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Abstract: We propose using the weighted likelihood method to fit a general relative risk regression model

for the current status data with missing data as arise, for example, in case-cohort studies. The missingness

probability is either known or can be reasonably estimated. Asymptotic properties of the weighted likelihood

estimators are established. For the case of using estimated weights, we construct a general theorem that

guarantees the asymptotic normality of the M-estimator of a finite dimensional parameter in a class of

semiparametric models, where the infinite dimensional parameter is allowed to converge at a slower than

parametric rate, and some other parameters in the objective function are estimated a priori. The weighted

bootstrap method is employed to estimate the variances. Simulations show that the proposed method works

well for finite sample sizes.Amotivating example of the case-cohort study fromanHIVvaccine trial is used to

demonstrate the proposedmethod. TheCanadian Journal of Statistics 39: 557–577; 2011 © 2011 Statistical

Society of Canada

Résumé: Nous proposons d’utiliser la méthode de vraisemblance pondérée pour ajuster un modèle de

régression général pour le risque relatif sur des données de statut présent avec donnéesman-quantes. Une telle

situation se produit dans les études cas-cohorte. La probabilité d’être manquante est connue ou bien elle peut

être estimée de façon raisonnable. Les propriétés asymptotiques des estimateurs de vraisemblance pondérée

sont obtenues. Lorsque des poids estimés sont utilisés, nous obtenons un théorème général garantissant la

normalité asymptotique du M-estimateur d’un pa-ramètre de dimension fini appartenant à une classe de

modèles semi-paramétriques, pour laquelle le paramètre de dimension infinie peut converger à un taux plus

lent que le taux paramétrique, et que d’autres paramètres de la fonction objective sont estimés a priori La
méthode d’auto-amorçage pondérée est utilisée pour estimer les variances. Des simulations montrent que la

méthode proposée fonctionne bien pour de petits échantillons. Une étude cas-cohorte provenant d’un essai

clinique sur un vaccin contre le VIH/sida sert à motiver la méthodologie proposée. La revue canadienne de
statistique 39: 557–577; 2011 © 2011 Société statistique du Canada

1. INTRODUCTION

The case-cohort design, originally proposed by Prentice (1986), is a cost-effective approach in

conducting large epidemiologic studies in which the outcome of interest is time to event and some

covariates are difficult or expensive to measure. In such a study design, these covariates are only

measured for all the subjects who have experienced the event of interest and a random subsample

*Author to whom correspondence may be addressed.
E-mail: bnan@umich.edu

© 2011 Statistical Society of Canada / Société statistique du Canada



558 LI AND NAN Vol. 39, No. 4

of the entire cohort. Statistical inference with data from case-cohort studies must take the missing

covariates into account.

There is a rich literature of statistical methodology in analyzing the case-cohort data. Among

many others, Prentice (1986) and Self & Prentice (1988) studied the relative risk model that

includes the Cox model (Cox, 1972) as a special example, Kulich & Lin (2000) studied the addi-

tive hazards model, Lu & Tsiatis (2006) and Kong, Cai, & Sen (2006) studied the transformation

model, Nan, Yu, & Kalbfleisch (2006) and Nan, Kalbfleisch, & Yu (2009) studied the accelerated

failure time model, and Nan (2004) and Nan, Emond, & Wellner (2004) studied the semipara-

metric efficient estimation for case-cohort studies. All of these methods primarily focus on right

censored data. Often in practice, particularly in HIV studies, however, the event time is interval

censored, that is, the event time for a subject falls into some random time interval. Gilbert et al.

(2005) analyzed interval censored case-cohort data by approximating the event time as to be right

censored. Clearly such approximation can cause biased parameter estimation. The only work we

are aware of, which directly attacks the interval censoring mechanism in case-cohort studies, is

by Li, Gilbert, & Nan (2008) who considered the Cox model and particularly assumed that the

inspection time intervals are fixed, thus the model is parametric.
In this article, we consider a family of semiparametric regression models for the current status

data in two-phase sampling designs (Neyman, 1938) that include case-cohort studies as special

examples. Current status data are a special type of interval censored data in which the inspection

time intervals are random in contrast to fixed inspection time intervals, for the latter a parametric

model can be fitted. The current status data are also called the “case 1” interval censored data in the

literature, in which we only know whether the failure event has occurred or not prior to a random

inspection time. The fact that the exact time to event is never observed leads to a n1/3 convergence
rate for the maximum likelihood estimator of the marginal event time distribution (Groeneboom

& Wellner, 1992) and for the baseline cumulative hazard function estimator in the Cox model

(Huang, 1996; Murphy & van der Vaart, 2000; van der Vaart, 2002) when there is no missing data.

The log hazard ratio estimator in the Cox model, however, still converges with
√

n rate and is

asymptotically normal and semiparametrically efficient. The model we consider in this article is a

general relative risk regression model studied by Prentice & Self (1983) and Thomas (1981) who

argued, among others, that in many epidemiologic studies the relative risk is not exponential as

what theCoxmodel assumes, and it ismore appropriate to consider other types of relative riskmod-

els, for example, a linear relative risk form. We are not aware of any existing work for the relative

risk regression with current status data, particularly when covariates are not always observed.

Statistical inference for current status datawithmissing covariates using the usual nonparamet-

ric likelihood approach can be very difficult if not impossible. The weighted likelihood method,

however, can be easily applied. One can either maximize the inverse probability weighted log

likelihood function (e.g., Kalbfleisch & Lawless, 1988; Skinner et al., 1989), or equivalently solve

the weighted score equation (e.g., Manski & Lerman, 1977) to estimate the unknown parame-

ters. When the weighted likelihood approach is applied to parametric models, the asymptotic

properties of the regular estimators with
√

n convergence rate follow readily from the results for

M-estimation (e.g., van der Vaart, 1998). In a recent work on semiparametric models for two-

phase sampling designs in which the infinite dimensional nuisance parameter can be estimated

at
√

n rate, Breslow & Wellner (2007) considered the weighted likelihood method and derived

asymptotic results for both Bernoulli sampling and finite population stratified sampling in select-

ing the phase two sample. Their approach, however, does not apply when the convergence rate

of the nuisance parameter estimator is slower than
√

n, which is indeed the case for the current

status data with missing covariates as we show later in this article. To solve this problem, par-

ticularly when estimated weights are involved in the weighted likelihood, we construct a general

theorem that generalizes Theorem 6.1 in Wellner & Zhang (2007), which was developed for their
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pseudo likelihood method, and then apply the theorem to show that our proposed estimators of

the relative risk parameter are asymptotically normal and that using estimated weights improves

efficiency.We also provide a different proof of consistency to Huang (1996) where his application

of Hoeffding’s inequality is incorrect.

The construction of the paper is as follows. In The Weighted Likelihood Estimator Section

we provide an algorithm that is a modification of the one given in Huang (1996) for computing

the weighted likelihood estimates. In Asymptotic Properties Section we establish the asymptotic

properties of theweighted likelihood estimates.Wediscuss the variance estimation usingweighted

bootstrap in Variance Estimation Section, and conduct simulations and analyze the data from a

case-cohort HIV vaccine study in Numerical Results Section. A brief discussion is given in

Discussion Section. In Appendix A, we introduce a general theorem for the proof of asymptotic

normality for theweighted likelihood estimates using estimatedweights. The proofs of asymptotic

properties are provided in Appendix B.

2. THE WEIGHTED LIKELIHOOD ESTIMATOR

Suppose the failure time T follows a relative risk regression model:

�(t|Z) = �(t)r(βT Z),

where �(t|Z) is the conditional cumulative hazard function of T given Z, �(t) is the baseline

cumulative hazard function, and r(·) is a fixed positive and twice continuously differentiable

function. A particularly interesting functional form for r(·) is the linear function: r(x) = 1 + x

(Prentice & Self, 1983), as an alternative to the exponential function r(x) = ex that yields the

proportional hazards model originally proposed by Cox (1972) for right-censored data.

In current status data, T is never observed. Instead, an inspection time Y is observed, which

is assumed to be independent of T given covariate Z, and it is also known whether the event

has happened before Y. We consider the case where the covariate Z can be missing as arise, for

example, in case-cohort studies. Let � = I(T ≤ Y ) where I(·) is the indicator function. Denote
the probability of observing Z by πα(�, V ), which may depend on a parameter α, the failure

status �, and an auxiliary variable V that is observed for everyone. For example, in a case-cohort

design with stratified sampling for the subcohort, the probability of observing covariate Z is

πα(�, V ) = � + (1−�)
∑J

j=1 pjI(V∈Vj), where V1, . . . ,VJ are J strata determined by the

value of the auxiliary variable V, α = (p1, . . . , pJ )
T , and pj is the probability that a subject is

sampled into the subcohort from stratum j, 1≤ j≤ J. The parameter α may or may not be known.

Later we shall discuss the effect of estimating α from observed data. It is possible that V is part

of Z. The density of a single observation X ≡ (�, Y, Z, V ) at x ≡ (δ, y, z, v) can be written as

pβ,�(x) = {
1−exp

(−�(y)r(βT z)
)}δ{

exp
(−�(y)r(βT z)

)}1−δ
f (y, z, v), (1)

where f (y, z, v) is the joint density of (Y, Z, V). The parameter of interest is β, and �(·) is a
nuisance parameter.

LetX1, . . . , Xn be n independent and identically distributed (i.i.d.) copies of X. The complete

data log likelihood function, up to an additive constant, is

ln(β, �) =
n∑

i=1

l(β, �;Xi)

=
n∑

i=1

[
�ilog

{
1−exp

(−�(Yi)r(β
T Zi)

)}−(1−�i)�(Yi)r(β
T Zi)

]
.

(2)

This is the likelihood function studied in Huang (1996) when r(·) = exp(·).
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Because Zi’s are only observed for a subsample, the nonparametric maximum likelihood

method can be too complicated to be useful. However, we can use the following weighted version

of the log likelihood function

lwn (β, �) =
n∑

i=1

wi

[
�ilog

{
1−exp

(−�(Yi)r(β
T Zi)

)}−(1−�i)�(Yi)r(β
T Zi)

]
, (3)

where wi = ξi/πα(�i, Vi) with ξi = 1 if Zi is observed and 0 otherwise, 1≤ i≤ n. For simplicity,

here and in the sequel we suppress the dependence of w on α, �, and V, except in Estimation

with EstimatedWeights Section and Variance Estimation Section, where we discuss the weighted

likelihood estimator with estimated weights. Note that when α takes its true value, weights wi

have unit expectations, but they do not necessarily sum to n no matter α is estimated or not. The

weighted likelihood estimator of the true parameter (β0, �0) is defined as the maximizer of the

weighted log likelihood function (3) with discretized � at observed time points and denoted by

(β̂n, �̂n), that is,

(
β̂n, �̂n

) = argmax

n∑
i=1

wil(β, �;Xi).

Due to the similarity between (2) and (3), a similar algorithm as in Huang (1996) can be

developed to obtain (β̂n, �̂n) with a general relative risk function r. Let
(
Y(1), . . . , Y(n)

)
be the

order statistics of (Y1, . . . , Yn). Let�(i), Z(i) , andw(i) be the values of�, Z, andw associated with

Y(i), 1≤ i≤ n. Consider the estimator �̂n(·) to be a right-continuous step function on [0,Y(n)] with
jumps at Y(i)’s and �̂n(0) = 0. To ensure a bounded and unique estimator �̂n(·), we assume that

�(1) = 1, �(n) = 0. (4)

Replacing�by its estimator �̂n,we obtain the following score equation forβ bydifferentiating

the objective function (3) with respect to β and setting the derivative to 0:

n∑
i=1

w(i)

�(i)

exp
(
−�̂n

(
Y(i)

)
r
(
β̂

T
n Z(i)

))
1−exp

(
−�̂n

(
Y(i)

)
r
(
β̂

T
n Z(i)

))−(
1−�(i)

)�̂n

(
Y(i)

)
ṙ
(
β̂

T
n Z(i)

)
Zi = 0, (5)

where ṙ(·) denotes the derivative of r(·).
Due to the monotonicity constraint on �̂n, there is no such a simple score equation for �̂n.

However, analogous to Groeneboom & Wellner (1992), �̂n can be characterized by a set of

inequalities at kn distinct inspection times Y∗
1 < Y∗

2 < · · · < Y∗
kn

and an equality as follows:

∑
Yj≥Y∗

i

wjr
(
β̂

T
n Zj

)�j

exp
(
−�̂n

(
Yj

)
r
(
β̂

T
n Zj

))
1−exp

(
−�̂n

(
Yj

)
r
(
β̂

T
n Zj

))−(
1−�j

) ≤ 0, (6)

for i = 1, 2, . . . , kn, and

n∑
i=1

wir
(
β̂

T
n Zi

)
�̂n(Yi)

�i

exp
(
−�̂n(Yi)r

(
β̂

T
n Zi

))
1−exp

(
−�̂n(Yi)r

(
β̂

T
n Zi

))−(1−�i)

 = 0. (7)

This result is an extension of Theorem 2.1 of Huang (1996) and can be derived in a similar way as

that of Proposition 1.1 of Groeneboom&Wellner (1992). Detailed calculation is thus omitted here.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2011 CURRENT STATUS DATA CASE-COHORT STUDY 561

Equations (6) and (7) lead to an iterative algorithm to compute �̂n(·, β) for any fixed β.

This algorithm is more efficient than the pool adjacent violators algorithm (Robertson, Wright, &

Dykstra, 1988). Define

W�

(
Y∗

i

) =
∑

Yj≤Y∗
i

wjr
(
βT Zj

){
�j

exp
(−�(Yj)r

(
βT Zj

))
1−exp

(−�(Yj)r
(
βT Zj

))−(1−�j)

}
, (8)

G�

(
Y∗

i

) =
i∑

j=1

�G�

(
Y∗

j

)
, (9)

with

�G�

(
Y∗

j

)
=

∑
Yk=Y∗

j

wkr(β
T Zk)

�k

r
(
βT Zk

)
exp

(−�(Yk)r
(
βT Zk

))(
1−exp

(−�(Yk)r
(
βT Zk

))2) + 1−�k

�(Yk)

 (10)

and

V�

(
Y∗

i

) = W�

(
Y∗

i

) +
∑

Y∗
j
≤Y∗

i

�
(
Y∗

j

)
�G�

(
Y∗

j

)
. (11)

Here we add the quantity wkr(β
T Zk)(1−�k)/�(Yk) to the original definition of �G�(·) in

Huang (1996, p. 545) to make �G�

(
Y∗

j

)
≡ G�

(
Y∗

j

)
−G�

(
Y∗

j−1

)
> 0 with G�(Y

∗
0 ) ≡ 0,

1 ≤ j ≤ n, a required condition for the algorithm. In fact, the functionG�(·) above can be chosen
arbitrarily as long as �G�(Y

∗
i ) > 0, 1 ≤ i ≤ n, and the constructed V�(·) is non-decreasing.

The point is clearly seen in the proof of Proposition 1.4 and Remark 1.4 of Groeneboom &

Wellner (1992). The choices in Groeneboom &Wellner (1992) are based on a second-order Tay-

lor expansion of the log likelihood function, which work well for the nonparametric estimation of

themarginal distribution function of T, but numerical issue arises in the semiparametric regression

case since their choices of G�(·) does not include the second term in the brackets in (10) and thus

has zero increments at all inspection times for censored subjects. This problem is resolved by

adding a positive quantity to the increments of G�(·) at those time points as in (10). Such added

quantity also makes V�(·) non-decreasing.
Following the proof of Proposition 1.4 of Groeneboom & Wellner (1992), for any fixed β,

by using (6) and (7) it can be shown that �̂n(·;β) maximizes lwn (β, �) if and only if �̂n(·;β) is
the left derivative of the greatest convex minorant of the cumulative sum diagram defined by the

points (0, 0) and (
G�̂n(·,β)

(
Y∗

i

)
, V�̂n(·,β)

(
Y∗

i

))
, 1 ≤ i ≤ kn. (12)

It is clearly seen that such a maximizer is bounded at Y(n) and bounded away from zero at Y(1) by
assumption (4) because otherwise the weighted log likelihood function (3) becomes −∞, which

contradicts the maximization.

We now establish the iterative procedure based on the profile likelihood idea for calculating

(β̂n, �̂n): (i) for a fixed β, �̂n(·;β) can be computed iteratively using the iterative convexminorant

algorithmdescribed above through updating (8), (9), (10), (11) and the left derivative of the greatest

convex minorant of the cumulative sum diagram defined by (0, 0) and the points in (12); (ii) then
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β can be updated by solving Equation (5) using the Newton–Raphson algorithm; and (iii) repeat

the process until convergence. The initial value of β may be chosen as 0. Simulation shows that

the algorithm converges very quickly.

3. ASYMPTOTIC PROPERTIES

We present the asymptotic properties of the estimators with true weights and estimated weights

separately because their proofs require different techniques. Both are based on the following

regularity conditions.

(A) The parameter space for β,B ⊂ Rd , is compact, and the true parameter β0 is an interior point

of B.
(B) The cumulative hazard function � satisfies 1/M ≤ � ≤ M on [σ, τ] with σ > 0 for some

positive constant M. The true parameter �0 satisfies 0 < �0(σ) < �0(τ) < M and is con-

tinuously differentiable with positive derivative on [σ, τ].

(C) The function r(·) is positive, bounded away from zero, and twice continuously differentiable.

(D) The inspection time Y possesses a Lebesgue density that is continuous and positive on the

interval [σ, τ] and vanishes outside this interval, and the joint distribution F (y, z) of (Y, Z)
has bounded second-order partial derivative with respect to y.

(E) The covariate vector Z is bounded, and E[var (Z|Y )] and E[var(Zv̇(aT Z)|Y )] are positive

definite for all constant vector a∈Rd , where v(·) = log r(·).
(F) There exists a constant ε such that πα0 (�, V ) ≥ ε > 0, where α0 is the true value of α.

(F’) There exists a constant ε such that πα(�, V ) ≥ ε > 0 for all α in a neighborhood of the true

parameter α0.

Denote the parameter space for � defined in (B) by � and the parameter space for (β, �) by

�. The above Assumptions (A), (B), (D), and (E) are basically the same as those in van der Vaart

(2002) for the full data Cox model with current status data. They are imposed mainly for technical

reasons, but alsomake practical sense. For instance, τ can be viewed as the time of the end of study.

Assumption (D), an important condition for asymptotic normality in the complete data case, can be

simplifiedwhen Y and Z are independent, which reduces to a condition only for themarginal distri-

bution of Y. Assumption (E) ensures the identifiability of themodel as well as the positive definite-

ness of the efficient informationmatrix forβ. For theCoxmodel, conditionE[var (Zv̇(aT Z)|Y )] >

0 in (E) is redundant. The positivity requirement in (C) may be weakened as in Prentice & Self

(1983), but such a requirement is cleaner for the theoretical derivation and can be achieved in the

numerical implementation by using, for example, step-halving, that is reducing the search depth of

β by half in the Newton–Raphson iteration when the assumption is violated. Assumption (A) and

the boundedness ofZ inAssumption (E), though not necessary, are helpful in ensuringAssumption

(C) for models like r(t) = 1 + t. Assumption (F) is for the case of using true weights and Assump-

tion (F’), a stronger condition than Assumption (F), is for the case of using estimated weights,

which are commonly assumed for missing data problems. The parameter space of α is unspecified

in Assumption (F’) for generality. Later in Theorems 3 and 4 we will see that the estimator of α

needs to have a root-n rate, hence choosing a parametricmodel forπα is a reasonable consideration.

This is indeed the case for stratified sampling with finite number of strata for variable V.

3.1. Estimation With True Weights
Let | · | be the Euclidian norm and ‖�‖2 = {∫ �2(y)dQY (y)}1/2 for every �∈�, where QY (y)
is the probability measure of the inspection time Y. Define the distance in � ≡ B × � as

d((β1, �1), (β2, �2)) = |β1−β2| + ‖�1−�2‖2. Given the true weightswi = ξi/πα0 (�i, Vi), we

then have the following consistency result with a proof provided in Appendix B.
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Theorem 1. Under Assumptions (A) to (F), we have β̂n →p β0 and �̂n(t) →p �0(t) for every
t∈(σ, τ) as n→ ∞. Furthermore, we have |β̂n−β0| + ‖�̂n−�0‖2 = Op(n

−1/3).

In fact, the convergence of (β̂n, �̂n) also holds almost surely, but convergence in probability

suffices for our purpose. Note that we only need the pointwise convergence of �̂n in the open

interval (σ, τ) to obtain the desirable asymptotic distribution for β̂n, the estimator of our primary

parameter of interest. It is natural to see that, as in the complete data case for the Cox model, the

overall rate of convergence for the missing data problem for the general relative risk regression

is also dominated by �̂n that has a cubic root-n rate. The next theorem shows that the rate of

convergence of β̂n is the usual root-n rate and is asymptotically normal.

When there is no missing data, the efficient score function for β in model (1) can be calculated

similarly as in Huang (1996) by the projection method of Bickel et al. (1993). In particular,

the usual score function for β is ̇1(β, �;X) = ∂l(β, �;X)/∂β = ṙ(βT Z)�(Y )Q(X)Z and the

score operator for � is ̇2(β, �;X)[h] = ∂l(β, �η;X)/∂η = r(βT Z)Q(X)h(Y ) for every h∈H ≡{
h : h = ∂�η/∂η|η=0

}
with � = �η=0, where

Q(X) = �
exp(−�(Y )r(βT Z))

1−exp(−�(Y )r(βT Z))
−(1−�).

It follows that the efficient score for β has the following form:

l̃(β, �;X) = ̇1(β, �;X)−̇2(β, �;X)[h∗]
= �(Y )Q(X)

[
ṙ(βT Z)Z−r(βT Z)E{Zṙ(βT Z)r(βT Z)u(Y,Z;β,�)|Y}

E{r2(βT Z)u(Y,Z;β,�)|Y}
]
,

(13)

where

u(Y, Z;β, �) = exp(−�(Y )r(βT Z))

1−exp(−�(Y )r(βT Z))
, and

h∗(y) = �(y)
E{Zṙ(βT Z)r(βT Z)u(Y, Z;β, �)|Y = y}

E{r2(βT Z)u(Y, Z;β, �)|Y = y}
(14)

is the least favourable direction. The information matrix for β is then given by

I(β) = E
{

l̃(β, �;X)⊗2
}

, (15)

where v⊗2 = vvT for a vector v. When r(·) = exp(·), these results reduce to that of Huang (1996),
Murphy & van der Vaart (2000), and van der Vaart (2002).

The following theorem states the asymptotic normality for the weighted likelihood estimator

β̂n obtained by using true weights. We can see that the asymptotic variance matrix is the complete

data asymptotic variance matrix, the inverse of (15) at β0, plus an additional non-negative definite

matrix that reflects the loss of efficiency due to missing data.

Theorem 2. Under Assumptions (A) to (F), we have

√
n
(
β̂n−β0

) = I−1(β0)
1√
n

n∑
i=1

wil̃(β0, �0;Xi) + op(1) →d N(0, �)

as n→ ∞, where � = I−1(β0) + I−1(β0)DI−1(β0), and

D = E

[
1−πα0 (�, V )

πα0 (�, V )

{
l̃(β0, �0;X)

}⊗2
]
.
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3.2. Estimation With Estimated Weights
In this subsection we denote the weight by w(α), where α = (α1, . . . , αJ )

T with true value

α0 = (α01, . . . , α0J )
T . No matter α0 is known or not, we can replace it by a good estimator

α̂n = (α̂n1, . . . , α̂nJ )
T , then use the estimated weight w(α̂n) in the weighted likelihood function.

Let

(β̃n, �̃n) = argmax

n∑
i=1

wi(α̂n)l(β, �;Xi)

be the weighted likelihood estimator of (β0, �0) obtained by using estimated weights.

When nuisance parameters can be estimated at the root-n rate, the efficiency gain of the

estimator β̃n comparing to β̂n that is obtained using true weights has been discussed by many

authors, for example, Pierce (1982), Robins, Rotnitzky,&Zhao (1994), Breslow&Wellner (2007),

and Li et al. (2008), among many others. In particular, a heuristic argument was provided by

Robins et al. (1994) in their Discussion Section. It turns out that for the current setting in which

the infinite-dimensional nuisance parameter can only be estimated at a slower than root-n rate,

such an efficiency gain for the estimation of the parameter of interest also holds under mild

conditions (see Theorem 4).

We first give the results of consistency and rate of convergence for β̃n in the following

Theorem 3.

Theorem 3. Suppose α̂n →p α0 and w(α) is differentiable with uniformly bounded first-order
derivative ẇ(α) in a neighborhood of α0. Then under Assumptions (A) to (E) and (F’), we have
β̃n →p β0 and �̃n(t) →p �0(t) for every t∈(σ, τ). If further assume that supn E

√
n|α̂n−α0| <

∞ and w(α) is twice differentiable with uniformly bounded second-order derivative ẅ(α) in a
neighborhood of α0, then |β̃n−β0| + ‖�̃n−�0‖2 = Op(n

−1/3).

The uniform boundedness of ẇ(α) and ẅ(α) is not too restrictive. For example, for a

case-cohort design with a stratified Bernoulli sampled subcohort, we have πα(�, V ) = � +
(1−�)

∑J
j=1 pjI(V∈Vj), and the above conditions are satisfied as long as all the stratified selec-

tion probabilities pj’s are bounded away from 0. The same is true for a two-phase design in

which the second stage sample is selected by a stratified Bernoulli sampling. More generally, if

πα(�, V ) follows a logistic model, say, logit πα(�, V ) = α0 + αT
1 V + α2�, then the conditions

are still satisfied given that V is bounded. The boundedness of supn E
√

n|α̂n−α0| is a little more

restrictive. The asymptotic normality of
√

n(α̂n−α0) is neither sufficient nor necessary for this to

hold, while the condition that E
√

n|α̂n−α0| converges to a finite limit as n→ ∞ is stronger than

necessary. Nevertheless, in a case-cohort design, or a more general two-phase stratified sampling

design, p̂j is the proportion of subjects selected from stratum j, 1≤ j≤ J, and it is easy to show

that E
√

n|p̂j−p0j| converges to a finite limit as n→ ∞.

The following theorem shows the asymptotic normality of β̃n as well as the efficiency gain

of β̃n comparing to β̂n, which will be proved in Appendix B by applying the general theorem

introduced in Appendix A.

Theorem 4. Under the same conditions in Theorem 3, we have

√
n(β̃n−β0) = I−1(β0)

1√
n

n∑
i=1

wi(α0)l̃(β0, �0;Xi)−C
√

n(α̂n−α0) + op(1)
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as n→ ∞, where C = I−1(β0)P{l̃(β0, �0;X)ẇT (α0)}. Furthermore, if α̂n is asymptotically effi-
cient with the following asymptotic representation:

α̂n = α0 + 1

n

n∑
i=1

α(Xi) + op

(
n−1/2

)
,

then we have

√
n(β̃n−β0) →d N(0, �−C�αCT ),

where � was defined in Theorem 2 and �α = E(α⊗2).

Note that the function α in the above asymptotic representation of α̂n has zero mean and

is called the (efficient) influence function of α̂n. We refer to Bickel et al. (1993) for a thorough

discussion on influence functions.

4. VARIANCE ESTIMATION

As discussed in Huang (1996), directly applying the asymptotic variance expressions in Theorems

2 and 4 for the variance estimation requires smoothing. Theweighted bootstrapwith i.i.d. weights,

however, turns out to be an effective and robust approach in variance estimation for the weighted

likelihood estimatorwith either trueweights or estimatedweightswithout applying any smoothing

technique. See Ma & Kosorok (2005) for details of using the weighted bootstrap method for the

general M-estimation in semiparametric models.

Firstly consider the case in which true weights are used. Suppose that u1, . . . , un are n i.i.d.

non-negative and bounded randomweights, independent ofX1, . . . , Xn andw1, . . . , wn, and sat-

isfying E(ui) = 1 and var (ui) = δ0 < ∞ for a constant δ0. Denote the estimator of β obtained by

maximizing the objective function
∑n

i=1 uiwil(β, �;Xi) by β̂∗
n. Randomly generate (u1, . . . , un)

repeatedly, say, B times, and obtain corresponding β̂∗
n that are denoted by β̂∗

n1, . . . , β̂
∗
nB. A vari-

ance estimator of β̂n is then obtained from the empirical variance of β̂∗
n1, . . . , β̂

∗
nB rescaled by δ0.

Analogous to the case in Ma & Kosorok (2005), this weighted bootstrap estimation of variance

can be justified in the following way.

Since u is boundedwithmean 1 and independent ofXi’s andwi’s, we haveE{uwl(β, �;X)} =
E{wl(β, �;X)}. By Theorem 2 we have

√
n(β̂∗

n−β0) = I−1(β0)
1√
n

n∑
i=1

uiwil̃(β0, �0;Xi) + op(1).

Hence

√
n(β̂∗

n−β̂n) = I−1(β0)
1√
n

n∑
i=1

(ui−1)wil̃(β0, �0;Xi) + op(1).

Then by Theorem 2 of Ma & Kosorok (2005) we know that, conditional on data

(X1, w1), . . . , (Xn, wn), (n/δ0)
1/2(β̂∗

n−β̂n) has the same asymptotic distribution as that of√
n(β̂n−β0) unconditionally.

When estimated weights are used in the weighted likelihood, additional care needs to be taken

to make the weighted bootstrap work. Specifically, in addition to multiplying each term in the

original estimating equation by a bootstrap weight ui, the parameter α needs to be estimated again

by the weighted bootstrap using the same set of weights. We can show, in a way similar to the
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above using the true weights, this procedure yields valid variance estimates. Since for the original

β̃n and α̂n we have

√
n(β̃n−β0) = I−1(β0)

1√
n

n∑
i=1

wil̃(β0, �0;Xi)−C
1√
n

n∑
i=1

lα(Xi) + op(1)

and

√
n(α̂n−α0) = 1√

n

n∑
i=1

lα(Xi) + op(1)

by Theorem 4, and for the weighted bootstrap estimate of α̂∗
n we have

√
n
(
α̂∗

n−α0

) = 1√
n

n∑
i=1

uil
α(Xi) + op(1),

we obtain for the weighted bootstrap estimate β̃∗
n that

√
n(β̃∗

n−β0) = I−1(β0)
1√
n

n∑
i=1

uiwil̃(β0, �0;Xi)−C
√

n(α̂∗
n−α0) + op(1)

= I−1(β0)
1√
n

n∑
i=1

uiwil̃(β0, �0;Xi)−C 1√
n

n∑
i=1

uil
α(Xi) + op(1).

It follows that

√
n
(
β̃∗

n−β̃n

) = I−1(β0)
1√
n

n∑
i=1

(ui−1)wil̃(β0, �0;Xi)

− C 1√
n

n∑
i=1

(ui−1)lα(Xi) + op(1).

Therefore, conditional on (X1, w1), . . . , (Xn, wn), (n/δ0)
1/2(β̃∗

n−β̃n) has the same asymptotic

distribution as
√

n(β̃n−β0). Note that updating the estimator of α in the bootstrap step is required.

Otherwise the weighted bootstrap procedure is estimating the variance of the weighted likelihood

estimator with true weights, which is clearly not desirable.

5. NUMERICAL RESULTS

5.1. Simulations
A simulation study is conducted to explore the performance of the proposed weighted likelihood

estimators.We assume the unobserved event time T follows (i) a proportional hazardsmodel given

covariate Z with a constant baseline hazard function λ(t) ≡ c, which implies that the failure time

has an exponential distribution or (ii) a linear relative risk model with a constant baseline hazard

function. The inspection time Y is assumed to be uniformly distributed in the interval between

0.5 and 8.5. The covariate Z has two components Z1 and Z2, where Z1 ∼ N(0, 1) truncated at

−3 from left and 3 from right, and Z2 is binary with Pr(Z2 = 0) = Pr(Z2 = 1) = 0.5. The true

parameter for β is β0 = (1, −1)T for the Cox model and β0 = (0.2, −0.2)T in the linear relative

riskmodel.We consider two different scenarios. In scenario 1, we set n= 500 and take c= 0.03 for

the Cox model and c= 0.06 for the linear relative risk model; In scenario 2, we set n= 3000 and

take c= 0.01 for the Cox model and c= 0.02 for the linear relative risk model. We first generate

n i.i.d. samples of (�, Y, Z) and then generate missing covariates. The missing covariates are
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generated via a case-cohort sampling method. We assume that Z1 can be missing while Z2 is

always observed. The probability of missing Z1 is 0 for a subject with a failure event, and depends
on an auxiliary variable V for a censored subject. The auxiliary variable V is associated with the

covariates of interest in the following way: V= 1 when Z1 < 1 and Z2 = 0, V= 2 when Z1 < 1

and Z2 = 1, V= 3 when Z1 ≥ 1 and Z2 = 0, and V= 4 when Z1 ≥ 1 and Z2 = 1. When n= 500, the

probability of observing covariate Z1 is P= 0.2 if V= 1 or 2, and P= 0.7 if V= 3 or 4. When

n= 3,000, P= 0.05 if V= 1 or 2, and P= 0.15 if V= 3 or 4. Under these circumstances, when

sample size n= 500, for the Coxmodel there are about 170 subjects with covariates fully observed

in which about 100 are failures, for the linear relative risk model there are about 200 subjects

with covariates fully observed in which about 100 are failures, and P(T > 8.5) ≈ 0.65 for both

models; and when n= 3,000, for the Cox model there are about 400 subjects with fully observed

covariates in which about 250 are failures, for the linear relative risk model there are about 500

subjects with fully observed covariates in which about 250 are failures, and P(T > 8.5) ≈ 0.75

for both models. The setting for n= 3,000 here mimics the setting for the HIV case-cohort study

in the next subsection.

We then calculate the weighted likelihood estimator (β̂n, �̂n) using the iterative algorithm

given in The Weighted Likelihood Estimator Section for each generated data set. We choose (0,

0) as the initial value of β̂n, and then iterate between β̂n and �̂n until convergence. The same

procedure is executed to obtain (β̃n, �̃n), where the estimated weight for each subject with Z1
observed is the inverse of sample fraction within corresponding stratum determined by (�, V).
For the linear relative risk model, we use step-halving in updating β to ensure positivity of the risk

function. We run 500 replications for the simulation, and then obtain point estimates and biases

of the estimators of β0. Variance estimates are obtained by the weighted bootstrap procedure.

To apply the weighted bootstrap method, we generate independent weight u from a uniform

distribution on (0, 2), and use 100 bootstrap samples to estimate variance for each simulated

data set. We also provide results for the nonparametric maximum likelihood estimator of β when

covariates are fully observed (full data MLE), which are calculated by setting the weights for all

subjects to be 1. The numerical calculation is implemented in R.

Biases, sample averages of estimated variances, empirical variances, and coverage proportions

of 95% confidence intervals for the slope estimators of Z1 and Z2 are presented in Table 1.

The biases are reasonably small across the board, particularly for the larger sample size. The

variance estimates are very close to corresponding empirical variances and yield good coverage

proportions.Comparing empirical variances of theweighted likelihood estimateswith trueweights

and those with estimated weights, the efficiency gain of the latter is clearly seen, which supports

the theoretical result given in Theorem 4. Plots in Figure 1 are the averages of estimated baseline

cumulative hazard functions over 500 simulation replications when sample size is 500. We can

see that the average curves using true weights and estimated weights are barely distinguishable.

Both estimates have little bias except towards the end of study, a phenomenon also observed

in Zhang, Hua, & Huang (2010). Note that the number of fully observed subjects is about 180

when n= 500 and both weighted estimates converge at a slow cubic root-n rate. The relative bias
reduces about 50% when the sample size increases to n= 3,000 with about 400 fully observed

subjects, and almost disappears when there is no missing data for all n= 3,000 subjects (results

not shown).

5.2. A Case-Cohort Study From an HIV Vaccine Trial
We illustrate our method here by analyzing the case-cohort data collected from one of the largest

phase 3 HIV-1 vaccine efficacy trials in the world (Flynn et al., 2005; Gilbert et al., 2005). The

trial demonstrated lack of efficacy of the vaccine, but Gilbert et al. (2005) undertook a secondary

objective, which was to determine whether antibody responses are correlated with the incidence
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Table 1: Summary statistics of simulations.

Full data MLE True weights Estimated weights

Method parameter β1 β2 β1 β2 β1 β2

Cox Model: Scenario 1

Bias −0.022 0.016 −0.038 0.075 −0.040 0.074

Bootstrap Std 0.141 0.145 0.182 0.187 0.167 0.176

Empirical Std 0.145 0.148 0.184 0.195 0.170 0.179

Coverage proportion 0.946 0.946 0.947 0.927 0.950 0.943

Cox Model: Scenario 2

Bias 0.013 −0.020 −0.013 0.033 −0.010 0.031

Bootstrap Std 0.071 0.084 0.134 0.134 0.110 0.116

Empirical Std 0.077 0.084 0.138 0.138 0.113 0.120

Coverage proportion 0.940 0.945 0.953 0.940 0.948 0.945

Linear Risk Model: Scenario 1

Bias −0.007 0.001 0.021 0.008 0.017 0.006

Bootstrap Std 0.170 0.089 0.224 0.138 0.212 0.101

Empirical Std 0.164 0.095 0.212 0.130 0.200 0.105

Coverage Proportion 0.946 0.930 0.937 0.930 0.935 0.931

Linear Risk Model: Scenario 2

Bias −0.001 0.005 0.004 −0.011 −0.007 −0.008

Bootstrap Std 0.100 0.060 0.235 0.170 0.202 0.114

Empirical Std 0.105 0.063 0.251 0.164 0.217 0.100

Coverage proportion 0.941 0.938 0.930 0.952 0.924 0.956

of HIV-1 infection among vaccine recipients. The trial was designed to have multiple visits and

either vaccine or placebo was administered at each visit. For simplicity, we only consider the

infection status at the last visit and thus have the current status data to work with. The approach

of analyzing interval censored data with multiple random inspection times is under investigation.

The original trial consists of 5,095men and 308womenwho received the study vaccine or placebo

at a 2:1 ratio. Each study participant was followed up to 36 months. Gilbert et al. (2005) designed

a case-cohort study that consisted of all 241 infected subjects and 167, a fraction of 5%, uninfected

subjects selected via independent Bernoulli sampling, all being selected from vaccine recipients.

This is a classical case-cohort design without covariate stratification. They found that the peak

antibody levels reached a high level at month 6.5 (after the second vaccine shot) and became

relatively stable afterwards. We consider the only functional assay, the MN neutralization titer

(min= 1.48, median= 2.83, max= 5.07), among all antibody responses and use its peak level

at month 6.5 (hence infections prior month 6.5 are excluded) as the covariate of interest in

our analysis. This antibody in principle should be most relevant for HIV protection. The Cox

proportional hazards model is considered and a cubic-root power transformation of the antibody

peak level is used to achieve a better linear effect in the Coxmodel. Several demographic variables

are also considered in the Cox proportional hazards model, but only the baseline behavioral risk

score is significant. Since only the sample fraction of 5%, the most efficient estimator of the true
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Figure 1: Average estimates of the baseline cumulative hazard function over 500 simulation replications
when sample size n= 500.

Table 2: Estimates of log hazard ratios for MN neutralizing titer (MN) and the baseline behavioral risk

score.

Variable MN Low risk Medium risk High risk

Estimate −0.654 0 0.898 2.385

Std. Error 0.324 — 0.249 0.542

P-value 0.043 — <0.001 <0.001

Low risk (reference group): the group with risk scores equal to 0.

Medium risk: the group with risk scores from 1 to 3.

High risk: the group with risk scores greater than 3.

selection probability, for uninfected subjects was provided by Gilbert et al. (2005), we use the

weighted likelihoodmethodwith estimatedweights in our analysis that should yieldmore efficient

regression parameter estimation than using true weights (Theorem 4). The final result is given

in Table 2. We can see that the antibody MN neutralization titer has a protection effect against

HIV infection, which is consistent with the finding in Gilbert et al. (2005) where an analysis of

approximated right censored data was conducted.

6. DISCUSSION

The proposed weighted likelihood method can be applied to stratified sampling designs when

complete data are selected by an i.i.d. Bernoulli sampling that results in an i.i.d. structure of the

data. An alternative practical sampling approach is sampling without replacement, wherein the

number of sampled subjects in each stratum is fixed. Such a sampling design destroys the i.i.d.

data structure. Breslow & Wellner (2007) considered this type of designs for semiparametric
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models in which the infinite dimensional nuisance parameter can be estimated at a root-n rate,

and provided proofs of asymptotic properties based on the weighted bootstrap empirical process

theory of Præstgaard & Wellner (1993). An interesting work that is undergoing is to extend the

work of Breslow&Wellner (2007) to two-phase designs with current status data where the second

phase data are selected by sampling without replacement, in which the baseline cumulative hazard

function should still only be estimable at a cubic root-n rate.
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APPENDIX A: AN ASYMPTOTIC NORMALITY THEOREM FOR
SEMIPARAMETRIC M-ESTIMATION

Weextend Theorem 6.1 ofWellner&Zhang (2007) by replacing one of the nuisance parameters by

its estimator in the objective function that will be maximized with respect to all other parameters.

Such an extension is crucial in handling themissing data problemwhenweights are estimated, and

can be useful in proving asymptotic normality for a general semiparametric missing data problem

when the missing probability is estimated from observed data. For simplicity of notation, we

adopt the empirical process notation of van der Vaart and Wellner throughout the Appendices by

denoting Pf as the integral of f with respect to the probability measure P, Pnf as the integral of

f with respect to the empirical measure Pn, which is the sample average of f for i.i.d. data, and
Gnf = √

n(Pn−P)f .

Given i.i.d. observations X1, · · · , Xn, suppose that the estimates (β̃n, �̃n) of unknown

parameters (β, �) are set to be the maximizer of the objective function Pnm(β, �, α̂n;X),

where α̂n is an estimator of the true parameter α0, β∈Rd , and �∈�, an infinite dimensional

Banach space. Here we assume α0 to be finite dimensional, though it can be more gen-

eral. Suppose that �η is a parametric submodel in � passing through �, that is, �η∈� and

�η=0 = �. Let H = {h : h = ∂�η/∂η|η=0} be the collection of all directions to approach �. Let

ṁ1(β, �, α;X) = ∂m(β, �, α;X)/∂β, ṁ2(β, �, α;X)[h] = ∂m(β, �η, α;X)/∂η along the direc-

tion of h, and ṁ3(β, �, α;X) = ∂m(β, �, α;X)/∂α. Let m̈ij be the second order derivatives of m
with respect to corresponding arguments defined in a similar way, i, j∈{1, 2, 3}.

The following conditions are mostly parallel to those in Theorem 6.1 of Wellner & Zhang

(2007), but here they are adapted to accommodate a more general setting.

A1. |α̂n−α0| = op(1), |β̃n−β0| = op(1), and ‖�̃n−�0‖ = Op(n
−γ ) for some γ > 0 and some

norm ‖ · ‖.
A2. There exists an h∗ = (h∗

1, · · · , h∗
d)

T , where h∗
j∈L2(P), j = 1, 2, · · · , d, such that

P{m̈12(β0, �0, α0;X)[h]−m̈22(β0, �0, α0;X)[h∗, h]} = 0,

for all h∈H . Moreover, the matrix

A = −P{m̈11(β0, �0, α0;X)−m̈21(β0, �0, α0;X)[h∗]}
is non-singular.

A3. Pṁ1(β0, �0, α0;X) = 0 and Pṁ2(β0, �0, α0;X)[h∗] = 0.

A4. The estimator (β̃n, �̃n) satisfies

Pnṁ1(β̃n, �̃n, α̂n;X) = op(n
−1/2) and Pnṁ2(β̃n, �̃n, α̂n;X)[h∗] = op(n

−1/2).
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A5. For any δn ↓ 0 and C> 0, let

�n = {(β, �, α) : |(βT , αT )−(βT
0 , αT

0 )| ≤ δn, ‖�−�0‖2 ≤ Cn−γ }.
We have

sup
(β,�,α)∈�n

|Gn{ṁ1(β, �, α;X)−ṁ1(β0, �0, α0;X)}| = op(1),

and

sup
(β,�,α)∈�n

∣∣Gn

{
ṁ2(β, �, α;X)[h∗]−ṁ2(β0, �0, α0;X)[h∗]

}∣∣ = op(1).

A6. For some µ > 1 satisfying µγ > 1/2, and for (β, �, α)∈ �n,

|P {ṁ1(β, �, α;X)−ṁ1(β0, �0, α0;X)−m̈11(β0, �0, α0;X)(β−β0)

−m̈12(β0, �0, α0;X)[�−�0]−m̈13(β0, �0, α0;X)(α−α0)}|
= o(|β−β0|) + o(|α−α0|) + O(‖�−�0‖µ),

and

|P{ṁ2(β, �, α;X)[h∗]−ṁ2(β0, �0, α0;X)[h∗]−m̈21(β0, �0, α0;X)[h∗](β−β0)

−m̈22(β0, �0, α0;X)[h∗, �−�0]−m̈23(β0, �0, α0;X)[h∗](α−α0)}|
= o(|β−β0|) + o(|α−α0|) + O(‖�−�0‖µ).

Theorem A.1. Suppose that Conditions A1 to A6 hold. Then we have

√
n(β̃n−β0) = A−1

√
nPnṁ

∗(β0, �0, α0;X)−C
√

n(α̂n−α0) + op∗ (1), (A.1)

where

ṁ∗(β0, �0, α0;X) = ṁ1(β0, �0, α0;X)−ṁ2(β0, �0, α0;X)[h∗],

and

C = A−1P{m̈13(β0, �0, α0;X)−m̈23(β0, �0, α0;X)[h∗]}.

If
√

n(α̂n−α0) is asymptotically normal with influence function α, then
√

n(β̃n−β0) is asymp-
totically normal. Furthermore, if α̂n is asymptotically efficient, then

√
n(β̃n−β0) →d N(0, �)

with

� = A−1
{

Pṁ∗(β0, �0, α0;X)⊗2
}
(A−1)T −C(Pα⊗2)CT .

Proof. By A1, A3 and A5, we have

Pnṁ1(β̃n, �̃n, α̂n;X)−Pṁ1(β̃n, �̃n, α̂n;X)−Pnṁ1(β0, �0, α0;X) = op(n
−1/2).

In view of A4, this reduces to

Pṁ1(β̃n, �̃n, α̂n;X) + Pnṁ1(β0, �0, α0;X) = op(n
−1/2).
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Then by A6, it follows that

Pm̈11(β0, �0, α0;X)(β̃n−β0) + Pm̈12(β0, �0, α0;X)[�̃n−�0]

+Pm̈13(β0, �0, α0;X)(α̂n−α0) + Pnṁ1(β0, �0, α0;X)

= o(|β̃n−β0|) + o(|α̂n−α0|) + O(‖�̃n−�0‖2)
= op(n

−1/2),

(A.2)

In a similar way, we obtain

Pṁ2(β̃n, �̃n, α̂n;X)[h∗] + Pnṁ2(β0, �0, α0;X)[h∗] = op(n
−1/2),

and then

Pm̈21(β0, �0, α0;X)[h∗](β̃n−β0) + Pm̈22(β0, �0, α0;X)[h∗, �̃n−�0]

+Pm̈23(β0, �0, α0;X)[h∗](α̂n−α0) + Pnṁ2(β0, �0, α0;X)[h∗]
= o(|β̃n−β0|) + o(|α̂n−α0|) + O(‖�̃n−�0‖2)
= op(n

−1/2).

(A.3)

Subtracting (A.3) from (A.2) and rearranging terms, byA2we obtain (A.1).When
√

n(α̂n−α0)

is asymptotically normal with influence function α, the right hand side of the above equation

converges to a zero mean normal random variable by the classical central limit theorem. Further-

more, when α̂n is efficient,
√

n(β̃n−β0) →d N(0, �) follows from (A.1) and the result in Pierce

(1982), with � being stated in the theorem.

APPENDIX B: PROOFS OF THEORETICAL RESULTS

Proof of Theorem 1. Following van der Vaart (2002), we introduce the following func-

tions (β, �;X) = log{(pβ,� + p0)/2} and m(β, �;X) = w(β, �;X), where p0 = pβ0,�0 .

Although Pnm(β, �;X) is not maximized at (β̂n, �̂n), it is always true that Pnm(β̂n, �̂n;X) ≥
Pnm(β0, �0;X). Only this less restrictive condition is needed in Theorem 5.8 in van der Vaart

(2002).Note that, under our assumptions,p0 is bounded andbounded away from0, so it follows that

m(β, �;X) is uniformly bounded. Then by Theorem 5.8 and Lemma 5.9 in van der Vaart (2002),

to prove the consistency of (β̂n, �̂n), it suffices to show that the parameter space for (β,�) is com-

pact, the map (β, �) �→ pβ,�(x) is continuous for every x, and the map (β, �) �→ Pm(β, �;X)

achieves a unique maximum at (β0, �0).

The compactness of the parameter space B of β is from Assumption (A). By the theorem

on page 239 of Billingsley (1999), the parameter space � of � is compact if � is closed and

for each sequence {�n, n ≥ 1} in �, there exists a subsequence {�n′ } and some �∗∈� such that

‖�n′−�∗‖2 → 0 as n′ → ∞. The closeness of� is clearly seen. Now for any sequence {�n, n ≥
1} in�, by the samediagonal argument used in provingHelly’s selection theorem (e.g.,Billingsley,

1995, p. 336), there exists a subsequence {�n′ } and some �* such that |�n′ (y)−�∗(y)| → 0 for

every continuity point of �∗. But this implies, by the dominated convergence theorem, that

‖�n′−�∗‖2 → 0 since the density of Y is bounded. Therefore, � is compact. The continuity of

the map (β, �) �→ pβ,�(x) for every x is clearly seen from Equation (1) and Assumption (C).

We now show that the map (β, �) �→ Pm(β, �;X) achieves a unique maximum

at (β0, �0). By the fact that E(w|�, V ) = 1, we have P{m(β, �;X)−m(β0, �0;X)} =
P{(β, �;X)−(β0, �0;X)} that is negative Kullback–Leibler divergence and hence is always

less than or equal to 0. It is 0 if and only if pβ,� = p0 with probability 1, or equiva-

lently, r(βT Z)�(Y ) = r(βT
0 Z)�0(Y ) with probability 1. This is equivalent to v(βT Z)−v(βT

0 Z) =
−log�(Y ) + log�0(Y ) with probability 1, where v = logr. By the Taylor expansion, this can be

rewritten as v̇(aT Z)(β−β0)
T Z = −log�(Y ) + log�0(Y ) for some vector a between β and β0.
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This yields, with probability 1, that (β−β0)
T E[var(Zv̇(aT Z)|Y )](β−β0) = 0. Hence by Assump-

tion (E), we have β = β0, and then �(t) = �0(t) follows. By Theorem 5.8 and Lemma 5.9 in van

der Vaart (2002), we conclude that β̂n → β0 and ‖�̂n−�0‖2 → 0 in probability (almost surely)

as n→ ∞. By the fact that the density of Y is bounded away from 0, ‖�̂n−�0‖2 → 0 is equivalent

to
∫ τ

σ
(�̂n(t)−�0(t))

2dt → 0 in probability (almost surely). Since�0(·) is continuous and strictly
monotone, it further implies that �̂n(t) → �0(t) in probability (almost surely) for every t∈(σ, τ).

The proof of the rate of convergence follows similarly the proof of Lemma 8.5 in van der

Vaart (2002), in which the bracketing number calculation follows the same argument in the proof

of Lemma 8.6 in van der Vaart (2002) by using the fact that w is bounded and free of (β, �).

Details are hence omitted.

Proof of Theorem 2.The proof proceeds similarly as the proof of Theorem 3.4 inHuang (1996)

by verifying Conditions A1–A6 in TheoremA.1 with the general relative risk r(·) replacing exp(·)
and m(β, �, α0;X) = w(α0)l(β, �;X), where w is bounded and free of (β, �), thus is omitted.

Proof of Theorem 3. We show consistency first. Define function m(β, �, α;X) =
w(α)log{(pβ,� + pβ0,�0 )/2}. In the proof of Theorem 1 we have already shown that (β0, �0,

α0) is the unique maximizer of Pm(β, �, α0;X). Hence,

sup
(β,�):d((β,�),(β0,�0))>δ

Pm(β, �, α0;X) < Pm(β0, �0, α0;X) (B.1)

holds for every δ > 0. By the definition of (β̃n, �̃n), we have

Pnm(β̃n, �̃n, α̂n;X) ≥ Pnm(β0, �0, α̂n;X) = Pnm(β0, �0, α0;X) + op(1), (B.2)

where the equality is obtained by Taylor expansion and the uniform boundedness of ẇ(α). By a

similar argument as in Lemma 8.9 in van der Vaart (2002), we know that the bracketing num-

bers of the class of functions {m(β, �, α0;X) : (β, �)∈�} are bounded and hence the class is

Glivenko–Cantelli. Thus from (B.1) and (B.2) we have

0 ≤ Pm(β0, �0, α0;X)−Pm(β̃n, �̃n, α0;X)

= Pnm(β0, �0, α0;X)−Pnm(β̃n, �̃n, α0;X) + op(1)

≤ Pnm(β̃n, �̃n, α̂n;X)−Pnm(β̃n, �̃n, α0;X) + op(1)

= op(1),

(B.3)

where the last step is again obtained by Taylor expansion and the uniform boundedness of ẇ(α).

By inequality (B.1), for every δ > 0 we have{
d((β̃n, �̃n), (β0, �0)) ≥ δ

} ⊂ {
Pm(β̃n, �̃n, α0;X) < Pm(β0, �0, α0;X)

}
with the sequence of the events on the right going to a null event in view of inequalities (B.3),

which yields the almost sure (thus in probability) convergence of (β̃n, �̃n). This argument is taken

from the proof of Theorem 5.8 in van der Vaart (2002).

We now show the rate of convergence by applying Theorem 3.2.5 of van der Vaart &Wellner

(1996). Let Sn(β, �) = Pnw(α̂n)(β, �;X). Clearly Sn(β̃n, �̃n) ≥ Sn(β0, �0) by the definition

of (β̃n, �̃n). A Taylor expansion on α at α0 yields

Sn(β, �) = Pnw(α0)(β, �;X) + Pnẇ
T (α0)(β, �;X)(α̂n−α0)

+ (α̂n−α0)
T
Pnẅ(α∗

n)(β, �;X)(α̂n−α0),
(B.4)

where α∗
n is a point between α0 and α̂n. Define M

0
n(β, �) = Pnw(α0)(β, �;X), M(β, �) =

Pw(α0)(β, �;X), and Mn(β, �) =M0
n(β, �) + PẇT (α0)(β, �;X)(α̂n−α0). Then by the
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uniform boundedness of ẅ, it is easy to see that the third term on the right hand side of equality

(B.4) is Op(n
−1). Thus (B.4) becomes

Sn(β, �) =Mn(β, �) + 1√
n
{Gnẇ

T (α0)(β, �;X)}(α̂n−α0) + Op(n
−1).

In a similar way to the proof of Lemma 7.1 in Huang (1996), we can show that the classes of

functions {ẇ(α0)
(j)(β, �;X) : β∈B, �∈�}, 1≤ j≤ J, are Donsker. Hence

sup
β,�

|Gnẇ
(j)(α0)(β, �;X)| = Op(1), 1 ≤ j ≤ J,

and we have Sn(β, �) =Mn(β, �) + Op(n
−1). The inequality Sn(β̃n, �̃n) ≥ Sn(β0, �0) then

implies that Mn(β̃n, �̃n) ≥Mn(β0, �0)−|Op(n
−1)|, which further implies that Mn(β̃n, �̃n) ≥

Mn(β0, �0)−|Op(r
−2
n )| with rn = n1/3. By a similar argument as in the proof of Theorem 3.3 in

Huang (1996), which extends to the weighted likelihood at true α0 without much difficulty, we

obtain

E sup
d((β,�),(β0,�0))<δ

∣∣√n(M0
n−M)(β, �)−√

n(M0
n−M)(β0, �0)

∣∣
≤ Cδ1/2

(
1 + M δ1/2

δ2
√

n

)
.

Together with the triangle inequality, we then have

E sup
d((β,�),(β0,�0))<δ

∣∣√n(Mn−M)(β, �)−√
n(Mn−M)(β0, �0)

∣∣
≤ E sup

d((β,�),(β0,�0))<δ

∣∣√n(M0
n−M)(β, �)−√

n(M0
n−M)(β0, �0)

∣∣
+ E sup

d((β,�),(β0,�0))<δ

∣∣√n(Mn−M0
n)(β, �)−√

n(Mn−M0
n)(β0, �0)

∣∣
≤ Cδ1/2

(
1 + M δ1/2

δ2
√

n

)
+

J∑
j=1

sup
d((β,�),(β0,�0))<δ

∣∣A(j)(β, �)−A(j)(β0, �0)|E√
n|α̂nj−α0j

∣∣ ,
(B.5)

where A(j) is the jth component of Pẇ(α0)(· , · ;X). Based on the assumptions on model (3) and

the uniform boundedness of ẇ(α0) and ṙ(·), we know that for 1≤ j≤ J,

|A(j)(β, �)−A(j)(β0, �0)| = |Pẇ(j)(α0){(β, �;X)−(β0, �0;X)}|
≤ Cj[|β−β0| + {P(�(Y )−�0(Y ))

2}1/2]
= Cjd((β, �), (β0, �0))

≤ Cjδ

for some constantCj . Togetherwith the boundedness of supn E
√

n|α̂nj−α0j|, the above inequality
implies that the summation term in (B.5) is bounded by Kδ ≤ Kδ1/2(1 + Mδ1/2/(δ2

√
n)) for a

constant K and sufficiently small δ. Hence,

E sup
d((β,�),(β0,�0))<δ

∣∣√n(Mn−M)(β, �)−√
n(Mn−M)(β0, �0)

∣∣
≤ C∗δ1/2

(
1 + M δ1/2

δ2
√

n

)
for a constant C*.
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Finally, the inequality M(β, �)−M(β0, �0) ≤ −Cd2((β, �), (β, �)0) can be established as

in Lemma 8.8 in van der Vaart (2002). Thus, the conditions of Theorem 3.2.5 of van der Vaart

& Wellner (1996) are all satisfied with the same function φn(δ) as that derived in the proof of

Theorem 3.3 in Huang (1996). Hence, (β̃n, �̃n) converges at the n1/3 rate.
Proof of Theorem 4. We prove by checking Conditions A1–A6 in Theorem A.1 with

m(β, �, α;X) = w(α)l(β, �;X). ConditionA1holdswithγ = 1/3 byTheorem3. In order to verify

A2, we first need to find anh∗∈L2(P) such thatPm̈12(β0, �0;X)[h]−Pm̈22(β0, �0;X)[h∗, h] =
0 for all h∈H . Because E(w|X) = 1, such a condition reduces to the exact same condition for

the full data where w ≡ 1, hence holds with the h* given in (14), which is the least favourable

direction for the full data (see Huang, 1996; Murphy & van der Vaart, 2000; van der Vaart, 2002

for details). Furthermore, A is the information matrix for β for the full data, and its non-singularity

is guaranteed by Assumption (E). We thus have verified Condition A2. Condition A3 holds auto-

matically because, byE(w|X) = 1, Pṁ1 and Pṁ2 are equal to the expectations of full data scores

for β and �, and hence equal to 0 at (β0, �0).

We now verify Condition A4. The first part of A4 holds automatically since we have

Pnṁ1(β̃n, �̃n, α̂n;X) = 0. For the second part, we define ξ0 = h∗◦�−1
0 with h* given in (14).

Using the same argument as that in the proof of Theorem 3.4 in Huang (1996) and taking a Taylor

expansion with respect to α at α0, we obtain

Pnṁ2(β̃n, �̃n, α̂n;X)[h∗] = J1 + (α̂n−α0)
T J2 + (α̂n−α0)

T J3(α̂n−α0),

where

J1 = Pn

{
w(α0)r(β̃

T
n Z)(ξ0◦�0(Y )−ξ0◦�̃n(Y ))(�u(Y, Z; β̃n, �̃n)−(1−�))

}
,

J2 = Pn

{
ẇ(α0)r(β̃

T
n Z)(ξ0◦�0(Y )−ξ0◦�̃n(Y ))(�u(Y, Z; β̃n, �̃n)−(1−�))

}
,

and

J3 = Pn

{
ẅ(α∗

n)r(β̃
T
n Z)(ξ0◦�0(Y )−ξ0◦�̃n(Y ))(�u(Y, Z; β̃n, �̃n)−(1−�))

}
for some α∗

n lying between α0 and α̂n. Following the corresponding calculation of Pnṁ2[h∗] in
the proof of Theorem 3.4 in Huang (1996) for the general relative risk r(·) satisfying Assumption

(C) and bounded w(α0) and ẇ(α0) that are free of (β, �), we can show that both J1 = op(n
−1/2)

and J2 = op(n
−1/2). It is easy to see that J3 = Op(1) by the boundedness assumptions, hence

(α̂n−α0)
T J3(α̂n−α0) = op(n

−1/2) because |α̂n−α0| = Op(n
−1/2). Thus we have verified Con-

dition A4.

To verify A5, it suffices to show that the classes of functions

�1(η) =
{

w(α)̇1(β, �; x)−w(α0)̇1(β0, �0; x) : |α−α0| + |β−β0| + ‖�−�0‖2 ≤ η, α∈RJ , β∈B, �∈�
}

,

�2(η) =
{

w(α)̇2(β, �; x)[h∗]−w(α0)̇2(β0, �0; x)[h
∗] : |α−α0| + |β−β0| + ‖�−�0‖2 ≤ η, α∈RJ , β∈B, �∈�

}
are Donsker. This follows in a similar way as that in Lemma 7.1 in Huang (1996) again with the

fact that w is bounded and free of (β, �).

Finally, A6 is verified by Taylor expansions of functions Pṁ1(β, �, α;X) and

Pṁ2(β, �, α;X)[h∗] at (β0,�0,α0).We also haveµ = 2 andµγ > 1/2. Thus, we have completed

the proof.

A geometric interpretation of the efficiency gain using estimated weights for the missing data

problem is given in the following. Let Ṗ⊥
�,α be the orthogonal complement of the tangent space

of (�, α) in L2(P). Then the influence function of the regular asymptotic linear estimator β̃n is in

Ṗ⊥
�,α. Since the score function (or equivalently the influence function) of α, which yields α̂n for

data missing at random, is in Ṗ�,α thus orthogonal to Ṗ⊥
�,α, we know that α̂n is asymptotically

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



576 LI AND NAN Vol. 39, No. 4

independent of β̃n, which yields the result given by Pierce (1982). For technical details of this

simple interpretation, we refer to Bickel et al. (1993), Robins et al. (1994), and Yu & Nan (2006).
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