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INTRODUCTION

Stability and function of many proteins and nucleic acids are depend-

ent on the charge of titratable residues. Changes in the protonation state

of these residues have the potential to trigger significant configurational

variation. Some examples include the proton-gradient in mitochondria,

which enables the rotary motion of ATP synthetase for virtually all

known metabolizing life forms.1,2 In addition, the catalytic mechanisms

of numerous enzymes are driven by locally perturbed protonation

equilibria at the active site.3 Furthermore, amyloidogenic protein aggre-

gation into oligomers is a pH driven process, demonstrating the role of

ionization states in protein function.4,5 To study these biological

mechanisms, it is crucial to understand how they are dependent on the

ionization states of their amino acid residues.

Understanding these phenomena requires a system that describes the

complex coupling between structure, chemical composition, and proton

affinities as a function of proton concentration (pH). Residue-specific

pKa values provide a framework from which to begin to provide quanti-

tative relationships among the above noted properties. However, the pKa

of a particular site and its tendency to ionize or accept a proton is

highly responsive to the surrounding solvent environment as well as to

charge–dipole and charge–charge interactions.6–8 These in turn alter

the specific tendency for that residue to change its ionization state, i.e.,

its pKa. For extreme cases, such as aspartic acid (ASP)-96 in bacterio-

rhodopsin, the measured perturbation is at least 8.0 pK units greater

than that of the isolated amino acid in pure water.3 This creates a need

for measuring the relative amino acid pKa perturbations in a folded

protein. Determining these experimentally, however, is nontrivial,

although possible through a range of techniques.9

Experimentally investigating pKa values involves titrating a species

over a wide range of pH.9 Most biologically functional proteins, how-
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ABSTRACT

Accurate computational methods of deter-

mining protein and nucleic acid pKa values

are vital to understanding pH-dependent

processes in biological systems. In this arti-

cle, we use the recently developed method

constant pH molecular dynamics (CPHMD)

to explore the calculation of highly perturbed

pKa values in variants of staphylococcal nu-

clease (SNase). Simulations were performed

using the replica exchange (REX) protocol

for improved conformational sampling with

eight temperature windows, and yielded con-

verged proton populations in a total sam-

pling time of 4 ns. Our REX-CPHMD simu-

lations resulted in calculated pKa values with

an average unsigned error (AUE) of 0.75 pK

units for the acidic residues in D 1 PHS, a

hyperstable variant of SNase. For highly pKa-

perturbed SNase mutants with known crystal

structures, our calculations yielded an AUE

of 1.5 pK units and for those mutants based

on modeled structures an AUE of 1.4 pK

units was found. Although a systematic

underestimate of pK shifts was observed in

most of the cases for the highly perturbed

pK mutants, correlations between conforma-

tional rearrangement and plasticity associ-

ated with the mutation and error in pKa pre-

diction was not evident in the data. This

study further extends the scope of electro-

static environments explored using the REX-

CPHMD methodology and suggests that it is

a reliable tool for rapidly characterizing ion-

izable amino acids within proteins even

when modeled structures are employed.
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ever, are natively folded only within a very narrow pH

range. Outside of these native conditions they often

adopt non-native, denatured, or unfolded conformations.

Since the pKa values of an ionizable residue are highly

dependent on its interactions with solvent and surround-

ing protein tertiary structures, titrating a protein to pH

values outside of this range may not provide pKa values

relevant to its natively folded configuration.7 To aid in

both the calculation and interpretation of such experi-

ments, theoretical tools have been developed to make

pKa predictions based on knowledge of the native protein

structure. For many proteins, a reliable method of experi-

mentally determining residue-specific pKa values is

either too cost prohibitive, or infeasible. Before such

experimental methods become viable, computational

tools are the only means available for studying their pKa

values.7,8

The theoretical framework and computational methods

to predict pKa shifts in large molecules can be divided into

three basic approaches: finite difference Poisson-Boltzmann

based continuum electrostatics methods, empirical meth-

ods, and molecular dynamics (MD) coupled with explicit

free energy estimates using explicit solvent or implicit sol-

vent (generalized Born continuum electrostatics) methods.

Empirical methods, such as PROPKA,10,11 are based upon

empirical algorithms that relate structural metrics to pKa

perturbation. Provided with sufficient relevant experimen-

tal data and an accurate structure of a protein, this method

has been shown to yield predictions within 1 pKa unit root-

mean-squared deviation (RMSD) from experimental obser-

vation. This level of agreement with experimental pKa val-

ues shows that the corresponding link between structural

metrics and pKa shifts is an important tool in understand-

ing the electrostatic environments of proteins. Empirical

methods, however, cannot be used to determine pKa values

without both extensive experimental data and a high-reso-

lution protein structure.11 Poisson-Boltzmann equation

based methods, such as multi-conformation continuum

electrostatics (MCCE)12,13 and macroscopic electrostatics

with atomic detail (MEAD),14,15 calculate the macroscopic

electrostatic effects of ion–ion and ion–dipolar interactions,

such as between a titrating site and polar solvent molecules

given the dielectric response of the protein interior. Pro-

vided with a high-resolution crystal structure, they offer

predictions within 1 pKa unit RMSD for residues with rela-

tively high solvent exposure. Since the accuracy of this

method is directly related to solvent interactions, it often

leads to inaccurate predictions when the target titrating res-

idue has little macroscopic solvent interaction, or if the tar-

get site’s pKa is significantly altered by conformation.16 To

explore poorly understood protein systems, relatively more

brute-force methods using MD with simulated titration

may be necessary.

MD simulations can derive information from virtually

any protein system as long as atomic interactions can be

parameterized into a consistent force field and explicit

coordinates can be defined.7,8 This provides the potential

for MD based methods to estimate residue pKa values of

lower resolution or even partially solved structures.

Calculating pKa then relies upon parameterizing the sol-

vent model. The effective Born radii of individual resi-

dues may be calculated from the shape of the protein’s

solvent exposure, and from that information ionization

energies may be calculated. In comparative tests, MD

based methods consistently provide more accurate pKa

estimates over a wider variety of protein residues and

environments than other computational methods.7,8

There are two dominant approaches available for the

inclusion of titrating sites in MD-based pKa calculation

methods: discrete and continuous. Discrete methods

titrate residues using Monte Carlo (MC) sampling, which

allow protons to be added and deleted from amino

acids.17 However, recurring instantaneous switches of

protonation states by adding or deleting the protons

result in discontinuities of energy and force calculations.

In addition, only one proton addition or deletion move

is made during a MC step, which contributes to slower

convergence for systems with many ionizable groups.17

Nevertheless, discrete protonation state methods coupled

with MD have proven to be useful in exploring pKa

values of proteins.18

Continuous methods by definition allow a gradual

change in the ‘‘titration’’ coordinates during the MD sim-

ulation. This permits continuous energy and force calcu-

lations, yields greater sampling rates, and enables the

titration of multiple sites simultaneously. The accuracy

and efficiency of continuous dynamical methods

make them as a useful methodology for studying many

proteins.7,8,19

In this article, we utilize a recently developed continu-

ous method called constant pH molecular dynamics

(CPHMD).6,20 It is a component of the CHARMM sim-

ulation and modeling package21 and employs a variant

of the k dynamics methodology in CHARMM22,23 and

the generalized Born with simple switching (GBSW)

implicit solvent model to mimic the effects of the solvent

environment24,25 with continuous atomic trajectories.26

The dynamics of the titration coordinates for ionizable

residues is characterized by as many as two continuous

coordinates for each ionizable amino acid in the form

(k, x). The variable k corresponds to the protonation

state of the residue and x controls of the interconversion

between tautomeric states.6 For single site titrations,

such as the atom NZ in lysine, x is unnecessary since

there are no tautomerers. Residues with multiple proto-

nation sites such as ASP are defined with three states,

(k 5 1) for the deprotonated, (k 5 0, x 5 1) for the

OD1-protonated state, and (k 5 0, x 5 0) for the

OD2-protonated state. By simulating protonation in this

manner, pKa predictions are made with both rapid

convergence and accurate predictions to within 1.0 pK

units.6,7,20
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CPHMD has been successfully employed in the predic-

tion of the pKa values of amino acids both in small pep-

tides and in proteins. Recently Khandogin and coworkers

demonstrated CPHMD’s accuracy on turkey ovomucoid

third domain and bovine pancreatic ribonuclease A, by

predicting experimental pKa values within 0.6 to 1.0 pK

units, respectively.6 Although their simulations verified

CPHMD’s ability to provide accurate pKa estimates of

ionizable side chains, almost all protein residues included

in this study had relatively small pKa perturbations of

several pK units or less. Considering the earlier example

of ASP-96 in bacteriorhodopsin, a perturbation of several

units represents a narrow range of possible pKa values

for protein residues. In pursuit of computational meth-

ods to address these highly perturbed electrostatic envi-

ronments, the methods must be able to calculate the pKa

of titrating amino acids regardless of the size of the per-

turbation. Therefore, it is necessary to test CPHMD in

predicting highly perturbed pKa values for biologically

relevant systems. Staphylococcal nuclease (SNase) repre-

sents an ideal example of such a system, because it has

both decades of folding and structural research and a

variety of hyperstable mutants, including many with

highly perturbed pKa values.27–30

SNase is a relatively small protein consisting of a single

polypeptide chain of 149 amino acids with no disulfide

bonds. Its simple structure, prevalence in nature, and

lack of chaperon-assisted folding to achieve its native

fold have made it a model system for studying protein

folding, point mutations, and the role of amino acids in

protein function. Using site-directed mutagenesis, the

various roles of residues in SNase’s stability and folding

pathway have been discovered, leading to a thorough

understanding of the protein.30–33 Putting theory into

practice, this information was used to develop a hyper-

stable variant of SNase, known as D 1 PHS. This variant

has five point mutations (G50F, V51N, P117G, H124L,

and S128A) and a truncation (residues 44–49).30 It is

extraordinary in its ability to remain in its native confor-

mation both over a broad range of pH and temperature,

and when subjected to additional point mutations.27,30

This resilience enables all its ionizing residues to be

titrated experimentally, even with the introduction of

hydrophilic residues into the protein’s hydrophobic

core.27,30

In previous work by Garcia-Moreno et al., the confor-

mational role of aspartic and glutamic acids (GLU) in

D 1 PHS were studied in detail.30 All such residues

were titrated for pKa calculations by measuring the pH

dependence of the chemical shifts of Cg or Cd with two-

dimensional HBHC(CBCG)CO experiments.30 These

results are summarized in Table I under ‘‘experimental

pKa.’’ In addition, 27 point-mutation variants of D 1
PHS (two ASPs and 25 GLUs) were successfully created.

Each variant was titrated to measure the pKa at the

mutation site by analyzing the pH correlation with

changes in Gibbs free energy of unfolding (DDG8H2O)

with GdnHCl as a denaturant. These results are given in

Tables II and III under ‘‘experimental pKa.’’27 These

experiments provide a comprehensive quantification of

the changes of internal energy within D 1 PHS in rela-

tion to introducing a hydrophilic residue into the hydro-

phobic core of the protein. The shielding effect of the

surrounding hydrophobic amino acids greatly reduces

solvent interactions with the glutamic and ASP mutations,

and consequently increases their pKa values by as much as

Table I
Observed Versus Calculated pKa Values in D 1 PHS

Residue
Experimental

pKa32
Calculated

pKa
Error

(CPHMD)
Error

(null model)

Asp-19 2.2 3.8 1.6 1.7
Asp-21 6.5 5.4 21.1 22.7
Asp-40 3.9 2.0 21.8 0.0
Asp-77 <2.2 0.8 COR <21.7
Asp-83 <2.2 3.8 <21.6 <21.7
Asp-95 2.2 3.4 1.3 1.7
Glu-10 2.8 3.3 0.5 1.3
Glu-43 4.3 3.8 20.6 20.2
Glu-52 3.9 4.9 1.0 0.2
Glu-57 3.5 4.4 0.9 0.6
Glu-67 3.8 3.6 20.1 0.3
Glu-73 3.3 2.4 20.9 0.8
Glu-75 3.3 4.9 1.6 0.8
Glu-101 3.8 3.5 0.3 0.3
Glu-122 3.9 4.7 0.8 0.2
Glu-129 3.8 4.4 0.7 0.4
Glu-135 3.8 4.4 0.7 0.3

pKa values for residues beyond 141 were not reported here, because their coordi-

nates are not solved in most of the crystal structures used during this study. This

includes the 3BDC structure used to calculate the data for this table.

Table II
Observed Versus Calculated pKa Values for Buried Charge Mutants of D 1 PHS with Crystallographically Determined Structures

PDB Mutation
Experimental

pKa27
Calculated

pKa
Error

(CPHMD)
Error

(null model)
RMSD
(�)

3H6M V104E 9.4 7.6 21.8 25.3 1.3491
1TR5 I92E 9.0 6.8 22.2 24.9 1.3903
1TQO I92E 9.0 7.3 21.7 24.9 1.4413
3EVQ L25E 7.5 8.4 0.9 23.4 1.2621
3ERO I72E 7.3 6.8 20.5 23.2 1.1948
3D4D Y91E 7.1 5.5 21.6 23.0 1.3142

RMSD are in Angstroms.

E.J. Arthur et al.
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5 pK units. The measured perturbation in pKa values for

these systems provides an experimental basis for testing and

comparing the accuracy of CPHMD simulations in the cal-

culation of highly perturbed pKa values of these acidic side

chains.

The calculations we present below provide a significant

test of the robustness of CPHMD predictions of pKa. We

consider four sets of calculations for GLU and ASP resi-

dues in D 1 PHS: (1) predicting the pKa values for each

GLU and ASP in the D 1 PHS structure, (2) the value of

each point mutation for proteins with solved crystal

structures, (3) those of each point mutation without

crystallographically determined structures, and (4) calcu-

lating the pKa values of specific residues in systems simi-

lar to D 1 PHS. The first set of calculations confirms

that our computational methods can accurately predict

the pKa values for this protein. The second and third

studies explore the accuracy of pKa calculations for pro-

teins of less understood systems. The last set of calcula-

tions investigates the use of similar crystal structures to

study a target system. For mutants without solved struc-

tures, structures of the mutant proteins were built in

CHARMM by mutating the D 1 PHS structure. The

computational results are compared with NMR titrations

to establish the overall quality and capability of CPHMD

pKa predictions over a range of perturbed pKa systems. It

should be noted that this protocol was not a blind study.

The calculations within this article were carried out

over the course of 2 years, which both preceded and

followed the release of the measured pKa values of SNase

and D 1 PHS. This study represents an ongoing effort to

assess the accuracy of the replica exchange (REX)-

CPHMD process during its development.

METHODS

REX-CPHMD protocol

REX, or parallel tempering, is a method of increasing

barrier crossing rates by simulating an ensemble of pro-

teins distributed through temperature space.34 During a

REX simulation a single protein structure is replicated

and simulated in parallel over an exponentially spaced

temperature range. After a defined time (replica cycle),

the replicas are allowed to exchange atomic configura-

tions with adjacent temperature windows based on the

Metropolis criterion.34 This technique has shown success

in modeling protein folding and peptide dynamics34 and

has been incorporated into numerous simulation envi-

ronments.7,35,36 As it concerns our study, it was used to

enhance sampling of the protein conformational space

around the vicinity of the native fold as well as the con-

formations of the tautomeric states of the titrating amino

acids during CPHMD.

CPHMD is a methodology developed by Brooks and

coworkers that assigns titration coordinates to ionizable

hydrogen atoms, (k, x), which are propagated simultane-

ously with atomic coordinates.6,20 These coordinates

control a smooth turning on or off of van der Waals and

electrostatic interactions of hydrogen atoms in these

groups, which enables a direct coupling between confor-

mation and protonation states.20

In the REX-CPHMD protocol, k and x coordinates are

recorded at the end of each replica cycle for all titrating

residues as defined in Eq. (1).

Nunprot ¼
X

Nðk > 0:9; x < 0:1 _ x > 0:9Þ
Nprot ¼

X
Nðk < 0:1; x < 0:1 _ x > 0:9Þ

ð1Þ

As such, x defines the dominant tautomer during the

cycle (x < 0.1; x > 0.9) and k indicates whether

that tautomer is protonated (k < 0.1) or deprotonated

(k > 0.9). The non-physical regions of k and x space

that are not representative of protonated or deprotonated

configurations enable a continuous transition between

protonation states. Barriers are added to the energy func-

tions for these coordinates to diminish the time spent in

such states.6,20 After completing all REX cycles, analysis

was performed using the CPHMD tools within the

MMTSB Tool Set (rexanalysis.pl) to collect all titration

coordinates into the values Nprot and Nunprot.35 With

enough REXs, the population of states converges to the

probability of state (S) as defined in Eq. (2).

Sunprot ¼ qunprot

qunprot þ qprot
� Nunprot

Nunprot þ Nprot
ð2Þ

Sunprot is the probability of a residue being unproto-

nated. qunprot and qprot are the probabilities associated

with the unprotonated and protonated states. Sunprot is

Table III
Observed Versus Calculated pKa Values for Buried Charge Mutants of D
1 PHS Where Mutations Were Modeled

Mutation
Experimental

pKa27
Calculated

pKa
Error

(CPHMD)
Error

(null model)
RMSD
(�)

L125E 9.1 6.8 22.3 25.0 1.2716
L103E 8.9 7.4 21.6 24.8 1.3857
L36E 8.7 7.1 21.6 24.6 1.2542
V66E 8.5 6.4 22.1 24.4 1.2862
V99E 8.4 7.2 21.2 24.3 1.2762
V39E 8.2 4.6 23.7 24.1 1.4638
A109E 7.9 4.4 23.5 23.8 1.3753
V74E 7.8 8.4 0.6 23.7 1.2469
A58E 7.7 5.2 22.5 23.6 1.3959
T62E 7.7 6.9 20.8 23.6 1.2945
N100E 7.6 5.8 21.8 23.5 1.3650
F34E 7.3 7.3 0.0 23.2 1.1966
V23E 7.1 7.0 20.1 23.0 1.2704
A132E 7.0 6.5 20.5 22.9 1.3416
L38E 6.8 6.3 20.5 22.7 1.1974
T41E 6.8 6.5 20.3 22.7 1.3341
A90E 6.4 6.7 0.3 22.3 1.4063
L37E 5.2 6.2 1.0 21.1 1.1912
G20E 4.5 5.5 1.0 20.4 1.3533
N118E 4.5 2.5 22.0 20.4 1.2462
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related to pKa in the Henderson-Hasselbalch (HH) equa-

tion given in Eq. (3).

Sunprot ¼ 1

1þ 10nðpKa�pHÞ ð3Þ

In this equation, the Hill coefficient (n) and the pKa

can be fit given a set of S and pH values. In this study,

10–15 (pH, S) points per titrating residue were found to

give the optimal trade-off between accuracy and compu-

tational time. For residues titrating multiple protonation

sites, such as aspartic and GLUs, pKa values for each site

are calculated separately. These pKa values are combined

into a total pKa via Eq. (4).

pKa ¼ log10ð10pK1 þ 10pK2Þ ð4Þ

Modeling salt effects

As has been shown in earlier calculations, the accurate

recapitulation of experimentally measured pKa values

depends on modeling both the aspects of the solvent

environment and the influence of ionic strength cor-

rectly.7 To model solvent in our REX-CPHMD calcula-

tions, we use the optimized GBSW model37 together

with the simple Debye-Hückel correction introduced into

GB models by Case et al.38,39

Simulation Protocol

All REX-CPHMD simulations were run using the

aarex.pl tool as part of the MMTSB Tool Set,35 which

performs REX simulations using the PHMD6,20 and

GBSW24 modules within the CHARMM program envi-

ronment.21 Simulations were performed using the

CHARMM22 all-atom force field for proteins40 with

CMAP37,41 and optimized GB input radii.37 This proto-

col was intended to follow closely to that performed by

Khandogin and Brooks, and thus unprotonated fractions

(S) of residues were calculated for pH values between

pH 5 2 and pH 5 9 in all cases.7 For residues with

highly perturbed pKa values, this range was extended by

several pH units.

During each simulation, the protein was replicated in

8–16 temperature windows spanning from 298 K to

400 K. This range of temperatures was chosen so that the

exchange ratio was approximately 35–45%.7 All replicas

were run simultaneously through exchange cycles: each

cycle consisted of 500 dynamic steps (a total of 1 ps) fol-

lowed by an exchange attempt. During an exchange

attempt, adjacent temperature windows were allowed to

exchange replica structures based on the Metropolis crite-

rion.34 The total sampling time of each protein was 4 ns.

Debye-Hückel screening24 of charge–charge interaction

was used to represent the 150 mM salt concentration in

the solvent.7 All simulations were included a Nosé-Hoover

thermostat to maintain the desired temperature for each

window.26 For the GB calculations, a smoothing length of

0.6Å at the dielectric boundary with 24 radial integration

points up to 20Å and 38 angular integration points were

used. The nonpolar solvation energy was computed using

the surface tension coefficient of 0.03 kcal mol21 Å22.42

The SHAKE algorithm allows a 2 fs time step when applied

to hydrogen bonds, and a 22Å distance cutoff was applied

to truncate the non-bonded in non-bonded energy evalua-

tions.

Structures of D 1 PHS were processed according to

their availability, which led to a division into two groups

for this study: those with solved protein structures, and

those without. All solved structures, including D 1 PHS

and many of its mutants, are listed in Table II as their

corresponding PDB codes. These structures were down-

loaded from the Protein Databank www.pdb.org.43 For

those without solved structures, the D 1 PHS structure

was computationally mutated as explained in the follow-

ing section.

Each PDB file was processed to remove all non amino

acid residues and to convert the PDB file into a

CHARMM supported format with convpdb.pl from the

MMTSB toolset.35 During this step, the ligand thymi-

dine-30,50-diphosphate was removed to make the crystal

structures match those used during the NMR analyses

performed by Isom et al.27 Structures were minimized

for 500 steps with steepest descents and harmonic

restraints (10 3 mass) on heavy atoms. All titrating resi-

dues were patched appropriately so that CPHMD could

recognize them correctly. The GLU and ASP patches rep-

resent doubly protonated residues with the hydrogen

atoms bound to the ionizing oxygen.

Mutation protocol

For D 1 PHS mutants without a PDB structure, coor-

dinates were generated computationally from the D 1
PHS PDB structure (3BDC) using mutate.pl from the

MMTSB toolset.35 This protocol eliminates an amino

acid at a user-specified location, and replaces it with the

desired mutation. The structures were minimized using

steepest descents for 500 steps with harmonic restraints

(10 3 mass) on all heavy atoms using minCHARMM.pl.

Several mutants had significant atom clashes after run-

ning mutate.pl. These structures underwent 100 steps of

steepest descents all-atom minimization using min-

CHARMM.pl to resolve the structural conflicts, followed

the 500 step energy minimization with harmonic

restraints on heavy atoms.

As a measure of confidence in the method, the average

structure was calculated from each simulation trajectory

and then compared with its original PDB of D 1 PHS by a

backbone-based RMSD analysis of structural alignment.

These values are given in Tables II and III. The low values

suggest that the mutations are accommodated without

requiring significant reorganization of the protein.

E.J. Arthur et al.
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RESULTS

D 1 PHS

The pKa values of all 17 carboxylic acids in D 1 PHS

were determined from 3BDC, as shown in Table I. There

is a reasonable agreement between the observed and cal-

culated pKa values, with an average unsigned error

(AUE) of 0.99 pK units. Fifty-nine percent (59%) of the

residues had an error of <1 pK unit. This suggests that

our protocol is able to determine pKa values of diprotic

residues for this protein, even if they are in a greatly per-

turbed state. These findings are consistent with previous

studies using CPHMD in that an AUE of 1 pK unit or

less was achieved for proteins containing ionizable side

chains in the core.7

Figure 1 shows that the titrated residues in our calcu-

lations sample a variety of solvent-exposed environments.

GLU residues at a-helical locations (57, 67, 101,

122, 129, 135) showed an average error of 0.5 pKa units,

those in b-sheets (10, 73, 75) showed an error of

1.0 unit, and those in flexible side-chains (43, 52)

showed an error of 0.8 units. ASP residues (19, 21, 40,

77, 83, 95) were all on flexible side-chains, and showed

an AUE of 1.5 units.

Of the titrating residues, seven had errors in calculated

pKa values that were >1 pK unit from experimental

values, six of these were ASP. Surprisingly, four of these

six residues (Asp 19, Asp 21, Asp 40, and Asp 95) were

in unstructured regions relatively far from the center of

the protein. Previous research suggested that when

a titrating residue has a large surface area exposed to

solvent its ionization state is well defined by the GBSW

model, resulting in a better pKa prediction.7 This phe-

nomenon will be explored further in the ‘‘Discussion’’

section.

D 1 PHS mutants with known structure

Of the 27 D 1 PHS mutants studied in this work, five

(5) had solved coordinates. Figure 2 illustrates their simi-

larity by overlapping their secondary structural represen-

tations. The RMSD between any two proteins was less

than 0.35Å. Their six (6) corresponding PDB codes and

calculated pKa values are shown in Table II. We list only

the pKa values of residues reported by the NMR titration

experiments (see supporting Information for a complete

list of computed pKa values). There is good agreement

between the observed and calculated ionization equili-

bria, with an AUE of 1.5 pK units.

The stability of proteins was monitored during the

simulation by the RMSD between the initial and average

structures of each simulation. The RMSD of all simula-

tions averaged to 1.3Å (specific values are shown in

Table III). This indicates that the conformational changes

and fluctuations that occurred during the simulations are

relatively small, even when the proteins were subjugated

to a wide range of pH conditions. This also indicates

that such fluctuations are greater than the structural

differences between different mutants.

Figure 1
Locations of ionizable residues in D 1 PHS. D 1 PHS staphylococcal

nuclease is shown here with all ionizing residues highlighted. Glutamic

acid is cyan, and aspartic acid is orange.

Figure 2
Apparent tertiary structure similarity between various solved crystal

structures used in this study. D 1 PHS staphylococcal nuclease, its

6 solved PDB structures, and three structural homologues are all shown

overlaid with one another. The mutated residues are shown in red.

All mutants had an RMSD of <0.35Å, indicating that even with

the introduction of hydrophilic residues into the protein’s interior,

the structure of D 1 PHS is not significantly distorted.
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D 1 PHS compared with I92E mutants

The mutant GLU pKa values for two I92E structures

were predicted (1TR5 and 1TQO), which provides

some insight into the sensitivity of CPHMD to confor-

mational differences in the starting structures of the

proteins. The two structures had an RMSD of 0.85Å

from each other, and an RMSD of 1.10Å when compared

with D 1 PHS. This suggests that in the case of D 1
PHS, conformational rearrangements near the point of

mutation are comparable with differences in multiple

ground state configurations. These rearrangements can be

explained as the energy cost of allowing Glu 92 access to

solvent.

When comparing the ionization of all titrating residues

between D 1 PHS and its I92E mutants, most aspartic

and GLU residues titrated to values <1 pK unit from

each other, as seen in Table IV. This falls within 1 pKa

unit of error, as seen in previous research.7 Residues out-

side of this margin include all residues on flexible regions

of the protein, such as all ASP residues. These residues

sample a wide range of fluctuations in the environment,

which may require a longer time to converge to a correct

pKa estimate. There was a consistent trend that corre-

sponding residues yielded similar pKa predictions, which

suggests that the conformational changes induced by

point mutations do not destroy the overall accuracy of

the calculation for other ionizing residues. This opens

the possibility that when predicting pKa values, a solved

structure may not be necessary; if an approximation of

the secondary and tertiary structures can be found, pKa

values might still be predicted using REX-CPHMD. The

remaining calculations in this study are designed to

explore this possibility.

D 1 PHS mutants with modeled structure

Eighteen (18) of the reported pKa values from previous

analyses did not have a corresponding solved structure in

the PDB. Assuming that the solved structure of D 1
PHS is an adequate approximation of the system, models

for these proteins were created by computationally

mutating the D 1 PHS PDB file 3BDC. For these

mutants, the results from our pKa calculations appear in

Table III. Changes in the amino acid sequence of D 1
PHS, and our modeling of them, could affect the quality

of the calculated pKa values. However, these changes are

apparently small enough to allow accurate predictions of

the pKa values for the mutated proteins to within an

AUE of 1.4 pKa units. This indicates that even in the ab-

sence of a crystallographically determined starting struc-

ture, the CPHMD methodology can yield accurate

predictions of pKa shifts with an AUE similar to those

calculated from solved crystal structures. A caveat here, is

that this technique requires a near-match of crystal struc-

ture to model the chemistry of the target system.

Calculation of a single residue

During this study, all residues were titrated simultane-

ously for every structure. This ensured that all coopera-

tive protonation interactions between nearby titrating

residues were considered. When the pKa of only a single

titrating residue is desired, however, it may be more effi-

cient to titrate only the target residue. This was tested by

calculating the pKa value of the GLU residue of the I92E

(1TR5) mutant by allowing only the mutant residue to

titrate. The calculation produced a value of 6.4 pK units,

compared with 6.8 pK units when all ionizable residues

Table IV
Comparison of D 1 PHS pKa Values (All Titrating Residues) to its I92E Mutant Residues

Residue
Experimental

pKa32
Calculated
pKa (3BDC)

Calculated
pKa (1TR5)

Calculated
pKa (1TQO)

Averaged error
from experimental

Asp-19 2.2 3.8 1.6 3.6 1.2
Asp-21 6.5 5.4 5.6 5.6 1.0
Asp-40 3.9 2.0 2.5 2.5 1.5
Asp-77 <2.2 0.8 1.3 0.5 COR
Asp-83 <2.2 3.8 4.3 3.6 >1.7
Asp-95 2.2 3.4 3.4 3.8 1.4
Asp-143 3.9 — — 3.7 —
Glu-10 2.8 3.3 4.6 3.9 1.1
Glu-43 4.3 3.8 3.4 3.6 0.7
Glu-52 3.9 4.9 4.8 5.1 1.0
Glu-57 3.5 4.4 4.5 4.6 1.0
Glu-67 3.8 3.6 3.9 3.8 0.1
Glu-73 3.3 2.4 3.2 3.2 0.4
Glu-75 3.3 4.9 4.7 4.5 1.4
Glu-92 — — 6.8 7.3 —
Glu-101 3.8 3.5 3.4 3.3 0.4
Glu-122 3.9 4.7 5.2 4.9 1.0
Glu-129 3.8 4.4 4.1 4.2 0.5
Glu-135 3.8 4.4 4.5 4.6 0.8
Glu-142 4.5 — — 4.4 —
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were allowed to titrate. Since titrating residues don’t sig-

nificantly alter the ionization equilibria of distant parts

of the system, these results suggests that the differences

in accuracy by simulating the titration of one residue

may be small enough to allow accurate pKa prediction.

The caveat for performing only a single-site titration dur-

ing a REX-CPHMD simulation is that it ignores any

cooperative protonation chemistry and the subsequent

dynamics influenced by it. This simplification can greatly

reduce the computational cost of modeling pKa changes

in large systems with many titrating residues by reducing

time to reach convergence.

Calculation from similar PDB structures

In many cases, atomic coordinates are not available for

a particular protein from crystallographic or NMR stud-

ies. This portion of the study investigates the accuracy of

pKa predictions when using a PDB with a similar tertiary

structure to the target one to determine pKa values.

Three mutants of D 1 PHS were matched with three

PDB files that had nearly identical conformations to D 1
PHS: 1U9R, 2OXP, and 2OEO. These pairings, including

their experimental pKa values, appear in Table V. To illus-

trate their similarity with D 1 PHS, all of these struc-

tures appear in Figure 2 overlaid with the other struc-

tures homologous to D 1 PHS.

The results from the pKa calculations were surprisingly

accurate, especially considering that 2OEO (similar to D
1 PHS I92E), provided the most accurate result despite

lacking five ionizable lysines from the D 1 PHS/I92D

structure used in the experimental calculations. Since

these residues only titrate at dissimilar pH values than

GLU, it is unlikely these changes to the sequence had

substantial effects on the target ASP-92 mutation. These

results suggest that REX-CPHMD can provide accurate

pKa calculations from a similar structure even in the

absence of an exact match of amino acid sequences.

These also suggest that approximating the tertiary con-

formation of a protein may be sufficient to predict its

pKa values accurately.

V39E and A109E mutants

The two simulations that yielded the poorest outcome

for calculated f pKa values, V39E and A109E, were exam-

ined for structural exceptions that may have caused

their unusually high deviation. In both cases, the mutant

residue was on an unstructured region of the protein,

and both residues flipped their orientations outward in

the averaged structures from their respective simulations.

The conformational change then exposed the GLU resi-

dues to more solvent than had they remained in the inte-

rior of the protein, thereby lowering their calculated pKa

values. This change is evident in both structures’ having

relatively large RMSD values between the average struc-

ture and the initial structure. This conformational change

may be due to the understabilization of local salt bridges

that would otherwise pull the residues into the interior

of the protein or have arisen from model preparation

and equilibration protocols. The averaged structure of

the V39E mutant appears to have a stable GLU39–

LYS110 salt bridge that exposes the V39E mutation to

more solvent (leading to a reduced pKa). During the cal-

culation, however, the GLU39–ARG35 salt bridge may be

the dominant orientation of the mutant site, which

would draw the GLU into the interior of the protein

(leading to an elevated pKa). The A109E mutant showed

an average structure with a solvent-exposed LYS108–

GLU109 salt bridge. This bridge may have been oversta-

bilized relative to the ARG105–GLU109 salt bridge that

would draw the mutant residue into the core of the pro-

tein. These residues could be exceptions to the current

update of the GBSW force field.37

Comparison with similar work

During the course of this study, a publication with

many similar results to this article was published by Wal-

lace et al.44 These results are listed in Supporting Infor-

mation Table SI1. Although they calculated pKa values

both in CHARMM and using an identical GBSW force

field, their calculations yielded a somewhat lower AUE of

1.1 pK units. This difference appears to have arisen from

the linear fitting of the HH equation to single pH points.

This technique involves calculating and averaging pKa

values from several (or one as in their case) points where

Sunprot is nearly 0.5, and assuming that the Hill coeffi-

cient (n) is equal to unity. To test this, a single Sunprot

fraction from this study was used to calculate each pKa

value available. The results gave an AUE identical to that

from the Wallace et al. article (1.1 pK units), and an

average unsigned difference from the HH fit of less than

0.3 pK units per residue. When the pH values were

chosen closest to this study’s calculated pKa values, the

Table V
Calculated and Experimental pKa Values of D 1 PHS Mutants Modeled From Nonexact Matches of Amino Acid Sequences

PDB Mutation
Experimental

pKa
Calculated

pKa
Error

(CPHMD)
Error

(null model)
RMSD
(�)

1U9R V66E27 8.9 8.2 20.7 24.8 1.1162
2OXP V66D47 8.8 7.5 21.3 24.7 1.0719
2OEO I92D48 7.5 7.5 0.0 23.4 1.4566
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calculations yielded an identical AUE as the HH-equation

curve fitting method (1.3 pK units), and an average

unsigned difference from the HH fit of less than 0.3 pK

units per residue. This indicates that more accurate pKa

values may be calculated with fewer points than fitting

a complete HH equation curve, when the appropriate

single pH value has been determined. The caveats of this

method are that it may require manually choosing the

data points used to solve the linear fit, and it is clearly

not applicable when multiple sites are of interest.

DISCUSSION

Making use of the REX enhanced sampling protocol and

the improved parameterization of the GBSW implicit sol-

vent model, we determined the pKa shifts of a large number

of SNase buried charge mutants. Our study provides accu-

rate calculations of the ionization properties of buried

charge groups in proteins, and supports our REX-CPHMD

method as a useful tool for studying pKa shifts.45 In addi-

tion, the titrating groups in the mutants of this study have

among the most-perturbed carboxylic acid pKa values

observed.27 Being able to predict such titration shifts accu-

rately suggests that CPHMD simulations and the GBSW

implicit water model provide a robust methodology for

exploring electrostatic environments of protein interiors.

When taking the perspective of a null model, where all

GLU and ASP are assumed to have fixed pKa values of

4.07 and 3.86, respectively,46 the AUE of predicting pKa

values is similar to CPHMD when observing amino acids

with a small perturbation. Results in Table I show that

the null model had an AUE of 0.85 pK units, while

CPHMD had an AUE of 0.99 units. The null model fails

when large perturbations are being observed. The low-

pKa bias for ASP residues in D 1 PHS, for instance, was

Figure 3
Calculated versus experimental pKa. All pKa values that had a

corresponding experimental pKa value are presented in this graph. This

includes all values from Tables I–III, and V. Calculated pKa values that

had no corresponding experimental value are presented in the

Supporting Information. A perfect prediction would presumably place

all points along a 458 incline from the origin. The ideal range of �1 pK

unit error from this diagonal has been highlighted. The null model

region is the horizontal range of �1 pK unit error from unperturbed

ASP and GLU pKa values of 3.86 and 4.07, respectively. As shown,

CPHMD excels in discovering and mapping large perturbations in pKa.

Figure 4
pKa values of GLU and ASP residues in 29 internal positions in staphylococcal nuclease. This is a list of mutations in order of increasing unsigned

difference of experimental determination of apparent pKa value, and its calculated value using CPHMD. Approximately half (48%) of the calculated

values had a difference of <1 pK unit.
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consistently modeled better with CPHMD by several

tenths of a pK unit. As Figure 3 illustrates, when the per-

turbation of the amino acid is more than one unit,

CPHMD calculations are significantly better. When con-

sidering all pKa predictions within this experiment, the

analogous result from the null model prediction has a

mean AUE of 3.54 pK units, as compared with the AUE

of 1.31 units with CPHMD. A relative confidence level of

CPHMD is shown in Figure 4 by listing the complete

comparative statistics of this study. All calculated residues

that had corresponding experimental data are listed by

order of increasing error. 48% had an error below 1 pK

unit. This margin contains 58% of D 1 PHS residues,

44% predictions from PDB files, and 50% of predictions

from modeled structures.

We note that although pKa is defined by protein struc-

ture, no strong correlations were found between the error

of the pKa prediction and large-scale structural phenom-

ena within the scope of this study. These include confor-

mational changes caused by the relaxation of the protein

(Supporting Information Fig. SI1), changes in residue

volume from the mutation (Supporting Information

Fig. SI 2), and proximity to the bound ligand thymidine-

30,50-diphosphate present in the PDB structure (Sup-

porting Information Fig. SI 3). The R2 values of these

trends were 0.29, 0.002, and 0.001, respectively. This indi-

cates that the methodology may not be significantly

improved by accommodating such conformational trends

or exceptions. This provides insight into the robustness

of CPHMD: our method repeatedly yields accurate

predictions of pKa values almost irrespective to such

phenomena.

The one trend consistent enough throughout this study

was the under-prediction of pKa values, as seen in Figure 3.

When calculating residue pKa values of D 1 PHS mutants,

23 of 29 values were underpredicted. This suggests that

CPHMD may systematically overstabilize the ionized form

of the residues studied, and indicates avenues of refinement

in the updated GBSW-specific force field created in previ-

ous work.27 To refine the protocol significantly, adjustments

may need to be made to the force field and titrating residue

patches to increase the perceived perturbation of residue

pKa values.

While refinements should be made to improve the ac-

curacy of the CPHMD protocol, this study provides a

modest benchmark of its capability to predict highly per-

turbed pKa values of buried charge residues in proteins.

This promises to aid the evaluation and characterization

of ionization in protein interiors, which could give valua-

ble insight into the mechanism of pH-based biological

activity.
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