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The temporal behavior of optical response functionssORFsd reflects the quantum dynamics of an
electronic superposition state, and as such lacks a well-defined classical limit. In this paper, we
consider the importance of accounting for the quantum nature of the dynamics when calculating
ORFs of different types. To this end, we calculated the ORFs associated with the linear absorption
spectrum and the nonlinear two-pulse photon-echo experiment, via the following approaches:s1d the
semiclassical forward-backward approach;s2d an approach based on linearizing the path-integral
forward-backward action in terms of the difference between the forward and backward paths;s3d an
approach based on ground state nuclear dynamics. The calculations were performed on a model that
consists of a two-state chromophore solvated in a nonpolar liquid. The different methods were found
to yield very similar results for the absorption spectrum and “diagonal” two-pulse photon echosi.e.,
the homodyne-detected signal at timet= t0 after the second pulse, wheret0 is the time interval
between the two pulsesd. The different approximations yielded somewhat different results in the case
of the time-integratedphoton-echo signal. The reasons for the similarity between the predictions of
different approximations are also discussed ©2005 American Institute of Physics.
fDOI: 10.1063/1.1843813g

I. INTRODUCTION

Many experimental and theoretical studies over the last
two decades have been targeted at elucidating the structure
and dynamics of liquid solutions. The development of ul-
trafast lasers, in particular, has given rise to many new non-
linear time-domain techniques which are capable of directly
probing solvation dynamics on the femtosecond time
scale.1–6 The measured spectroscopic signals are often ex-
pressed by optical response functionsORFsd, which can be
given in terms of material multitime dipole correlation
functions.3 The temporal behavior of the ORFs reflects the
time evolution of the system in an electronic superposition
state, which lacks a well-defined classical limit. Unfortu-
nately, with the exception of a few simplified models, the
exact calculation of the corresponding quantum-mechanical
dipole correlation functions remains far beyond the reach of
currently available computer resources.

Several approximate methods for calculating ORFs in
anharmonic many-body systems, such as liquid solutions,
have been suggested in the past.3,7–16Most of those methods
are based on treating the nuclear degrees of freedomsDOFd
in a classical-like manner. However, a straightforward imple-
mentation of a classical treatment for those DOF leads to a
nonunique procedure, due to the lack of a well-defined clas-
sical limit. More specifically, the form of the actual classical
limit that one ends up with depends on the form of the ex-
pression for the quantum mechanical ORF that one chooses
to start with.8,9,11–14,17,18For example, a commonly used ap-
proach is based on using one particular form of the quantum-
mechanical ORF, whose “classical limit” happens to dictate
that the nuclear dynamics is performed on the potential sur-
face that corresponds to the ground electronic state. The tem-

poral behavior of ORFs computed via this approximation
reflects equilibrium fluctuations in the nuclear dynamics on
the ground electronic state surface. Taking the classical limit
of other equivalent forms of the quantum-mechanical ORF
leads to different prescriptions. Indeed, a variety of alterna-
tive propagation schemes have been discussed in the litera-
ture, including exclusive propagation on the excited
surface,9,11,13,14 propagation that alternates between the
ground and excited surfaces,3,17 and propagation on an aver-
age surface.8,12,17 However, it is not clear which, if any, of
these strategies will work best for a given system.

In a series of recent papers, we have explored the use of
an approximate scheme which is based on linearizing the
path-integral forward-backward action with respect to the
difference between the forward and backward paths.19–24We,
as well as other researchers, have found that the resulting
approximations are computationally feasible, and yield rather
accurate results, in a variety of contexts, including vibra-
tional energy relaxation,20–22 nonradiative electronic
relaxation18,25 the calculation of reaction rate constants,26

ORFs,8,12 and nonadiabatic dynamics.23,24

An alternative approach can be based on the semiclassi-
cal initial value representationsSC-IVRd method,27–35which
has also been found to be rather reliable in a variety of ap-
plications, including the calculation of spectroscopic
observables.33–42 A calculation based on the full blown
implementation of the SC-IVR approximation is not feasible
in the case of condensed phase systems, mainly due to the
highly oscillatory nature of the integrand. Several ap-
proaches have been proposed in order to make the calcula-
tion more manageable, including the semiclassical cellular
dynamics method of Mukamel and co-workers,3,36 the
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mixed-state propagation approximation proposed by Loring
and co-workers,38,39 the mixed-order semiclassical approach
proposed by Ovchinnikov and co-workers,34,40,43,44 and
methods based on Filinov and generalized Filinov
filters.33,35,41,42An alternative, and rather different, approach
has been recently proposed by Makri and co-workers.45–49In
this so-called forward-backward initial value representation
sFB-IVRd method, the forward and backward propagators, as
well as the operator between them, are treated as asingle
propagator. This makes the calculation more manageable, be-
cause the partial cancellation of the forward and backward
paths usually results in mildly oscillatory integrands and
tames the rapid increase in the prefactor of the semiclassical
propagator. This approach is particularly suitable for calcu-
lating ORFs within the framework of the Condon approxi-
mation, where the dipole operator is assumed to be indepen-
dent of the nuclear DOF, and where the dipole correlation
function only involves time propagators. Recent applications
that demonstrate this include the calculation of the photo-
electron spectrum of I2

− in the gas phase by Batista and
co-workers,49 the calculation of the absorption spectrum for
I2 molecule interacting with a chain of argon atoms by Kühn
and Makri,15 and the calculation of the resonance Raman
spectrum of an I2 molecule in liquid xenon by Ovchinnikov
and co-workers.16

The primary goal of the present paper is to explore the
importance of accounting for the quantum nature of the dy-
namics when calculating ORFs of different types. To this
end, we present a systematic comparison between the
FB-IVR approximation and simpler semiclassical approxi-
mations, in the case of the linear and nonlinear two-pulse
photon-echos2PEd ORFs in a nonpolar liquid solution. We
hope that such an analysis will shed light on the sensitivity of
different experimentally relevant quantities to quantum dy-
namical effects. The remainder of this paper is organized in
the following way: A survey of the theory, the various ap-
proximations, and the assumptions underlying them, is given
in Sec. II. The results obtained via the various approxima-
tions for the absorption spectrum and 2PE signal, in the case
of a two-state chromophore solvated in a nonpolar liquid
solution, are reported and discussed in Sec. III. The main
conclusions are summarized in Sec. IV.

II. THEORY

A. Optical response functions

We consider a system with two electronic states, whose
overall Hamiltonian is given by

Ĥ = Ĥguglkgu + Ĥeuelkeu − Estdsmeguelkgu + mgeuglkeud. s1d

Here, g and e correspond to the ground and excited elec-
tronic states,Estd is the sclassicald driving electromagnetic
field, andhmi jj are the transition dipole momentssassumed to
be constant within the Condon approximationd. The nuclear

HamiltoniansĤg and Ĥe are assumed to have the following
general form:

Ĥasp̂,q̂d = o
j=1

N
p̂j

2

2mj
+ Vasq̂d, s2d

where a=g, e, q̂=sq̂1, . . . ,q̂Nd, p̂=sp̂1, . . . ,p̂Nd, and
sm1, . . . ,mNd are the coordinates, momenta, and masses of
the corresponding nuclear DOFsboldface and capped sym-
bols for vectors and operators, respectively, are used
throughout the textd. We also assume that"veg/kBT@1,
where "veg is the energy gap between the bath-free elec-
tronic states,T is the absolute temperature, andkB is the
Boltzmann constant.

As is well known, the absorption line shape is given by
the Fourier transform of thequantum-mechanicaldipole au-
tocorrelation function, which for the model described above
is given by3,13,14

Isvd =
1

2p
E

−`

`

dte−ivtJstd, s3d

where

Jstd = Zg
−1Trhe−bĤgeiĤet/"e−iĤgt/"j. s4d

Here, b=1/kBT, Trf¯g corresponds to tracing over the

nuclear DOF andZg=Trfe−bĤgg is the partition function at
the ground electronic state. The functionJstd is the sought
after linear ORF, which stores the desired information on
solute-solvent interactions.

Similarly, the signal in the homodyne-detected 2PE ex-
periment is known to be given by3,9

I2PEst,t0d = uRst,t0du2, s5d

whereRst ,t0d is the corresponding nonlinear ORF:

Rst,t0d = Zg
−1Trhe−bĤgesi/"dĤet0esi/"dĤgte−si/"dĤete−si/"dĤgt0j. s6d

Here,t0 and t are the time intervals between the two pulses,
and between the second pulse and the time of the measure-
ment, respectively. It should be noted that 2PE signals mea-
sured in liquid solutions are typically “smeared” over an ex-
tended time interval, rather than given by a sharp echo att
= t0 sas in crystalline and glassy hostsd. The results of 2PE
experiments are therefore often reported in terms of thein-
tegrated echo, which is given by

I2PE
int st0d =E

0

`

dtuRst,t0du2. s7d

B. Semiclassical approximations
for the optical response functions

A numerically exact calculation of the quantum-
mechanical ORFs in Eqs.s4d and s6d is not possible in the
general case of many-body anharmonic systems, such as liq-
uid solutions. In this section, we review three different ap-
proximate schemes which give rise to more feasible routes
for calculating those ORFs.

A widely used computational scheme for computing
ORFs is based on the so calleddynamical classical limit
sDCLd approximation,18,25 which leads to the following ap-
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proximate expressions for the linear and 2PE response func-
tions:

JDCLstd = sZg
Cld−1E E dq dpe−bHgsq,pd

3expF i

"
E

0

t

dt8Ugst8dG s8d

and

RDCLst,t0d = sZg
Cld−1E E dqdpe−bHgsq,pd

3expF i

"
E

0

ut0u

dt8Ugst8d −
i

"
sgnst0d

3E
ut0u

ut0u+t

dt8Ugst8dG . s9d

The sampling of the initial state in Eqs.s8d and s9d is based
on theclassicalBoltzmann distributione−bHgsq,pd /Zg

CL, which
corresponds to theground state potential surface. Impor-
tantly, Ugstd=Vefqgstdg−Vgfqgstdg corresponds to the vertical
energy gap between the two electronic states, and its time
evolution is dictated by that ofqgstd, which is governed by
classical dynamics on the ground state potential.

JDCLstd and RDCLst ,t0d can be computed fromequilib-
rium classical molecular dynamicssMDd simulations on the
ground state potential surface. At the same time, Eqs.s8d and
s9d do not correspond to a unique classical limit of Eqs.s4d
and s6d, as was previously pointed out by several
authors.3,8,9,11,12,18,38,39,50An argument that is often made in
favor of the DCL approximation is that the absorption line
shape of a chromophore in liquid solution is usually inhomo-
geneously broadened, and is therefore insensitive to the un-
derlying dynamics.9,13,14More specifically, if the lifetime of
the linear ORF isshorterthan the characteristic time scale of
the nuclear DOF, thenJDCLstd can be replaced by its inho-
mogeneous limit:

Jinhstd = sZg
Cld−1E E dq dpe−bHgsq,pd expF i

"
UsqdtG , s10d

which is indeed insensitive to the dynamics. However, this
argument is not valid in the case of nonlinear optical experi-
ments, such as photon echoes, which are specifically de-
signed to expose dynamical effects by eliminating inhomo-
geneous broadening. In those cases, one may argue that, at
least in the limit whereVg and Ve are not too different, it
does not matter which surface the system is propagated on.9

However, to the best of our knowledge, no systematic analy-
sis of the validity of this argument has been performed. In
fact, the popularity of of the DCL approximation in actual
calculations of ORFs in liquid solutions is probably best ex-
plained by its relative simplicity, as well as by its extensive
use in the earlier literature on spectroscopy in low-
temperature hosts.51–55

The second computational scheme to be considered has
been proposed in the past for calculating the absorption line
shape,18,25nonradiative electronic relaxation rate constants,56

and the photon-echo signal.8,12 It is based on theWigner
averaged classical limitsWACLd approximation.25 One way
of deriving this approximation is by linearizing the forward-
backward action in the corresponding path integral expres-
sions for the ORF, with respect to the difference between the
forward and backward paths.24 The WACL approximations
for the linear and 2PE ORFs are given by

JWACLstd =
1

s2p"dN E dq0dp0rwsq0,p0d

3expHiE
0

t

dt8Uavst8d/"J s11d

and

RWACLst,t0d =E E dq dprwsq,pdexpF i

"
E

0

ut0u

dt8Uavst8d

−
i

"
sgnst0dE

ut0u

ut0u+t

dt8Uavst8dG , s12d

respectively. Here,rwsq ,pd is the Wigner–Weyl transform of
the initial density operator

rwsq,pd = Zg
−1E dD exph− ip · D/"j

3kq + D/2ue−bĤguq − D/2l, s13d

with D=sD1, . . . ,DNd, and the temporal behavior ofUavst8d is
dictated by classical dynamics on theaveragedpotential sur-
face:

Vavsqd = 1
2fVgsqd + Vesqdg. s14d

The third computational scheme to be considered is
based on the semiclassical FB-IVR approximation, recently
proposed by Makri co-workers.15,45–49The ORFs in Eqs.s4d
ands6d are particularly suitable for this approximation, since
they only involve time-evolution operators, which is the re-
sult of employing the Condon approximation. Within the
FB-IVR approximation, one treats the product of time-
evolution operators in Eqs.s4d and s6d as a single time-
evolution operator, and approximate it by the corresponding
semiclassical Herman–Kluk propagator.30,31The FB-IVR ap-
proximations for the linear and 2PE ORFs are given by15,16

JFBstd =
Zg

−1

s2p"dN E dq0dp0Dsp0,q0d

3kp0,q0ue−bĤgup f,q fleiSabssp0,q0d/" s15d

and

RFBst,t0d =
Zg

−1

s2p"dN E dq0dp0Dsp0,q0d

3kp0,q0ue−bĤgup f,q flei/"S2PEsp0,q0d, s16d

respectively. Here,up ,ql corresponds to a coherent state of
the form
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kxup,ql = S 1

p
DN/4

sdetgd1/4 expF−
1

2
sx − qdTgsx − qd

+
i

"
p · sx − qdG , s17d

with g=gI , whereI is the identity matrix andg is a positive
constant.16 The corresponding FB actions are given by

Sabssq0,p0d =E
0

t

fp · q̇ − Hgsp,qdgdt

+E
t

0

fp · q̇ − Hesp,qdgdt s18d

and

S2PEsq0,p0d =E
0

t0

fp · q̇ − Hgsp,qdgdt +E
t0

t0+t

fp · q̇

− Hesp,qdgdt +E
t0+t

t0

fp · q̇ − Hgsp,qdgdt

+E
t0

0

fp · q̇ − Hesp,qdgdt. s19d

q f and p f are the coordinates and momenta at the end
of the corresponding forward-backward propagations, and
Dsp0,q0d is the familiar Herman-Kluk semiclassical
prefactor.30,31

The statistical weights of trajectories in the WACL and
FB-IVR approximations are dictated byrwsq0,p0d and

kp0,q0ue−bĤgup f ,q fl /Zg, respectively. In practice, it is neces-
sary to resort to additional approximations in order to com-
pute those wights in the case of a liquid solution. One pos-
sibility is based on replacing rwsq0,p0d and

kp0,q0ue−bĤgup f ,q fl /Zg by their high-temperature limit. The
high-temperature approximationsHTAd of rwsq0,p0d reduces
to the corresponding classical Boltzmann distribution. The

explicit expression for the HTA ofkp0,q0ue−bĤgup f ,q fl /Zg,
which lacks a well-defined classical analog, can be found in
Refs. 15, 45, and 47.

An alternative approach can be based on a local har-
monic approximationsLHA d.20,21 In the case of WACL, this

corresponds to expandingVg in kq+D /2ue−bĤguq−D /2l, to
second order aroundq, and explicitly solving the resulting
Gaussian integralscf. Refs. 20 and 21 for a more detailed
discussiond. The same approximation can be employed in the
case of the FB-IVR approximation, by using the following
identity:

kp0,q0ue−bĤgup f,q fl =E dqdDkp0,q0uq + D/2l

3kq + D/2ue−bĤguq − D/2lkq

− D/2up f,q fl, s20d

followed by a LHA for kq+D /2ue−bĤguq−D /2l and explic-
itly solving the corresponding Gaussian integrals. The nu-

merical implementation of those schemes is similar to that in
Refs. 15, 16, 20, and 21.

III. APPLICATION TO A NONPOLAR
LIQUID SOLUTION

In this section, we present the results obtained for the
linear and 2PE response functions via the various approxi-
mations surveyed in Sec. II in the case of a two-state chro-
mophore in a nonpolar liquid solution. The goal of this
analysis is to estimate the accuracy of the approximations, as
well as the sensitivity of different observables to the quan-
tum nature of the underlying dynamics.3,7–9,13,14,57,58The cal-
culations were performed for a model that constituted of a
single two-state chromophore in a 2D liquid solution.59

Twenty five solvent atoms were included in a 2D simulation
cell with periodic boundary conditions, in order to minimize
the relatively high cost of computing the FB-IVR approxi-
mation. The potential energy surfaces of the ground and ex-
cited electronic states are assumed to be pairwise additive,
such that

Va = o
k

vasrkd + o
k, j

vssrkjd. s21d

Here,rk is the distance between the chromophore and thekth
solvent atom; andrkj is the distance between thekth and j th
solvent atoms. It should be noted that the chromophore-
solvent interactions in the excited state are assumed to be
different from those in the ground state, whereas the solvent-
solvent interactions are the same in both states.

The actual pair potentialsvg, ve, and vs were adopted
from Ref. 13, where they were used for analyzing ORFs in
nonpolar liquid solutions, within the context of the DCL ap-
proximation. More specifically, the pair potentialsvg, ve, and
vs are assumed to have the form of Lennard-JonessLJd po-
tentials:

vsrd = 4eFSs

r
D12

− Ss

r
D6G , s22d

and we assume thatvg=vs, with LJ parameters that corre-
spond to liquid argon, namely,e /kB=119.8 K and s
=3.405 Å.ve is assumed to be similar tovg, except for the
fact thatse=s1+ldsg, with l=0.06.13 We also assume that
the chromophore mass is equal to that of the solvent atoms,
and corresponds to the mass of an argon atom. MD simula-
tions were carried out at a temperatureT=128.2 K and den-
sity r=0.0604 Å−2 sthe corresponding reduced LJ tempera-
ture and density are given byT* = kBT/eg=1.07 andr*
=rsg

2=0.7, respectivelyd.
The initial sampling of the coordinates in the case of the

LHA-WACL and LHA-FB-IVR approximations was per-
formed via a PIMD simulation.20 Each DOF was represented
by a six-bead necklace, and the corresponding classical equa-
tions of motion were integrated by using the velocity Verlet
algorithm.60,61 The system was equilibrated over 106 time
steps, each of length 1.5310−3 sin reduced unitsd, by attach-
ing a two-element Nose–Hoover chain to each of the
beads.60,61 The parameterg was set to 2m/b"2 in the FB-
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IVR simulations. Converged results for the DCL, WACL,
and FB-IVR approximations were obtained by averaging
over 104–105 trajectories.

The absorption spectra for this model, as obtained via
the DCL, HTA-WACL, LHA-WACL, HTA-FB-IVR, and
LHA-FB-IVR approximations, as well as at the inhomoge-
neous limit, are shown in Fig. 1. The absorption line shape is
observed to be dominated by inhomogeneous broadening,
which is manifested by the great similarity between the DCL
and inhomogeneous spectra.13,14 The line shapes predicted
by the HTA-WACL, LHA-WACL, HTA-FB-IVR, and LHA-
FB-IVR approximations are similar, and deviate only slightly
in comparison to the prediction of the DCL approximation.
Those observations are consistent with the expected insensi-
tivity of the linear absorption spectrum to dynamics, as well
as to quantum effects in the initial sampling.

The diagonal homodyne-detected 2PE signal at timet
= t0, I2PEst0,t0d, is given in Fig. 2, as obtained via the DCL,
LHA-WACL, and LHA-FB-IVR approximations. The inte-
grated 2PE signal is shown as a function oft0 in Fig. 3, as
obtained via the DCL, LHA-WACL, and LHA-FB-IVR ap-
proximations. The results obtained for the diagonal and inte-
grated 2PE via HTA-WACL and HTA-FB-IVR essentially
coincide with the LHA-WACL and LHA-FB-IVR results, re-
spectively, and are therefore not shown explicitly. I2PEst0,t0d
is seen to be completely insensitive to the type of approxi-
mation used in order to describe the dynamics. On the other
hand, the DCL approximation of the integrated 2PE, I2PE

int st0d,
is noticeably different from the WACL and FB-IVR approxi-
mations, which give very similar predictions. Thus, from all

the quantities considered, only the integrated 2PE signal is
observed to be somewhat sensitive to the quantum nature of
the underlying dynamics.

The fact that using the HTA and LHA gave essentially
identical results for all quantities considered, implies that the
nuclear DOF can be treated as classicalsas far as the initial
sampling is concernedd. The observation that the absorption
spectrum is insensitive to thequantumnature of the under-
lying dynamics is due to the fact that, for the model consid-
ered, the line shape is inhomogeneously broadened, and re-
flects initial sampling rather than the subsequent time
evolution. It should be noted that this conclusion may not
necessarily hold in cases where the ORF is sensitive to
bound intramolecular vibrational dynamics. This possibility
is suggested by the findings in Ref. 18, where the DCL and
WACL approximations of the linear ORF were compared
with the exact quantum-mechanical result in the case of a
two-state harmonic diatomic molecule bilinearly coupled to a
harmonic bath. The authors of Ref. 18 have found that the
DCL approximation was unable to capture vibronic structure
in the absorption spectrum, and that the WACL approxima-
tion was able to capture the vibronic structure in some cases,
but failed to do so in other cases. At the same time, the recent
work of Ovchinnikovet al., who used the FB-IVR method in
order to compute the nonlinear ORF that corresponds to the
resonance Raman spectrum of I2 in liquid xenon, seems to
suggest that the FB-IVR approximation is able to accurately
capture the vibronic structure.16

It is important to note the complete insensitivity of the
diagonal 2PE signal, I2PEst0,t0d, to the quantum nature of the
underlying dynamicsscf. Fig. 2d. A similar behavior has been
previously pointed out by Shemetulskis and Loring, who
found that the DCL and WACL approximations gave essen-
tially identical predictions for I2PEst0,t0d in the case of a fluid
consisting of dipolar soft spheres.8 Those authors have attrib-
uted this insensitivity to the fact that the decay of I2PEst0,t0d
reflects inertial motion of solvent molecules, and is therefore
insensitive to the dynamics dictated by the potential energy
surfaces. The fact that in our case, the prediction of FB-IVR
for I2PEst0,t0d is essentially indistinguishable from the pre-
diction of the DCL and WACL approximations seem to rein-
force the validity of this argument. However, it should be
emphasized that our results also show that the off-diagonal
component of the 2PE signal, which contributes to the inte-

FIG. 1. The absorption spectrum of a two-state chromophore in liquid so-
lution, as obtained via the DCL, HTA-WACL, LHA-WACL, HTA-FB-IVR,
and LHA-FB-IVR approximations, as well as at the inhomogeneous limit.

FIG. 2. The homodyne-detected two-photon-echo signal for a two-state
chromophore in liquid solution, att= t0. Shown are the DCL, LHA-WACL,
and LHA-FB-IVR approximationssthe HTA-WACL and HTA-FB-IVR ap-
proximations are indistinguishable from the LHA-WACL and LHA-FB-IVR
approximations, and are therefore not shown explicitlyd.

FIG. 3. The integrated two-photon-echo signal for a two-state chromophore
in liquid solution, as a function oft0. Shown are the exact, DCL, LHA-
WACL, and LHA-FB-IVR approximationssthe HTA-WACL and HTA-FB-
IVR approximations are indistinguishable from the LHA-WACL and LHA-
FB-IVR approximations, and are therefore not shown explicitlyd.
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grated 2PE signal, is at least somewhat sensitive to the quan-
tum nature of the noninertial dynamicsscf. Fig. 3d. Further-
more, the fact that the difference between DCL and WACL/
FB-IVR is not large in our case, is at least partly due to the
fact thatVe andVg are rather similar in the case of a nonpolar
liquid solution. It would obviously be desirable to extend the
analysis to polar liquid solutions, where the stronger interac-
tions may lead to more pronounced deviations, and/or to the
case of the three-pulse photon echo, which is more sensitive
to solvation dynamics on longer time scales.9 However, cal-
culating the relevant quantities via the FB-IVR approxima-
tion would be much more demanding in those cases, and is
therefore reserved to future study.

IV. SUMMARY

We have performed a comparison between the DCL,
WACL, and FB-IVR approximations, in the context of linear
and nonlinear ORFs of a two-state solute in a nonpolar liquid
solution. In the case of the WACL and FB-IVR approxima-
tions, we have also considered different approximations for
sampling the initial state, namely HTA and LHA. The results
suggest that the linear ORF is insensitive to the quantum
nature of both the initial sampling and the dynamics. As a
result, all different methods give essentially the same absorp-
tion spectrum.

In retrospect, one could have anticipated this result
based on the fact that the absorption line shape is dominated
by inhomogeneous broadening, and the relatively large mass
of the nuclei. At the same time, the nonlinear 2PE ORF was
found to be somewhat sensitive to the quantum nature of the
dynamics, as long as one looks at the overall, rather than the
diagonal, signal. We have also established that the results
obtained via the FB-IVR method are very similar to those
obtained via the WACL approximation. Thus, the accuracy of
those two methods seem to be comparable, at least for the
model considered here.

Although the WACL and FB-IVR approximations for the
integrated 2PE clearly deviate from the prediction of the
DCL approximation, the discrepancy was found to be rather
small. This is at least partly due to the fact that the ground
and excited potential surfaces in the model considered are
rather similar. Larger differences between the two potential
surfaces, as in the case of a polar solvent-solute system,
would probably give rise to larger discrepancies, and a more
pronounced signature of the quantum nature of the underly-
ing dynamics. However, those systems will also be charac-
terized by larger FB actions, such that converging the
FB-IVR calculation would become increasingly more de-
manding. It should also be noted that other quantities, such
as the heterodyne-detected 2PE and ORFs that correspond to
other nonlinear optical experiments, such as the three-pulse
photon echo, may be more sensitive to the quantum nature of
the dynamics. Those issues are currently under investigation
in our group, and will be reported in future publications.
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