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The metalloporphyrins, Me-TSPPfMe=CrsIII d, MnsIII d, MnsII d, FesIII d, and TSPP5meso-stetra-
p-sulfonatophenyldporphyring, which possess electron spinsS=3/2, 2, 5/2, and 5/2,respectively,
comprise an important series of model systems for mechanistic studies of NMR paramagnetic
relaxation enhancementsNMR-PREd. For theseS.1/2 spin systems, the NMR-PRE depends
critically on the detailed form of the zero-field splittingszfsd tensor. We report the results of
experimental and theoretical studies of the NMR relaxation mechanism associated with
FesIII d-TSPP, a spin 5/2 complex for which the overall zfs is relatively largesD<10 cm−1d. A
comparison of experimental data with spin dynamics simulations shows that the primary
determinant of the shape of the magnetic relaxation dispersion profile of the water protonR1 is the
tetragonal fourth-order component of the zfs tensor. The relaxation mechanism, which has not
previously been described, is a consequence of zfs-induced mixing of the spin eigenfunctions of
adjacent Kramers doublets. We have also investigated the magnetic-field dependence of
electron-spin relaxation forS=5/2 in thepresence of a large zfs, such as occurs in FesIII d-TSPP.
Calculations show that field dependence of this kind is suppressed in the vicinity of the zfs limit, in
agreement with observation. ©2005 American Institute of Physics. fDOI: 10.1063/1.1886748g

I. INTRODUCTION

The metalloporphyrins, Me-TSPPfMe=CrIII , MnIII ,
MnII, FeIII , and TSPP5meso-stetra-p-sulfonatophenyldpor-
phyrin, see Fig. 1g, are water-soluble paramagnetic com-
plexes with electron spins,S=3/2, 2, 5/2, and 5/2,respec-
tively. These complexes are important model systems for
mechanistic studies of NMR paramagnetic relaxation en-
hancementsNMR-PREd. For electron spins,S.1/2, the
NMR-PRE depends on the detailed form of the form of the
electron-spin Hamiltonian, which in porphyrin complexes is
relatively simple because of physical and chemical con-
straints imposed by the four-fold site symmetry of the metal
ion. In particular, the unique axis of the zero-field splitting
szfsd tensor coincides with the four-fold rotation axis, and
orthorhombic zfs tensor components vanish; only the axial
components of the zfs tensorsD and B4

0d plus, for Sù2, a
tetragonal fourth-order componentsB4

4d are nonzero. This
study concerns the relaxation mechanism for FesIII d-TSPP,
an S=5/2 complex with a relatively large zfssD
<10 cm−1d. We show below that the physical mechanism of
the NMR-PRE depends critically on the tetragonal fourth-
order zfs tensor component,B4

4.
We report new magnetic relaxation dispersionsMRDd

measurements for aqueous samples of FesIII d-TSPP.sMRD
refers to the profile of a NMRR1 or R2 relaxation rate mea-
sured as a function of laboratory magnetic-field strength;
usually—as in the experiments described here—for the sol-
vent water proton resonance at Zeeman field strengths,B0

ø2 T.d To provide a framework for interpreting the experi-

mental data, we have carried out a series of model calcula-
tions, which explore the influence of each nonvanishing zfs
tensor component, both quadratic and fourth order, on the
form of the MRD profile. The experimental and theoretical
results, taken together, lead to the conclusion that the pri-
mary determinant of the form of the MRD profile for this
spin systemsi.e., for S=5/2 with a largeD parameterd is the
ratio sB4

4/Dd, whereD is the quadratic cylindrical zfs param-
eter of ESR spectroscopy. The central role of theB4

4 term in
the relaxation mechanism of a Kramers spin system has not
previously been recognized.

In prior work,1,2 we have characterized NMR relaxation
in the S=2 complex, MnsIII d-TSPP. For this non-Kramers
spin system, the properties of the MRD profile are likewise
determined principally by the tetragonal fourth-order zfs
component, although the role ofB4

4 in the relaxation mecha-
nism is entirely different physically forS=2 than for S
=5/2. ForS=2, the influence on the NMR-PRE results from
a small B4

4-induced splitting of themS= ±2 non-Kramers
doublet, while forS=5/2, it results fromB4

4-induced mixing
of themS= ±3/2 and75/2 spin eigenfunctions. For both the
Kramers and non-Kramers spin systems, the axial quadratic
zfs term,D, while an order of magnitude larger thanB4

4, has
little influence on the properties of the MRD profile as long
as the spin system remains in the vicinity of the zfs limit
fi.e., as long as the largest zfs exceed the electronic Zeeman
energy, as is approximately true for both FesIII d-TSPP and
MnsIII d-TSPP over the range of laboratory field strengths in
MRD experimentsg.

In summary, our prior investigations of the three metal-
loporphyrins, CrsIII d-TSPPsRef. 3d sS=3/2d, MnsIII d-TSPP
sRefs. 1 and 2d sS=2d, and MnsII d-TSPPsRef. 4d sS=5/2dadElectronic mail: rrsharp@umich.edu
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sthe latter using the data from Bryantet al.5d, have found
qualitative differences in the relaxation mechanisms arising
from characteristic differences in the spin physics. The
present study extends the series with FesIII d-TSPP, a model
S=5/2 spin system. This system differs from MnsII d-TSPP
salso S=5/2d in that the zfs is much larger, a fact that has
critical consequences for the relaxation mechanism.

We have also investigated the effect of a large permanent
zfs, as occurs in FesIII d-TSPP, on the magnetic-field depen-
dence of electron-spin relaxation. Calculations which include
effects of the static zfs interaction indicate that the electron
spinsT1 andT2 are nearly field independent across the range
of the MRD experiment, in agreement with experiment but
in marked disagreement with Bloembergen–Morgan theory.6

II. EXPERIMENT

FesIII d-TSPP, purchased from Frontier ScientificsLogan,
Utahd, was used as supplied. Aqueous buffered samples, con-
taining 1.0–1.2-mM FesIII d-TSPP and 50.0-mM total buffer,
were prepared with integer pH values in the range pH 1–5.
Hydrion dry buffer salts from Aldrich were used: pH 2 and 3
were biphthalate/sulphamic acid, pH 4 was biphthalate, and
pH 5 was phosphate; the pH 1 buffer was certified standard
sHCl/NaCld from Fisher Scientific. Distilled, de-ionized wa-
ter was taken from a Barnsted millipore filtration system
with both ionic and organic sections. The samples were
placed in 7-mm, acid-washed borosilicate test tubes, de-
gassed by a series of five freeze-pump-thaw cycles, and
sealed under vacuum. UV-visible absorption spectra were
collected on a Shimadzu UV1601 spectrometer. NMRT1 re-
laxation times were measured at frequencies of 0.6–70 MHz
at 20 °C using a custom-built tunable NMR spectrometer.2

III. THEORY

The magnetic-field dependence of the NMR-PRE is a
consequence of the electron-spin dynamics, which is in turn
driven by the electron-spin Hamiltonian. This section de-
scribes the electron-spin Hamiltonian, the spin level diagram,
and the spin wave functions forS=5/2 in thevicinity of the
zfs limit. We then describe the influence of specific quadratic
and fourth-order zfs tensor components on the electron-spin
dynamics and the NMR-PRE.

A. Electron-spin Hamiltonian for S=5/2

The electron-spin Hamiltonian is assumed to be com-
prised of Zeeman and zfs terms,

HSsb,g;td = HZeem+ Hzfs
+ sb,g;td, s1ad

=gebeBW 0SW + o Bk
qÔk

q. s1bd

The Hamiltonian,Hzfs
+ sb ,g ; td, of the permanent zfs interac-

tion depends on the polar anglessb ,gd, specifying the orien-
tation of the laboratory magnetic field in the zfs principal-
axis system sPASd. In the presence of Brownian
reorientation, it is also a stochastic function of time. The sum
on the right-hand sidesrhsd of Eq. s1bd includes energy terms
which are of even order in the electron-spin operators. These
are commonlysthough somewhat ambiguously7d called zfs
interactions, and we use the term as well. The quantities,Bk

q,
are numerical coefficients, and the factors,Ok

q, are operator
equivalents, the functional forms of which are listed fork
ø4 in the Appendix. In Eq.s1bd, the zfs terms are expressed
in the molecule-fixed PAS of the zfs tensorfthis coordinate
system denoted by the superscripting karats∧d on the spin
operatorsg. When expressed in the PAS, the only nonvanish-
ing zfs components are those withq andk evensa result of
the even parity of the zfs interactiond, kø4 srequired forS
=5/2 by thedimensionality of the spin spaced, and qøk.
Thus the general zfs Hamiltonian forS=5/2 is

Hzfs
+ = B2

0Ô2
0 + B2

2Ô2
2 + B4

0Ô4
0 + B4

2Ô4
2 + B4

4Ô4
4. s2d

In the ESR literature, the quadratic zfs parametersD and
E sin cm−1d are often used instead ofB2

0 andB2
2, the conver-

sions beingD=3B̃2
0 and E=B̃2

2, where B̃k
q=Bk

qs102hcd−1 has
units of wave numbers. Planck’s constant,h, and the speed of
light, c, are in Système InternationalsSId. Equations2d is
written in compact form following Abragam and Bleaney8

rather than in expanded formssee Rudowicz9d, which has
been used by Fries and co-workers10–13in their recent studies
of GdsIII d complexes.

The form of Eq.s2d is further constrained by the rota-
tional symmetry of the crystal-field potential,V. The zfs
terms in Eq.s1bd arise from the components ofV which vary
upon rotation about the principal axis as cossqfd. Cylindri-
cal, orthorhombic, and tetragonal zfs termssq=0, 2, and 4,
respectivelyd arise from the parts ofV that transform on ro-
tation as coss0fd, coss2fd, and coss4fd, respectively. In
FesIII d-TSPP, FesIII d lies on a fourfold rotation axis, and the
orthorhombic termssq=2d vanish. Thus,Hzfs

+ has two cylin-
drical terms and one tetragonal term,

Hzfs
+ = B2

0Ô2
0 + B4

0Ô4
0 + B4

4Ô4
4. s3d

The electron-spin level diagram and spin eigenfunctions
for S=5/2 in thevicinity of the zfs limit are shown in Fig. 2.
Frames a–c show the effect of turning on successive terms of
Eq. s3d, and framesdd shows the effect of adding a small
Zeeman interaction. In the cylindrical zfs limitfFigs. 2sad
and 2sbdg, the spin eigenfuctions can be taken as the circu-
larly polarized functions,u±1/2l, u±3/2l, and u±5/2l, spa-
tially quantized along the unique axis,ẑ, of the zfs tensor.

FIG. 1. Structure of FeIII -TSPP.
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When only the cylindrical quadratic zfs term,B̃2
0Ô2

0 swhere

D=3B̃2
0d is present, the energy levels comprise three Kramers

doublets,mS= ±1/2, ±3/2, and ±5/2,with adjacent levels
separated by 2D and 4D. Figure 2sbd shows the additional

effect of the fourth-order cylindrical zfs term,B̃4
0Ô4

0. This
term alters the energies of the doublets in the first-order per-
turbation theorystaking the zero-order Hamiltonian to be

Hzfs
* =B2

0Ô2
0d, but it does not mix the circular zfs-limit eigen-

functions, sincefÔ2
0,Ô4

0g=0. Figure 2scd shows the effect of

the fourth-order tetragonal term,B4
4Ô4

4. This term is off diag-

onal in the eigenbasis ofÔ2
0 and thus does not affect the

energies in the first order. From the Appendix, the operator

equivalent can be written asÔ4
4=s1/2dsŜ+

4−Ŝ−
4d, which mixes

the eigenfunctions ofÔ2
0 for which DmS= ±4. The first-order

eigenfunctions are

u ± 3/2l8 ⇒ c1u ± 3/2l + c2u 7 5/2l, s4ad

u ± 5/2l8 ⇒ c1u ± 5/2l + c2u 7 3/2l, s4bd

u ± 1/2l8 ⇒ u ± 1/2l. s4cd

The mixing ratio,sc2/c1d, is plotted as a function of the ratio

of zfs parameters,B̃4
4/D in Fig. 3. The effects ofB̃4

4-induced
wave-function mixing are the primary concern of our study.
This mixing generates nonzero off-diagonal matrix elements

of kŜxl and kŜyl within the mS= ±3/2 andmS= ±5/2 Kram-
ers doublets, giving rise to a large Zeeman dispersion, which
is the principal feature of the experimental MRD profile.

The addition of a Zeeman term to the zfs Hamiltonian of
Eq. s3d splits the non-Kramers doubletsfFig. 2sddg by an
amount that depends on the orientation of the unique axis of

the zfs tensor andBW 0. The spread of the energy levels in a
powder sample is shown in Fig. 4. The range of Zeeman field
strengths in the MRD experiments discussed below is re-
stricted to the low-fieldsB0,2 Td portion of the diagram.

B. NMR paramagnetic relaxation enhancement „PRE…

The NMR-PRE of water protons due to a dissolved para-
magnetic ion can be written as

R1 = R1p + R1,os+ R1,dia, s5d

where the terms on the rhs arise, respectively, from the re-
laxation of protons in the first coordination sphere of the
metal, relaxation due to uncoordinated water protonssthe
outer sphere or translational contributiond, and the diamag-
netic background.R1 is assumed to result only from the mag-
netic dipole–dipole couplings, since the scalar contribution
to the water protonR1 is very small.

Inner sphere relaxation of the water resonancesR1pd re-
sults from the chemical exchange of water protons between
the first coordination sphere of the metal ion to the unbound
solvent pool. This contribution is given by14

R1p = fM/sT1M + tMd, s6d

where fM is the mole fraction of exchangeable solvent pro-
tons in the bound site,T1M is the relaxation time of bound
protons, andtM is the chemical exchange residence time.
The Zeeman-limit Solomon–Bloembergen–MorgansSBMd
theory of R1p is well known.6,15,16 For FesIII d-TSPP, the
static zfs is large, and theory is needed which includes the
effects ofHzfs

+ sb ,g ; td. The influence of a permanent cylin-
drical zfs tensor on the relaxation mechanism ofS=3/2 and
S=5/2 complexes was first described quantitatively in the

FIG. 2. Energy levels and eigenfunctions for an electron spinS=5/2 in the
vicinity of the zfs limit. Frames a–c show the effect of adding successive zfs
terms in Eq.s3d of the text. Frame d shows the effect of adding a small
Zeeman field,B0. Energies are in units of the zfs parameter,D.

FIG. 3. ZFS-limit energies and spin eigenfunctions ofS=5/2 as a function

of the fourth-order zfs coefficient,B̃4
4, in units of D. The calculations as-

sumedD=10 cm−1, E=0, B̃4
0=0, andB0=0. The dashed curve gives the

mixing coefficients defined in Eqs.s4d.

FIG. 4. The spread of energy levels forS=5/2 in a powder withD
=10 cm−1.
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1980s by Bertini and co-workers17,18 in Florence and by the
Swedish group of Benetis and co-workers.19–22 The latter
have developed a very general formulation of the problem
based on the stochastic Liouville equationsSLEd. This ap-
proach has been used to model the stochastic motions of the
zfs tensor that are responsible for electron-spin
relaxation23–27as well as to provide model calculations char-
acterizing the NMR-PRE phenomenon in motional regimes
where Redfield theory is not valid.28–32

The present study uses theory that has been developed at
the University of Michigan over the past 15 years1,33–39and
implemented in the computer programPARELAX2,3,4,37,40an
evolved form of our earlier programPARELAX.41 The theory
incorporates a spin Hamiltonian of the form of Eq.s1bd and
describes the effects of Brownian reorientation at various
levels of approximation, of which two—spin dynamicssSDd
simulation and the constantHS approximation—are em-
ployed in the present study. The theory implemented inPARE-

LAX2 is described in Ref. 42. The crux of the theoretical
problem lies in calculating the time correlation functionstcfd
of the electron-nuclear dipole–dipole Hamiltonian,
hkHISstdHISs0dljea, in circumstances whereHSsb ,g ; td in Eq.
s1d is a stochastic function of time due to Brownian reorien-
tation. The angular brackets denote a trace over spin vari-
ables, and the braces denote an ensemble average over mo-
lecular degrees of freedom. In the presence of Brownian
reorientation, the electron-spin eigenfunctions and eigenfre-
quencies are also stochastic functions of time. In addition to
modulatingHSsb ,g ; td, reorientation also modulates the in-
terspin vector,rWISstd, damping the dipole–dipole tcf. Further-
more the motions ofrWISstd andHSsb ,g ; td are correlated.

1. Spin dynamics „SD… simulation

SD calculates the dipole–dipole tcf of the electron-
nuclear dipole–dipole Hamiltonian in a very direct way as a
thermal ensemble of trajectories in the time domain. Molecu-
lar reorientation is modeled classically using the random
walk model of Ivanov,43 and the motion of the electron-spin
operators is propagated quantum mechanically. The algo-
rithms have been described.2,4,37,40,44While much less de-
tailed than a full molecular-dynamicssMDd simulationssee
Odeliuset al.45,46d, SD provides a realistic and efficient de-
scription of the motional aspects of the problem for rigid
molecules, and the algorithms readily accommodate a spin
Hamiltonian of any form. A limitation is that multiexponen-
tial electron-spin relaxation cannot readily be incorporated
into the time-domain calculation.

Our SD methods are similar in approach to the Monte
Carlo sMCd formulation used by Frieset al.47 to simulate
ESR line shapes. Both of these time-domain calculations dif-
fer greatly from SLE, in which the tcf’s of the coupled
nuclear- and electron-spin systems are computed as the solu-
tion of a stochastic Liouville equation of the coupled spin
and molecular degrees of freedom. However, the three ap-
proachessSD, MC, and SLEd attack the core problem of
describing the Brownian motion ofHSstd at a similar level of
approximation. They differ substantially in their treatment of
electron-spin relaxation.

2. Constant H S theory

A deficiency of SD is that time-domain simulations do
not readily incorporate level-specific electron-spin relaxation
si.e., for S=5/2, electron spin-relaxation times which differ
in the mS= ±1/2, ±3/2, and ±5/2Kramers doubletsd. Also,
SD simulations lack physical transparency in terms of the
contributions of specific eigenstates, spin matrix elements,
etc. These deficiencies are remedied in part in the constant
HS approximation, which treats the electron-spin Hamil-
tonian as in a powder; i.e., the reorientational time depen-
dence of Hzfs

+ sb ,g ; td in Eq. s1ad is neglected. Thus
HSsb ,g ; td can be written asHSsb ,gd. Although the effect of
Brownian reorientation onHSsb ,g ; td is neglected, the sto-
chastic motions ofrWISstd, which damp the dipole–dipole tcf,
are retained in the form of a damping factor, exps−t /tRd.

In the constantHS algorithms ofPARELAX2, HSsb ,gd is
diagonalized at a sequence of discrete molecular orienta-
tions, at each of which the NMR relaxation rate,R1M, is
calculated as a sum of contributions due to spin matrix ele-

ments, kmuŜp
s1dunl, evaluated in the eigenbasis ofHSsb ,gd.

These contributions are averaged spatially using a model in
which sb ,gd are defined by the set of 92 orientations corre-
sponding to the vertices and face centers of the truncated
icosahedronsbuckeyballd. In the constantHS expressions, the
contributions toR1M of specific spin matrix elements are
isolated in a way that is not possible in the time-domain
simulations of SD, because in SD the eigenbasis is time de-
pendent. The constantHS formulation also incorporates mul-
tiexponential electron-spin relaxation times, which SD does
not. Neither SD simulation nor constantHS provides an en-
tirely satisfactory description; the former provides a more
realistic description of the effects of Brownian motion, the
latter provides a transparent physical picture and is able to
incorporate multiexponential electron-spin relaxation times.
We use the two methods in parallel to provide as full a pic-
ture of the relaxation mechanism as possible.

The molecular-framesMFd constantHS expression for
R1M is42

R1M = − 48pSgIgebe

rIS
3 D2S mo

4p
D2

o
q,q8=−1

1

o
p,p8=−1

1

3F1 2 1

p sq − pd − q
GF 1 2 1

p8 sq8 − p8d − q8
G

3s− 1dq + q8Y2,q−psû,ŵdY2,q8−p8sû,ŵd

3HDq,+1
s1d sa,b,gdDq8,−1

s1d sa,b,gd

3s2S+ 1d−1o
m,n

kmuŜp
s1dunlknuŜp8

s1duml ĵ psvmndJ
ea

s7ad

ĵ psvmnd =
t̂d,p

smd

1 + svI − vmnd2st̂d,p
smdd2 . s7bd

The quantities in square brackets are 3-j symbols,rIS is the
interspin distance, andm0 is permeability of space. The

second-rank spherical harmonics,Y2,qsû ,ŵd, have as argu-
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ments the polar angles of the interspin vector,rWIS with respect
to the zfs unique axis,ẑ. The braces denote an average over
molecular orientations, which is computed withinPARELAX2

using the buckeyball model described above, neglecting the
Brownian motion ofHSsb ,gd. The spin matrix elements and
eigenfrequencies,vmn, depend on molecular orientation, but
the dipolar correlation times,t̂d,r, do not ssee belowd. The

orientation of the laboratory field,BW 0, in the MF is specified
by the Euler anglessa ,b ,gd. The Wigner rotation matrix
elements,Dq,±1−p

s1d sa ,b ,gd, transform first-rank spherical ten-
sor operators from the laboratory framesLFd to the MF.

The dipolar correlation time in Eq.s7bd is defined as

st̂d,rd−1 = stRd−1 + st̂S,rd−1 + stMd−1. s8d

The second term on the r.h.s. is the electron spin relaxation
rate defined in the MF. Eq.s8d assumes that electron spin
decay is averaged over eigenstates.51 The quantity,tM, in the
third term is the correlation time for chemical exchange of
solvent protons.

The constantHS algorithms ofPARELAX2 fe.g., Eqs.s7d
ands8dg are based on the theoretical development of Ref. 38
and are described more fully in Ref. 42. These algorithms
differ from those of our earlier programPARELAX,41 the ap-
proach of which is similar to that described by Bertiniet al.48

Within SLE, “decomposition49 sDCd” represents a similar
level of approximation.

C. Electron-spin relaxation

The electron-spin relaxation times,t̂S,r, in Eq.s4d in gen-
eral depend on the eigenstatesmd and the spatial polarization
sr = x̂, ẑd,50 and in this general case are written ast̂S,r

smd. Usu-
ally we lack sufficient physical information to calculate
meaningful eigenstate-specific relaxation times, and use in-
stead the eigenstate-averaged quantities,t̂S,r, of Ref. 51.
These parameters describe the collisional zfs relaxation
mechanismssee belowd and describe spin decay along MF,
rather than along LF, axes.

The mechanism of electron-spin relaxation forSù1
metal ions involves thermal modulation of the zfs tensor due
to s1d Brownian reorientation of the zfs principal axes,s2d
collisional modulation of the zfs tensor components, ands3d
zfs modulation due to vibrational damping.52 The reorienta-
tional mechanism is described quantitatively in a SD simu-
lation, requiring only the permanent zfs parameters andtR

s2d

as inputsSLE and MC have similar capabilitiesd. Relaxation
due to vibrational damping has been ignored in mostsbut not
all25,53d previous studies, and we do likewise.

The collisional zfs mechanism is described in the Zee-
man limit by the well-known theory of Bloembergen and
Morgan6 sBMd. For FesIII d-TSPP, theory is needed which
includes the effect ofHzfs

+ sb ,g ; td. Westlund54 has derived
zfs-limit Redfield expressions forS=1 that are analogous to
those of BM theory. These expressions have been general-
ized to non-Redfield situationsstvùtSd by Bertini et al.55

Subsequently, Sharp and Lohr50 derived Redfield expressions
that are valid for arbitrary electron spin at all field strengths,
i.e., for the zfs and Zeeman limits as well as for the interme-

diate regimesHzfs
+ <HZeemd. Sharp51 later simplified these re-

sults to provide the following approximate eigenstate-
averaged expressions fort̂S,r sr =z,xd:

st̂S,rd−1 = cro
q=1

5

nq
srdHo

m,n
zkmuŜq

s2dunlz2jsvmnd + c.t.J
ea

, s9ad

c.t.= 31/2cro
m,n

kmuŜ1
s2dunlknuŜ2

s2dumlf2jsvmndg, s9bd

cr = 3fSsS+ 1ds2S+ 1dg−1sDt
2/5d, s9cd

jsvd = tn /s1 + v2tn
2d. s9dd

The relaxation times depend on two physical parameters,
namely,Dt

2, the mean-square value of the transient zfs tensor
associated with collisional distortion, andtn, the correlation

time for distortion. The quantities,Ŝq
s2d, are second-rank car-

tesian tensor functions of the spin operators,51 and the quan-
tities, nq

srd, are integer coefficients which occur in double
commutators of the spin operators.51 The matrix elements are
evaluated in the eigenbasis ofHSsb ,gd. In the intermediate
regime of field strengths, Eqs.s9ad and s9bd need to be av-

eraged over molecular orientations with respect toB̄0. This is
carried out inPARELAX2 using the “buckeyball” algorithm
described above.

Further information concerning the relaxation times of
Eqs.s9d is in Refs. 3, 44, and 51. Equationss6d are Redfield
expressions which assume that zfs distortion is fast com-
pared to electron-spin relaxationstv,tSd, a condition that
we expect to be valid FesIII d-TSPP, for whichtS1<100 ps at
room temperature.56 Methods have been developed which
relax the assumption of fast distortional motionsstv,tSd,57

but these are not needed for this analysis.

IV. THEORETICAL SIMULATIONS

Figures 5–9 show the results of constantHS calculations
illustrating the influence of cylindricalssecond and fourth
orderd, tetragonalsfourth orderd, and orthorhombicssecond
orderd zfs tensor components on theR1 MRD profile for S
=5/2. Figure 10 illustrates the effect of a permanent zfs in-
teraction on the magnetic-field dependence of electron-spin
relaxation forS=5/2. Theinterpretation of the MRD profile
for S=5/2 when Hzfs

+ contains only quadratic zfs terms has
been discussed previously by Westlundet al.,22 Banci et
al.,17 Miller and Sharp,4 and Sharp.58 The influence of zfs
orthorhombicity forS=5/2 hasbeen discussed by Nilsson
and Kowalewski.30 Some of these results will be recapitu-
lated in order to provide a unified interpretation of the relax-
ation mechanism.

A. The cylindrical zfs limit

Figure 5 shows the effect of an increasing cylindrical zfs

term,Ds=3B̃2
0d, on the MRD profile forS=5/2 with other zfs

tensor elements set to zero. The calculations assume that
electron-spin relaxation is magnetic-field independent, and
that the water proton lies at a near-axial location in the MF
suIS=0.30 radd. The arrows indicate the direction of increas-
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ing D, varying from an initial value ofD=0 sthe Zeeman
limit d to a final value ofD=5 cm−1. Based on prior measure-
ments ofD for ferric porphyrinsssee belowd, we expectD
ù5 cm−1 for FesIII d-TSPP, i.e., thatD for FesIII d-TSPP is
larger than the maximum value plotted in Fig. 5.

The Zeeman-limit profilesdashedd exhibits two well-
defined dispersions, one centered at the low field where
svS±vIdtd,'=1, the other at the high field wherevItd,z=1.
WhenDÞ0, the profile exhibits as many as three dispersive
features. Interestingly, there is an intermediate field strength
at which the NMR-PRE is invariant to changes inD sremi-
niscent of an isosbestic point in UV-vis spectrad. Banci et
al.17 found that this effect occurs foruIS=0° but not for 90°.

1. The low-field dispersive feature

The dispersion centered at the lowest field has a physical
origin like that in the Zeeman-limit profile, i.e., it results
from the Zeeman splitting of electron-spin levels. In the

presence of a permanent zfs interaction of strength,D
ù0.01 cm−1, this dispersion decreases in amplitude, ap-
proaching a constant small amplitude whenDù0.01 cm−1.
In terms of constantHS theory fEq. s7dg, the low-field dis-
persion arises from the off-diagonal transverse spin matrix

elements,k71/2uŜx,yu±1/2l, which couple the levels of the
mS= ±1/2 Kramers doublet. In the cylindrical zfs limit, these
are the only off-diagonal matrix elements that contribute sig-
nificantly to the NMR-PRE; the other nonvanishing one-

quantums1Qd matrix elementsse.g.,k±1/2uŜx,yu±3/2ld oscil-
late with large eigenfrequencies, suppressing the associated
spectral density functions in Eq.s7d. In the Zeeman-limit
profile sdashedd, the low-field dispersive feature is much
larger than in the zfs limit due to the fact that all of the

off-diagonal 1Q matrix elements ofkŜxl and kŜyl contribute
to the relaxation efficiency.

FIG. 5. Effect of the cylindrical quadratic zfs parameterDs=B̃2
0/3d on the

MRD profiles forS=5/2. The constantHS calculations are normalized to the
low-field, Zeeman-limitR1M value. D increases through the values,D=0
sdashedd, 0.02, 0.05, 0.10, 0.20, 0.5, 1.0, 2.0, and 5.0 cm−1. Other param-
eters weretdip,r =100 pssfixedd anduIS=0.28 rad.

FIG. 6. Effect of magnetic-field-dependent electron-spin relaxation on the
MRD profile. The solid lines assume that electron-spin relaxation is
magnetic-field independentsfixed td,r =100 ps,uIS=0.3 radd ands1d that zfs
interactions are zerosZeem onlyd or s2d that a cylindrical zfs tensor with
D=5 cm−1 is presentsZeem1zfsd. The dashed curves assume, in addition,
that tSs=td,rd is given by BM theory withtv=4 ps. The calculations are
normalized to the low-field, Zeeman-only limit.

FIG. 7. Effect of the cylindrical fourth-order zfs term,B̃4
0, on theR1M MRD

profiles forS=5/2. Thecalculations are like those in Fig. 5 except thatD

=3 cm−1 and B̃4
0/D=0 sno symbold, 0.05 sdiamondsd, or 0.1 scirclesd.

FIG. 8. Effect of the tetragonal fourth-order zfs term,B̃4
4, on theR1M MRD

profiles forS=5/2. Thecalculations are like those in Fig. 5 except thatD

<10 cm−1 and B̃4
4/D=0, 0.05, or 0.1, increasing with the arrow.
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2. The midfield dispersive feature

When the permanent zfs is substantialsDù0.1 cm−1 in
Fig. 5d, essentially all of the relaxation efficiency other than
that associated with the small low-field dispersive feature

results from diagonal spin matrix elements ofkŜzl. These
matrix elements have zero frequencysvmm=0d and do not
produce Zeeman-type dispersions. Rather, the midfield dis-
persion arises from the change of spatial quantization of the
spin motion which occurs when the spin system passes be-
tween the zfs and Zeeman limits. The midfield position of
the dispersive feature is located approximately wherevS

<2vD svS is the electron Larmor frequency andvD

=2pcDd. The form of this feature depends strongly upon
uIS,

17,30,58falling with increasingB0 for an axial nuclear lo-
cation and rising with increasingB0 for an equatorial loca-
tion sFig. 5 assumes a near-axial locationd.

3. The high-field dispersion

The high-field dispersion centered near 30 T occurs
wherevItd,x=1 This feature, which is usually not observed

in the range of field variation of MRD experiments, occurs
when the nuclear Larmor frequency is displaced outside the
dipolar power band of the electron-spin time correlation
function.39

4. Magnetic-field dependence of electron-spin
relaxation

Figure 6 illustrates the effect on the MRD profile of
magnetic-field dependence in the electron-spin relaxation
time. Profiles are shown for the Zeeman limitsD=0d and for
the vicinity of the cylindrical zfs limitsD=10 cm−1d. The
dashed curves were calculated assumingtd=tS, with tS cal-
culated by BM theory andtv=4 ps. Calculations assuming a
field-independenttS ssolid linesd are also shown. Magnetic-
field dependence intS produces a large dispersive feature in
the high-field region of the profile. This feature, which is
commonly been observed in the MRD profiles for MnsII d
whentR

s2d is long, is not observed in the experimental profiles
for FesIII d-TSPPssee belowd.

The reason for the evident lack of field dependence intS

in the experimental profiles was investigated in the calcula-
tions of Fig. 10, which illustrate the effect of a large perma-
nent zfssD=10 cm−1d on tS1 andtS2. Calculations based on
both BM theory and on Eqs.s9d are shown. Both sets of
calculations assumedtv=4 ps and are normalized to theB0

=0 calculation. Clearly, a large zfs suppresses the magnetic-
field-dependent spectral density functions in Eqs.s9d, result-
ing in field independence intS1,2.

B. The fourth-order cylindrical zfs term, B̃4
0

The influence ofB̃4
0 on the constantHS profile is very

small, as shown in Fig. 7. This term influences the separa-
tions of the non-Kramers doubletssFig. 2d, but it does not
mix the eigenfunctions of the zero-order zfs-limit Hamil-

tonian sHzfs
+ =B2

0Ô2
0d. As described above, the off-diagonal

matrix elements of Eq.s7d contribute very little to the NMR-

PRE, and thus the influence ofB̃4
0 on the interdoublet level

spacings is unimportant for the NMR-PRE. AlthoughB̃4
0

does not affect the spin eigenfunctions in the zfs limit, it has
a small effect on the eigenfunctions whenB0.0, thus pro-
ducing minor perturbations of the MRD profiles, as shown in
Fig. 7.

C. The fourth-order tetragonal zfs term, B̃4
4

Figure 8 shows the dependence of the MRD profile on

the presence of a tetragonal fourth-order zfs component,B̃4
4

sincreasing with the arrowd. As the ratioB̃4
4/D increases, the

magnitude of the low-field Zeeman-type dispersion increases
dramatically, becoming qualitatively much more like a
Zeeman-limit profile in appearance. This phenomenon re-

sults from theB̃4
4-induced wave-function mixing illustrated

in Fig. 3. As described above, the tetragonal fourth-order zfs
term mixes circular basis functions withDmS= ±4, thus mix-
ing u±3/2l with u75/2l fEqs. s4dg. As a consequence, the
1Q transverse spin matrix elements connecting these basis

FIG. 9. Effect of the orthorhombic quadratic zfs term,E=B̃2
2, on theR1M

MRD profiles for S=5/2. Thecalculations are like those in Fig. 5 except
that D=10 cm−1 andE/D=0, 0.1, 0.2, or 0.3sincreasing with the arrowd.

FIG. 10. Calculated electron-spin relaxation rates as a function of magnetic-
field strength forS=5/2. Calculations were based on BM theorysBMT:
dashed lines and diamondsd or Eqs.s10d szfs: solid lines and circlesd. All
calculations assumedtv=4 ps. The zfs calculations assumedD=10 cm−1

andB̃4
4/D=0.1. Relaxation ratessr1d alongz are the unfilled symbols; those

alongx are the filled symbols.
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states are allowed, giving rise to the following nonzero terms
in the summation of Eq.s7d:

T5/2
s4d = c1c2zk±3/2uŜxsydu ± 5/2lz2

t̂S,xsyd
s5/2d

1 + fDv5/2t̂S,xsyd
s5/2d g2 , s10ad

T3/2
s4d = c1c2zk±5/2uŜxsydu ± 3/2lz2

t̂S,xsyd
s3/2d

1 + fDv3/2t̂S,xsyd
s3/2d g2 . s10bd

The transition frequencies,Dv3/2 and Dv5/2, are the intra-
doublet Zeeman splittings of themS= ±3/2 and ±5/2Kram-
ers manifolds. These terms are suppressed with increasing
B0, giving rise to a Zeeman-type dispersion. The amplitude

of this dispersion depends on the mixing ratio,B̃4
4/D, rather

than on the absolute magnitude ofB̃4
4.

D. The orthorhombic zfs term, E

FesIII d-TSPP lacks orthorhombic zfs terms due to its
four-fold rotation symmetry, but it is of interest to consider
the effect of these terms in cases where they are present.
Figure 9 shows the dependence of the zfs-limit MRD profile

on the zfs parameterEs=B̃2
0d in the range 0øEø0.3 sin-

creasing with the arrowd. The calculations assumedD

=10 cm−1 andB̃4
4=0. The effect ofE on the profile is quali-

tatively similar to, but smaller than that of theB̃4
4 term, i.e.,

the amplitude of the low-field dispersion nearvSt̂d,z=1 in-
creases by an amount which depends on the ratio,E/D.
Orthorhombicity mixes zfs-limit basis functions withDmS

= ±2, thus introducingk±3/2uŜx,yu71/2l character into the
mS= ±3/2 spin manifold. The contribution of these matrix
elements toR1M, while significant, is smaller than that pro-

duced byB̃4
4.

V. THE MRD PROFILE OF Fe„III…-TSPP

FesIII d-TSPP provides an interesting experimental ex-
ample of the near zfs-limit situation forS=5/2, with Hzfs

+

given by Eq. s3d. D has not been measured for bisaqua
FesIII d-TSPP, althoughD values have been reported for
many other high-spin ferric porphyrins, both model com-
pounds and heme proteins. Experimental methods include far
IR spectroscopy;59 microbalance measurements of the para-
magnetic anisotropy of single crystals of ferrimyoglobin
fluoride;60 and analysis of the temperature dependence of
magnetic susceptibility61 of ESR intensities,62 of ESR relax-
ation times,63 and of hyperfine chemical shifts in heme
proteins.64 The range of the measured values isD
=5–16 cm−1, and we assume thatDù5 cm−1 for bisaqua-
FesIII d-TSPP as well. The conclusion thatD is large is also
supported by a Mossbauer measurement65 of the nuclear
quadrupole coupling constant se2qQd of FesIII d-
TSPP·2H2O, which is atypically large relative to the values
for other ferric porphyrinsfthe quantitiesse2qQd andD are
usually thought to scale with each other,66 although the quan-
titative relationship is not simpleg. For D the order of several
wave numbers, the electron-spin system remains in the vicin-
ity of the zfs limit throughout the range of field variation of

the MRD experimentsB0,2 Td. sAs a point of comparison,
the intermediate regime of field strengths is located roughly
where 2vD /vS<1. If D=5 cm−1 and B0=1 T, 2vD /vS

=10.7.d

A. Experimental results

R1p MRD profiles for FesIII d-TSPP were measured at pH
1, 2, 3, and 4sFig. 11d. In an earlier study, Koenig, Brown,
and Spiller67 sKBSd measured the MRD profile at pH 3
sshown as diamondsd. There is a systematic variation of
about 20% between our pH 3 data and that of KBS, which
seems too large to attribute to differences in composition. We
suspect for the following reason that systematic error is
present in the KBS data. In the same study, KBS report the
MRD profile of MnsIII d-TSPP, which has since been re-
peated by Kellar and Foster,68 Bryant and co-workers,5,69–71

as well as in our own laboratory.2 A comparison of these data
shows good agreement among the groups except for the pro-
file of KBS, which is about 20% higher, as was found also
for the FesIII d-TSPP data relative to ours. Scaling the KBS
data by a constant factor of 0.80 brings their data into agree-
ment with ourssdashed line in Fig. 11d.

At millimolar concentrations with pHø4, FesIII d-TSPP
exists predominantly as a hexacoordinate bisaqua complex,72

in which the FesIII d ion is high spinsS=5/2d. This species
deprotonates nearpKa<7.73 At pHù5, FesIII d-TSPP dimer-
izes as an antiferromagnetically coupledm-oxobridged
species.65,74 The possible presence of dimers or noncovalent
aggregates in our samples was examined by UV-vis. Spectra
obtained at concentrations of 1.0 mM and 10µM in aqueous
buffers at pH 1–4 were essentially identical, indicating that
neither dimerization or aggregation occurred. Spectral
changes characteristic ofm-oxodimerization75 were observed
at pHù5.

In order to find conditions where only the bisaqua spe-
cies contributes to the NMR-PRE, we measuredR1p MRD
profiles at integral pH values between pH 1 and 4sFig. 11d.
The shapes of the profiles are nearly constant across this pH

FIG. 11. R1p MRD profiless20 °Cd of FesIII d-TSPP at four pH values: pH 1,
unfilled diamonds; pH 2, filled diamonds; pH 3, unfilled circles; and pH 4,
filled circles. Also shown are the data from Ref. 42sdiamonds with crossd
and the same data, multiplied by the factor of 0.80sdashed lined.
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range, as is the magnitude of NMR-PRE, although there is a
significants10%–15%d rise in relaxivity at pH 1 relative to
pH 3–4. As the pH is raised above pH 4, the proton relaxivity
falls to a low valuesnot shownd. The constancy in shape and
magnitude of the MRD profiles measured at pH 2–4 indi-
cates that a single species, which we assume to be bisaqua
FesIII d-TSPP, is responsible. The profile measured at pH 3,
after correction for the diamagnetic background, was used in
the data analysis.

B. Analysis of data

The corrected data are shown in Fig. 12. The solid line
labeled “1B44” shows the best SD simulation, which used
the parameter set of Table I. Two parameters were varied,

namely,tS and the ratio of zfs coefficients,B̃4
4/D. The other

parameters are reasonably well known from prior experi-
ments and were assigned to the values in the table. The outer
sphere contribution,R1,os, was calculated in another set of
SD simulations, using MD to estimate the distance of closest
approach.76,77 R1,os was estimated to be 2%–5% ofR1p and
was neglected.

The experimental MRD profile does not exhibit a high-
field dispersive feature of the kind expectedse.g., dashed
curves of Fig. 6d if tS was magnetic-field dependent, and thus
tS was assumed to be magnetic-field independent in the
analysis. The best-fit value,tS=110 ps, is consistent with the
results of recent pulsed ESR relaxation-time measurements56

of FesIII d-TSPP in frozen aqueous solutions.
As described in the previous section, the critical zfs pa-

rameter of the analysis is the mixing ratio,B̃4
4/D. The shape

of the MRD profile is nearly independent of the absolute
value ofD sassuming thatD is reasonably large,ù5 cm−1d,
B̃4

0, or B̃4
4. Omission of thesB̃4

4/Dd parameter in the simula-
tions produced an unacceptably small dispersive feature,
similar to that of the model calculations of Figs. 5 and 6.

Figure 12 also shows a comparison of constantHS cal-
culationssdashedd and SD simulationsssolid linesd. As de-
scribed above, constantHS is an intermediate level of theory
that accounts for Brownian reorientation of the interspin vec-
tor, rWIS, while assuming thatHS is time independent as in a
powder. Clearly, the difference between constantHS and SD
is substantial, even thoughtR

s2d is relatively long. Our expe-
rience in these and other simulations44 is that in the vicinity
of the zfs limit, constantHS accounts for roughly half the
effect of Brownian reorientation. A portion of this difference
arises from the zfs reorientational mechanism of electron-
spin relaxation.

VI. DISCUSSION

This study, like our prior investigations of aqueous met-
alloporphyrins of CrsIII d,3 MnsII d,4 and MnsIII d,1,2 has found
several unexpected aspects in the relationship of the spin
level diagram to the MRD experiment. FesIII d-TSPP is a spin
system with S=5/2 and a moderately large zfssD
.5 cm−1d. The MRD profile exhibits a single pronounced
Zeeman-type dispersive feature, the amplitude of which is

determined by the ratio of zfs parameters,B̃4
4/D. The NMR

relaxation mechanism involvesB̃4
4-induced wave-function

mixing and is specific to Kramers spin systems withS
ù5/2 sfourth-order zfs tensor components vanish forS
=3/2d.

It is not altogether clear at this point whether this mecha-
nism might also be important for theS=5/2 ion, MnsII d, and
the S=7/2 ion, GdsIII d, although for those ionsD is usually
much smaller than in FesIII d-TSPP. WhenD is small, the
permanent zfs influences the MRD profile primarily due to
the change in spatial quantization which occurs in the inter-
mediate regimesHZeem<Hzfs

+ d; i.e., the midfield dispersive
feature in Fig. 5 occurs in a region of relatively low-field
strengths that is observed in the MRD experiment. In this
situation fof which MnsII d-TSPP is an exampleg, D, rather

than theB̃4
4/D ratio, is the sensitive zfs parameter. Analyses

of other MnsII d sRefs. 78–80d and GdsIII d sRef. 81d com-
plexes with relatively smallD values and lower symmetry
than MnsII d-TSPP have likewise suggested thatD, even
when smallsø0.05 cm−1d, has a significant influence in the

low-field region of the MRD profile. WhetherB̃4
4-induced

wave-function mixing is also important in GdsIII d or MnsII d
complexes needs study.

TABLE I. Parameters used in the simulations.

Fixed parameters Varied parameters

D=10 cm−1
B̃4

4/D=0.10

tR,'
s2d =520 pss20 °Cda tS,r =110 pss20 °Cd
tM =71 nss25 °Cdb

rIS=0.275 nmc

uIS=0.30 radc

aReference 6, corrected for anisotropic reorientation as described in Ref. 2.
bReference 83, measured by H2

17O T2 at 25 °C. Also note that Ref. 84
reported a longer value oftM =500 ns.
cValue estimated from the measured Fe–O bond distances2.01±0.02 Åd in
FesH2Od6

3+, which has been determined in solution by extended x-ray-
absorption fine structuresEXAFSd sRef. 85d and x-ray diffractionsRefs. 86
and 87d as well as from x-ray crystal structuresssee Ref. 88d. The Fe–O
distance was assumed to be 0.10 Å longer in FesIII d-TSPP than in
FesH2Od6

3+, as has been observed for MnsII d-TSPP.

FIG. 12. Simulation of the experimental data for FesIII d-TSPP at pH 3
sfilled circlesd. The best-fit SD simulation is the solid curve marked1B44.

Also shown is the SD simulation with the same parameters but withB̃4
4 set

to zero s2B44d. The dashed curves were calculated in the constantHS

approximation.
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MnsIII d-TSPP is anS=2 spin system with a moderately
large zfssD=−3.16 cm−1d.82 The MRD profile likewise de-

pends onB̃4
4, although the physical mechanism is quite dif-

ferent for the KramerssS=5/2d and non-KramerssS=2d sys-

tems. The former results fromB̃4
4-induced mixing of the

circular zfs-limit eigenfunctions, while the latter involves a

B̃4
4-induced splitting of themS= ±2 non-Kramers doublet.

The small splitting of these levels produces a low-frequency

oscillation in the matrix elements ofkŜzl within the mS

= ±2 manifold that suppresses the NMR-PRE. The principal
dispersive feature of the experimental MRD profile forS
=2 is caused by a change in spin wave function which occurs
when the electronic Zeeman energy is comparable to the

B̃4
4-induced doublet splitting. For this system, the important

zfs parameter isB̃4
4 rather than eitherB̃4

4/D or D. Thus the
three spin systems, MnsIII d-TSPP, MnsII d-TSPP, and FesIII d-
TSPP, exhibit qualitatively different relaxation mechanisms
which depend on different zfs parameters.

CrsIII d-TSPP is anS=3/2 spin system with a small zfs
s0.27 cm−1d. ForS=3/2, thefourth-order zfs terms vanish by
the dimensionality of the spin system. The principal MRD
for S=2 results from the change in spatial quantization that
occurs in the intermediate regime. In this case, as for MnsII d-
TSPP, the sensitive zfs parameter isD.

Other interesting phenomena have been encountered in
our analyses of the relaxation mechanisms of these metal-
loporphyrins. For all of these systems, electron-spin relax-
ation appears to be nearly magnetic-field independent for
B0,2 T. As shown by the calculations of Fig. 6, this behav-
ior is expected for FesIII d-TSPP, for whichD is large, and
also for MnsIII d-TSPP, for whichD is likewise fairly large.
However, the observed lack of field dependence intS is
somewhat unexpected for CrsIII d-TSPP and MnsII d-TSPP,
where D is an order of magnitude smaller. Model
calculations3 suggest that this behavior results from the com-
bined effects of the permanent zfs and shorttv.
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APPENDIX

Operator equivalents in Eqs.s1d and s2d, taken from
Table 16, Appendix B, of Ref. 9.hA,BjS denotes an anticom-
mutator.

O2
0 = 3Sz

2 − SsS+ 1d,

O2
2 = 2−1sS+

2 + S−
2d,

O4
0 = 35Sz

4 − 30SsS+ 1dSz
2 − 25Sz

2 − 6SsS+ 1d

+ 3S2sS+ 1d2,

O4
2 = 2−1hf7Sz

2 − SsS+ 1d − 5g,sS+
2 + S−

2djS,

O4
4 = 2−1sS+

4 + S−
4d.
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