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The electronic dephasing dynamics of a solvated chromophore is formulated in terms of a
non-Markovian master equation. Within this formulation, one describes the effect of the nuclear
degrees of freedom on the electronic degrees of freedom in terms of a memory kernel function,
which is explicitly dependent on the initial solvent configuration. In the case of homogeneous
dynamics, this memory kernel becomes independent of the initial configuration. The Markovity of
the dephasing process is also the most conveniently explored by comparing the results obtained via
the non-Markovian master equation to these obtained via its Markovian counterpart. The
homogeneous memory kernel is calculated for a two-state chromophore in liquid solution, and used
to explore the sensitivity of photon echo signals to the heterogeneity and non-Markovity of the
underlying solvation dynamics. © 2006 American Institute of Physics. �DOI: 10.1063/1.2354155�
I. INTRODUCTION

The electronic energy levels of a dilute chromophore in
solution are very sensitive to the configuration of solvent
atoms in its vicinity. Solvent dynamics therefore leads to
fluctuations in the chromophore transition frequency, which
is known as spectral diffusion. As is well known, spectral
diffusion can lead to the relaxation of electronic coherences
which is known as dephasing or decoherence. By studying
the rate of dephasing, one can therefore learn about the dy-
namics of the solvent in the vicinity of the chromophore.

The time scale on which spectral diffusion occurs is of-
ten related to the inverse of a homogeneous linewidth. The
latter is clearly distinguished from the inhomogeneous line-
width brought about by the equilibrium distribution of sol-
vent configurations. In many systems of practical interest,
the absorption line shape is dominated by inhomogeneous
broadening, and is therefore insensitive to spectral diffusion.
The latter can be studied with the help of various nonlinear
spectroscopic techniques, such as photon echoes.1–6 How-
ever, these techniques still involve ensemble averaging over
a very large number of chromophore molecules. This aver-
aging makes it difficult to distinguish between the case of
heterogeneous dynamics, which would be strongly dependent
on the initial configuration, and the case of homogeneous
dynamics, which would not.

To what extent is the dephasing experienced by different
chromophore molecules throughout the sample truly homo-
geneous? This question is easily answered in cases where the
bath can be represented by delocalized excitations, such as
acoustic phonons. The dynamics in such cases is truly homo-
geneous since different chromophore molecules throughout
the host matrix are coupled to the very same phonon bath.7

Dynamical heterogeneity of relatively slow spectral diffusion
processes, in such systems as disordered crystals and glasses,
can also be probed directly by single-molecule spectroscopic
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techniques.8–14 However, the situation is different in the case
of liquid solutions, where electronic dephasing is usually ul-
trafast and may be highly correlated with the initial configu-
ration. The fact that the dephasing dynamics occurs on the
same time scale as that of the nuclear degrees of freedom
�DOF� also suggests that it is non-Markovian.

In this paper, we propose a general theoretical frame-
work for quantitatively studying the homogeneity and
Markovity of dephasing processes. Whereas previous studies
have considered non-Markovian effects in dephasing dynam-
ics within the framework of phenomenological stochastic
models,15–19 the scheme proposed here is more general and
based on describing the dephasing process in terms of a non-
Markovian generalized quantum master equation. A central
role within this formulation is played by the memory kernel,
which is explicitly dependent on the initial solvent configu-
ration. In the case of homogeneous dynamics, this memory
kernel becomes independent of the initial configuration. One
may then explore the degree to which the dephasing process
is homogeneous by comparing the results computed by as-
suming a homogeneous memory kernel to these computed
without this assumption. The Markovity of the dephasing
process is also most conveniently explored by comparing
results computed via the non-Markovian master equation to
these computed via its Markovian counterpart.

The remainder of this paper is organized as follows. The
formalism required for describing dephasing processes is
presented in Sec. II. The general non-Markovian master
equation underlying dephasing is derived in Sec. III. The
formalism required for calculating nonlinear photon echo
signals is described in Sec. IV. The application of the theo-
retical framework for studying Markovity and homogeneity
of dephasing in nonpolar liquid solutions is reported
in Sec. V. We conclude with a summary of the main results in

Sec. VI.
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II. PRELIMINARY CONSIDERATIONS

We consider a system with an overall Hamiltonian of the

following generic form �capped symbols, such as Â, repre-
sent operators throughout this paper�:

Ĥ = Ĥg � �g��g� + ���eg + Ĥe� � �e��e� . �1�

Here, �g� and �e� represent the ground and excited electronic

states, respectively, Ĥg and Ĥe represent the corresponding
quantum-mechanical Hamiltonians of the nuclear DOF, and
��eg is the energy gap between the two bare electronic
states. Off-diagonal coupling terms between the electronic
states were left out in light of the fact that electronic popu-
lation relaxation rates in liquid solutions are typically con-
siderably slower in comparison to the ultrafast electronic
dephasing rates. We also assume that the initial state is given
by

�̂�0� = �̂b � ��gg�0� � �g��g� + �ee�0� � �e��e�

+ �ge�0� � �g��e� + �eg�0� � �e��g�� . �2�

Here, �̂b is a density operator representing the initial state of
the nuclear DOF. It should be emphasized that �̂b does not
necessarily coincide with the equilibrium density operator at
the ground or excited electronic states, which are given
by

�̂ j
eq =

e−�Ĥj

Tr�e−�Ĥj�
, j = g,e . �3�

In many cases of practical interest, one can only directly
probe and/or manipulate the electronic DOF. Optical spec-
troscopy represents a prime example of this state of affairs,
where measurable frequency domain spectra and time-
domain signals can all be given in terms of expectation val-
ues of the purely electronic coherence operators �g��e� and
�e��g� �within the Condon approximation�.1 This observation
naturally leads to a strategy that treats the electronic DOF as
“the system,” and the nuclear DOF as “the bath.” To this end,
we rewrite the Hamiltonian in Eq. �1� in a system-bath form,
where the system and bath correspond to the electronic and
nuclear DOFs, respectively,

Ĥ = Ĥs + Ĥb + Ĥbs. �4�

Here,

Ĥs = ���eg + �Û�b��e��e� , �5�

Ĥb = Ĥg, �6�

Ĥbs = �Û � �e��e� , �7�

where Û= Ĥe− Ĥg, �Û�b=Trb��̂bÛ�, and �Û= Û− �Û�b. It
should be noted that the system-bath coupling term was con-

veniently chosen such that �Ĥbs�b=0, which is also why we

defined the system Hamiltonian as Ĥs= ���eg+ �Û�b��e��e�,
ˆ
rather than Hs=��eg�e��e�.
The state of the overall system at time t is described by
the density operator �̂�t�. The dynamics of �̂�t� is dictated by
the Liouville equation,

d

dt
�̂�t� = −

i

�
�Ĥ, �̂�t�� . �8�

The state of the electronic DOF �the system� at time t can be
described by the reduced density operator,

�̂�t� = Trb��̂�t�� . �9�

For the model under consideration, one can represent �̂�t� by
a 2�2 matrix whose elements are �kl= �k��̂�t��l�, with k , l
=g ,e. It is immediately clear that �gg�t�=�gg�0� and �ee�t�
=�ee�0�, since �Ĥ , �g��g��= �Ĥ , �e��e��=0. It can also be
shown that

�ge�t� = �g�Trb�e−iĤt/��̂b � �̂�0�eiĤt/�	�e�

= �ge�0�exp�i��eg + �Û�b/��t	 � Jb�t� , �10�

where

Jb�t� = �ei�Ĥb+�Û�t/�e−iĤbt/��b


�exp−� i

�



0

t

dt��Û�t����
b

. �11�

Here, �Û�t�=eiĤbt/��Ûe−iĤbt/� and exp−�¯	 stands for a
negatively time-ordered exponential operator defined by

exp−�

t0

t

dt�Â�t��� 
 1 + 

t0

t

dt1Â�t1�

+ 

t0

t

dt1

t0

t1

dt2Â�t2�Â�t1� + ¯ .

�12�

In practice, it is more convenient to work in terms of the
interaction picture. The transformation between �ge�t� and its
interaction picture counterpart, �̃ge�t�, is given by

�̃ge�t� = exp�− i��eg + �Û�b/��t	�ge�t� . �13�

Substituting Eq. �13� into Eq. �10� and rearranging then
yields

�̃ge�t�
�̃ge�0�

= Jb�t� . �14�

The calculation of the quantum-mechanically exact Jb�t�
is only feasible in the case of simplified and phenomenologi-
cal models, such as the Brownian oscillator model.1 As a
result, a similar calculation for realistic many-body anhar-
monic systems, such as liquid solutions, usually relies on
approximations. In this paper we will employ a simple clas-

sical approximation which is often invoked in this
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context.20–23 To this end, we approximate the right-hand side
of Eq. �11� by its classical limit,

Jb
cl�t� =
 dQ
 dP�b�Q,P�exp� i

�



0

t

d��U���� , �15�

where Q= �Q1 , . . . ,QN� and P= �P1 , . . . , PN� are the classical
nuclear coordinates and conjugated momenta, respectively,
�b�Q ,P� is the phase space density that corresponds to the
classical limit of �̂b, and U���=U�Q����, where Q��� is ob-
tained via a classical molecular dynamics simulation on the
ground state potential energy surface with Q��=0�=Q and
P��=0�=P. Substituting the approximation in Eq. �15� into
Eq. �10� then yields the following approximation for �ge�t�:

�ge�t�
�ge�0�

� exp�i��eg + �U�b
cl/��t	 � Jb

cl�t� , �16�

where

�U�b
cl =
 dQ
 dP�b�Q,P�U�Q� �17�

is the classical limit of �Û�b.

III. A NON-MARKOVIAN MASTER EQUATION FOR
DEPHASING

The analysis of homogeneity and Markovity can be most
naturally carried out in terms of the system’s equation of
motion. In this section, we derive the equation of motion that
governs the dynamics of �̃ge�t� as depicted by Eq. �14�. To
this end, we employ the following ansatz:

d�̃ge

dt
= − 


0

t

d�K̃b����̃ge�t − �� . �18�

The relationship between K̃b��� and Jb��� �Eq. �11�� can be
established by taking the time derivative of Eq. �14�, and
writing it in terms of the ansatz in Eq. �18�,

J̇b�t� = − 

0

t

d�K̃b���Jb�t − �� , �19�

where J̇b�t� is the time derivative of Jb�t�. Taking the deriva-
tive with respect to t of both sides of Eq. �19� and rearrang-
ing then leads to the following inhomogeneous Volterra

equation of the second kind24 that relates K̃b��� to Jb���:

K̃b��� = − J̈b��� − 

0

�

d��J̇b�� − ���K̃b���� , �20�

where J̈b�t� is the second time derivative of Jb�t�. Thus, given
Jb��� as input, it is possible to solve Eq. �20� numerically for

the memory kernel K̃b���.25

Equation �18� has the form of a generalized quantum
master equation. Indeed, we have recently shown26 that this
equation can also be derived by employing projection opera-
tor techniques within the framework of the Nakajima-
Zwanzig formalism.27–30 This non-Markovian master equa-
tion can also be expressed in terms of the Schrödinger

picture,
d

dt
�ge�t� = i��eg + �Û�b/���ge�t� − 


0

t

d�Kb����ge�t − �� ,

�21�

where the corresponding memory kernel function Kb���
= K̃b���ei��eg+�U�b�� satisfies the following inhomogeneous
Volterra equation of the second kind:

Kb��� = − ei��eg+�Û�b/���J̈b���

− 

0

�

d��ei��eg+�Û�b/����−���J̇b�� − ���Kb���� . �22�

Equation �21� provides a convenient starting point for
analyzing dynamical heterogeneity. To this end, it is impor-
tant to note that Eq. �21� represents a family of non-
Markovian master equations, which differ with respect to the
choice of the initial state of the nuclear DOF. More specifi-
cally, the memory kernel, Kb���, is explicitly dependent on
the specific choice of �̂b. Further insight into the impact of
dynamical heterogeneity can be obtained by considering the
classical approximation for Jb�t�, Jb

cl�t� �cf. Eq. �15��. In the
limit of homogeneous dynamics, Jb

cl�t� would be completely
independent of �b

cl�Q ,P� and can therefore be replaced by

Jh
cl�t� =
 dQ
 dP�g

eg�Q,P�

�exp� i

�



0

t

d��U�Q���� − U�Q��� , �23�

where

�g
eq�Q,P� = exp�− �Hg�Q,P��/�dQ�dP

�exp�− �Hg�Q,P��

is the equilibrium classical phase-space density that corre-
sponds to the classical limit of �̂g

eq. The approximate homo-
geneous memory kernel can be obtained by substituting Jh

cl�t�
for Jb�t� in Eq. �20� and solving it for the memory kernel. We
denote the memory kernel that results from this procedure by

K̃h
cl���. Upon substituting K̃h

cl��� for K̃b��� in Eq. �18�, we
obtain the following homogeneous approximation of the
non-Markovian master equation:

d�̃ge

dt
= − 


0

t

d�K̃h
cl����̃ge�t − �� . �24�

The function Jh
cl�t� should be clearly distinguished from

the corresponding classical expression for the linear optical
response function �ORF�,

Jcl�t� =
 dQ
 dP�g
eq�Q,P�exp�i


0

t

d�U�Q����/�� .

�25�

Jcl�t� describes free-induction decay in the time domain, and
its Fourier transform corresponds to the absorption
spectrum.1 The difference between Jh

cl�t� and Jcl�t� lies in the
integrands of the time integrals in Eqs. �23� and �25�. In the

cl
case of J �t� the integrand is given by U�Q����, which spans
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a wide range of values at �=0 corresponding to the equilib-
rium distribution of solvent configurations. This so-called in-
homogeneous broadening usually dominates the decay of
Jcl�t�, so that linear spectroscopy is insensitive to spectral-
diffusion-induced dephasing. In contrast, the corresponding
integrand in the case of Jh

cl�t� is given by U�Q����−U�Q� and
therefore vanishes at �=0. Thus, the decay of Jh

cl�t� as a
function of time is solely due to the dynamics of U�Q����
�i.e., to spectral diffusion�, which could be considerably
slower in comparison to that of Jcl�t�.

It is also interesting to compare the function Jh
cl�t� with

the classical frequency autocorrelation function,

CUU
cl �t� =
 dQ
 dP�g

eq�Q,P�U�Q�U�Q�t�� , �26�

which is often used for characterizing spectral diffusion pro-
cesses. Both Jh

cl�t� and CUU
cl �t� are functions of only one time

variable. Furthermore, like Jh
cl�t�, CUU

cl �t� involves an en-
semble average over the equilibrium distribution of initial
solvent configurations. However, using CUU

cl �t� also assumes
that the solvent obeys Gaussian statistics. Such an assump-
tion is not made in the case of Jh

cl�t�.
The dynamics described by Eq. �24� is homogeneous but

clearly non-Markovian. As such, it provides a convenient
starting point for understanding the importance of non-
Markovian effects in solvation dynamics. In this context, the
Markovian limit is defined as that in which the equation of
motion becomes local in time, such that d�̃ge�t� /dt only de-
pends on the value of �̃ge�t� at the same time. It should be
noted that starting with the family of non-Markovian master
equations represented by Eq. �21� would lead to a corre-
sponding family of different Markovian equations. However,
in this paper we only consider Markovity in the limit of
homogeneous dynamics, which can be obtained by replacing
�̃ge�t−�� by �̃ge�t� in Eq. �24�. This yields the following
Markovian master equation:

d

dt
�̃ge�t� = − 	̃h

cl�t��̃ge�t� , �27�

where

	̃h
cl�t� = 


0

t

d�K̃h
cl��� . �28�

It should be noted that Eq. �27� is expected to be accurate at
short times, where �̃ge�t−��� �̃ge�t�. Solving Eq. �27� for
�̃ge�t� then yields

�̃ge�t�
�̃ge�0�

= exp�− 

0

t

dt1	̃h
cl�t1��

= exp�− 

0

t

dt1

0

t1

dt2K̃h
cl�t2�� . �29�

At times longer than the lifetime of K̃h
cl���, 	̃h

cl�t� be-

comes time independent, such that
d

dt
�̃ge�t� = − 	̃h

cl�
��̃ge�t� 
 − � 1

T2
+ i���̃ge�t� , �30�

where

1

T2

 Re�	̃h

cl�
�� = 

0




d� Re�K̃h���� ,

�31�

� 
 Im�	̃h
cl�
�� = 


0




d� Im�K̃h
cl���� .

Solving Eq. �30� for �̃ge�t� then yields

�̃ge�t�
�̃ge�0�

= exp�− � 1

T2
+ i��t� . �32�

IV. CALCULATION OF PHOTON ECHO
SIGNALS

In this section we will outline the theoretical framework
that will be used in Sec. V in order to calculate ORFs in
liquid solutions. Here too, we will employ the classical ap-
proximation of Eq. �15�.

We start out with the linear ORF given in Eq. �25�. An
equivalent expression for Jcl�t� is given by

Jcl�t� =
 dU0P�U0�eiU0t/�Jb
cl�t;U0� . �33�

Here, P�U0� is the initial equilibrium probability density of
U�Q�,

P�U0� =
 dQ
 dP�g
eq�Q,P���U�Q� − U0� , �34�

and Jb
cl�t ;U0� is the same as in Eq. �15�, except for the fact

that its dependence on U0 �the initial value of U� is now
indicated explicitly.

In the case of truly homogeneous dynamics, one may
substitute Jb

cl�t ;U0� by Jh
cl�t� �cf. Eq. �23��. Since the latter is

independent of U0, one may then write Jcl�t� as a product of
two factors,

Jcl�t� � Jinh
cl �t� � Jh

cl�t� . �35�

where

Jinh
cl �t� =
 dU0P�U0�eiU0t/�. �36�

The two Markovian limits of Eq. �35� can be obtained by
replacing Jh

cl�t� by �̃ge�t� / �̃ge�0� from either Eq. �29� or �32�.
It should be noted that the decay of Jinh

cl �t� is due to the
equilibrium distribution of U�Q�, whereas that of Jh

cl�t� is due
to the fluctuations in U�Q� relative to its initial value. One
may in fact define the homogeneous and inhomogeneous
spectral line shapes in terms of the Fourier transforms of
Jh

cl�t� and Jinh
cl �t�, respectively. While the inhomogeneous

linewidth reflects the equilibrium distribution of solvent con-
figurations, the inverse homogeneous linewidth provides a
“characteristic” ensemble-averaged time scale of solvent

fluctuations. For most disordered solvents such as liquids and
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glasses, one finds that the inhomogeneous line shape is typi-
cally much broader than the homogeneous line shape. Thus,
Jh

cl�t��1 on the time scale where Jinh
cl �t� decays to zero, such

that Jcl�t��Jinh
cl �t�. The absorption line shape, which is given

by the Fourier transform of Jcl�t�, is therefore rather insen-
sitive to spectral diffusion.

We next consider the classical ORF that corresponds to
the three-pulse photon echo �3PE� experiment,1,31,32

R�t1,t2,t� =
 dQ
 dP�g
eq�Q,P�

�exp�i

0

t1

d�U���/� − i

t1+t2

t1+t2+t

d�U���/�� .

�37�

Here, t1 is the time interval between the first and second
pulses, t2 is the time interval between the second and third
pulses, and the echo is detected a time period t after the third
pulse. 3PE signals are often homodyne detected.1 This means
that one measures the echo intensity which is proportional to
�R�t1 , t2 , t��2. Furthermore, echo signals measured in liquid
solutions and other disordered solvents are typically
“smeared” over an extended time interval, rather than given
by a sharp echo at t= t1. The results of 3PE experiments are
therefore often reported in terms of the integrated echo,
which is given by

I3PE�t1,t2� = 

0




dt�R�t1,t2,t��2. �38�

We also note that the two-pulse photon echo �2PE� is a spe-
cial case of the 3PE, where t1 is the time interval between the
first and second pulses and t2=0 in Eq. �37�.

The 3PE ORF can also be written in the following form:

R�t1,t2,t� =
 dU0
 dU2P�U0,U2;t1 + t2�

�eiU0t1/h−iU2t/�Jb
cl�t1;U0��Jb

cl�t;U2��*. �39�

Here, P�U0 ,U2 ; t1+ t2� is the probability density of finding
U=U0 and U=U2 a time interval t1+ t2 apart. It should be
noted that in this experiment, the coherence is stored as
population for a period of time t2 between the second and
third pulses. Thus, spectral diffusion during this time does
not lead to dephasing, although it does affect the initial dis-
tribution of solvent configuration for the dephasing process
that follows the third pulse.

In the case of truly homogeneous dynamics, one may
substitute Jb

cl�t1 ;U0� and Jb
cl�t ;U2� by Jh

cl�t1� and Jh
cl�t�, re-

spectively. As a result, one may write R�t1 , t2 , t� as a product
of two factors,

R�t1,t2,t� = Rinh
cl �t1,t2,t� � Jh

cl�t1��Jh
cl�t��*, �40�
where
Rinh
cl �t1,t2,t� =
 dU0
 dU2P�U0,U2;t1 + t2�

�eiU0t1/�−iU2t/�. �41�

The two Markovian limits of Eq. �40� can be obtained by
replacing Jh

cl�t1� and Jh
cl�t� by the corresponding expressions

from either Eq. �29� or �32�.
The two factors on the right-hand side of Eq. �40� rep-

resent two opposing effects. The first factor, Rinh
cl �t1 , t2 , t�,

leads to an echo centered at t= t1, which diminishes as t2 is
increased due to spectral diffusion �but not dephasing!� dur-
ing the time interval between the second and third pulses
�t2�. The second term represents dephasing processes that
take place during the time intervals between the first and
second pulses �t1� and between the third pulse and echo de-
tection �t�, and which diminish the echo signal.

V. APPLICATION TO NONPOLAR LIQUID SOLUTION

In this section, we apply the theoretical framework de-
veloped in the previous sections for studying Markovity and
homogeneity of dephasing in the case of a two-state chro-
mophore solvated in a monoatomic liquid. The potential en-
ergy surfaces of the ground and excited electronic states are
assumed to be pairwise additive, such that

V� = �
k

v��rk� + �
k
j

vs�rkj� . �42�

Here, �=g, e, and rk is the distance between the chro-
mophore and the kth solvent atom and rkj is the distance
between the kth and jth solvent atoms. It should be noted
that the chromophore-solvent interactions in the excited state
are assumed to be different from those in the ground state,
whereas the solvent-solvent interactions in both states are
assumed to be the same.

The actual pair potentials vg�r�, ve�r�, and vs�r� were
adopted from Refs. 21 and 32, where they were assumed to
take the form of Lennard-Jones �LJ� potentials,

v j�r� = 4� j��� j

r
�12

− �� j

r
�6� . �43�

We also assume that vg�r�=vs�r�, with LJ parameters that
correspond to liquid argon �� /kB=119.8 K and �
=0.3405 nm�. ve�r� differs from vg�r� in the value of the LJ
parameter �, such that �e= �1+���g, with �=0.06.21,32 We
also assume that the chromophore mass is the same as that of
the solvent atoms and equal to the mass of an argon atom.

Molecular dynamics �MD� simulations were carried out
at temperature T=128.2 K and density �=17.98 nm−3 �the
corresponding reduced LJ temperature and density are given
by T*=kBT /�s=1.07 and �*=��s

3=0.71, respectively�. Simu-
lations were preformed with 108 atoms in a cubical simula-
tion box with standard periodic boundary conditions �mini-
mum image convention�. Time propagation was carried out
by the velocity Verlet method.33 The system was equilibrated
over 106 time steps, each of length of 4 fs, by the velocity
rescaling method.33 Converged results for Jh

cl�t� and Jcl�t�
were obtained by averaging over 100 trajectories, each of

cl
length of 10 ps. Converged results for Jinh�t� required some-



124509-6 Ka, Zhang, and Geva J. Chem. Phys. 125, 124509 �2006�
what less averaging. In the following figures, the error bars
are comparable to the thickness of the lines and therefore not
shown explicitly.

The real and imaginary parts of the function Jh
cl�t� �Eq.

�23�� as obtained from the MD simulations is shown in Fig.
1. Also shown are the real and imaginary parts of Jinh

cl �t� �Eq.
�36�� and Jcl�t� �Eq. �25��. As expected, Jcl�t� almost coin-
cides with Jinh

cl �t� and they both decay more rapidly than
Jh

cl�t�. This is consistent with the fact that the absorption line
shape is inhomogeneously broadened. Indeed, Fig. 2 shows
that the absorption line shape, given by the Fourier transform
of Jcl�t�, essentially coincides with the inhomogeneous line
shape, given by the Fourier transform of Jinh

cl �t�, and that both
are significantly broader than the homogeneous line shape,
which is defined by the Fourier transform of Jh

cl�t�. It is also
interesting to note that the shapes of the homogeneous and
inhomogeneous lines are qualitatively different, with the
former clearly more symmetrical than the latter.

The real and imaginary parts of the memory kernel

K̃h
cl�t�, as obtained by numerically solving Eq. �20� with Jh

cl�t�
from Fig. 1 as input, are shown in Fig. 3. The real part is
responsible for dephasing, while the imaginary part leads to
a phase shift �which turns out to be rather small for the
model considered here�. Figure 4 shows that �̃ge�t� obtained
by substituting this memory kernel into Eq. �24�, and nu-
merically solving it for �̃ge�t�, coincides with the exact solu-
tion �Eq. �16��. The Markovian approximation in Eq. �27� is

FIG. 1. Real part �upper panel� and imaginary part �lower panel� of Jh
cl�t�

�solid line�, Jcl�t� �dashed line�, and Jinh
cl �t� �circles�.

FIG. 2. The homogeneous line shape �Fourier transforms of Jh
cl�t�, solid

line�, absorption line shape �Fourier transforms of Jcl�t�, dashed line�, and
cl
inhomogeneous line shape �Fourier transform of Jinh�t�, circles�.
seen to coincide with the exact solution at short times, but
decays too slowly at longer times. The decay of �̃ge�t� pre-
dicted by the Markovian approximation in Eq. �30� is quali-
tatively different than the exact result at all times, although
the actual time scale of the overall decay is reasonably accu-
rate.

In Fig. 5, we show the homodyne-detected integrated
2PE signal as a function of t1, the time interval between the
first and second pulses. The exact homodyne-detected inte-
grated 2PE was calculated via Eq. �37� and is given by the
solid line in Fig. 5. Assuming homogeneous dynamics �Eq.
�40�� yields the prediction given by the dashed line which is
somewhat lower than the exact result. However, assuming
homogeneous dynamics does not alter the qualitative behav-
ior of the 2PE signal as a function of t1 �although the peak
location is shifted to a somewhat shorter time�. Adding the
Markovian approximation in Eq. �27� leads to a result which
is very similar to that obtained from the non-Markovian
treatment. This is consistent with the fact that the 2PE signal
is dominated by the short time dynamics of �̃ge�t�, for which
Eq. �27� provides an excellent approximation �cf. Fig. 4�. At
the same time, the Markovian approximation in Eq. �30� is
seen to provide a qualitatively incorrect 2PE signal.

Finally, in Fig. 6 we show the homodyne-detected inte-
grated 3PE as a function of t1 and t2. We once again find that
assuming homogeneous dynamics lowers the signal and

FIG. 3. The real part �solid line� and imaginary part �dotted line� of the
homogeneous memory kernel Kh

cl�t�.

FIG. 4. Real part �upper panel� and imaginary part �lower panel� of
�̄ge�t� / �̄ge�0� as obtained from Jh�t� �solid line�, the non-Markovian master
�Eq. �18�� equation with a homogeneous memory kernel �circles�, and its
Markovian approximations in Eqs. �29� �dotted line� and �32� �dotted-

dashed line�.
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shifts the peak to slightly shorter times, but does not other-
wise change its qualitative behavior. Here too, the Markov-
ian approximation in Eq. �27� predicts a signal which is very
similar to that predicted by the non-Markovian treatment,
while the Markovian approximation in Eq. �30� is seen to
provide a qualitatively incorrect echo signal.

VI. SUMMARY

In this paper, we have developed a theoretical frame-
work for analyzing the extent to which the dynamics of elec-
tronic dephasing in liquid solutions is homogeneous and
Markovian. It should be noted that the proposed scheme is
very general and can be applied to practically any disordered
system of interest, including glasses, polymer melts, and bio-
systems. The proposed scheme relies on a description of the
dephasing dynamics in terms of a non-Markovian master
equation �Eq. �18��, where the system and bath correspond to
the electronic and nuclear DOFs, respectively. The central
quantity in this equation is the memory kernel function,
Kb���. Dynamical heterogeneity is manifested by the fact that
Kb��� is explicitly dependent on the initial solvent configu-
ration. Furthermore, Kb��� can be obtained by numerically
solving the inhomogeneous Volterra equation of the second
kind in Eq. �20�, which requires as input the quantity Jb���.
The latter can be estimated by Jb

cl��� which can be obtained
from a classical MD simulation �cf. Eq. �15��. In the limit of
homogeneous dynamics, Jb

cl��� becomes independent of the
initial solvent configuration and can therefore be replaced by
Jh

cl��� �cf. Eq. �23��. The quantity Jh
cl��� also provides a con-

venient new and rather general way for defining homoge-
neous broadening. Two types of Markovian limits of the
above-mentioned non-Markovian master equation can also
be conveniently defined, with either time-dependent or time-
independent dephasing coefficients �cf. Eqs. �27� and �30�,
respectively�.

The application of the above results to the case of a
monoatomic liquid solvent reveals that the dynamics is
rather heterogeneous on the time scale relevant for most ul-
trafast experiments. Nevertheless, this dynamical heteroge-
neity does not seem to alter the main quantitative features of
photon echo signals, which are often employed for charac-
terizing the time scale of electronic dephasing. It should be
noted, however, that the same conclusion may not hold in the

FIG. 5. The homodyne detected integrated 2PE signal as a function of t1 as
obtained via Eq. �37� �solid line�, Eq. �40� �dashed line�, and the Markovian
approximations in Eqs. �29� �dotted line� and �32� �dotted-dashed line�.
case of more disordered systems such as glasses and biosys-
tems, where dynamical heterogeneity may have a more pro-
nounced signature. The non-Markovian nature of the dephas-
ing dynamics is also observed to have almost no effect on the
photon echo signal. The latter can be reproduced rather well
by using the Markovian master equation with a time-
dependent dephasing coefficient �Eq. �27��. This can be
traced back to the sensitivity of the echo to the dephasing
dynamics at very short times, where it is described rather
well by Eq. �27�. At the same time, using the Markovian
master equation with a time-independent dephasing coeffi-
cient �Eq. �30�� was seen to lead to qualitatively different
results.

The methodology outlined here can be extended in a
variety of ways. First, one may replace the classical approxi-
mation used for calculating Jh

cl�t� by more rigorous semiclas-
sical and mixed quantum-classical treatments.34–38 Second,
one may further explore the extent of dynamical heterogene-
ity by examining the underlying distributions of Jb�t� and
Kb�t�. Third, one may attempt to calculate the memory kernel
for a driven chromophore �i.e., with an explicitly time-
dependent Hamiltonian�. Finally, one may employ the proce-
dures outlined above in order to investigate dynamical het-
erogeneity and non-Markovity in more disordered solvents,
such as glasses and biomolecules. Work on these issues is
underway in our group and will be reported in future publi-
cations.
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