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This article presents a comparative sustainability
assessment of three biorefineries that produce liquid
fuels used in current infrastructure. The three options
considered are biochemical production of ethanol
from grain and from cellulosic feedstocks and ther-
mochemical production of Fischer-Tropsch diesel
from biomass-derived syngas. These biorefineries were
compared using numerous environmental, economic,
and social metrics, with numerical values derived
from a thorough review of recent literature. For each
of the three biorefinery options, the metrics were not
determined from a specific process design, but from a
variety of different designs reported in literature.
Where necessary, corn was selected as the feedstock
for grain ethanol and switchgrass was selected for
cellulosic ethanol and Fischer-Tropsch diesel. These
sustainability metrics were used in an Analytic Hier-
archy Process decision analysis to compare the sus-
tainability of the different biorefineries. Thus, a new
decision-making tool has been created in which the
user can assign different weights to each category
and its metrics. This tool was used to explore the
influence of different weights, different market condi-
tions, and uncertainties in the values of the metrics
on the relative sustainability of the different options.
Based on the results of this assessment, cellulosic
ethanol biorefineries are modestly more sustainable
than grain ethanol and Fischer-Tropsch diesel. Grain
ethanol was favorable economically whereas Fischer-
Tropsch diesel had the highest score on the societal
metrics. � 2010 American Institute of Chemical Engineers
Environ Prog, 30: 743–753, 2011
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INTRODUCTION

Biomass is a renewable resource for sustainable
production of fuels, chemicals, and power. Different

technologies exist for biorefineries, which are facili-
ties that integrate biomass conversion processes and
equipment to produce fuels, power, and chemicals
[1]. The objectives of this work were to assess and
compare the sustainability of different biorefineries,
including both thermochemical and biochemical con-
version processes and processes that made fuel from
just selected portions of the biomass feedstock and
also from entire plants. These objectives were met by
focusing on grain ethanol (GE), cellulosic ethanol
(CE), and Fischer-Tropsch diesel (FTD) biorefineries.
Of course this set of three is not unique, and other
choices could have been made. The next section
gives descriptions and process flow diagrams for
each of these biorefineries.

There have been previous assessments of these
biorefineries, with published work ranging from fuel
life cycle assessments to economic analyses. The
present study builds on and significantly broadens
this previous work by presenting a comparative sus-
tainability assessment that employs the triple-bottom-
line approach (environmental, economic, and social
metrics). Moreover, the Analytical Hierarchy Process
(AHP), combined with a sensitivity analysis, was used
to provide a quantitative comparison of the different
biorefineries.

BACKGROUND

Biorefinery Descriptions

Grain Ethanol Biorefinery
The dry mill GE process is a well-developed tech-

nology for converting corn starches into ethanol. Pro-
cess steps (illustrated in Figure 1, detailed in Ref. 2)
include cleaning and milling of the corn, liquefaction
and saccharification to release sugars, fermentation to
produce ethanol, and then distillation and drying to
produce ethanol and distillers dried grains and solu-
bles (DDGS), a by-product useful as an animal feed
[2]. Most current GE producers use electricity from� 2010 American Institute of Chemical Engineers
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the grid and natural gas for process heat. New state-
of-the-art plants are opting for combined heat and
power (CHP) systems, which can increase plant
energy efficiency by 25% [3]. Coal or natural gas is
typically the CHP fuel source [3], but biomass could
also be used.

Cellulosic Ethanol Biorefinery
The technology to produce ethanol from cellulosic

material is more complex and less mature than starch
ethanol technology, and different processes have
been reported. One of the more common processes
is Simultaneous Saccharification and Fermentation
(SSF) (illustrated in Figure 2, detailed in Ref. 4). SSF
pretreats the feedstock with dilute acid to hydrolyze
the sugars in hemicellulose and modify the cellulose
structure. The five-carbon sugars liberated from hemi-
celluloses are then fermented. Next, cellulase
enzymes are added to liberate glucose monomers
from cellulose while the glucose is actively fer-
mented. The final fermentation product is then dis-

tilled to recover the ethanol. Residual solid matter
(lignin) is removed and can be used in CHP systems.

Fischer-Tropsch Diesel Biorefinery
A FTD biorefinery produces diesel fuel via gasifica-

tion of biomass to make a CO/H2 mixture, which is
then catalytically converted into hydrocarbons of vari-
able chain length (Eq. 1) [5].

ð2nþ 1ÞH2 þ nCO ! CnH2nþ2 þ nH2O (1)

A variety of process configurations are possible,
but all of them include the six steps shown in Figure
3: pretreatment, gasification, gas cleaning, gas proc-
essing, Fischer-Tropsch Synthesis (FTS), and fuel
refining/separation. The primary function of the pre-
treatment step is to dry the biomass to improve the
efficiency of the gasifier [6]. The gasifier produces
synthesis gas (H2/CO mixture) along with other gases
and contaminants, such as alkali compounds, H2S,
HCl, NH3, HCN, and COS. These contaminants can

Figure 1. Process flow diagram for GE biorefinery.

Figure 2. Process flow diagram for CE biorefinery.

Figure 3. Process flow diagram for FTD biorefinery with gas turbine combined power cycle.
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poison the FTS catalyst, so they are reduced to ac-
ceptable levels [7] during the gas cleaning step. Final
processing steps (methane steam reforming, the water
gas shift reaction, and CO2 removal) may be neces-
sary before the synthesis gas enters the FTS reactor.
The last step in the process is refining or upgrading
the hydrocarbon effluent from the FTS reactor to pro-
duce diesel fuel (primarily C10–C15 hydrocarbons) [8].

Analytic Hierarchy Process Methodology
The Analytic Hierarchy Process (AHP) is a

decision-making tool that can incorporate the many
competing factors involved in answering a complex
question [9, 10]. The process involves creating a hier-
archy containing a goal (e.g., sustainable production
of liquid fuel from biomass), evaluation criteria and
subcriteria, and alternative means of meeting the goal
(e.g., GE, CE, FTD). Each criterion is weighted, based
on its importance, and the sum of the weights are
normalized to unity. For each criterion, the alternative
solutions are assigned scores based on quantitative or
qualitative considerations. The decision outcome is
then determined by the weight placed on each crite-
rion and the numerical scores assigned to each alter-
native.

AHP was used to assess the sustainability of the
different biorefineries based on environmental, eco-
nomic, and social impacts. These triple bottom line
criteria form the first tier of the hierarchy [11, 12].
Some of the criteria were further divided into subcri-
teria as shown in Figure 4. These subcriteria will be
discussed in detail in the Sustainability Evaluation
section.

In the base case analysis, the environmental, eco-
nomic, and social impacts were weighted equally.
This choice was arbitrary; different people may have
different judgments, therefore other weightings were
also explored. Three additional perspectives were
considered in which one criterion was given twice
the priority of the other two. Subcriteria were
weighted equally in every case for simplicity. A sensi-
tivity analysis was also performed by varying subcri-
teria scores within the range reported in literature for
each biorefinery alternative.

The Sustainability Evaluation section presents sub-
criteria values for each biorefinery alternative. In
most cases, lower values are better (e.g. all emis-
sions); however, return on investment (ROI) and job

creation are exceptions. In the AHP Results section,
higher values indicate better performance in all cases.

In the interest of clarity, supplementary material is
available. It provides sample calculations and the
spreadsheet used to perform the AHP analysis.

SUSTAINABILITY EVALUATION

This section presents the values for the environ-
mental, economic, and social metrics for each of the
three biorefinery alternatives. For the environmental
and social metrics, these values were not based on a
specific process design; they were determined from
reported values in literature based on a variety of
process designs and feedstocks. In most cases, the
AHP input value was selected by taking an average
of the highest and lowest values in the range of
reported values. Where necessary, such as for the
potential for eutrophication metric, the feedstocks
were selected to be corn for GE and switchgrass for
CE and FTD. For the economic metric, calculations
were based on a specific process design for each bio-
refinery alternative.

Environmental Metrics
Energy demand, Greenhouse gas (GHG) emis-

sions, SOx and NOx emissions, potential for eutrophi-
cation, and water use are the environmental metrics
considered in this study. The functional unit was 1
MJ of biofuel produced by the biorefinery and subse-
quently combusted in a vehicle. All parameters
reported in this section correspond to the use of
100% ethanol as fuel. Data from studies that used E85
(85% ethanol–15% gasoline mixture by volume) was
converted to a 100% ethanol basis by assuming that
gasoline contributes 15% to the reported value and
ethanol contributes 85%. The choice to weight based
on volume percent was arbitrary; one could also
weight based on heating value. The energy densities
used in this study for gasoline, ethanol, and FTD
were 44, 27, and 41 MJ/kg, respectively.

Energy Demand
The energy efficiency and consumption of fossil

fuels for GE, CE, and FTD biorefineries were com-
pared using the ratio of well-to-wheel (WTW) total
energy input to energy in the fuel (Etotal) and the ra-
tio of WTW total fossil fuel energy input to energy in
the fuel (Efossil). Life-cycle assessments (LCA) of GE,
CE, and FTD using the Greenhouse gases, Regulated
Emissions, and Energy use in Transportation model
developed by Argonne National Lab (GREET) [13–15]
provide data that led to the Etotal values in Table 1.

Figure 4. The hierarchy tree used in the AHP analysis
for biorefinery selection.

Table 1. Etotal values for GE, CE, and FTD
biorefineries.

Biorefinery type

Etotal

Literature AHP input

GE 2.3 [13], 2.15 [14] 2.23
CE 2.13 [13], 2.05 [14] 2.09
FTD 2.3 [14], 2.2–2.3 [15] 2.25
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The GREET model evaluates energy consumption,
GHG emissions, and pollutant emissions over the
entire life-cycle of a fuel (well-to-wheel). It takes
into account production, transportation, distribution,
and storage of both the feedstock and the fuel, as
well as fuel combustion, fuel evaporation, and vehi-
cle refueling.

The Etotal value calculations used the lower heating
value of the fuel, and the total energy input
accounted for all energy sources including fossil and
renewable energy (energy embedded in corn kernels
and biomass). Additionally, CHP systems fueled by
biomass were employed at the biorefineries. Overall,
the Etotal values are very similar for all three biorefi-
neries but higher than the Etotal for gasoline of 1.25
[13–15].

There has been considerable debate over the Efossil
value for GE produced from corn. A number of early
LCA studies concluded that Efossil for GE was greater
than 1 [16–19], while some of the more recent LCA
studies have reported GE Efossil values in the range of
0.5 to 0.8 [13, 14, 20–22]. The large disparity in LCA
results is due to varying system boundaries, copro-
duct energy allocation procedures, and accuracy of
input data.

One particular study performed a fuel LCA of GE
produced from corn as well as CE and FTD produced
from switchgrass using GREET and Aspen [23]. The
values for WTW fossil energy input were reported
relative (as a percentage) to gasoline or diesel. How-
ever, the absolute values for gasoline and diesel were
not given in the article, making it difficult to compare
their values with literature. To solve this problem, we
simulated the fuel life-cycle for gasoline and diesel
using GREET version 1.8b along with the same
assumptions used in the article. From the simulation,
it was determined that the Efossil values for gasoline
and diesel were 1.21 and 1.05, respectively, which
fall within the range reported in literature [15]. Based
on these values for gasoline and diesel, the Efossil val-
ues for GE, CE, and FTD would be 1.03, 0.13, and
0.14, respectively [23]. However, this report consid-
ered CE and FTD biorefineries that incorporated CHP
systems fueled by biomass residuals whereas the GE
biorefinery did not, thus making for a biased compar-
ison [23]. Corn stover or distiller dried grains and
solubles (DDGS) could be used to fuel a CHP system
[13, 21] in a GE biorefinery. Wang et al. found that
Efossil for a GE biorefinery drops from 0.76 to

0.42 with CHP using DDGS and to 0.33 using corn
stover [13].

Table 2 shows Efossil values for GE, CE, and FTD
biorefineries that were calculated from a number of
published sources. It also shows the representative
values selected for this analysis. Negative Efossil values
occur when electricity co-produced from biomass
residuals at the biorefinery displace electricity from
the grid produced from fossil fuels. The amount of
electricity produced at the biorefinery has a strong
effect on Efossil. CE and FTD require the least amount
of fossil energy input throughout the fuel life-cycle.

Greenhouse Gas Emissions
In this section, the global warming potential of

GE, CE, and FTD biorefineries was assessed by com-
paring fuel life-cycle GHG (CO2, CH4, and N2O)
emissions in terms of grams of CO2-equivalent per MJ
of biofuel. To determine GHG emissions in terms of
grams of CO2-equivalents, the emissions of CO2, CH4,
and N2O were weighted by their 100-yr global warm-
ing potentials set by the IPCC (1 for CO2, 23 for CH4,
and 296 for N2O).

From the GREET simulation and the report by Wu
et al., the fuel life-cycle GHG emissions for GE, CE,
and FTD were calculated to be 99, 23, and 7 g CO2

eq./MJ of biofuel, respectively [23]. The GE value
does not include a CHP system at the GE biorefinery,
which would significantly reduce GHG emissions [3,
25, 26]. For a GE biorefinery incorporating a biomass-
fueled CHP system, GHG emissions fall in the range
of 44 to 57 g CO2 eq./MJ [13]. Table 3 shows the fuel
life-cycle GHG emissions reported from a number of
studies for biorefineries equipped with biomass-
fueled CHP systems, along with the values selected
for AHP input.

SOx and NOx Emissions
SOx and NOx emissions for GE, CE, and FTD

reported in literature are shown in Table 4. Calcu-
lated SOx and NOx emissions depend strongly on the
assumed electricity mix, the amount of fertilizer
needed for growing corn or cellulosic feedstocks
such as switchgrass, CHP systems and the amount of
electricity exported, and manufacturing of farm
equipment. Thus, evaluating SOx and NOx emissions
within a LCA is subject to greater uncertainties than is
estimating energy demand or GHG emissions [13].

Table 2. Efossil values for GE, CE, and FTD
biorefineries.

Biorefinery
type

Efossil

Literature AHP input

GE 0.33 to 0.42 [13] 0.38
CE 0.09 [13], 0.08 [14],

20.01 to 0.15 [20], 0.13 [23]
0.11

FTD 0.07 [14], 0.1 to 0.22 [15],
0.14 [23], 0.05 to 0.14 [24]

0.14

Table 3. Fuel life cycle GHG emissions for GE, CE
and FTD biorefineries.

Biorefinery
type

GHG emissions
(g CO2 eq./MJ of biofuel)

Literature AHP input

GE 44 to 57 [13] 51
CE 12 [13], 29 [14],

25 [20], 23 [23], 11 [27]
7

FTD 11 [14], 25 to 19 [15],
7 [23], 18 to 48 [24]

22
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Only Wu et al. performed a LCA for each biorefi-
nery, which allows for a direct comparison [23].
Based on the GREET simulation and their fuel LCA,
SOx emissions for GE, CE, and FTD were 0.081,
0.014, 0.009 g/MJ of biofuel, respectively [23]. NOx

emissions were determined to be 0.25 for GE, 0.15
for CE, and 0.10 g/MJ for FTD [23]. Recall, however,
that Wu et al. did not incorporate a biomass-fueled
CHP system into their GE biorefinery. Doing so could
reduce SOx emissions by 18% and NOx emissions by
53% [28]. By including these reductions, the AHP
input values for SOx and NOx emissions were deter-
mined and are shown in Table 4.

Eutrophication
To assess the potential for eutrophication of grain-

based and cellulosic-based biofuels, the losses of
nitrogen (N) and phosphorus (P) per kg of feedstock
during farming were compared for corn and switch-
grass (model cellulosic feedstock). Corn is an inher-
ently inefficient nutrient user with approximately 40%
to 60% of the N applied not being taken up by the
crop, however, switchgrass is much more efficient
due to its extensive root systems [30]. The losses for
corn are reported to be 20 to 40 kg N/ha and 2 to 15
kg P/ha [30]. While specific values for N and P losses
for switchgrass were not found, it is estimated that

switchgrass could reduce N and P losses by as much
as 50% to 90% compared with corn [30].

The N and P losses for corn and switchgrass are
given in Table 5. The losses in kg/ha for switchgrass
were calculated as 30% of the values for corn. To nor-
malize the loss values, the average yields for corn and
switchgrass for seven Midwest states [31] were used to
calculate losses in terms of kg/kg feedstock. The aver-
age yields were 9120 kg corn/ha and 10,600 kg
switchgrass/ha [31]. Since the mass energy densities of
corn and switchgrass are similar [32, 33] and depend
highly upon the moisture content, the normalized
losses in terms of kg N/kg feedstock and kg P/kg
feedstock were used as input for the AHP analysis.

Water Use
Table 6 shows the consumptive water use of GE,

CE, and FTD biorefineries. These values correspond
to water use by the biorefinery during production of
the fuel; they do not include the water consumed
while growing the feedstock. Water use values for GE
biorefineries come from full-scale operating plants
[34]. Since CE and FTD biorefineries are only at the
pilot-plant scale, water use values are from simula-
tions and models [37]. The primary water demand for
all three biorefineries is for energy production, specif-
ically cooling tower and boiler systems [37, 40]. FTD
biorefineries, in addition, consume water during the
gasification, gas cleaning, and gas processing steps
(Figure 3).

Economic Metric
Return on investment (ROI) was used as the single

economic metric for the AHP analysis since capital
cost, operating cost, and fuel sale price each contrib-
ute to ROI. The ROI was calculated for each process
by updating an economic analysis in the literature
[41]. This recent study by Wright and Brown com-
pares the capital and operating costs for different bio-
fuel plants. This study was modified by using
updated prices for corn ($4/bushel), DDGS ($100/
Mg), and cellulosic feedstock ($60/Mg) and different

Table 5. Nitrogen (N) and phosphorus (P) losses for corn and switchgrass.

Feedstock

N loss P loss

kg/ha kg/kg feedstock kg/ha kg/kg feedstock

Corn 30 3.3 3 1023 9 9.9 3 1024

Switchgrass 9 8.5 3 1024 3 2.8 3 1024

Table 4. Fuel life cycle SOx and NOx emissions for GE, CE, and FTD biorefineries.

Biorefinery type

SOx emissions (g/MJ) NOx emissions (g/MJ)

Literature AHP input Literature AHP input

GE 0.081 [23], 0.055–0.066 [28] 0.066 0.25 [23], 0.12–0.15 [28] 0.12
CE 0.51 [20], 0.014 [23],

0.009–0.023 [28], 0.22–0.23 [29]
0.014 0.35 [20], 0.15 [23],

0.05–0.14 [28], 0.63–0.65 [29]
0.15

FTD 0.009 [23], 0.06–0.11 [24] 0.009 0.10 [23], 0.03–0.07 [24] 0.10

Table 6. Consumptive water use for GE, CE, and FTD
biorefineries.

Biorefinery

Water use (L H2O/MJ fuel
produced)

Literature AHP input

GE 0.16–0.28 [34],
0.14–0.33 [35], 0.19 [36]

0.19

CE 0.28 [37], 0.09–0.28 [36],
0.45 [38]

0.28

FTD 0.37 [39] 0.37
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scaling exponents for capital costs of FTD processes.
Wright and Brown [41] used scaling exponents of
0.63 for GE and CE, and 0.70 for FTD, but an analysis
of the FTD process [8] reports a higher scaling expo-
nent of 0.91, indicating less economic benefit from
plant scale-up. Additionally, the GE plant was modi-
fied with the addition of on-site CHP generation from
biomass to reflect the model used throughout this
analysis. The capital cost of this addition was esti-
mated using the cost of a new 75 million L/yr (MLY)
installation priced at $14 M [42] and using a scaling
exponent of 0.7. Utility costs were subsequently
reduced by 25% [3]. Using a gasoline and diesel sale
price of $0.70/L and plant productivities of 1.2 3 107

GJ/yr (or 100 M gallons gasoline equivalent), GE had
the highest ROI (24.1%). Table 7 presents a complete
summary of the key economic results.

Social Metrics

Job Creation
New biofuel plants create jobs at the facility and

also through indirect industry and household spending
effects. A study of corn ethanol plants in Iowa found
that a 380 MLY plant creates 46 jobs directly, 95 jobs
indirectly, and 29 jobs via household spending effects
[43]. In keeping with this literature, it was assumed
that jobs created through indirect industry and house-
hold spending effects scale linearly with the number
of jobs created at each type of plant [43]. Note that the
loss of jobs by displacing petroleum refineries has not
been included in this evaluation. Such losses would
likely impact all three biorefineries equally.

The relative number of jobs created at each plant
depends on the complexity of the production process
[44]. A comparison of process flow diagrams and
equipment specifications reveals that FTD production
is the most complex process, followed by CE and
finally GE [2, 8]. A report by NREL on the costs of

ethanol production from cornstarch and lignocellu-
lose found that a CE plant requires twice the number
of shift workers as a corn ethanol plant of the same
size [2]. Detailed economic information is not yet
available for FTD plants. Comparing the higher eco-
nomic scaling exponent of large-scale FTD plants
(0.91) [8] with that of ethanol plants (0.63) [2], it has
been assumed that a FTD plant will employ the num-
ber of workers required by a CE plant plus half the
number of GE shift workers (Table 8).

Food Price
Increasing demand for biomass feedstock may have

an effect on food prices. GE has received the most criti-
cism in this respect. Ethanol producers demand more
than 25% of the total US corn harvest [45]. The Congres-
sional Budget Office estimates that increases in ethanol
production caused 28% to 47% of the increase in corn
price from April 2007 to April 2008 [45]. It is interesting
to note that current government subsidies for GE may
have the effect of increasing food costs. In addition,
increases in food prices will tend to have the greatest
effect on consumption by the poorest demographics
since their food choice is highly contingent upon price.
Early CE or FTD will likely be produced using by-prod-
ucts such as corn stover or dedicated feedstock grown
on marginal land, and therefore will likely have less of
an effect on food prices.

Obtaining a quantitative comparison of the food
price effects of cellulose- and corn-based biorefi-
neries is challenging since little information is avail-
able on the cellulosic feedstock cultivation. It is clear
that GE production is causing some increase in food
price, and that the cellulosic platform will have a
lesser effect on food price. It was assumed that the
food price effects of GE production will be twice that
of the cellulosic platforms (CE and FTD).

Health Effects
Throughout the WTW life cycle of liquid transpor-

tation fuels, air pollutants are emitted that have
harmful human health effects. Three of these major
pollutants are particulate matter less than 10 lm in di-
ameter (PM-10), carbon monoxide, and volatile or-
ganic compounds (VOC). Similar to the case with
SOx and NOx emissions, very few LCA studies in the
literature have reported emissions levels for these
pollutants due to the lack of accuracy in estimating
these values. Therefore, the AHP input for these

Table 8. Relative number of jobs created by GE, CE,
and FTD biorefineries.

Biorefinery Relative number of jobs created

GE 1
CE 2
FTD 2.5

Table 7. Capital costs, operating costs, and return on investment for GE, CE and FTD biorefineries.

Plant
type

Ref plant
size (106 GJ/yr)

Capital scaling
exponent

Plant
size (106 GJ/yr)

Capital cost
(millions
of US $)

Operating
cost (US $/L
gasoline eq.) ROI (%)*

GE 2.01 0.63 [2] 12 143 0.61 24.1
CE 4.03 0.63 [2] 12 585 0.53 11.1
FTD 4.79 0.91 [8] 12 786 0.54 7.9

*A wholesale price for gasoline and diesel of $0.70/L was used.
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emissions was based on the GREET simulation of the
report by Wu et al. [23]. A biomass-fueled CHP sys-
tem was again incorporated into the GE biorefinery.
Implementing such a system could decrease PM-10
emissions by approximately 54%; however, CO and
VOC emissions would remain virtually the same [28].
With this reduction, the ratio of GE PM-10 emissions
to CE PM-10 emissions is close to 2, which agrees
with the ratio reported by Hill et al. (2.05) [46]. Fur-
thermore, another study has reported similar pollu-
tant emissions values for CE biorefineries [28]. Table
9 gives the values used in the AHP analysis.

Location of Pollutant Emissions
The location of emissions plays a major role in deter-

mining the overall exposure risk. Urban emissions of
criteria pollutants such as CO, VOC, SOx, NOx, and PM
can be calculated using GREET. Two GREET LCA stud-
ies by Wu et al. revealed that urban emissions of these
five pollutants are highest for GE followed by CE then
FTD [23, 28]. Moreover, Hill et al. investigated the spa-
tial change in atmospheric PM-2.5 concentration across
the United States due to producing and using an addi-
tional 4 billion L of ethanol [46]. Their results show that
CE options have much less of an effect on atmospheric
PM-2.5 concentrations than does GE, especially in
urban areas. Based on these studies, the overall pollu-
tant exposure risk for each of these biorefineries was

evaluated using pair-wise comparisons. It was assumed
that the total human exposure risk for GE biorefineries
is twice that of CE biorefineries and that FTD biorefi-
neries present 30% less risk than CE biorefineries.

AHP RESULTS

Having described the basis for the numerical value
of each environmental, economic, and social metric,
we next use these values in the AHP assessment. This
section presents and discusses the key results.

Base Case
Figure 5 shows the results from the AHP assess-

ment of the three different biorefineries. In this base
case, each aspect of the triple bottom line was
equally weighted. The three options have similar
overall scores, but CE scores modestly higher than
the other two, indicating that of the options investi-
gated and with the metrics used in this report, CE is
the most sustainable option. Figure 5 also shows the
individual normalized scores for the environmental,
economic, and social impact categories.

No one biorefinery option performed best in all of
the triple bottom line categories. In fact, each category
had a different option as the preferred choice. For the
environmental impact category, CE had the highest nor-
malized score (0.43) indicating that it has the smallest
impact on the environment. The primary reasons for its
high score were high energy conversion efficiency (low
total energy and fossil energy inputs) as well as low
GHG emissions. Figure 6 provides the details about
how each option fared with the different environmental
metrics. FTD performed similarly to CE for a number of
metrics. However, it was hampered by its high water
use at the biorefinery during fuel production as well as
having higher energy inputs and GHG emissions than
CE. GE received the lowest environmental score (0.22)
due to high energy input requirements and high GHG
and SOx/NOx emissions. Moreover, corn has higher N
and P losses during farming than cellulosic feedstocks
such as switchgrass, therefore it has a greater potential
for eutrophication. On the other hand, GE biorefineries
are more efficient in terms of water use.

Figure 5. Normalized scores for the environmental,
economic, and social impact criteria as well as the
overall scores for the base case.

Figure 6. Normalized scores for environmental subcri-
teria.

Table 9. PM-10, CO, and VOC emissions for GE, CE,
and FTD biorefineries (based on Ref. 23).

Biorefinery
type

PM-10
(g/MJ)

CO
(g/MJ)

VOC
(g/MJ)

GE 0.070 (0.032)* 1.66 0.10
CE 0.017 1.63 0.10
FTD 0.011 1.32 0.05

*Value in parentheses corresponds to reduction in
PM-10 emissions due to biomass-fueled CHP system.
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In the economics category, Figure 5 shows that GE
had the highest normalized score (0.56). GE has low capi-
tal costs and high return on investment. The low capital
costs are in part due to the process and technology being
well-understood and well-developed. Over time, one
would expect that capital costs for CE and FTD biorefi-
neries will decrease due to process/technology improve-
ments. GE was followed by CE (0.26) in second and FTD
(0.18) in third. FTD biorefineries were significantly hin-
dered by high capital costs, which arise from the com-
plexity of the process. Operating costs, however, were
the lowest for CE and FTD biorefineries due to the rela-
tively low cost of cellulosic feedstock as opposed to corn.

In the societal category, Figure 5 shows that FTD bio-
refineries (0.45) have the most favorable implications,
followed by the CE (0.35) and GE biorefineries (0.2).
Figure 7 shows details about how each option fared with
the different societal impact metrics. FTD has the lowest
harmful emissions and uses a nonfood feedstock. Addi-
tionally, due to the complexity of the process, a greater
number of jobs are created to produce a specific amount
of fuel. GE has poor performance across the board in
this societal category due to its relatively high emissions
and use of a food resource for fuel production.

Sensitivity Analysis
A sensitivity analysis was performed to assess how

strongly the relative rankings of the biorefineries
depended on the precise values and weights used in
the AHP analysis. The sensitivity was assessed in two
ways: (1) individual inputs for the environmental,
economic, and social categories were varied and (2)

multiple decision-making perspectives were evaluated
by varying the weightings of the environmental, eco-
nomic, and social categories. For the analysis of sen-
sitivity to the individual inputs, all values determined
from the literature were varied within their ranges
reported in literature. For all other metrics save food
price, the AHP input values were varied by 610%.
Due to a high degree of uncertainty, the impact of
GE on food price was varied from 1.5 to 4 times that
of cellulosic platforms, CE and FTD. Each input pa-
rameter was varied individually, one at a time.

Individual Inputs
For the environmental and social categories, no

variation of any single parameter within the range
studied changed the relative rankings of the biorefi-
neries. This result indicates that the differences
between the three biorefineries are significant for
these two categories. However, it is important to note
that this result can also partly be attributed to the
large number of metrics used. The more metrics one
uses, the less opportunity there is for any one metric
to single-handedly alter the overall outcome.

On the other hand, the economic outcome (ROI)
was very sensitive to changes in feedstock prices and
fuel sale price. In this study, corn was priced at
$4.00/bushel, cellulosic feedstock at $60/Mg, and gas-
oline at $0.70/L. The sensitivity of ROI is apparent
when varying these parameters individually. Raising
the corn price to $4.36/bushel results in equal ROI
for GE and CE of 11.1%. Lowering cellulosic feed-
stock to $18/Mg results in equal ROI for GE and CE
of 24.1%. When the gasoline sale price is dropped to
$0.64/L, GE and CE have equal ROI of 6.8%. Tables
10 and 11 demonstrate the sensitivity of ROI to
changes in corn price and cellulosic feedstock price,
respectively.

Multiple Decision-Making Perspectives
As mentioned previously, no single biorefinery

option performed best in more than one of the triple
bottom line categories (environmental, economic,
and social impact). Accordingly, it is important to
assess how the weights assigned to the triple bottom
line categories affect the outcome of the AHP analy-
sis. To do so, three weighting schemes in addition to
the base case were considered. In these additional

Figure 7. Normalized scores for social subcriteria.

Table 10. Effect of corn price on GE ROI.

Corn price (US $/bushel) GE ROI (%)

3.00 60.7
3.50 42.4
4.00 24.1
4.50 5.8
5.00 212.5
5.50 230.8

Table 11. Effect of cellulosic feedstock price on CE
and FTD ROI.

Cellulosic feedstock
price (US $/Mg)

CE
ROI (%)

FTD
ROI (%)

40 17.3 11.6
50 14.2 9.8
60 11.1 7.9
70 7.9 6.0
80 4.8 4.2
90 1.7 2.3
100 21.4 0.5
110 24.5 21.4
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schemes, one aspect of the triple bottom line was
given a weight of 0.5 and the other two weighted at
0.25 each. Thus, one component of the triple bottom
line was given double priority. In the base case, each
of the three components had equal weight.

The results of this sensitivity analysis for category
weighting indicated that the CE biorefinery was the
most sustainable option for two (all equal and envi-
ronment 23) out of the four decision-making per-
spectives, and was a very close second for the social
23 perspective (Table 12). For the economic 23 per-
spective, GE had the highest score. However, as men-
tioned previously, the economic performance of GE
biorefineries is highly dependent upon corn price,
which has been increasing in the recent past, in part
due to the growing demand for ethanol. Additionally,
the capital costs and operating costs of CE biorefi-
neries will likely decrease as the technology matures.

To further demonstrate the strengths of a triple-bot-
tom-line approach combined with an AHP analysis,
we determined the criterion weight required to make a
given biorefinery the best overall alternative. Weight-
ing the economic criterion 1.2 times as much as the
environmental and social criteria makes GE the most
favorable alternative. Similarly, CE is most favorable if
the environmental criterion is weighted 0.75 times the
other criteria, and FTD is the most favorable if the
social criterion is weighted 1.6 times the other criteria.

LIMITATIONS

In the interest of completeness, it is important to
address the limitations of this biorefinery sustainabil-
ity assessment. First, metrics were assigned values for
each biorefinery option based on a thorough review
of recent literature. Due to this approach, neither a
specific process design nor a specific feedstock was
assumed for each biorefinery. The metric values were
determined from a variety of different process
designs and feedstocks reported in literature. Second,
with the exception of the economic calculations, a
biorefinery size (fuel production capacity) was not
assumed. Thus, an implicit assumption in this analysis
is that the values for the environmental and social
metrics scale linearly with production. Of course, the
AHP framework we provide can easily accommodate
more specific follow-up studies that relax such limit-
ing assumptions.

CONCLUSIONS

This article assessed the sustainability of GE, CE,
and FTD biorefineries for liquid fuel production,
using the triple bottom line as a guide. Each biorefi-

nery was evaluated based on multiple environmental,
economic, and social metrics. These metrics were
determined from values reported in literature for a
variety of different process designs and feedstocks.
The Analytic Hierarchy Process was used to analyze
this multiobjective, multicriteria problem. The sensi-
tivity of the results to the values and weightings used
in the analysis was also considered. Based on the
results, CE appears to be modestly more sustainable
than GE or FTD for producing renewable liquid
fuels. The CE platform combines low environmental
impact with moderate economic investment.

NOMENCLATURE

AHP Analytic Hierarchy Process
CE Cellulosic Ethanol
CHP Combined Heat and Power
DDGS Distillers Dried Grains and Solubles
Efossil Ratio of well-to-wheel total fossil fuel

energy input to energy in the biofuel
Etotal Ratio of well-to-wheel total energy input

to energy in the biofuel
E85 Fuel mixture of 85% ethanol and 15%

gasoline
FTD Fischer-Tropsch Diesel
FTS Fischer-Tropsch Synthesis
GE Grain Ethanol
GHG Greenhouse Gas
GREET Greenhouse gases, Regulated Emissions,

and Energy use in Transportation model
IPCC Intergovernmental Panel on Climate

Change
LCA Life-cycle Assessment
MLY Million L/yr
Mg Megagram
NOx Nitrogen Oxides
PM-2.5 Particulate matter less than 2.5 lm in di-

ameter
PM-10 Particulate matter less than 10 lm in di-

ameter
ROI Return on Investment
SOx Sulfur Oxides
SSF Simultaneous Saccharification and Fer-

mentation
VOC Volatile Organic Compounds
WTW Well-to-Wheel
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