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We present a novel computational method, the skewed-momenta method �Skew’M�, which applies
a bias to the Maxwell distribution of initial momenta used to generate ensembles of trajectories. As
a result, conformational transitions are accentuated and kinetic properties are calculated more
effectively. The connection to the related puddle jumping method is discussed. A reweighting
scheme permits the exact calculation of kinetic properties. Applications are presented for the rapid
calculation of rate constants for molecular isomerization, and for the efficient reconstruction of
free-energy profiles using a straightforward modification of the Jarzynski identity. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2000242�
I. INTRODUCTION

There has been considerable recent interest in using ap-
proaches that generate ensembles of dynamical paths to cal-
culate kinetic properties of conformational transitions1,2 or to
reconstruct entire free-energy profiles.3 These approaches are
expected to be useful, in particular, for large-dimensional
systems �such as proteins or nucleic acids� because they need
not calculate saddle points, which are exponentially many in
the number of degrees of freedom. The fundamental object
for these types of calculations is an average of an observable
A over an infinite ensemble of trajectories that are initiated
from the equilibrium distribution of phase-space vectors �
= �q ,p�, and which evolve up to time t according to a spe-
cific dynamical flow, which may or may not conserve an
equilibrium distribution. The observable A can be a function
of the end points �0 and �t or a functional of the entire
trajectory leading to �t:

C�t� = �A���t��� , �1�

where �¯� indicates an average over the trajectory ensemble.
For the purposes of our method we wish to rewrite this

trajectory average as an average over the initial distribution,
which is assumed to be in equilibrium. If the system evolves
according to deterministic �e.g., Hamiltonian� dynamics,
each trajectory is uniquely determined by its initial point and
Eq. �1� can be written without modification as an average
over the canonical phase-space distribution.

On the other hand, if the system evolves according to
some stochastic scheme, each initial point can lead to a mul-
titude of trajectories. We note, however, that so long as each
trajectory is initiated from an equilibrium distribution, Eq.
�1� can still be rewritten as an average over the initial distri-
bution:
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C�t� = �Q��0;t��0, �2�

where Q��0 ; t� is the average of the observable A over all
realizations of the dynamics of duration t beginning from the
initial phase-space point �0. We have replaced A���t��, a
functional of the trajectory, with a function of the initial con-
ditions. The notation �¯�0 indicates an average over the
equilibrium distribution at t=0.

In the particular case when a reaction-rate constant is
sought, the average in Eq. �1� takes the form of a correlation
function representing an ensemble-averaged conditional
probability,

C�t� �
�hR��0�hP��t��0

�hR��0��0
�3�

with

hR,P��� = �1 if � � R,P
0 otherwise,

	 �4�

where R and P stand for the reactant and product mac-
rostates, respectively. The dynamics of the system are as-
sumed to be deterministic so that �t is uniquely determined
by �0. C�t� is properly a ratio of two separate averages as
defined by Eq. �2�; however, for the purposes of our method
this distinction is immaterial.

The correlation function in Eq. �3� is in effect related to
the exponential of the reversible work �i.e., the free energy�
involved in confining the phase space trajectories initiated
from R to region P at time t: C�t�=exp�−�WRP

rev�t� /kBT�.1 For
times smaller than the equilibration time of the system but
greater than the time required for transient behavior to relax,
C�t� is a linear function and its time derivative corresponds
to the forward rate constant kR→P.4

Another particular correlation function of recent interest
involves averages over fast, irreversible trajectories with a
nonconservative flow obtained by augmenting the dynamics
with a time-dependent pulling potential. Based on the

5
Jarzynski identity, this strategy reconstructs free-energy pro-
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files along a given reaction coordinate z���t�� from single-
molecule pulling experiments.3 The pulling potential V is
assumed to depend explicitly upon only the pulling coordi-
nate z and the time t. This leads to the second particular form
of Eq. �1� that we shall employ in the present paper:

C�t� � exp�− �F�z�� = ���z − z���t���e−��Wt−V�z���t�,t���� ,

�5�

where, in contrast to Eq. �3�, the average is over an ensemble
of trajectories with initial points canonically distributed on
the time-dependent potential at t=0. We note, however, that
we can recast this average in the form of Eq. �2�:

exp�− �F�z�� = �Qt��0��0, �6�

where Qt��0� is the average of ��z−zt�exp�−��Wt−Vt�� over
all trajectories of length t initiated from the initial point �0.

Wt is the irreversible work done along a particular tra-
jectory in time t, defined by Wt�
0

t d���H������ ,��� /���.
Because the system’s Hamiltonian evolves at a finite rate, the
dynamical flow of the system no longer preserves an equi-
librium distribution. Moreover, Wt here is a functional of the
trajectory, rather than a function of the end points.

Equations �3�, �5�, and �6� are the central equations for
the two correlation functions that constitute the focus of the
numerical method we present herein. Although their calcula-
tions do not require foreknowledge of the energy landscape,
a significant computational burden still remains because in
complex systems one expects a multitude of reaction paths to
contribute to the average.

In the case of Eq. �3�, if too few of the sampled paths
reach the product state, the calculation of C�t� will not con-
verge. This issue is common in systems with barriers that are
large compared with kBT, in which the fraction of trajectories
started in the reactant macrostate which reach the product
state is vanishingly small. This is in effect an enthalpic bar-
rier problem. For many-dimensional systems, there also ex-
ists an entropic barrier problem,6 i.e., the paths that reach the
product region are not expected to cover the path space uni-
formly, and finding the right ones is expected to be exponen-
tially hard in the dimensions of the path space.7

A similar sampling problem occurs in the case of Eq.
�5�; although low-work trajectories contribute most in the
formula, they are rarely sampled. This issue is especially
prevalent in the case of free-energy profiles found from com-
putational pulling simulations, which we consider in this pa-
per. In order to surmount the barriers typically found in such
profiles, a guiding potential moving at speeds at which the
trajectories are far from reversible typically performs signifi-
cantly more work than a reversible trajectory, so that the
average in Eq. �5� converges slowly. In most instances, a
smaller number of slow-pulling trajectories will provide a
more accurate estimate of the potential of mean force.8 How-
ever, in numerical analyses, the time required for a specific
estimate varies linearly with the speed of the pulling simula-
tion but not with the number of trajectories, as easy parallel-
ization allows for the evaluation of additional trajectories

without increasing the simulation time. Therefore, the most
efficient estimate of a free-energy surface may, in fact, be
found from many fast trajectories rather than a few slower
ones.

In order to surmount the difficulties presented above, we
introduce a skewed-momenta �Skew’M� method, in which
we calculate the quantities given in Eqs. �3� and �5� as
weighted averages over initial phase-space distributions in
which the momenta are “skewed” to bias the dynamics along
certain directions. In the calculation of C�t� in Eq. �3�, we
thereby produce trajectories that can surmount entropic and
enthalpic barriers, increasing accuracy of the estimate; in the
calculation of potentials of mean force from Eq. �5�, we pro-
duce low-work trajectories that provide a more accurate es-
timation of the underlying free-energy surface.

The paper is organized as follows. We start with a back-
ground of existing methods that alter the initial distributions
in the “reactant” basin focusing, in particular, on the puddle
jumping method of Tully and coworkers,9,10 which consti-
tutes the inspiration for the Skew’M method, developed in
Sec. III. We continue with a description of our method as
applied to Eqs. �3� and �5�, with numerical examples for each
case. We end with a concluding discussion.

II. BACKGROUND

In a recent development, Corcelli et al.10 have intro-
duced a convenient bias function of general applicability and
of promise to accelerate the convergence of rate calculations
in systems with large enthalpic barriers. They apply a
“puddle” potential �used previously by the same group to
enhance thermodynamic averaging9� that changes the
potential-energy surface from which the trajectories are ini-
tiated to become

V*�q� = �V�q� if V�q� � Vpud

Vpud otherwise,
	 �7�

and the correlation function in Eq. �3� can be written, with-
out approximation,

C�t� =
� d�0�*�q0���p0�w�q0�hR��0�hP��t�

� d�0�*�q0���p0�w�q0�hR��0�

=
�hR��0�hP��t�w�q0��*

�hR��0�w�q0��* , �8�

where w=exp���V*�q0�-V�q0���, �*�q0� is the equilibrium
spatial distribution on V*, ��q0� is the equilibrium distribu-
tion of momenta, and �¯�* indicates that the average is over
the equilibrium distribution corresponding to V*�q�.

The puddle potential removes the deep energy minima
that would ordinarily dominate the initial distribution; trajec-
tories from these deep minima have little chance of crossing
a large barrier into the product region. This strategy bears
resemblance to the hyperdynamics method of Voter,11,12 in
which the bottom of the potential wells are raised without
affecting the barrier tops, and to the related accelerated dy-
namics method developed by Hamelberg et al.13 In the same

category of approaches are the methods of Laio and
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Parrinello,14 of Huber and Kim,15 as well as Grubmuller’s
“conformational flooding” method.16 In an even earlier ref-
erence, the strategy bears resemblance, to some extent, with
that used by Carter et al.17 to generate a constrained “blue-
moon” ensemble from which one originates free trajectories
to obtain rates from correlation functions. Most recently,
Mella18 extended the approach of Corcelli et al. to momen-
tum space by drawing momenta from a Boltzmann-type ini-
tial distribution with an artificially high temperature.

Because the strategy of modifying the initial phase-space
distribution proved to be effective in accelerating the conver-
gence of rate constant calculations, we thought to explore
further modifications that might improve the same calcula-
tion. To this end, we propose here a novel modification of the
method of Corcelli et al.10 Instead of applying a puddle po-
tential or sampling momenta at a higher temperature, we
skew the momentum distribution along certain directions in
conformational space �see Fig. 1�. These directions are to be
chosen to correspond to the local slow manifold, which is the
conformational subspace in which the natural dynamics of
the systems evolves more slowly than in the rest of the
space. By increasing the probability to sample initial mo-
menta that have large-magnitude components in the slow
manifold, the subsequent relaxation dynamics is accelerated
relative to that of the equilibrium distribution. In a procedure
similar to the Corcelli et al. method, the trajectories are re-
weighted and the appropriate correlation function is eventu-
ally recovered.

Unlike any of the methods mentioned above, the pres-
ently proposed skewed-momenta �Skew’M� method involves
accentuating the dynamics only along particularly relevant
directions. A distinct feature of the present method is also
that proper reweighting permits calculation of the exact un-
derlying kinetics. Additionally, because the puddle method
designs changes in the potential energy �i.e, modifies the
coordinate distribution�, while the proposed method alters
the kinetic energy �i.e., modifies the momentum distribution�,
the latter method can be trivially combined with the former
to enable a more efficient exploration of the entire phase-
space dynamics.

Our Skew’M method has the additional advantage of
being easily applicable to high-dimensional systems. The
method of Corcelli et al. is efficient in such systems only if

FIG. 1. A spherical and skewed-momentum distribution in two-dimensional
momentum space.
the puddle can be selectively applied across a few pertinent
degrees of freedom. By contrast, the Skew’M method can be
applied without modification to trajectories involving con-
certed changes in many degrees of freedom.

In addition to accelerating trajectories over enthalpic
barriers, our method can also accelerate the convergence in
high-dimensional systems with entropic barriers: the mo-
mentum distribution can be chosen to encourage motion
along a particular direction while discouraging motion in di-
rections that might lead the trajectories away from the states
of interest.

As another application of our Skew’ M method, we
study the reconstruction of free-energy profiles using the
Jarzynski identity. While at first sight this is a problem dis-
tinct from that of calculating correlations such as those in the
central formula Eq. �3�, Jarzynski’s identity can be cast in
terms of an equilibrium average, Eq. �6�, as explained in the
Introduction. We can then bias the dynamics to follow the
motion of the pulling potential, enhancing our sampling of
the low-work tail of the work distribution and thereby in-
creasing the accuracy of our calculation.

III. THE SKEW’M METHOD

Our method relies upon the identification of a
3N-dimensional vector in configuration space ês, which
points along a favored direction for the motion of the system.
We then choose the initial momenta for our trajectory en-
semble from a Gaussian distribution artificially extended in
the direction of ês, as illustrated in the right panel of Fig. 1.
In the case of free-energy reconstructions from Eq. �6�, we
often wish to induce the motion along a predefined pulling
direction, in which case ês can be found from inspection.
Identifying ês is more difficult in the application of our
method to the calculation of rate constants from Eq. �3�; we
postpone a more involved discussion until Sec. III D.

Because it is cumbersome to generate a Gaussian distri-
bution oriented along an arbitrary axis in the natural coordi-
nates of p, we generate our momenta in a rotated coordinate
system p� in which ês lies along the p1� axis and then rotate
the coordinate axes to place the generated momenta in the
original frame. To this end, we seek a rotation matrix R that
rotates ês onto the p1 axis; this matrix will transform mo-
menta generated in the p� system to the natural coordinates
of the system. We present a detailed algorithm for the calcu-
lation of R in Sec. III B.

In the case of Eq. �6�, the situation is once again simpli-
fied by prior knowledge of the pulling direction: ês can be
taken without loss of generality to lie along one of the natu-
ral Cartesian axes of the system, so that the p and p� systems
are equivalent and no axis rotations need be performed.

A. Skewed momenta and reweighting

At equilibrium, the components of the the momentum
vector p are drawn from the distribution

��p� = C exp�− pTAp� , �9�

where C is a normalization constant and A the 3N�3N di-
agonal matrix A=1/2�M−1, in which �=1/kBT and M is the

mass matrix.
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We choose instead from a biased distribution �B defined
in the p� coordinate system as

�B�p� = C� exp�− p�TA�p�� , �10�

where C� is another normalization constant and A� is a diag-
onal matrix with entries Ai� proportional to the variance of
the Gaussian distribution along the ith axis of the rotated
coordinate system. Since we wish to bias our dynamics along
p0, A1� should be the longest axis, but there is in general no
restriction on the diagonal entries of A� save that they be
positive. The p� are related to p via p=Rp�, where R is the
rotation matrix introduced above.

We write the average in Eq. �2� in the exact factorized
form

C�t� =
� d�0��q0��B�p0�w�p0�Qt��0�

� d�0��q0��B�p0�w�p0�
, �11�

in which ��q0� is the equilibrium spatial distribution, �B�p0�
is defined in Eq. �10�, and the weighting function w�p0�
=exp�p0�

TA�p0�−p0
TAp0�. Qt��0� is defined as before as the

average of some observable A���t�� over all trajectories of
length t initiated from the initial point �0.

C�t� can then be calculated as a weighted average of
Qt��0� over the biased momentum distribution:

C�t� =
�Qt��0�w�p��B

�w�p��B
, �12�

where the notation �¯�B indicates that the momenta in the
calculation are drawn from the biased distribution.

We emphasize that the average represented by Qt��0� is
introduced in the interest of theoretical development only. In
numerical simulations, C�t� is found by averaging over the
observable A���t�� directly. That is,

C�t� =
�i

At
�i�w�i�

�i
w�i�

, �13�

where At
�i� and w�i� are the values for the ith trajectory �with

initial momenta drawn from the biased distribution� of the
observable and the weighting factor, respectively.

A two-dimensional example of a spherical and a skewed-
momentum distribution is displayed in Fig. 1; for this simple
case,

ês =
1

2

�1

1
� ,

and the variance along ês has been extended.

B. Rotations

A general rotation in 3N dimensions can be decomposed
to into a series of main rotations around 3N−2 invariant
axes. Duffin et al.19 present a general matrix for main rota-

tions
Ra,b�	� = rij =�
cos�	� if i = j = a or i = j = b

sin�	� if i = a, j = b

− sin�	� if i = b, j = a

1 if i = j, j � a, j � b

0 otherwise,
� �14�

which rotates the axis pa in the direction of pb by an angle 	.
There are in general many series of main rotations which
would place p1� along p1. We choose, following Aguilera and
Pérez-Aguila,20 to write R as the product of 3N−1 main
rotation matrices such that the ith matrix rotates the vector
component along the ith axis onto the i—1st axis, beginning
with the 3Nth axis and moving iteratively through all axes:

R = R2,1�	1�R3,2�	2� ¯ Ri,i−1�	i� ¯ R3N,3N−1�	3N−1� . �15�

The 	i are identified by performing this series of rota-
tions upon ês, identifying the angle as arctan 2�ei ,ei−1�,
where ei is the component of ês along the ith axis after the
vector has been rotated for all axes greater than i.19 The
well-known function arctan 2 is defined as

arctan 2�y,x� = �
arctan�y/x� x 
 0

arctan�y/x� + � x � 0

�/2 x = 0,y � 0

− �/2 x = 0,y � 0.
� �16�

Note that the individual main rotation matrices differ only
slightly from the identity matrix. Therefore, although the
multiplication of square matrices ordinarily requires O�n3�
operations, the product of a main rotation matrix and an ar-
bitrary matrix of the same size requires only O�n�, making
the expression for R in Eq. �15� O�n2�, where n is the number
of degrees of freedom in the system.

C. Choosing A�

To this point we have said nothing about the other en-
tries of the matrix A�, which we have defined implicitly in
calculating the rotation matrix R. Although Eq. �12� is exact
for any momentum distribution in the rotated reference
frame, in practical implementations it will often be desirable
to choose the entries of A� so that the momenta in the direc-
tions perpendicular to ês are similar to their equilibrium val-
ues, thereby minimizing their contribution to the scaling fac-
tor. However, in systems in which different degrees of
freedom have different masses, the momentum-space shell of
constant kinetic energy will be a high-dimensional ellipsoid
whose axes may not align with the axes of the rotated refer-
ence frame. In such systems it is convenient to work in mass-
weighted coordinates, in which the equilibrium shell is
spherical. That is, define

�i �
pi


mi

, �17�

where mi is the mass of the ith degree of freedom and pi is
the unweighted momentum. In these coordinates, the equilib-
rium matrix entries are simply Ai=� /2, and the equilibrium
distribution can be reproduced in any rotated frame by

ˆ
choosing Ai�=Ai=� /2. The desired bias along es can then be



074107-5 Efficient generation of conformational-transition trajectories J. Chem. Phys. 123, 074107 �2005�
obtained simply by choosing A1=
, for 
�� /2, and mo-
menta in the natural coordinates of the system recovered sub-
sequently by inverting Eq. �17�.

D. The slow manifold

Complex molecules �such as proteins or nucleic acids�
have a dynamical evolution in which fast oscillatory modes
are coupled to slowly varying ones. While the actual time
spent by an ensemble of molecules in the fast manifold is the
same as that spent in the slow manifold, the computer time
needed for convergence of properties in the slow manifold
�when simulating a single molecule� is much larger than that
spent in the fast manifold. Therefore, identifying the slow
manifold and accentuating the motion along it is a good
strategy for enhanced sampling of the overall configuration
space. Moreover, in most cases, motion along the slow mani-
fold includes the largest conformational changes �reactions�,
which are often of primary interest.21,22 The objective of the
method presented here is to develop a momentum distribu-
tion that will bias our path dynamics along the slow mani-
fold, permitting the efficient calculation of kinetic properties
of infrequent reactions.

Building on our previous work aimed at using slow
manifold dynamics to enhance the calculation of thermody-
namic properties,22 we can identify the slow manifold by
calculating ps, the average of the momentum p, over t time
units,

ês =
ps

�ps�
, with ps =

1

t
�

0

t

p���d� . �18�

In order for ês to point along the slow manifold �i.e., for
the components of momentum in the fast manifold to aver-
age to zero�, one has to choose the averaging time t to be
several times larger than the period of the fast modes but
smaller than those of the slow modes.

Alternatively, ês can be found from either a normal-
mode or a quasiharmonic-mode decomposition24 by solving
an eigenvalue-eigenvector problem,

ês = min
�

�ê�Fê = �ê� , �19�

and choosing the lowest-eigenvalue eigenvector obtained
from diagonalizing F, which is either the Hessian of the po-
tential �in case of the harmonic modes� or the inverse of the
covariance matrix of atomic fluctuations �in case of the
quasiharmonic modes�. The normal-mode decomposition can
be performed for a minimized structure in the reactant well,
and ês aligned along a low-frequency mode �or a linear com-
bination of several such slow modes�. The quasiharmonic
calculation can be performed on the same trajectory that was
used to generate the initial distribution of the starting confor-
mations; again, a combination of slow quasiharmonic modes
can be used.

Using the momentum-averaging scheme, we showed
that slow-mode directions are of promise for enhanced sam-
pling and the exploration of large conformational changes,
and have provided a hybrid Monte Carlo �MC� scheme to

23
obtain exact thermal equilibrium properties. For the case of
the alternative choice of ês in Eq. �19�, normal-mode analy-
ses have provided considerable insight into the nature of col-
lective motions in many proteins.25–29 They have demon-
strated that, in systems where an initial and a final structure
are available, the first few low-frequency modes are often
sufficient to describe the large-scale conformational changes
involved in going from one structure to the other.30,31 This
strategy has worked well both for protein-DNA complexes32

and for systems as large as the ribozome.33

In cases when the slow manifold is higher than one di-
mension �which is likely to be the case for complex biomo-
lecular conformational changes�, the guiding vector ês is to
be calculated for each initial configuration or, if there is little
variation in the slow direction for certain inital regions, a
single ês can be applied to some or all of the initial points.

IV. APPLICATION TO KINETIC RATE CONSTANTS

As noted in the Introduction, Eq. �3� is actually a ratio of
two expressions of the form given by Eq. �2�. In practice,
however, we generate the equilibrium spatial distribution
��q� in the reactant region alone, so that the average over the
container function hR is unity, and Eq. �3� can be rewritten as
an average over a biased distribution in the form of Eq. �12�,
with Qt=hP��t�.

In our numerical examples, we generate the initial dis-
tribution using conventional Langevin dynamics. Direction
ês is identified by averaging as in Eq. �18� and a dynamical
trajectory is then initiated from each initial point using a
momentum drawn from �B. C�t� is then calculated as sum of
the weights of those trajectories that are in the product region
at time t, divided by the sum of the weights of all initiated
trajectories.

A. Model system examples

As a test of the efficiency of our Skew’M method, we
apply it to the prototypical example of a particle moving in a
potential in which a double well is coupled to n harmonic
oscillators:

Vn�x,y� = �
i=1

n

a�xi −
�

a
y�2

+ y2�y − b�2. �20�

We choose a=500 and b=2 so that the motion in the y
direction is slow and the motion in the other directions is
fast; for the coupling constant, we choose �=10. V�x ,y� has
stable minima when y=0 or y=b and xi=�y /a for all i. The
reaction barrier is located at y=1, and has a minimum height
1 for b=2. We define y�1 to be the reactant region and all
other y to be the product region. For this simple system, the
theoretical rate constant can be easily calculated from tran-
sition state theory �TST�. We choose �=8, corresponding to
a barrier height of 8kBT, with a calculated rate of 1.47
�10−4. For this simple system, the TST result is close to
exact. Beginning with an equilibrium spatial distribution of
points in the reactant region generated with Langevin dy-
namics �also used to calculate ês�, dynamical trajectories
were integrated over a time t=2.0 using a velocity Verlet

algorithm with a time step of �t=0.01. For a varying number
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of trajectories, C�t� was calculated for an equilibrium mo-
mentum distribution in the regular fashion, for a Skew’M
distribution with A1�=2.0 and Ai�=4.0 �for all i�, and for a
puddle distribution on V with Vpud=1.0. After discarding the
portion of the correlation function corresponding to the tran-
sient period, the slope of the correlation function was found
using least-squares regression on the remaining data points.
Figure 2 depicts the average deviation from the TST value
over 100 independent repeats of the simulations for each of
these three methods.

Additionally, using the same velocity Verlet integration,
100 simulation repeats were run on V for a variety of tem-
perature values. Again, we compare the equilibrium momen-
tum distribution �which varies with ��, a puddle distribution
with Vpud=1.0, and a momentum-weighted distribution with
Ai�=2.0 and the other Ai� equal to their equilibrium values.
Each simulation was composed of 5�105 initial points.
Figure 3 depicts the average deviation over the 100 simula-
tions from the TST value for each method at successive val-
ues of �.

At higher values of � or lower numbers of trajectories,
the calculation from C�t� using the equilibrium distribution
becomes unreliable. At �=12, using 5�105 trajectories,
15% of our simulations showed no transitions at all:
C�t�=0. Those simulations that do observe transitions from

FIG. 2. Average deviation of calculated rate constant from TST value for
100 simulations on the potential V�x� at �=8 with a varying number of
initial points in each simulation.

FIG. 3. Average deviation of calculated rate constant from TST value at
varying � for 100 simulations on the potential V�x� with 5�105 trajectories

per simulation.
the reactant to product regions were unconverged, showing
no linear region from which a rate constant could be ex-
tracted. By contrast, weighted simulations with A1�=2.0 dem-
onstrate convergence in both low-trajectory and low-
temperature simulations; a typical C�t� for each case is
depicted in Fig. 4.

B. Higher-dimensional model systems and
dimensional scaling

Notably, in both Figs. 2 and 3 the puddle method shows
diminished accuracy when compared with both the
momentum-weighted distribution and the equilibrium distri-
bution. These tests illustrate one drawback of the puddle
method; although it is accurate when applied to one or two
separable degrees of freedom, it is not efficient when applied
across several separate terms in a potential, as the system
tends to spread the distribution along directions that are not
of importance in the reaction. Of course, for our simple sys-
tem, we could apply a puddle only to the y2�y−b�2 term, and
thereby attain accurate results. In general, however, for tran-
sitions involving the concerted motion of many degrees of
freedom, the potential cannot be separated along an arbitrary
direction and so the puddle method must be applied blindly
across many degrees of freedom. Thus, in larger systems, we
expect to find similar difficulties as we do in V. In order to
investigate this behavior as a function of the number n of fast
degrees of freedom, we consider simulations on Vn�x� for a
variety of n.

For V2 through V9, 100 simulations were initiated at
�=8 with an equilibrium distribution of 5�105 initial points
per simulation, and the average deviation of the computed
rate from the TST value was compared with 100 simulations
of a weighted-momentum simulation with A1�=2.0 and all
other Ai�=4.0. The results are depicted in Fig. 5. The accu-
racy of the rate constant decreases with increasing dimen-
sion, as the puddle potential tends to drive the initial states
against the perpendicular harmonic oscillators. By contrast,
the accuracy of the weighted-momentum simulation de-

FIG. 4. Typical C�t� at extremes of low-temperature �left panel� and low
number of trajectories �right panel� for weighted and unweighted momen-
tum distributions. The low-temperature and few-trajectory data was found
from simulations with �=12 and 5�105 trajectories and �=8 and
2.5�104 trajectories, respectively.
creases only slightly as the number of dimensions increases.
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V. APPLICATION TO JARZYNSKI’S EQUALITY

We found it of interest to explore the use of the present
method to the generation of the fast-pulling trajectories used
in the Jarzynski equality to derive equilibrium free energy
from nonequilibrium trajectories.5 Jarzynski’s equality states
that

exp�− ��F� = �exp�− �Wt�� , �21�

where �F is the free-energy change, Wt is the work per-
formed on the system during each nonequilibrium trajectory
of length t, and �¯� indicates an average over an infinite
number of trajectories. Equation �6�, which we presented in
the Introduction, represents a specific application of Eq. �21�
to free-energy reconstructions from pulling experiments.
While Jarzynski’s identity is exact, it suffers from the prob-
lem that the trajectories which count most �i.e., the low-work
trajectories� are statistically rare. In computational simula-
tions, which can only sample a finite number of trajectories,
it is important to look for lower-work distributions.

As Jarzynski’s equality is in the form of Eq. �1�, we can
apply to it our skewed-momenta method simply by setting
A���t��=exp�−�Wt�. However, we anticipate that our
method will be most useful in the particular case of calculat-
ing free-energy profiles from pulling experiments, for which
Hummer and Szabo have provided a modified form of
Jarzynski’s expression.3

The average defining the potential of mean force, Eq.
�6�, can be written as an average over a skewed distribution
of initial momenta as described by Eq. �12�. We anticipate
that skewed trajectories have lower work, as the momenta
can be biased so that important degrees of freedom tend to
move in the same direction as the pulling potential. Specifi-
cally, the instantaneous contribution to the work of a given
trajectory is found from an infinitesimal movement of the
time-dependent guiding potential at constant position and
momentum, dW= ��V /�t����t��dt. The dW contribution will
tend to be smaller, or even negative, when the system fol-
lows the motion of the guiding potential naturally rather than

FIG. 5. Average deviation of calculated rate constant from TST value using
a “puddle” of 1.0 and a weighted momentum distribution with A1�=2 and all
other Ai�=4.0 for 100 simulations on the potential Vn�x� for a varying num-
ber of dimensions n at �=8 with 5�105 trajectories per simulation.
being “pulled along.”
As a simple test of this approach, we apply Jarzynski’s
equality to a one-dimensional double well potential of the
form

V�x� = x2�x − a�2 + x �22�

with a harmonic guiding potential

Vpull�x,t� =
k�x − �t�2

2
, �23�

where k is the spring constant and � the pulling velocity. By
artificially increasing the variance of the momentum distri-
bution, we can alter the work distribution to include more
low-work trajectories. To illustrate this, we run Langevin dy-
namics for a particle of unit mass on the potential
Vtot�x�t� , t�=V�x�t��+Vpull�x�t� , t� with kBT=1, k=100, step
size �t=0.001, and friction constant �=0.2 �in arbitrary
units�. We choose �=4 and a=4, so that the barrier height is
many times kBT and the pulling speed far from the reversible
regime. The trajectories were run for a duration t=1000. Fig-
ure 6 displays a histogram of work values for 10 000 trajec-
tories for both a equilibrium initial momentum distribution,
drawn from a Gaussian distribution with zero average and
unit variance, and a biased distribution with zero average and
a variance of 16.0.

Because an individual trajectory’s contribution to the av-
erage in Eq. �21� depends exponentially on the work per-
formed on the system during the trajectory, we expect that
the increased sampling of low-work trajectories will improve
the accuracy of the free-energy calculation.

As a test of the practical efficiency of our method, we
recreate the function V�x� using Eqs. �6� and �12� from a
number of high-speed pulling simulations using a technique
analogous to the weighted histogram method:3

exp�− �G0�z�� =
�t

���z − z�t��W�
�W�

�t

exp�− �V�z,t��
�W�

. �24�

A detailed numerical implementation of this method is dis-

FIG. 6. Histogram of work values for 10 000 trajectories on Vtot�x�t� , t� for
both an equilibrium distribution with variance of 1.0 and a biased distribu-
tion with variance of 16.0.
cussed in Ref. 3. W is the statistical weight of a trajectory,
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and the averages are taken over the ensemble of trajectories.
In the unbiased case, W=exp�−�Wt�, while in the biased
case an additional factor must be included to account for the
skewed-momentum distribution: W=exp�−�Wt�w�p�.

In our simple system, z���t��=x�t�, and we choose the
dynamical constants �t, �, and kBT to be the same as their
values in our previous example. We initiate two pulling
simulations, one with an equilibrium momentum distribution
and one with a variance of 16, of 1000 trajectories each for
a=4, �=4, k=100, and total time t=5, and reconstruct the
free-energy profile using Eq. �24�. The results of these simu-
lations, displayed in Fig. 7, show an increased accuracy in
the reconstruction using the Skew’M method.

In future work, it should be of interest to explore the
combination of the Skew’M method to alter the momentum
distribution with novel methods that either apply periodic
loading34 or Monte Carlo sampling of nonequilibrium trajec-
tories from a work-weighted ensemble.35 A quantum analog
of the Jarzynski method has been recently proposed as a
mean to describe the dephasing of quantum coherences.36 It
would also be of interest to explore whether biasing the flow
of adiabatic states in the corresponding master equation in a
numerical realization of a nonequilibrium line-shape mea-
surement would yield a faster convergence of spectroscopic
properties.

VI. CONCLUDING DISCUSSION

Although calculating the kinetic properties from a trajec-
tory ensemble avoids the often difficult task of identifying
transition states and reaction coordinates, in systems with
high energetic or entropic barriers its accuracy will suffer, as
few paths in the ensemble will make it to the product region.
We have presented a method that mitigates this problem by
drawing momenta for molecular dynamics from a distribu-
tion that is artificially enhanced along the system’s slow de-
grees of freedom, which we find by averaging the momenta

FIG. 7. Reconstruction of the potential V�x� �solid line� from 10 000 pulling
simulations with a=4, v=4, and k=100 for both an equilibrium momentum
distribution and a biased momentum distribution with zero mean and vari-
ance of 16.0. The reconstruction from the equilibrium trajectories shows
significant error, especially in the barrier region, while the biased recon-
struction is reasonably accurate, save for a deviation near x=0 that is shared
by the unbiased reconstruction and which is a consequence of poor sampling
near the beginning of the pulling run.
over a short dynamics run. Additionally, we have shown that
our “skewed momenta” addresses a problem endemic to the
reconstruction of free-energy profiles from fast-pulling ex-
periments using Jarzynski’s identity, namely, that although
low-work trajectories have the largest statistical weight, they
are rarely sampled, especially when the pulling is fast. Our
method generates more low-work trajectories by biasing the
relevant degrees of freedom so that they tend to move with
the pulling potential, thereby lowering the work done on the
system and increasing the accuracy of the calculated poten-
tial of mean force. This fact is in accord with recent theoret-
ical work analyzing the Jarzynski equality for an ideal gas,
for which Lua and Grosberg37 have noted that the trajectories
in the far tails of the Maxwell distribution are the key ones in
determining the accuracy of the Jarzynski method when the
system’s volume is altered rapidly. While an ideal gas is a
crude “flat landscape” approximation, it is important to real-
ize that the far tails of the Boltzmann distribution are pref-
erentially sampled, in our method, only along important de-
grees of freedom along which major conformational changes
are expected.

The method is likely to be useful for the numerical cal-
culation of other correlation functions of importance to com-
plex molecules. An example is the orientation correlation
functions of interest in nuclear magnetic resonance �NMR�-
derived dynamical estimates for proteins and nucleic acids.38

Such correlations are difficult to converge numerically when
multiple conformations separated by large free-energy barri-
ers contribute to their measurement.

Future improvements of the method presented here
should take into account that the direction of the slow mani-
fold in general can change �i.e., direction of importance can
curve around conformational space�. For the method to be
effective in such instances, one would have to bias not only
the initial momentum distribution, but, using a periodically
updated ês, also the actual trajectories that lead to relaxation
out of the product well. In this case, one would also need to
reweight the trajectory itself, not only the initial points. If the
propagation uses Langevin dynamics, the formalism of sto-
chastic path integrals39 leads to the proper weight described
by the exponential of a Onsager-Machlup action40–42 that
would have to be calculated along each trajectory according
to the formula

S���t�� = �
t1

t2

dt�Mq̈�t� + �p�t� + �V�q�t���2. �25�
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