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Abstract: In multivariate linear regression, it is often assumed that the response matrix is intrinsically of lower rank. This
could be because of the correlation structure among the prediction variables or the coefficient matrix being lower rank. To
accommodate both, we propose a reduced rank ridge regression for multivariate linear regression. Specifically, we combine
the ridge penalty with the reduced rank constraint on the coefficient matrix to come up with a computationally straightforward
algorithm. Numerical studies indicate that the proposed method consistently outperforms relevant competitors. A novel extension
of the proposed method to the reproducing kernel Hilbert space (RKHS) set-up is also developed.  2011 Wiley Periodicals, Inc.
Statistical Analysis and Data Mining 4: 612–622, 2011
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1. INTRODUCTION

Multivariate linear regression is the simple extension of
the classical univariate regression model to the case where
we have Q > 1 responses and P predictors. It is commonly
used in chemometrics, econometrics, and other similar
quantitative fields where one is interested in predicting
several responses generated by a single production process.

We can express the multivariate linear regression model
in matrix notation. Let X denote the N × P predictor or
design matrix, with ith row xi = (xi1, xi2, . . . , xiP ). Simi-
larly the response matrix is denoted by Y, N × Q where the
ith row is yi = (yi1, yi2, . . . , yiQ). The regression param-
eter is given by the coefficient matrix B which is P × Q.
Note that the qth column of B, βq = (β1q, β2q, . . . , βPq)

is the regression coefficient vector for regressing the kth
response on the predictors. Let E denote the N × Q random
error matrix, then the model is,

Y = XB + E. (1)

Note that this will reduce to the classical univariate
regression model if Q = 1. For notational simplicity we
will assume that the columns of the response and the
predictors are centered and scaled so that the intercept terms
can be omitted. The most standard approach to estimating
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the coefficient matrix B is by Ordinary Least Squares
approach. The estimator is,

B̂OLS = (
XTX

)−1
XTY. (2)

This amounts to performing Q separate univariate
regression of Yq ’s on the predictors. The OLS approach
fails to take advantage of any relationship or dependence
between the responses, thus performs suboptimally when
the true response dimension is <Q. In addition it is well
known that this type of estimators perform poorly when the
predictor variables are highly correlated.

A large number of methods have been proposed to over-
come these deficiencies most of which are based on ideas
of dimension reduction and tries to find some underlying
latent structure. Popular methods include Principal Compo-
nent Regression [1], Partial Least Squares [2], Canonical
Correlation Analysis [3]. All of these methods can be clas-
sified under the larger class of Linear Factor Regression, in
which the response Y is regressed against a small number
of linearly transformed predictors, often called the factors.
The models differ in the way they choose the factors. The
estimation proceeds in two steps, transforming the origi-
nal predictors in the chosen factor space and selecting the
number of relevant factors r , often achieved through cross
validation. It is easy to see that as r decreases we are able
to achieve greater dimensionality reduction.
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Another dimensionality reduction approach called Re-
duced Rank Regression [4–7] minimizes the least squares
criterion subject to the constraint rank(B) ≤ r for some
r ≤ min{P,Q}. This problem can also be motivated from
latent variable regression, where we assume that the Q

responses are functions of r underlying latent variables. The
solution to the reduced rank regression problem involves
projection of the usual OLS estimator to a r-dimensional
space that explains the maximum variation in terms of
the Frobenius norm. As OLS estimator performs poorly
when the predictor variables are highly correlated the
performance of the reduced rank estimator is also affected
when the predictors are collinear.

Yuan et al. [8] proposed a novel dimension reduction
method called Factor Estimation and Selection (FES). They
try to minimize the constrained least squares criterion,

B̂ = arg min
B

‖Y − XB‖2
F + λ

min{P,Q}∑
j=1

σj (B), (3)

where σj (B) denotes the j th singular value of B. This
constraint encourages sparsity in the singular values of B
and hence the solution B̂ is of lower rank. Though moti-
vated from linear factor regression this approach avoids the
explicit choice of the factor space by choosing a clever set
of basis functions. The optimization problem in Eq. (3) is
shown to be equivalent to a second order cone program
and the authors use the SDPT3 solver to obtain the solu-
tion. SDPT3 can solve conic linear optimization problems
over a closed, convex pointed set in a finite-dimensional
inner-product space [9]. Unlike reduced rank regression
solution this provides a continuous regularization path. But
as with the reduced rank regression this method also fails
to account for the correlation among the predictor vari-
ables. The situations where the singular values of B̂OLS is
a poor approximation to σj the FES method may suffer
heavily.

To directly exploit the correlation structure between the
response variables [10] proposed a method they call the
Curds and Whey (CW) procedure. The main idea is to
borrow strength from the separate OLS regressions by
performing a second round of regression of the responses on
the OLS estimates. Intuitively if some responses are heavily
correlated then we will be able to obtain a better, more
stable predictor by averaging over the corresponding OLS
estimates. Notationally, CW predictor takes the form Ỹ =
ŶOLSM, where M is a Q × Q shrinkage matrix obtained by
the second round of regression. The authors show that the
CW procedure has some close connections to the canonical
covariate analysis, they also develop an easy to implement
GCV type criterion to efficiently perform cross-validatory
shrinkage.

Several other penalization approaches have been pro-
posed to improve the performance of least square estimates.
Most commonly studied are Ridge regression [11] and
LASSO regression [12] in the univariate situation, that is,
Q = 1. LASSO is used as a tool for variables selection,
specifically suited to the case where the number of pre-
dictors p is large but only a few of them actually have
some effect on the response variables, more commonly
known as the sparse set-up. Ridge regression introduces
an �2 penalty, thus it performs shrinkage to handle the
issues caused by collinearity in the predictor variables,
rather than dimension reduction. Zou and Hastie [13] pro-
posed the Elastic Net another variable selection method
which combines the �1 and �2 penalties in an effort to uti-
lize the favorable properties of the LASSO and the Ridge
at the same time. Elastic Net achieves dimension reduc-
tion while controlling for the correlated predictors thus
enjoys a grouping property which is useful in many real
life scenario. Turlach et al. [14] proposed the �∞ penalty on
the rows of B to enhance simultaneous variable selection.
The method is recommended for model identification rather
than prediction because of the bias induced due to the �∞
penalty. Peng et al. [15] proposed a joint constraint function
of the form C(B) = λ1

∑P
p=1

∑Q
q=1|βpq | + λ2

∑P
p=1‖Bp‖2

for the identification of Master Predictors. The first penalty
encourages sparsity in B whereas the second penalty shrinks
some of the entire rows of B to 0 thus enhancing the
selection of the Master Predictors. The model is shown to
outperform separate LASSO regressions and leads to highly
interpretable estimated models in cancer studies. But this
model is not exactly designed for the situation where our
underlying assumption is that the Q responses actually live
in a lower dimensional space.

In this paper we propose a procedure that combines
some of the strengths of the estimators discussed above.
The underlying assumption is that the true model is rank
deficient, that is, rank(B) ≤ min{P,Q}. Thus the response
matrix would approximately be of low rank. Here it is
important to note that the response matrix can have approx-
imately low rank when the predictor matrix X is highly
collinear even if the true coefficient matrix B is of full
rank. We propose a combination of the ridge penalty and
rank constraint on the coefficient matrix B to overcome
this problem. The ridge penalty helps to ensure that esti-
mate of B is well-behaved even in the presence of multi-
collinearity, whereas the rank constraint encourages dimen-
sion reduction.

The rest of the paper is organized as follows: In Section 2
we formally introduce the reduced rank ridge regression
model and discuss some of the finer details. Section 3
presents numerical examples which include simulation
studies comparing the proposed model to relevant com-
petitors as well as some real-data example. We extend the
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reduced rank approach to the kernel setting in Section 4,
and show a real data application. Section 5 concludes with
a summary and brief discussion.

2. REDUCED RANK RIDGE REGRESSION
MODEL

We propose a regularized estimator for the coefficient
matrix B. Two penalties are added to the usual squared
error loss. Ridge penalty ensures that the estimator of B
is well-behaved even in the presence of collinearity among
the predictor variables. Rank constraint encourages dimen-
sionality reduction by restricting the rank of B̂. We seek to
minimize,

B̂(λ, r) = arg min
{B:rank(B)≤r}

‖Y − XB‖2
F + λ‖B‖2

F , (4)

where r ≤ min {P,Q}. ‖·‖2
F denotes the Frobenius norm

for matrices. For each fixed λ we can transform this prob-
lem to a Reduced Rank Regression problem on an aug-
mented data set. Define,

X∗
(N+P)×P =

(
X√
λI

)
, Y∗

(N+P)×Q =
(

Y
0

)
. (5)

Then it is a matter of simple algebra to notice that
the minimization problem in Eq. (4) is equivalent to the
following reduced rank regression problem:

B̂(λ, r) = arg min
{B:rank(B)≤r}

‖Y∗ − X∗B‖2
F . (6)

Now we can use the orthogonal projection property
of the OLS estimate to decompose the squared error
loss function in two parts, ‖Y∗ − X∗B‖2

F = ‖Y∗ − Ŷ∗
R‖2

F +
‖Ŷ∗

R − X∗B‖2
F . Here Ŷ∗

R = X∗B̂∗
R denotes the Ridge regres-

sion estimate which is also the same as the OLS esti-
mate obtained from the linear model Y∗ = X∗B + E∗.
Note that the first term does not involve B hence we
get the following equivalent form for the minimization
problem (6) as,

B̂(λ, r) = arg min
{B:rank(B)≤r}

‖Ŷ∗
R − X∗B‖2

F . (7)

Let us assume that Ŷ∗
R = ∑τ

i=1 σiuiv
T
i gives the singular

value decomposition of Ŷ∗
R . σi’s denote the singular val-

ues, ui

N×1 and vi

Q×1 denote the left and right singular vectors

of Ŷ∗
R , respectively. τ is the rank of Ŷ∗

R which is usually
going to be Q. Then a fairly elementary result in linear
algebra known as the Eckart–Young theorem tells us that

the best rank r approximation to Ŷ∗
R in the Frobenius norm

is given by,

Ŷ∗
r =

r∑
i=1

σiuiv
T
i . (8)

Define, Pr
q×q

= ∑r
i=1 viv

T
i , and let B̂(λ, r) = B̂∗

RPr . Clear-

ly rank(B̂(λ, r)) ≤ r , as rank(Pr ) = r . And plugging them
back in we get,

X∗B̂(λ, r) = X∗B̂∗
RPr =

(
τ∑

i=1

σiuiv
T
i

) 
 r∑

j=1

vjv
T
j




=
r∑

i=1

σiuiv
T
i = Ŷ∗

r

Hence we are able to show that the proposed solution
B̂(λ, r) = B̂∗

RPr is the minimizer of the optimization
problem (4), which is the original reduced rank ridge
regression problem that we started with. Writing down
explicitly in terms of X, Y, λ and r we get the following:

B̂(λ, r) = B̂∗
RPr = (

X∗TX∗)−1
X∗TYPr

= (
XTX + λI

)−1
XTYPr , (9)

Ŷ(λ, r) = X
(
XTX + λI

)−1
XTYPr = ŶλPr . (10)

Ŷλ in the above equation denotes the multivariate ridge
regression estimator for Y with a penalty parameter λ. This
shows that the reduced rank ridge regression is actually
projecting Ŷλ to a r-dimensional space with projection
matrix Pr . Here it is important to notice that this is a
projection of the rows of Ŷλ which in general lives in a
Q-dimensional space to a lower r-dimensional space. Easy
to see that for r = Q we get back the ridge regression
solution.

2.1. Illustrative Example

To illustrate the issues with Reduced Rank regression
we construct a simple toy example. Set P = Q = 3 and
N = 50 and let,

B =

1 3 0

3 1 0
0 0 0


 , �X =


 1 0.95 0

0.95 1 0
0 0 1


 .

The first two columns of B are linearly independent and
thus it has rank 2. But at the same time we make predictors
X1 and X2 highly collinear, so that the effective dimension
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of the response reduces to 1. We simulate X ∼ N(0,�X)

and given X, Y is generated from Y ∼ N(XB, 0.25I). The
eigenvalues of YTY comes out to be σ 2 = [1252, 16, 11].
Hence Reduced Rank regression would select rank to be 1
and seek a rank 1 estimator of B which is clearly not the
case here. This happens because Reduced Rank regression
fails to account for the correlation among predictors and
that is precisely where Reduced Rank Ridge regression
improves by adding ridge penalty.

2.2. Selection of Tuning Parameters

For the reduced rank ridge regression we propose to
choose the tuning parameters (λ, r) using a simple K-fold
cross-validation procedure. We first define a grid for (λ, r)

note that r can only take values in {1, 2, . . . min {P,Q}}.
For each combination of λ and r we evaluate average of
validation prediction errors over the K-folds and choose the
optimal combination as the one that minimizes this quantity.
Notationally,

(λ̂, r̂) = arg min
λ,r

K∑
k=1

‖Y(k) − X(k)B̂(−k)(λ, r)‖2
F , (11)

where X(k) and Y(k) denote the predictor and response
matrix for the kth fold, and B̂(−k)(λ, r) denotes the
estimated regression coefficient matrix computed leav-
ing out the observations in the kth fold when using the
penalty parameters (λ, r). This would encourage a trade-
off between the penalty parameters based on the data. We
would look into the choice of tuning parameters more
deeply in the simulation studies section.

3. NUMERICAL EXAMPLES

3.1. Simulation Study

We compare the estimation performance of the proposed
reduced rank ridge regression method to other multivari-
ate linear regression methods that have been proposed in
the literature based on the idea of dimension reduction
and borrowing strength from dependent response variables.
Methods compared include—Ordinary least square (OLS);
Curd and Whey (CW) procedure developed by Breiman and
Friedman with the GCV approach; Reduced Rank Regres-
sion (RRR); Multivariate Ridge Regression (MVR) with
same tuning parameter for each response; Separate Ridge
Regression (SR); Partial Least Square (PLS); Principal
Component Regression (PCR) and the proposed Reduced
Rank Ridge Regression (RRR). For the methods that require
a selection of tuning parameter we do so by looking at the
prediction error on an independently generated validation

set of same size. We measure the performance of various
methods by model error following [10]. The model error of
an estimate B̂ is given by,

ME(B̂) = trace
[
(B − B̂)T�X(B − B̂)

]
, (12)

where B denotes the true coefficient matrix and �X denotes
E(XXT).

3.1.1. Models

In each replication of the simulation study we generate a
design matrix XN×P with each rows drawn independently
from N(0,�X). Where �X has the structure, �X(i, j) =
ρ|i−j |. We used three different levels for the correlation
parameter ρ = [0, 0.5, 0.9]. To generate the true coefficient
matrix BP×Q we first generate a random P × Q matrix
from N(0, 1) distribution. The singular values are then
replaced with following structures:

• Model 1 The first half of the singular values are 2
and rest as 0.

• Model 2 All the singular values are equal to 1.

• Model 3 The largest singular value as 5 and rest 0.

We choose the above mentioned models to ensure that
we cover a broad spectrum of rank-deficient situations.
Model 2 covers the case of no rank redundancy in the
coefficient matrix B which is the usual multivariate linear
regression assumption. Model 3 represents the case for a
severe rank deficiency, whereas Model 1 is a compromise
between these two extreme situations. We analyze each
model at different correlation levels between the predictors
thus covering most of the possible real scenarios. For each
combination of model and correlation we simulate a training
and validation set each of size P = 50,Q = 20, N = 100.
And compute each of the estimators described above. The
process is repeated 100 times leading to an error-vector of
length 100 for each competing method (Fig. 1).

All the methods outperforms OLS by a big margin under
this settings. PLS and PCR appear quite competitive to RR
but fails to perform in the same level as RRR, MVR, or
SRR. Note that the proposed method RRR dominates all
the other methods at every combination of settings. It is
interesting to note that for Model 2 where the true B had
full rank RR does significantly worse than RRR, MVR,
and SRR for all choices of ρ. Whereas in Model 3 which
had the strongest rank deficiency we see that RRR and RR
dominates the other methods which also seems intuitive.
The biggest advantage of the RRR over only ridge and
only rank penalty comes in Model 1 which has nearly half
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Fig. 1 Boxplot of ME of each method over 100 replicates under each combination of settings.

the singular values nonzero. For all three models we see
that as the value of ρ increases MVR and SRR tends to
catch up with the best method.

To gain further insight, we look at the singular values of
the B̂ for OLS, MVR, RR, and RRR method. For this part
we use a smaller set-up with P = 20,Q = 8, and N = 30
the singular values of B are σ = [3, 2, 1.5, 0, 0, 0, 0, 0]. We
plot the singular values over 100 replicates at two extreme
correlation levels ρ = 0.0, and 0.9 (Figs 2 and 3).

For ρ = 0 we see that both RR and RRR does a fairly
good job of recovering the singular value structure. But as
the collinearity among the predictors increases we find that
RR most of the times selects 2 or 1 as the rank whereas
RRR is able to do a much better job. MVR and OLS
fail to achieve any dimension reduction. Similar patterns
are observed at other settings as well which we skip for
brevity. This clearly illustrates that the trade-off between
ridge penalty and the rank constraint is the key that enables

us to correctly estimate singular value structure even in
presence of serious collinearity.

3.2. Application in Chemometrics Example

It is originally from ref. [16]. There are N = 56
observations with P = 22 and Q = 6. The data is generated
from a simulation of a low density tubular polyethylene
reactor. The predictor variables consist of 20 temperature
measurements at equal distance along the reactor along with
the wall temperature and the feed rate. The responses are
output characteristics of the polymers produced, namely,
number avg. molecular weight (Y1), weight avg. molecular
weight (Y2), long chain branching (Y3), short chain
branching (Y4), content of vinyl group (Y5), and content
of vinyledene group (Y6). As the responses were all
right skewed we applied log transformation, and finally
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Fig. 2 Singular values of B̂, ρ = 0.0.

Fig. 3 Singular values of B̂, ρ = 0.9.
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standardized them. The response correlation matrix is as
follows:

Corr(Y )

=




1.00 0.96 0.06 0.25 0.26 0.26
0.96 1.00 −0.13 0.28 0.27 0.28
0.06 −0.13 1.00 −0.50 −0.48 −0.48
0.25 0.28 −0.50 1.00 0.97 0.98
0.26 0.27 −0.48 0.97 1.00 0.98
0.26 0.28 −0.48 0.98 0.98 1.00




.

This shows {Y4, Y5, Y6} form a strongly correlated group
as does {Y1, Y2}. Y3 is mildly correlated to the others,
which suggests an effective response dimensionality of 3.
Average absolute correlation between the predictors is about
0.44 with many of them being very highly correlated. The
predictive performance is measured using leave-one-out
cross validation. We fit the models based on 55 of the
56 points and predict the left-out point and the procedure
is repeated 56 times. Note that we do an 11-fold cross
validation within the 55 points to select tuning parameters
for the models that have one. We report the prediction error
for each response as well as overall average prediction error
(Table 1).

Overall RRR performs the best with MVR being a very
close second. The good performance of MVR can also
be explained by the fact that many predictors are highly
collinear. Comparing columns of RR and RRR, we see
that for Y4, Y5, and Y6 RR has much smaller prediction
error than RRR but it incurs larger error for Y1, Y2 and
especially Y3. Because of the strong correlation structure
of the responses, RR concentrates on the heavily correlated
group {Y4, Y5, Y6}, selecting 2 or 1 components most times
(out of 56 leave-one-out runs) whereas RRR is able to pick
3 as the optimal dimension with high proportion. So even
though it loses a little bit for the highly correlated group
overall prediction accuracy is much better.

4. EXTENSION TO RKHS

Before we go into the details for reduced rank approach
in the Reproducing Kernel Hilbet Space (RKHS) setting let
us first give a very brief introduction to it.

4.1. Brief Introduction to RKHS

A Hilbert space is a real/complex inner-product space
which is complete under the norm induced by the inner
product. Examples include R

n with 〈x, y〉 = xTy, L
2-space

of all square functions that can integrate on R with 〈f, g〉 =∫
R

f (x)g(x)dx. The reason we are interested in functional
spaces is because we would like to fit models like y =
f (x) + ε where f : R

p → R to model the data in a much
more flexible nonparametric way. L2 is too big for our pur-
pose as it contains too many nonsmooth functions. One way
to obtain such spaces of smooth functions which allows us
to fit a nonparametric functional regression model without
explicitly specifying the function f is the RKHS approach.

A positive definite kernel is a function K(·,·) : X ×
X 
→ R such that for any N ≥ 1 and {x1, x2, . . . xN } ∈
XN and {a1, a2, . . . , aN } ∈ R

N , we have,
∑N

i=1

∑N
i′=1 aiai′

K(xi, xi′) ≥ 0. In other words the gram matrix K =
[K(xi, xi′)]

N
i,i′=1 is positive definite for all, {x1, x2, . . . xN } ∈

XN . For most of our purposes X = R
P , the space of the

predictor variables. It is well known [17] that given such a
kernel we can construct a unique functional Hilbert space H
on X such that K(·,·) is the inner product in that space
and f (x) = 〈f,K(·, x)〉 for all f ∈ H and x ∈ X and vice
versa.

4.2. Kernel Reduced Rank Regression Approach

In the univariate case, given data {(x1, y1), (x2, y2), . . .

(xN , yN)}, note that yi ∈ R and xi ∈ R
P , our objective is

to find a function f ∈ H that minimizes,

Jλ(f ) =
N∑

i=1

(yi − f (xi))
2 + λ‖f ‖2

H, (13)

where ‖·‖2
H denotes the norm in H. This is introduced to

encourage smoothness and to avoid overfitting. Then the
Representer Theorem says that any f minimizing (13) can
be written as,

f (x) =
N∑

i=1

αiK(x, xi), for (α1, α2, . . . , αN) ∈ R
N .

(14)

Table 1. Performance comparison for the Chemometrics data.

OLS CW-gcv PLS RR MVR RRR

Y1 0.49 0.49 0.68 0.44 0.15 0.15
Y2 1.12 0.74 0.90 0.46 0.22 0.22
Y3 0.53 0.49 0.45 0.65 0.39 0.39
Y4 0.24 0.18 0.18 0.14 0.26 0.24
Y5 0.30 0.22 0.26 0.18 0.28 0.27
Y6 0.28 0.21 0.21 0.16 0.28 0.27
Avg. 0.50 0.39 0.45 0.34 0.27 0.26
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For the multivariate response yi ∈ R
Q, in the RKHS set-

up we want to find
(
f1, f2, . . . , fQ

) ∈ H which minimizes
a joint loss function defined as,

Jλ(f1, f2, . . ., fQ) =
Q∑

q=1

N∑
i=1

‖yiq − fq(xi)‖2 + λ

Q∑
q=1

‖fq‖2
H.

(15)

Like in the linear case it is fairly easy to see that in
absence of any constraint on the functions

(
f1, f2, . . . , fQ

)
the above optimization is same as doing Q separate single-
response kernel ridge regression problem. If we want to
exploit the dependence among the responses we need some
equivalent way of expressing the reduced rank constraint
under the RKHS set-up. The following proposition gives
one such way,

PROPOSITION 1: Let H be the RKHS corresponding
to a positive-definite kernel K(·,·) : R

P × R
P 
→ R. Given

data {(x1, y1), (x2, y2), . . . (xN , yN)}, yi ∈ R
Q and xi ∈

R
P , we consider the optimization problem,

min
f1,f2,...,fQ∈H

Jλ

(
f1, f2, . . . , fQ

)
subject to

dim
(
span{f1, f2, . . . , fQ}) ≤ r, (16)

where 1 ≤ r ≤ Q and Jλ

(
f1, f2, . . . , fQ

)
is defined as in

Eq. (15). The solution has the following representation,

fq(x) =
N∑

i=1

αiqK(x, xi), for q = 1, 2, . . . , Q, αiq ∈ R.

(17)

The constraint dim
(
span{f1, . . . , fQ})≤ r can be viewed

as an extension to the rank constraint for linear functions.
The only difference being instead of working with linear
functions here we are in a general functional space. We
defer the proof to the appendix.

The next natural step is to find some sufficient conditions
under which the rank constraint of Eq. (16) becomes
equivalent to a rank constraint on the coefficient matrix
A = [

αiq

]
N×Q

, because that would allow us to extend the
reduced rank ridge regression solution developed in Section
2 in a natural way to the kernel setting.

PROPOSITION 2: If K(·,·) is strictly positive definite
and {x1, x2, . . . xN } are distinct then

dim
(
span{f1, f2, . . . fQ}) ≤ r ⇒ rank(A) ≤ r,

where,
[
f1, . . . fQ

] = [K(·, x1), . . . K(·, xN)] A
N×Q

.

This proposition translates the reduced rank constraint
for RKHS into a simple rank constraint for the coefficient
matrix A, under some condition on K(·,·). It is easy to show
that Gaussian kernel, K(x, x ′) = exp

(−‖x−x′‖2

2σ 2

)
, Laplacian

kernel, K(x, x ′) = exp
( ‖x−x′‖1

2σ 2

)
, Inverse multiquadratic

kernel K(x, x ′) = 1√
‖x−y‖2+c

would satisfy strict positive

definiteness. Polynomial kernels in general would not
satisfy it because it is essentially an extension to a bigger
but finite-dimensional space. But in practice the infinite-
dimensional RKHS’s are the ones that we would be
interested in, so the condition for strict positive definiteness
is not very prohibitive.

4.3. Extending the Solution

Let us recall the solution to the reduced rank ridge
regression problem with penalty parameters (λ, r), derived
in Section 2. For a given point x ∈ R

Q (row vector)
prediction had the form,

Ŷx(λ, r) = x
(
XTX + λI

)−1
XTYPr ,

where Pr was the projection matrix to the space spanned by
r principal eigenvectors of P = YTX

(
XTX + λI

)−1 XTY.
Using the matrix inversion lemma we can easily expand
the prediction formula in terms of the inner-product matrix
XXT. Then replacing the inner-product matrix by the Gram
matrix K = [(K(xi, xi′)]

N
i,i′=1 we get,

YTX
(
XTX + λI

)−1
XTY = YTK (K + λI)−1 Y (18)

x
(
XTX + λI

)−1
XTY = K(x) (K + λI)−1 Y. (19)

Note that K(x)= [K(x, x1),K(x, x2), . . . K(x, xN)]1×N .
If we denote the projection matrix to the space spanned by
r principal eigenvectors of YTK (K + λI)−1 Y by PK

r then
the final prediction for the point x ∈ R

P is given by,

Ŷx(λ, r) = K(x) (K + λI)−1 YPK
r , (20)

which is similar to projection of the kernel ridge regression
estimator to a constrained space of dimension ≤r as in the
linear case.

4.4. Simulation Study

In this section we compare the performance of the
proposed kernel Reduced Rank Ridge Regression (kernel
RRR) with kernel Ridge Regression. We perform the
comparison with the choice of two popular choices of
kernel function namely, the Gaussian kernel which is
strictly positive-definite and thus satisfies the condition of

Statistical Analysis and Data Mining DOI:10.1002/sam



620 Statistical Analysis and Data Mining, Vol. 4 (2011)

Fig. 4 Polynomial kernel, % of MSE compared to kernel ridge
regression.

Fig. 5 Polynomial kernel, Box plot of the estimated rank over
100 replications.

Proposition 2 and the polynomial kernel which is clearly
finite-dimensional and hence does not satisfy the sufficient
condition provided in Proposition 2.

We present the results for P = 10, Q = 10, and N =
100, similar results were obtained for other choices of

Fig. 6 Gaussian kernel, % of MSE compared to kernel ridge
regression.

Fig. 7 Gaussian kernel, Box plot of the estimated rank over 100
replications.

P and Q. Rows of the design matrix X were generated
independently from N(0, IP ). Responses are generated
as linear combinations of m = 10 basis functions of the
form K(·, bj ) where {bj : j = 1, 2, . . . , 10} were generated
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independently from a multivariate Gaussian distribution.
We consider two cases,

• Full Rank Situation: The coefficient matrix is full-
rank, that is, of rank 10.

• Reduced Rank Situation The coefficient matrix has
rank 5.

The tuning parameters, that is, (λ, r, σ ) were chosen
using independently generated validation data sets of same
size. In Figs 4–7 we present the box-plots of the percentage
ratio of MSE of kernel RRR and kernel Ridge Regression
over 100 replications of the experiment.

As expected we find that kernel Reduced Rank Ridge
improves over kernel Ridge significantly when the under-
lying process is truly low-rank, and even in the full-rank
case it performs comparably with kernel Ridge regression.
The conclusions hold not only for the Gaussian kernel but
for the polynomial kernel as well which as we discussed
before does not satisfy the sufficient conditions in Proposi-
tion 2. Also the estimated optimal rank seems to be quite
accurate when the underlying functional space is low-rank.
Here it is useful to note that if the sample size is too high
then the gram matrix for polynomial kernel might become
nearly singular causing unstable solutions.

4.5. Chemometrics Data Revisited

We apply the kernel RRR on the previously discussed
Chemometrics data set and compare its performance against
linear RRR and kernel Ridge Regression. We used the
popular Gaussian kernel K(x, x ′) = exp

(
‖x−x′‖2

2σ 2

)
and the

Inverse multiquadratic kernel K(x, x ′) = 1√
‖x−y‖2+c

. Both

predictors and responses were standardized for this analy-
sis. An eight fold-cross-validation is performed to select the
tuning parameters, that is (λ, r, σ 2) in case of the Gaussian
kernel and (λ, r, c) for the inverse multiquadratic kernel
(Table 2).

We used cross-validation error estimate on the hold-
out fold to select the tuning parameters. Optimal rank
for the kernel RRR which turns out to be 3 for both
choices of the kernels as it was for linear Reduced Rank
regression implying that the intrinsic dimensionality of
the response space is 3. Both choices of the kernel lead
to very similar results. Kernel RRR improves by a big
margin over the linear RRR, whereas the improvement
over kernel ridge regression is less pronounced but still
notable for this data set. The Gaussian kernel is able to
attain a greater reduction in MSE which is due to the fact
that it corresponds to a bigger functional class. The results
seem scientifically reasonable since the first two responses
namely, number avg. molecular weight and weight avg.
molecular weight are approximately dependent. Similarly
the last three responses form a functional group, in the sense
that, short chain branching is an approximate measure
of the contents of Vinyl and Vinyledene groups and thus
are highly correlated. Long chain branching is negatively
correlated to the short chain branching group.

5. SUMMARY AND DISCUSSION

We propose Reduced Rank Ridge Regression to produce
a low-rank estimator of the regression coefficient matrix B.
This is very useful when the responses are highly depen-
dent or there are reasons to believe a latent variable struc-
ture among the predictors. Our method accounts for multi-
collinearity in predictor variables by incorporating a ridge
penalty, here it is important to note that both high collinear-
ity in X and low-rank of the true coefficient matrix B might
lead to the response matrix being rank-deficient and hence
it makes sense to apply the penalties jointly and decide the
trade-off based on the data. We also extend the reduced
rank idea to the RKHS set-up and give some intuition for
the meaning of a rank constraint in a functional space.

The solution to the Reduced Rank Ridge Regression
problem is obtained as a projection of the Ridge Regression
estimator to a constrained space. And hence it is compu-
tationally simple. We propose a cross-validation approach

Table 2. Performance comparison for Kernel RRR and Kernel RR for the Chemometrics data with Gaussian and Inverse multi-quadratic
kernels.

Gaussian Kernel Inverse multiquadratic Kernel

Linear RRR Kernel Ridge Kernel RRR Kernel Ridge Kernel RRR

Y1 0.153 0.088 0.087 0.111 0.120
Y2 0.250 0.148 0.129 0.224 0.210
Y3 0.230 0.113 0.111 0.160 0.161
Y4 0.188 0.054 0.044 0.098 0.094
Y5 0.205 0.107 0.071 0.125 0.101
Y6 0.211 0.070 0.064 0.092 0.097
Avg. 0.206 0.097 0.084 0.135 0.131
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to select the tuning parameters. The proposed method was
tested in broad variety of simulation settings as well as
couple of real data sets. Results are promising and the
proposed method is able to outperform relevant competi-
tors under most of the settings. We also apply the kernel
RRR on a real data example and it shows some signifi-
cant improvement over the linear RRR and kernel ridge
regression. These applications also help us understand some
statistical insights into the working of the proposed Reduced
Rank Ridge Regression method.

APPENDIX

Proof of Proposition 1: Let
(
f1, f2, . . . , fQ

)
be the minimizer to Eq. (16).

Define,

FK = span{K(·, xi ) : i = 1, 2, . . . N}. (21)

We can decompose each fq = f ∗
q + f 0

q where f ∗
q is the projection of

fq onto FK and f 0
q is the orthogonal to FK . Then for j = 1, 2, . . . Q and

i = 1, 2, . . . , N ,

fq(xi) = 〈f ∗
q + f 0

q , K(·, xi )〉 = f ∗
q (xi ),

‖fq‖2
H = ‖f ∗

q ‖2
H + ‖f 0

q ‖2
H.

Clearly, Jλ(f
∗
1 , f ∗

2 , . . . , f ∗
Q) ≤ Jλ

(
f1, f2, . . . fQ

)
and dim(span{f ∗

1 ,

f ∗
2 , . . . , f ∗

Q}) ≤ r also holds since they are just projection of (f1, f2, . . . ,

fQ}) to FK , where dim
(
span{f1, f2, . . . , fQ}) ≤ r as they are a solution

to Eq. (16). Thus the solution to Eq. (16) can be expressed as,

fj (x) =
N∑

i=1

αiqK(x, xi), for q = 1, 2, . . . Q, αiq ∈ R. (22)

Proof of Proposition 2: If r = Q then the result holds vacuously. If r < Q

then ∃ nontrivial linear combinations
∑Q

q=1 cqfq(·) ≡ 0. Equivalently, we

have, ‖∑Q
q=1 cqfq(·)‖2

H = 0:

∥∥∥∥
Q∑

q=1

cqfq(·)
∥∥∥∥

2

H
= 0 ⇔ cT

Q×1AT [
(K(xi , xi′ )

]N

i,i′=1 AcQ×1 = 0.

Under the strict positive definiteness assumption on K(·, ·) this can only
happen if Ac = 0Q×1 ⇔ c ∈ Ker(A), where Ker(T) for any matrix/linear
operator T denotes its null space. Let us define a map, T : RQ 
→
V = span{f1, f2, . . . fQ}, where, T (c) = ∑Q

q=1 cqfq(·) Then using the
Rank-Nullity Theorem and the previous part,

dim (Ker(T )) + dim (Img(T )) = Q

⇒ dim (Ker(A)) + dim (V ) = Q

⇒ rank(A) = dim(V ) ≤ r.
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