/
CBP guest/host system by monitoring the field-induced de-
layed fluorescence bursts following voltage turnoff. The PP
density decays sublinearly according to 7™ (with m~0.1).
We show that geminate PPs can be accumulated under con-
tinuous optical pumping, and then rapidly (<10 ns) recon-
verted into singlet excitons. The cancellation of the external
field by an internal space-charge field arising from fully
dissociated PPs currently limits the maximum attainable
PP density. A peak singlet exciton density of
N =410 cm™ is obtained under low intensity optical
pumping (0.9 W/cm?), with expectations for future improve-
ment toward the ultimate goal of reaching laser threshold
when integrated within an optical microcavity.
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