Genetic Epidemiology 35:S5-S11 (2011)

Brief Review of Regression-Based and Machine Learning
Methods in Genetic Epidemiology: The Genetic Analysis
Workshop 17 Experience

Abhijit Dasgupta,' Yan V. Sun,” Inke R. Konig,’ Joan E. Bailey-Wilson,** and James D. Malley®

IClinical Sciences Section, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, MD
2Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
3Institut fiir Medizinische Biometrie und Statistik, Universitit zu Liibeck, Liibeck, Germany
“Statistical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD
®Center for Information Technology, National Institutes of Health, Bethesda, MD

Genetics Analysis Workshop 17 provided common and rare genetic variants from exome sequencing data and simulated
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genetic association studies. Unsupervised methods, such as cluster analysis, were used for data segmentation and, subset
selection. Supervised learning methods, which include regression-based methods (e.g., generalized linear models, logic
regression, and regularized regression) and tree-based methods (e.g., decision trees and random forests), were used for
variable selection (selecting genetic and clinical features most associated or predictive of outcome) and prediction
(developing models using common and rare genetic variants to accurately predict outcome), with the outcome being case-
control status or quantitative trait value. We include a discussion of cross-validation for model selection and assessment, and
a description of available software resources for these methods. Genet. Epidemiol. 35:55-511, 2011. © 2011 Wiley Periodicals, Inc.

Key words: unsupervised learning; supervised learning; cluster analysis; logistic regression; Poisson regression; logic
regression; LASSO; ridge regression; decision trees; random forests; cross-validation; software

*Correspondence to: Joan E. Bailey-Wilson, 333 Cassell Drive, Suite 1200, National Institute of Health/NHGRI, Baltimore, MD 21224.

E-mail: jebw@mail.nih.gov

Published online in Wiley Online Library (wileyonlinelibrary.com/journal/gepi).

DOI: 10.1002/ gepi.20642

INTRODUCTION

Machine learning methods have been used to study the
genotype-phenotype relationship in genetic epidemiology
[Szymczak et al., 2009]. New DNA sequencing technolo-
gies are making it feasible (in terms of both time and cost)
to sequence all the exons or the complete genome of large
numbers of people. This holds the promise of allowing
identification of all genetic variants that contribute to
disease. However, there are problems in analyzing these
data that need to be surmounted. Each individual harbors
millions of genetic variants, and many of these variants are
individually quite rare in the population. The problem of
searching this large set of potential predictors of disease to
find the causal ones is not trivial in terms of data
manipulation and adjustment for multiple testing. At least
for the near future, the number of people sequenced in a
study will be much smaller than the number of potential
predictors (genetic variants) in the sequence data. In this
scenario, traditional multivariable methods cannot solve
this so-called high-dimension, low-sample-size problem.
Some machine learning methods have been suggested to
be useful for this type of problem. In Genetic Analysis
Workshop 17 (GAW17), investigators applied a diverse
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group of regression-based and machine learning methods
to study both rare and common genetic variants from
exome sequences [Wilson and Ziegler, 2011].

GAW17 provided common and rare genetic variants
from exome sequencing data and simulated phenotypic
traits, both binary and quantitative, in 200 replicates. The
exome sequencing data were derived from the 1000
Genomes Project (for more information about the 1000
Genomes Project, see http://www.1000genomes.org), and
the simulated traits were modeled to have genetic and
environmental determinants of both large and small effect
size (see Almasy et al. [2011] for details on the GAW17 data
set). In this paper we provide a brief review of the
regression and machine learning methods that were used
in GAW17 to tackle the problems inherent in analyses of
sequence data. These methods include hierarchical and
k-means cluster analysis, generalized linear models (logistic
and Poisson regression), regularized regression methods
(least absolute shrinkage and selection operator [LASSO]),
logic regression, random forests, and support vector
machines. General introductions to these methods are
found in Hastie et al. [2009] and Clarke et al. [2009].

Different machine learning methods were used to
address various analytical objectives represented in the
analyses for GAW17. For unsupervised learning methods,
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the main objective is to segment or discover homogeneous
subgroups within the genetic landscape presented by the
data. Variable selection and prediction are the two primary
objectives for supervised learning methods. Variable
selection involves discovering the subset of genetic and
clinical features that are most associated with or predictive
of the outcome, be it case-control status or a quantitative
trait. Prediction involves using common and rare genetic
variants to develop models that can accurately predict the
outcome within the training data and perform well on
independent test data. The range of methods seen in
GAW17 encompasses different philosophies of how
variable selection and prediction are achieved, which we
summarize here. We have generally considered regression
methods to be a subset of supervised machine learning
methods, because the standard regression models can be
used in the machine learning framework to learn from the
data and provide outcome predictions based on the inputs.
We appreciate the fact that the commonly used interpreta-
tion of regression models is often quite different from the
machine learning perspective, with particular conditional
associations being emphasized and interpreted under the
assumption of model truth. We do not delve into these
differences but simply present a description of the
methods.

CATEGORIES OF MACHINE LEARNING
METHODS

We proceed by subdividing the methods used into three
broad classes: unsupervised methods, regression-based
supervised methods, and tree-based supervised methods.
Unsupervised learning methods are methods used to
understand the structure of a data set and the inherent
patterns present. There is no dependent variable; all
variables are treated equally with respect to one another.
Examples of unsupervised methods include cluster
analysis and principal components analysis. This is
contrasted with supervised learning methods, which try
to learn the relationship between a set of input or
independent variables with an output or dependent
variable. These methods are supervised because we are
specifying certain kinds of relationships between vari-
ables. Examples of supervised learning methods include
regression (in its myriad forms), decision trees, random
forests, and support vector machines, among others.

CROSS-VALIDATION AS A METHOD FOR
ASSESSING PERFORMANCE

Cross-validation is a general method for assessing
performance of both unsupervised and supervised
learning methods and for tuning parameters or models
for optimal performance. A standard version of cross-
validation is k-fold cross-validation, which works this way:
The data are partitioned into k random subsets, and then
the algorithm of interest (learning machine, regression
model) is generated or trained on k—1 of the subsets and
applied or tested on the remaining subset. This is done
repeatedly over all the k possible arrangements of the
subsets into these two groups. At each iteration the
measure of model performance (e.g., prediction error for
supervised learning and distance matrix for unsupervised
clustering) of the algorithm in the test set is computed,
leading to k estimates. The final estimate of model

Genet. Epidemiol.

performance is the average of these k performance
estimates. The underlying idea is that the algorithm is
being trained and tested on statistically independent
subsets.

Three comments apply here: (1) k is often chosen to be at
least 5 and usually not more than 10, because fewer than 5
tends to increase the variance of the estimate, making it
unstable, whereas more than 10 usually does not improve
the estimation in terms of bias or variance; (2) the
segmentation into groups must be done so that, so far as
possible, the groups are truly representative of the
population, with, say, no subgroup containing all the
high-cholesterol subjects; and (3) forming an averaged
model or estimate after the repeated training and testing is
not quite the same as generating a single model or estimate
on all the data, because each subject in the data set has
been used more than once, either as a test or training
object. Despite the concern raised in Clarke et al. [2009],
cross-validation generally leads to good estimates of a
model or algorithm’s performance. This is naturally
distinct from a claim that the model is itself optimal: If
the signal is not in the data, it will not be recovered by any
model [Kohavi, 1995].

The performance measure from k-fold cross-validation
for a particular algorithm can be used to help tune the
algorithm. For example, in linear regression, the set of
independent variables that gives the lowest cross-validation
error can be chosen for use in a final model. In decision
trees, cross-validation error helps to determine the number
of branches to keep (or prune) from a tree. In cluster
analysis it can help to determine the number of groups in a
particular data set.

UNSUPERVISED METHODS

Unsupervised learning methods generally are methods
used to find patterns in the covariate or input landscape,
irrespective of the outcome(s) of interest. In genetic
epidemiology, one popular use of such methods is to use
genetic variants and principal components analysis to
define homogeneous subsets of individuals reflecting
different ethnicities within a study sample. Two popular
methods in the class of unsupervised learning methods are
hierarchical clustering and k-means clustering. Cluster
analysis provides a description of the data in terms of
some similarity criteria. It is often not well reproduced in
external data, because of variability between data sets, and
should not be used for inferring associations or lack
thereof. Both hierarchical clustering and k-means cluster-
ing allow an observation to be a member of one and only
one group or cluster. Alternatives to this are model-based
clustering and fuzzy clustering, which provide relative
measures for each observation to be members of different
groups. A fundamental concept in cluster analysis is that
of distance—how close or similar two observations are.
There are many choices of measures for this, but the most
common are the Euclidean distance [>_7;(xi —y;)°], the
Manhattan  distance (31, |x; —yi]), the Chebychev
distance (maxi |x; — y,-|), and, more recently, the correlation
distance (1—correlation between two observations), where
two observations are (xy,...,x,) and (y1,...,y,). For binary or
categorical data, we can also define a distance between
(x1,...x,) and (yy,....y,) as (number of x#y)/n, the
proportion of values for which there is disagreement.
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A good general reference for cluster analysis is Kaufman
and Rousseeuw [1990].

HIERARCHICAL CLUSTERING

Hierarchical clustering is an algorithm by which data
points are progressively incorporated into groups
(agglomerative or bottom-up clustering) or the data set is
progressively split into groups (divisive or top-down
clustering) based on some similarity or distance criterion.
The objective is to create groups of data in which the data
within groups are more similar to each other than the data
between groups. Typically agglomerative clustering is
used, where at each step the two groups of the data
closest to each other are combined to form a new group.
There are several principles, called linkages, used to
decide when groups are close. In single linkage, the
distance between two groups is the distance between the
two closest observations, one from each group. In
complete linkage, the distance between two groups is the
distance between the two farthest members of the two
groups. In average linkage the distance between the
groups is the average distance between all pairs of
observations, one from each group. The choice of the
distance measure between observations and the choice of
linkage determine the general shapes of the groups that
are created. Hierarchical clustering is typically represented
by a dendrogram (see Fig. 1), where the height of each split
is based on the distance between the two groups created
by the split. The number of groups is not set beforehand;
one can find the number of groups in the data based on
how far apart groups have to be to be called distinct. In
Figure 1, if this distance is decided to be 75 (the horizontal
line), there are 4 groups that are at least 75 units apart from
each other.

k-MEANS CLUSTERING

k-Means clustering [Hartigan and Wong, 1979] is a
method of clustering data in which the number of groups
is fixed by the user a priori—the k in k-means. Cluster
centers are determined from the data, and individual
observations are included in a particular cluster based on
the cluster center that is closest to it. Once again, the choice
of distance measure determines the shapes of the clusters.
Often Euclidean distance is used, which results in
spherical clusters. Several methods for choosing k have
been suggested in the literature. The simplest way is
to plot the percentage of the total variance explained
by k clusters against k and to decide when adding a
cluster does not change this metric much (the so-called
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Fig. 1. Hierarchical clustering dendrogram.
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elbow rule). Cross-validation can also be used to deter-
mine k [Nisbet et al., 2009].

REGRESSION-BASED SUPERVISED METHODS

Regression-based supervised methods attempt to
explicitly model the relationship between inputs or
independent variables and the outputs, typically in the
form of parametric equations in which the parameters are
estimated from the data. These methods often provide
explicit estimates of measures of association between
individual inputs and the outcome, adjusted for other
inputs, with standard error estimates provided from the
modeling paradigm used.

The most common class of regression methods in the
literature comes from the class of generalized linear
models [McCullagh and Nelder, 1989], which includes
linear regression, logistic regression, and Poisson regres-
sion. These methods are commonly used in genetic
epidemiology to detect association of genetic variants
with a trait or disease of interest. Consider a group of k
predictors Xj,..., Xy, which will be used to predict an
outcome y. The basic structure of this class of models is
that y is predicted by an appropriately transformed linear
function of the inputs Xj, ..., X;. This is generally written as

S[EW)] = Bo+Pr Xt - +Bi X, M

where g is the link function and By, B;, and Py are
regression coefficients to be estimated. Some particular
examples for the link function are g[E(y)] = E(y) (linear
regression), g[E(y)] = log{E(y)/[1—E(y)]}(logistic regression),
and g[E(y)] = log[E(y)] (Poisson regression).

An extension of Poisson regression is the zero-inflated
Poisson regression [Lambert, 1992; Hall and Shen, 2010].
Poisson modeling is typically used for count data, and the
zero-inflated Poisson model is used for data in which the
number of zero counts (no events) seen in the data is
higher than would be expected by a Poisson model fitting
the rest of the data. The outcome is modeled to come from
one of two processes: one process producing only zero
counts and the other producing data from a Poisson
model. The determination of which process a particular
observation comes from is modeled as a biased coin
tossing experiment, with the probability of the data
coming from the Poisson model being p. Symbolically,
the ith outcome y; can be expressed as

- |0 with probability 1 — p, @)
Y=z with probability p,

where Z; is an observation from a Poisson model.

Another extension of the generalized linear modeling
framework, when all the inputs are binary, is logic
regression [Ruczinski et al., 2003]. The predictors used in
the model are Boolean combinations of the binary
predictors. For example, a possible predictor in logic
regression is L; = {(X3 AND X,) OR X5}, that is, either both
X3 and X, are 1 or X5 is 1. The model is framed using the
generalized linear model framework

SIEW] = BotBiLat - +ByLom, ®)

where each L; is a Boolean combination of the binary input
variables Xj,...,Xy. This method is easily applied to
genotype data and presence/absence of rare genetic
variants. It can also be used for survival data under the
Cox proportional hazards framework. Note that m can be
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quite a bit bigger than k, the number of predictors, because
of the way the L; are constructed. This can make fitting a
logic regression model computationally prohibitive. It
can also make finding the best-fitting model difficult.
Ruczinski et al. [2004] provide some suggestions for how
to deal with this issue.

REGULARIZED REGRESSION METHODS

A common problem in statistical modeling is variable
selection, that is, which input variables should be retained
in a model. Often variable selection is done by backward
selection. This type of variable subset selection is a discrete
process and often exhibits high variance. An alternative
strategy is to use regularized regression methods (also
called penalized regression or shrinkage regression
methods), which fit generalized linear models for which
the sizes of the coefficients are constrained. Two common
regularized regression methods are ridge regression
[Hoerl and Kennard, 1970] and the LASSO [Tibshirani,
1996; Wu et al., 2009]. A nice introduction to regularized
regression methods is provided by Hastie et al. [2009].

Ridge regression fits a linear model, where the
coefficients are constrained to

k
> pr<t. 4)
j=1

The coefficient estimates are obtained by minimizing

2
k k
3 (y,» —Bo— Zx,»fsj) +1 )P )
j=1 j=1

i

where A is a tuning parameter that determines the degree
of shrinkage (larger A implies more shrinkage). The LASSO
is a shrinkage method in which the coefficient estimates
are obtained by minimizing

2
k k
> (y,» —Bo — fojﬁj> Ay 1Byl 6)
j=1 j=]

1

Note that the primary difference between ridge regres-
sion and the LASSO is that ridge regression constrains the
L2 norm (sum of squares) of the coefficients, whereas the
LASSO constrains the L1 norm (sum of absolute values) of
the coefficients. Ordinary least-squares (OLS) multiple
regression is a special case for both methods when A
equals 0. Both methods have the effect of forcing some of
the coefficients toward 0, albeit at different rates. Both
methods have been widely used for variable selection in
genetic and genomic studies where there are many
correlated independent variables. The number of variables
that are forced to 0 depends on the value of A (larger A
implies more coefficients forced to 0), and thresholding on
L allows the selection of variables that have retained
nonzero coefficients at that A threshold. Figure 2 (taken
from the example given in the glmnet package, version
1.5.1, in the statistical software R, version 2.11.1, but with
five independent variables) shows how the estimated
coefficient values change with A for a LASSO model. A
similar figure can be generated for ridge regression.

Several extensions of the LASSO method in the literature
tweak the manner in which the coefficients are
constrained. One extension is the group LASSO, which
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Fig. 2. Coefficient values versus change in log A for a LASSO
model.

looks at groups of variables jointly [Meier et al., 2008]. The
group LASSO and some of its variants have been widely
used in genetic association and genome-wide association
studies. This method allows groups or clusters of inputs
to be in or out of the model together. Contrasting with
the regular LASSO (expression (6)), the group LASSO
minimizes

2
k G
> (yi —Bo — injﬁj) 1) 1IBgllas @)
=1 §=1

i

where 1B, 112 is the Euclidean norm (not squared) for the
coefficients of the inputs in the gth group. The LASSO
method and its derivatives are not always consistent for
variable selection, but some consistency results exist for
the LASSO [Meinshausen and Yu, 2009] and the group
LASSO [Liu and Zhang, 2009].

TREE-BASED METHODS

DECISION TREES

Decision trees are widely used in machine learning
methods, and several methods for estimating tree models
are described in the literature. The most common method
is the classification and regression tree (CART) [Breiman
et al., 1984], although other methods, such as C4.5
[Quinlan, 1993], are also used. Decision trees are broadly
classified into classification trees (where the outcomes are
binary or categorical) and regression trees (where the
outcomes are continuous). Decision tree methods are
attractive in genetic epidemiology because they allow
nonparametric analyses of large numbers of predictors in
small sets of data and because they can detect predictors
with small marginal effects on the trait when there are
strong interaction effects.
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The basic strategy for growing decision trees is to split
the input or covariate space into hypercubes (e.g.,
rectangles for two-dimensional input), within which the
outcome is relatively homogeneous. This is done in a
hierarchical manner using a sequence of binary splitting
rules for the inputs. The algorithm efficiently looks at all
possible binary splits over all the inputs and chooses the
split that makes the corresponding values of the output
variable as distinct as possible; that is, the distance
between the two groups of outputs defined by the split
is maximized. Trees can be grown to purity (i.e., until all
the bottom or terminal nodes are completely homogeneous
with respect to the outcome or dependent variable),
although this is a poor practice in general and can lead
to unstable or highly variable estimates. Once a tree is
learned using training data, the predicted outcome for
each observation is determined by sending the input
values down the tree and taking the most frequent class
(for classification trees) or the mean of the outcomes (for
regression trees) of the test data in the terminal node into
which the observation falls. Decision trees need to be
optimized with respect to the number of variables used
and the depth or size of the tree grown. The criterion used
for optimizing decision trees is usually the prediction
error, be it the misclassification rate (classification trees) or
the mean-square error (regression trees). Optimization is
typically done by cross-validation.

Decision trees have several advantages. They are
typically easy to interpret, although some trees can be
quite complex. They can accommodate binary, categorical,
and continuous predictors in the same model, and they are
relatively fast, even on large data sets with many
predictors. However, decision trees tend to have a high
variability; that is, changing the data slightly can change
the tree quite significantly by changing the splitting rules
that make up the tree. They also tend to overfit the training
data and thus do not always have good external test set
performance. This variability can be reduced by bagging
[Breiman, 1996; Friedman and Hall, 2000; Evgeniou et al.,
2004; Grandvalet 2004; Elisseeff et al.,, 2005], which
averages several trees grown on resampled versions of
the training data.

RANDOM FORESTS

Random forests [Breiman, 2001] extend the idea of
decision trees. Bootstrap samples [Efron, 1979; Efron and
Tibshirani, 1993] of the training data (samples drawn with
replacement from the training data with the same sample
size as the original data) are drawn, and trees using a
random subset (of a given size) of the predictors at each
node are fitted to each bootstrap sample. Note that for
each tree, the best split of the data at each node is based on
a possibly different random subset of the predictors (of
specified cardinality, specified by mtry). There are two
fundamental tuning parameters in the random forest
algorithm: the number of trees (same as the number of
bootstrap samples) to be grown, typically denoted as ntree,
and the number of predictors (mtry) to use at each node in
growing each tree. A balance of these tuning parameters is
desirable for both accuracy and computational cost.
However, random forest models perform well over a
fairly wide range of mtry values, and the defaults
suggested by Breiman [2001] work pretty well. A point

to note in random forests is that the trees are grown
without any pruning or variable selection.

An important concept in the random forest framework
is the concept of an out-of-bag (OOB) sample. Taking a
bootstrap sample of a data set results in roughly 63% of the
unique observations of the original data set being included
in the bootstrap sample. Breiman [2001] referred to the set
of observations not included in the bootstrap sample as the
OOB sample. The OOB sample is thus an independent
data set from the bootstrap sample on which a decision
tree is trained and serves as a test set for assessing the
performance of the tree. Each tree within a random forest
uses a different bootstrap sample and thus a different
OOB sample.

A random forest thus is composed of an ensemble of
decision trees fitted to different bootstrap samples of the
training data. The predicted outcome for each observation
is estimated by the most frequent predicted outcome from
each component tree (for classification) or the average of
the predicted outcomes from each component tree (for
regression). The performance of a random forest is
assessed by the average prediction error of each compo-
nent tree on the corresponding OOB sample. This is
similar in flavor to cross-validation, but each component
tree is evaluated on a different subset of the data (as
determined by the corresponding bootstrap sample) rather
than on the same set of data subsets that cross-validation
would use. Random forests tend to provide low-bias, low-
variance predictions, because of the low-bias nature of the
component trees and the averaging across independent
bootstrap samples, respectively.

Random forests also provide a means for variable
selection by computing a variable importance score for
each input variable. This is done by first finding the
prediction accuracy of the OOB samples and then
replacing the data for an input variable with a random
permutation of its data (thus killing any predictive power
the variable might have) and recomputing the prediction
accuracy using the permuted data. The change in the
prediction accuracy is a measure of the predictiveness of
that input variable. Input variables can then be ranked in
terms of their variable importance scores, and variables
can be selected on the basis of some threshold of the
variable importance score. Other measures of variable
importance have also been proposed in the literature.

Random forests are scalable for large data sets, and fast
parallelized implementations of the algorithm are avail-
able, including Random Jungle [Schwarz et al., 2010].
Random forests can take a mixture of input types and do
provide a fairly robust predictive model of outcome.
Random forests have proved useful in a wide variety of
fields, including microarray analyses [Diaz-Uriarte, 2007]
for variable selection using the variable importance scores.

DISCUSSION

We have outlined several machine learning and
statistical methods that are used (and have been used in
GAW17) to describe genetic data and model the associa-
tion of genes (MRNA expression levels, single-nucleotide
polymorphism [SNP] genotypes) with binary or quantita-
tive traits. Several challenges are posed by the genetic data
sets generated using current technologies, not the least of
which is that the number of genetic variants interrogated
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dwarfs the number of subjects in a study by orders of
magnitude (the so-called high-dimension, low-sample-size
problem). The parametric regression methods typically
break down in this situation, and the regularized
regression methods and tree-based methods have been
found to be much more successful in modeling such data.
They have also been successful in identifying genes
predictive of a trait in a multivariate model, which is a
more comprehensive and robust means of understanding
associations between genes and traits than the univariate
testing paradigms accompanied by multiple comparison
corrections that dominate the literature.

These regression-based and machine learning methods,
along with novel variations on them, were applied to
whole-exome sequence data and simulated traits at
GAW17 to examine their performance on such data
[Wilson and Ziegler, 2011]. Although multiple genetic
and environmental effects were simulated in the GAW17
quantitative and binary trait models, the complexity of
these simulated traits may not be fully comparable to
complex traits in real data (e.g., epistasis). Some advanced
features of machine learning methods were not system-
atically invoked in the analysis of the simulated data, for
example, a more refined tuning of the mtry parameter in
random forests. Therefore the performance of machine
learning methods compared to simple regression methods
is somewhat limited in the GAW17 data. In the GAW17
data set, with its replicated but fixed sample size,
investigators were presented with an opportunity to apply
machine learning methods such as random forests
and logic regression to the feature selection recurrency
problem: finding a list of predictors that appear frequently
at the top in a machine learning ordering of the features.
However, the topic of recurrence in feature selection is still
a matter of unresolved but intense research in the machine
learning community. In genetic analysis of complex traits
using real data, the amount, effects, and relationship of
effective genetic variants are unknown and must be
assumed to be quite complex. Therefore, as discussed
by Sun [2010], truly nonparametric machine learning
methods such as random forests can be efficient alternatives
to address high dimensionality, genetic heterogeneity, and
epistasis and to effectively combine a large number of weak
predictors in the study of genetics of complex traits.

SOFTWARE

Machine learning methods have a strong overlap with
statistical methods, and, as such, most statistical software
platforms, such as SAS (http://www.sas.com), SPSS
(http:/ /www.spss.com), Stata (http://www.stata.com),
and R (http://www.r-project.org), contain methods for
unsupervised learning and regression-based modeling to
varying degrees. The tree-based methods and regularized
regression methods are not so widely available, although
packages in R and PROCS and macros in SAS (especially
in Enterprise Miner) and in the open-source Weka [Hall
et al, 2009] (http://www.cs.waikato.ac.nz/ml/weka/)
and Rapid-Miner (http://www.rapid-i.com) platforms
are widely used. Specialized software written by devel-
opers of particular methods are also available, for
example, CART and RandomForest developed by Salford
Systems and Random Jungle developed at University of
Libeck [Schwarz et al, 2010] (http://www.imbs-
luebeck.de/imbs/de/node/227). There are also faster
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implementations of hierarchical clustering algorithms
(pam, clara) available within R and elsewhere. There has
been an increasing emphasis on computationally efficient
implementations of machine learning algorithms that take
advantage of modern multicore and cluster computing
frameworks and distributed data infrastructures such
as Hadoop. In other words, machine learning methods
can increasingly be used on large data sets in a compu-
tationally efficient fashion, making them feasible tools
for large genetic epidemiology studies and genome-wide
studies.

There are several online resources for using popular
statistical software for the methods described here. These
include:

e The UCLA Academic Technology Services site (http://
www.ats.ucla.edu/stat/dae), which provides sample
code for regression analysis in SAS, R, SPSS, Stata, and
others.

® The Comprehensive R Archive Network (CRAN), which
provides task views (http://cran.r-project.org/web/
views) that describe R packages that can be applied to
particular analytic tasks. The following might be of
interest to our audience:

O Cluster analysis (http://cran.r-project.org/web/
views/Cluster.html).

O Machine Learning (http://cran.r-project.org/web/
views/MachineLearning.html).

O Statistical Genetics (http://cran.r-project.org/web/
views/Genetics.html).

O High Performance and Parallel Computing (http://
cran.r-project.org/web/views/HighPerformanceCompu
ting.html).

® Orange (http://orange.biolab.si), which is a Python
environment for data mining and includes many of the
methods described here as well as special widgets for
functional genomics.

o Weka (http:/ /www.cs.waikato.ac.nz/ml/weka/), which
is a collection of data-mining algorithms in Java that can
be directly applied to data or though custom Java
programs.
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