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We investigate diffusion-limited aggregationsDLA d in a wedge geometry. Arneodo and collabora-
tors have suggested that the ensemble average of DLA cluster density should be close to the
noise-free selected Saffman-Taylor finger. We show that a different, but related, ensemble average,
that of the conformal maps associated with random clusters, yields a nontrivial shape which is also
not far from the Saffman-Taylor finger. However, we have previously demonstrated that the same
average of DLA in a channel geometry isnot the Saffman-Taylor finger. This casts doubt on the
idea that the average of noisy diffusion-limited growth is governed by a simple transcription of
noise-free results. ©2005 American Institute of Physics. fDOI: 10.1063/1.1876932g

The diffusion-limited aggregation model uses aggregating
random walkers to form a random fractal pattern. We
can also use random walkers to generate a conformal
map from the exterior of the cluster to the exterior of the
unit circle. The map contains all the information about
the growth probabilities for various points on the cluster.
We define the pattern generated by the ensemble average
of the conformal maps as a kind of mean-field pattern for
DLA. In previous work we showed that there seemed to
be an intriguing relationship between DLA in a channel
and the noise-free Saffman-Taylor finger. We show here
that this relationship is much more ambiguous when we
apply it to DLA in a wedge geometry. This result casts
doubt on the “averaging conjecture” which holds that the
average of noisy growth “remembers” noise-free results.

I. INTRODUCTION

The last century has abounded with examples of unex-
pected richness in the problem of brownian motion as for-
mulated by Einstein in his seminal paper in 1905.1 In the
same year, Pearson2 pictured the process as arandom walk.
In the past century random walks and brownian motion have
become central themes of statistical physics. The problem is
particularly astonishing in that it constantly generates new
ways to think about nature, and new descriptions of physical
processes. One example was the discovery by Witten and
Sander3,4 that aggregating random walkers give rise to ran-
dom fractal patterns. This process, diffusion-limited aggrega-
tion sDLA d, is simple to formulate: a seed particle is put at a
point, and then a random walking particle is launched and
allowed to proceed until it touches the seed; then it stops.
Then another walker diffuses until it touches one of the first
two, and so on. We study the cluster generated. This is the

simplest paradigm of noise-dominated growth limited by dif-
fusion, a common natural process.

This process has been studied intensively over the last
23 yearssfor a review, see Ref. 5d, but there is still not com-
plete theoretical understanding, though some recent progress
has been made6 in describing local correlations. In this paper
we investigate a property of theensembleof DLA clusters
namely the generation ofaverage shapes. Our motivation
comes from the remarkable suggestion of Arneodo and
collaborators7,8 that the ssomewhat arbitrarily definedd en-
semble average shape of noisy DLA clusters would be the
pattern generated by noise-free diffusion-limited growth. We
will refer to this as theaveraging conjecture. The relevant
case of noise-free growth is the Saffman-Taylor viscous
finger,9,10 i.e., the shape of the surface of an inviscid fluid
invading a viscous one, as water into oil. The work of Arne-
odo et al. showed that Saffman-Taylor fingers in a channel
and a wedge were close to, but not exactly the same, as DLA
averages. However, the work had a number of arbitrary pa-
rameters and, in the wedge, there were serious ambiguities.

We investigated the averaging conjecture in our work11

on DLA in a channel with reflecting boundaries at the walls.
There, we formulated a new definition of the average shape
by averaging theconformal map12–14 that generates the
cluster—this amounts to weighting points on the surface ac-
cording to their growth probability. In that work we found
that the average shape of DLAsusing our definitiond wasnot
a Saffman-Taylor viscous finger.

However, a number of authors6,15 had already questioned
whether DLA and viscous fingers are actually closely related
growth processes; DLA does not have surface tension like
viscous fingering, but rather a fixed particle size that defines
the tip radius. We followed up the suggestion6,16 that fluid
flow with surface tensionis closely related to a variant of
DLA called the dielectric breakdown modelsDBMd17 with
parameterh<1.2 sto be defined belowd. In fact, the suitably
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averaged DBM clusters then turned out to fit the Saffman-
Taylor shape quite closely.

Here we look at the related problem of DLA in a wedge.
Previously18 we have shown that tip-splitting in this geom-
etry gives us access to local correlations. In the present con-
text of looking at average shapes, the wedge is interesting in
several respects. This is a richer problem than that of the
channel in that the wedge angle is a free parameter, and the
shape of the fluid invasion is more complex.19–22We pose the
question of whether the DBM shape in a wedge is also a
good approximation to the Saffman-Taylor finger in a wedge.

This study has a special significance in this focus issue
on brownian motion. Our work here is primarily numerical.
The simulations areall done by random walker sampling: we
generate DLA clusters, DBM clusters, and conformal maps
by this single method which, as it happens, is by far the most
efficient method available. This century-old technique has
not lost its freshness and power.

II. DLA AND DBM IN A WEDGE

There are now available very sophisticated schemes for
generating DLA clusters. The one we use is based on the
method of hierarchical maps.23 In this method space is di-
vided into regions of various sizes which help keep track of
the nearest points on the cluster. Then the random walker can
make large jumps in empty regions, vastly speeding up the
computation. With this method the time to create anN par-
ticle cluster is proportional toNp with p<1.1.

We need to make DLA clusters in a wedge with reflect-
ing boundary conditions. We do this by means of a trick. If
there is a wall at some position, every time we deposit a
walker, we deposit an image walker reflected in the wall.
Suppose we are interested in 90° wedges. Then we have two
perpendicular walls, and four walkers are deposited at once.
Using this method we can use a radial DLA code to produce
wedges of opening angles 180° /n,n=1,2, . . .. Inthis paper
we will concentrate on 90° and 60° wedges. An example of a
90° wedge is shown in Fig. 1.

In the following we will see that we need to consider
DBM clusters. These are defined as follows: we imagine that
the cluster is a grounded conductor with unit charge. Outside
the cluster define a potential,f, so that

¹2f = 0, fs = 0. s1d

This defines an “electric field” on the surface,]f /]ns. Then
the dielectric breakdown model takes the growth velocity on
the surface of the cluster to be

vn ~ F ]f

]n
G

s

h

. s2d

We interpret this equation probabilistically:vn is taken as the
density of the growth probability on the surface,m. In prac-
tice, add a particle at a point on the cluster with probability
proportional tovn. It is known that at large scales DBM
clusters withh=1 have the same scaling as DLA.

The original method17 to grow DBM clusters was to
solve Eq.s1d by relaxation. This algorithm is very slow and
is not practical for generating large clusters. Recently24 we

have introduced a method of growing DBM clusters by ran-
dom walker sampling. The key to this method is to define the
age, a1, of a growth site. This is the number of random
walkers that have landed anywhere on the cluster since the
last particle grew at the site. We can also defineak, the num-
ber of walkers that have landed since thekth most recent
particle grew there.

Since the frequency of landing of random walkers is
proportional tom, it is clear that 1/a1,2 /a2, . . . at asite are
estimates ofm at that site. We have shown24 that this esti-
mate is adequate to allow us to grow DBM clusters. In our
work here we usea3 to estimate the probability.

The method of growth is as follows: if a particle lands at
a site with low probability, we arrange to have it add little to
the cluster and, at high probability sites, add a good deal.
This is accomplished by adding a mass,dm=Amh−1~an

1−h.
sThe power ish−1 because we already have a probabilitym
for the walker to land at the site.d In practice, when a particle
is added at a site, it is moved onto the existing particle so
that a portion proportional toak

1−h contributes to new growth.
We also change the prefactor,A, as we go along to make an
efficient code. For details, see Ref. 24. Examples of this are
shown in Fig. 2.

The computations we discuss below are averages over an
ensemble of off-lattice DLA and DBM clusters grown in this
way. Our DLA clusters had 1 000 000 particles in the wedge
and we averaged over an ensemble of 400 realizations. For
the DBM clusters we had 500 000 particles in the 60° wedge,
1 000 000 particles in the 90° wedge, and also 400 realiza-
tions. Our motivation for going to these large sizes is the fact
that DLA suffers slow crossovers.14,25 If we use small clus-
ters, we are not seeing the asymptotic behavior.

FIG. 1. A DLA cluster in a 90° wedge with reflecting boundaries. The
structure of the hierarchical maps is also shown.
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III. CONFORMAL MAPS

In recent years a number of groups12,13 have looked at
DLA in an entirely new way. The cluster shape is considered
to be a grounded conductor, as above, and the complex po-
tential,f, is sought, as in Eq.s1d. The technique introduced
was to define a conformal map from the exterior of the clus-
ter to the exterior of the unit circle. The Laplace equation,
Eq. s1d, can be solved easily outside the circle, and the solu-
tion mapped back to the cluster. Of course, the solution for
]f /]n is uniform on the circle. Thus the image of two parts
of the cluster perimeter with the same growth probability
will map to parts of the unit circle with the same length. Put
another way, the inverse images of uniformly spaced points
on the unit circle are distributed on the cluster with density
m.

In order to construct the map Hastings and Levitov12

invented an iterative technique which grows a cluster and
calculates the map at the same time. This is a practical
method, but slow. In Ref. 14 we constructed an alternative
method which is much faster. We grow a cluster by the con-
ventional fast scheme using random walkers. Then we freeze
the cluster at the desired size, launchn random walkers as
probes, and record where they land. Then the values of the
map on the unit circle are found as follows. We choose one
of landing positions as a starting point, say along thex axis,
and the number the walkers around the perimeter of the clus-
ter. By the observation above, if we are at walkerm, we
know that we have turned an angleu=2pm/n+Osn−1/2d
from the image of thex axis on the unit circle. In Ref. 14 we
used this information, which samples the boundary values of

the conformal map, to construct the map itself by analytic
continuation.

For our purposes here we use the information in a sim-
pler way. We constructed the map to the unit circle usingn
=100 000 for each cluster that we grew. For each member of
the ensemble there is a point,r sud whose image is a point on
the unit circle ateiu. Our definition of the ensemble average
shape generated by the DLA or DBM process24 is the en-
semble average ofr sud, i.e., the centroid of those pointsssee
Fig. 3d. We sample points on the unit circle with sufficient
resolution to define the average shape. Since points at the
leading tips of the clusters grow with high probability, they
would be oversampled if we chose points on the unit circle

FIG. 2. A portion of DBM clusters for two different
values ofh. For h=2 the overlapping of particles and
the enhanced growth at the tips is easy to see.

FIG. 3. Schematic of the averaging procedure. For different realizations of
the cluster, the same point on the unit circlesgray squared is mapped to
different points in space on the different clusters that make up the ensemble.
Our definition of the ensemble average map points to the geometric center
of those pointssbold arrowd.
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uniformly. Instead, we use an adaptive procedure until the
average shape is well defined. In Figs. 4 and 5 we show the
average shapes in 90° and 60° wedges.

This definition has a number of advantages: it is unam-
biguous, in contrast to definitions based on density profiles
ssee belowd. It is an average which is weighted by probabil-
ity, that is, we are sampling where the growing tips of the
cluster are located. It might be accessible to theoretical in-
vestigation since the growth process is the defining property
of DLA.

IV. THE AVERAGING CONJECTURE
AND MEAN-FIELD THEORY

A. Saffman-Taylor fingers

The investigation of Hele-Shaw flow in a channel is an
old subject and a good deal is known about it. In particular,

the invasion of a viscous fluid by an inviscid one is one of
the most famous of all pattern formation problems.9,10 The
general result is that the inviscid fluid forms a finger, the
Saffman-Taylor finger, which fills a fraction,l, of the chan-
nel. For eachl in f0, 1g there is a solution to the fluid-flow
equations without surface tension. For small surface tension,
the pattern is very close to that with zero surface tension and
l= 1

2. This is called the selected value. The finger elongates
in time and is of constant shape in a moving reference frame.

The theory of this sort of flow is remarkably well devel-
oped. A few basic notions are necessary here: the fluid ve-
locity, v, is derivable from a potential in this case and is
governed by D’Arcy’s law. The upshot of these two facts is
that

¹ ·v = 0 =¹2f; vn ~ F ]f

]n
G

s
. s3d

That is, fluid flow obeys the same equations as DBMfcf. Eq.
s2dg with h=1,26 so that the Saffman-Taylor finger has a
good deal in common with DLA. The bubble of inviscid
fluid plays the role of the aggregate. However, there are two
salient differences: DLA does not have surface tension but,
rather, a finite size cutoff, and DLA is dominated by noise,
whereas the Saffman-Taylor finger is a stable, noise-free pat-
tern that is observed for slow flows in a channel.

There is another problem related to the channel problem
which also admits an exact solution, that of viscous fingering
in a wedge. In this case, for short times there is also a se-
lected shape in experiments, at least for a finite time.19 Tu
and Ben Amar20–22 worked out the theory in this case and
showed that there is a self-similar shape that is selected. It is
a nontrivial pattern whose form is given by a differential
equation that needs to be solved numerically. Associated
with the problem is a selected angle, defined as the opening
angle at the base of the wedgessee Figs. 4 and 5d. The ratio
of the opening angle of the finger to that of the wedge is also
calledl. With nosurface tension there is a solution for alll,
but, once more, there is a selected value which depends on
the wedge angle. There is a complication in the fluid-flow
problem. If the inviscid fluid is pumped at a constant pres-
sure, as time goes on there will always come a point when
the pattern is unstable against tip-splitting.

B. Averaging

Arneodo and collaborators7,8 exploited the resemblance
between DLA growth and viscous fingering in the following
way: they speculated that the average of many DLA clusters
would, in some sense, remove the noise and recover the
noise-free pattern. Since DLA has no surface tension, but
rather a fixed particle sizesplaying, roughly, the role of the
capillary lengthd, they assumed that the limit of small surface
tension was the appropriate one. This is what we refer to as
the averaging conjecture.

They tested the conjecture by generating on-lattice DLA
clusters in a channel and averaging the density, point by
point.7 The density average,rsr d, is a function that goes to
zero at the edge of the channel and has a maximum,rmax, at

FIG. 4. The averaged profile of DLA and DBM clusters withh=1.2 in a 90°
wedge. Also shown is the analytic solution for a Saffman-Taylor finger with
the selectedl from Refs. 19 and 20.

FIG. 5. The averaged profile of DLA and DBM clusters withh=1.2 in a 60°
wedge. Also shown is the analytic solution for a Saffman-Taylor finger with
the selectedl from Refs. 19 and 20.

026109-4 L. M. Sander and E. Somfai Chaos 15, 026109 ~2005!



the center. One of the level sets of this function,r s:hrsr sd
= 1

2rmaxj traced out a Saffman-Taylor finger withl= 1
2.

However, closer scrutiny made the picture more com-
plex. Lattice effects are known to distort DLA clusters and
are irrelevant to the kind of physics being considered. There-
fore, they returned to the problem8 and generatedoff-lattice
DLA clusters. They found that the level set at1

2rmax filled
56% of the channel rather than 50%, or, alternatively, the
level set that was needed to makel= 1

2 was at 0.6rmax.
For the same problem in wedges of various opening

angles, on-lattice DLA density averages once more gave re-
markable agreement with selected fingers.7 However, off-
lattice the situation was different: tip-splitting made the front
of the fingers too flat, though there was qualitative agreement
with the opening angle of the average density. And, it was
necessary to choose a level set somewhat arbitrarily. In fact,
since the overall density decreased as the length of the finger
increased, it was necessary to define the opening angle by
taking a fraction of the maximum density at that distance
from the apex of the wedge.

C. Mean-field theory

Inspired by the averaging conjecture, Levine, Tu, and
collaborators27,28revised the mean-field theory of Witten and
Sander4 to attempt to write a proposed set of equations for
the mean density of a cluster. They found qualitative agree-
ment with Ref. 7. In Ref. 8 the theory was extended, and
other work has followed this up more recently.29

The salient results of this theory are that a level set,
defined as above, more-or-less fits the channel finger, but that
the wedge-based fingers are too flat.

D. Average conformal maps for DLA in a wedge

The numerical underpinnings of the averaging conjec-
ture are troublesome in several ways. At the most simple
level, the number of particles in the clusters studied was very
small, of order 103–104. We have already remarked that
DLA in that regime is far from asymptotic. More signifi-
cantly, there are far too many fitting parameters in the dis-
cussion. The level set is chosen arbitrarily, and, for many of
the discussions,l is chosen to fit the pattern.

We returned to this problem with our new definition of
the ensemble average pattern, described above. In a channel
we were able to show11 that the average shape does not fit
any Saffman-Taylor finger. The finger width of the pattern
corresponded tol<0.6, just as in Ref. 8, despite the differ-
ent definitions of the average. With the resolution that we
had available, we were able to show definitively that the
finger we generated did not fit the Saffman-Taylor pattern for
any l.

Here we return to the problem for growth in a wedge.
Using the techniques described above, we have grown DLA
clusters and averaged for wedge angles of 90° and 60°. The
results are shown in Figs. 4 and 5 along with the analytic
solutions for the selected finger shape. Now, quite remark-
ably, the opening angle of the finger does fit rather well to
the selectedl. Note that there are no adjustable parameters
in this fit other than an overall scale factor. The tip of the

finger in the 90° wedge is flatter than it should be. However,
for 60° the fit is reasonably good.

E. Average conformal maps for DBM in a wedge

In our channel work we tried to salvage the averaging
conjecture in the following way. There is a theoretical
suggestion6,16 that the correct analogy between fluid flow and
flow with surface tension was not with DLA. According to
this theory, if we consider DBM models with a short scale
cutoff rule where the tip radii are limited byR* u]f /]nu−m,
then one can find families of equivalent models in thesh ,md
parameter space. The equivalence is based on the same be-
havior of leading tips in the models with different param-
eters. In this framework the Hele-Shaw flow, where the tip
radius obeys the relationRv1/2=const, corresponds tom= 1

2,
while for DLA with fixed size particlesm=0. According to
the equivalence, flow with surface tension cutoffsh=1,m
= 1

2
d corresponds to the model with fixedR si.e., m=0d but

h<1.2. We were very encouraged in the channel by this
analogy because the average of DBM with thish did fit a
Saffman-Taylor finger withl= 1

2 rather well.
In the wedge, as Figs. 4 and 5 show, the DBM fingersdo

not fit the analytic shape. They tend to be too narrow. This is
exactly the opposite of the situation in the channel. Once
more, there are no adjustable parameters available to us to fit
the shape.

V. SUMMARY AND DISCUSSION

When we began this study we were confident that we
would be able to put the averaging conjecture on a firm foot-
ing, based on our experience with the channel geometry. Our
expectations were not at all fulfilled. It is possible to main-
tain that we have, in fact, eliminated the averaging conjec-
ture altogether. Perhaps this strong conclusion is premature,
but, certainly, the situation is not very clear. To summarize:
in a channel, averaged DBM using the mapping of Refs. 6
and 16 gives a Saffman-Taylor finger with the correctl but
averaged DLA does not. In the wedge, averaged DLA gives
the correct finger opening angle for both wedges that we
looked at, but averaged DBM does not.

We might be tempted to say that our proposal for aver-
aging based on conformal maps should simply be discarded.
If we do that, we are reduced to using density averages
which do not fit the analytic fingers any bettersworse, in
factd and are ambiguous to boot.

In passing, we should comment on the situation with
tip-splitting. We do not agree that DLA averages in a wedge
should tip-split for any opening angle.0. We base this on
our work in the wedge geometry.18 In that paper we used not
reflecting boundary conditions, but periodic boundaries for
the wedge. We looked at angular correlations of the density
for DLA clusters and found that for small wedge angles there
was a minimum in the correlation function half-way between
the branch and its image. We interpreted this by saying that
for small angles there was one major branch. For large
angles,*144° we found a secondary maximum in the cor-
relation function, i.e., more than one major branch. These
results do not directly carry over to the present case, but,
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qualitatively, we think that tip-splitting in the sense just de-
scribed is not at all clearly present in this case. There is a
numerical result of Ref. 8 for a 60° wedge which seems to
contradict this, but we are confident that our statistics were
much better.

It is likely that tip-splitting for DLA is a probabilistic
matter. We suspect that in a 90° wedge some clusters split,
but the majority do not. This could account for the small, but
definite, disagreement between the shape of the tip of the
averaged clusters in the 90° wedge with the analytic solution.
However, there is almost certainly a qualitative difference
between DLA and fluid flow with respect to tip-splitting.
Also, the extent of tip-splitting found in mean-field theory8,28

does not agree with our DLA averages or with the results of
Ref. 18.

However, the whole question of tip-splitting in this sys-
tem is controversial. There remains the possibility that our
results and those of Ref. 18 are finite-size effects, i.e., that
we have not grown large enough clusters at small angles. In
a limited effort to see finite size effects, we generated DLA
clusters in a 90° wedge similar to those shown in Fig. 4, but
ten times smaller in size. The average profile of the small
DLA clusters fell in between the analytical curve and the
large DLAs. This points in the direction that in the 90°
wedge larger DLA clusters—deviating more from the ana-
lytical curve—have a larger degree of tip splitting. However,
future work is necessary to fully settle this issue.

The project of formulating a description of the average
over the DLA ensemble still seems to us to be quite a worthy
one. However, the present results show that the current state
of the art in this area is far from giving the definitive answer.

ACKNOWLEDGMENTS

We are indebted to Dave Kessler for the suggestion of
measuring the average conformal map. We thank the Center
for the Study of Complex Systems at the University of
Michigan for computing resources. LMS acknowledges par-

tial support by NSF Grant No. DMS-0244419. ES would like
to thank the University of Michigan for hospitality, and the
PHYNECS training network of the European Commission
for financial supportsContract No. HPRN-CT-2002-00312d.

1A. Einstein, Ann. Phys.17, 549 s1905d.
2K. Pearson, NaturesLondond 72, 294 s1905d.
3T. A. Witten and L. M. Sander, Phys. Rev. Lett.47, 1400s1981d.
4T. A. Witten and L. M. Sander, Phys. Rev. B27, 5686s1983d.
5L. M. Sander, Contemp. Phys.41, 203 s2000d.
6R. C. Ball and E. Somfai, Phys. Rev. Lett.89, 135503s2002d.
7A. Arneodo, Y. Couder, G. Grasseau, V. Hakim, and M. Rabaud, Phys.
Rev. Lett. 63, 984 s1989d.

8A. Arneodo, J. Elezgaray, M. Tabard, and F. Tallet, Phys. Rev. E53, 6200
s1996d.

9P. G. Saffman and G. Taylor, Proc. R. Soc. London, Ser. A245, 312
s1958d.

10P. Pelce,New Visions on Form and GrowthsOxford U. P., Oxford, 2004d.
11E. Somfai, R. C. Ball, J. P. DeVita, and L. M. Sander, Phys. Rev. E68,

020401s2003d.
12M. B. Hastings and L. S. Levitov, Physica D116, 244 s1998d.
13B. Davidovitch, H. G. E. Hentschel, Z. Olami, I. Procaccia, L. M. Sander,

and E. Somfai, Phys. Rev. E59, 1368s1999d.
14E. Somfai, L. M. Sander, and R. C. Ball, Phys. Rev. Lett.83, 5523s1999d.
15F. Barra, B. Davidovitch, A. Levermann, and I. Procaccia, Phys. Rev. Lett.

87, 134501s2001d.
16R. C. Ball and E. Somfai, Phys. Rev. E67, 021401s2003d.
17L. Niemeyer, L. Pietronero, and H. J. Wiesmann, Phys. Rev. Lett.52,

1033 s1984d.
18D. A. Kessler, Z. Olami, J. Oz, I. Procaccia, E. Somfai, and L. M. Sander,

Phys. Rev. E57, 6913s1998d.
19H. Thome, M. Rabaud, V. Hakim, and Y. Couder, Phys. Fluids A1, 224

s1989d.
20Y. H. Tu, Phys. Rev. A44, 1203s1991d.
21M. Ben Amar, Phys. Rev. A44, 3673s1991d.
22M. Ben Amar, Phys. Rev. A43, 5724s1991d.
23R. C. Ball and R. M. Brady, J. Phys. A18, L809 s1985d.
24E. Somfai, N. Goold, R. C. Ball, J. P. DeVita, and L. M. Sander, Phys.

Rev. E 70, 051403s2004d.
25R. C. Ball, N. E. Bowler, L. M. Sander, and E. Somfai, Phys. Rev. E66,

026109s2002d.
26L. Paterson, Phys. Rev. Lett.52, 1621s1984d.
27E. Brener, H. Levine, and Y. H. Tu, Phys. Rev. Lett.66, 1978s1991d.
28H. Levine and Y. H. Tu, Phys. Rev. A45, 1053s1992d.
29V. A. Bogoyavlenskiy, Phys. Rev. E64, 066303s2001d.

026109-6 L. M. Sander and E. Somfai Chaos 15, 026109 ~2005!


