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Abstract

Developing organisms must reconcile conflicts between demands of survival within
the current life-history stage, with those of maturation, while negotiating the
transitions through succeeding stages. In the case of feeding performance, the parts

of the feeding apparatus and their biomechanics must maintain functional
integrity to meet the feeding needs of a juvenile even as they develop toward their
adult form. We concurrently examine the ontogenetic relationships of feeding

performance, dentition and feeding biomechanics, relative to key life-history
events, utilizing samples drawn from the same population of known-age coyotes
Canis latrans. The development of feeding performance is asynchronous with

development of both feeding biomechanics and skull morphology; feeding perfor-
mance lags during ontogeny despite surprisingly large early mechanical advantage
of the temporalis, due in part, to early relative maturity of mandibular shape.

Feeding performance and biomechanics, like skull morphology, mature well after
weaning at 6weeks of age. Late maturation of bite strength and feeding perfor-
mance is mediated by ongoing and continued growth of the temporalis muscles as
measured by maximum zygomatic arch breadth (ZAB). Males and females may

resolve developmental conflicts differently, as females trade earlier maturity for
smaller maximum ZAB, decreased relative bite strength and diminished feeding
performance, compared with males. The asynchrony of feeding performance

development seen in coyotes, is also characteristic of a highly specialized carnivore,
the spotted hyena, but coyotes have a much less protracted development, being
handicapped relative to adults for a much shorter time. This developmental

asynchrony between feeding performance and morphology suggests that a certain
minimum threshold of physical growth and development, together with the
associated development of biomechanics, are required to produce effective

mastication. The relationships among biomechanics, life-history schedules and
ontogeny of feeding performance have obvious implications for fitness.

Introduction

Mammalian life-history stages are useful constructs for exam-
ining periods of mostly continuous development which occur
between discrete life-history milestones. During ontogeny, each
life-history stage represents a temporal ecological niche to

which animals must be adapted in order to survive to the next
stage. Developing organisms are continually changing their
morphologies and demands of survival within the current life-

history stage may conflict with those of maturation due to
differing demands on limited physiological, morphological and
behavioral resources. Understanding how developing animals

resolve these time critical challenges of growth and survival as
they transition through succeeding life-history stages can
illuminate the relationship between form and function.

Behavior and morphology are subject to developmental
constraints that may yield a form that is sub-optimal for

solving the problems confronted by the organism. During
early postnatal development, the young mammal’s feeding
apparatus undergoes tremendous changes in both size and
shape, and the cranium and mandible must function to

satisfy the feeding needs of a juvenile, even as it develops
toward an adult form (La Croix et al., 2011) (Fig. 1). In
some species, ontogenetic changes in the skull yield juveniles

and subadults with bite strength ability that is considerably
less than that of adults (Binder & Van Valkenburgh, 2000;
Erickson, Lappin & Vliet, 2003; Christiansen & Adolfsen,

2005). Even though young mammals enjoy a brief period of
nutritional dependence on the parents, at weaning, juveniles
must be capable of processing adult foods or adopt a
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different diet (Wainwright & Reilly, 1994; Monteiro, Lessa
& Abe, 1999; Herrel & Gibb, 2006). Carnivores, especially,
face tremendous challenges during ontogeny as they attempt
to provision themselves and compete with adults despite

their immature morphology. Small changes in morphology
can have profound effects on an animal’s functional cap-
abilities (Koehl, 1996). The period of deciduous tooth

eruption and replacement presents a challenge to early food
processing that is unique to young mammals. It has been
suggested that the mechanical nature of deciduous teeth

(e.g. greater brittleness and sharpness) may somewhat offset
the mechanical disadvantage that juveniles encounter with
their smaller muscle mass (Binder & Van Valkenburgh,
2000). Even so, these teeth, which are sized to fit into the

much smaller pre-weaning feeding apparatus, undergo re-
placement because they no longer meet the functional
demands imposed by the succeeding life-history stage.

Recent work on the spotted hyena (Tanner et al., 2010)
showed that juveniles and subadults in this durophagous
species remain handicapped for an extended period of time

after weaning due to protracted development of a robust
feeding apparatus capable of cracking open large bones. It
remains unclear to what extent, and for how long, the

developing feeding apparatus handicaps juveniles in other,
less specialized, carnivore species. In contrast to spotted
hyenas, coyotes show no specialized adaptations for dur-
ophagy and they consume relatively little bone in their diet

(Andelt et al., 1987; Arjo, Pletscher & Ream, 2002). With
the behavioral plasticity to consume small and large prey,
live in pairs or packs and colonize rural and urban environ-

ments, the coyote’s diet and lifestyle are opportunistic and
generalist (Bekoff, 1977; Bekoff & Gese, 2003). Their gen-
eralized carnivore morphology makes them appropriate for

comparisons with more highly specialized carnivores, such
as hyenas.

To investigate the extent to which coyotes might be
handicapped as juveniles, we took advantage of a unique

opportunity to assess the ontogeny of feeding performance
in known-age coyotes, and examine feeding biomechanics
with an ontogenetic series of known-age coyote skulls. The
samples were drawn from the same population although

different individuals were utilized in the analyses of feeding
performance and of biomechanics. Here, we describe the
ontogeny and maturation of feeding performance, tooth

eruption and replacement schedules, and estimates of feed-
ing biomechanics in coyotes. We fit non-linear growth
models to our data to describe development of feeding

performance and biomechanics over the course of ontogeny,
examine sexual dimorphism and assess development within
the context of the coyote’s life history. We then describe the
ontogenetic patterns and temporal coincidence of feeding

performance and biomechanics including their synchrony,
or lack thereof, and implications for functionality of the
feeding apparatus. Finally, we contrast these patterns of

development in coyotes with those in spotted hyenas, to
uncover more generalized patterns of development and
examine their relationship to life-history events. Under-

standing relationships among biomechanics, life-history
schedules, and ontogeny of feeding performance is impor-
tant because these relationships have obvious implications

for fitness.

Methods

Subjects and specimens

Feeding performance trials were conducted with known-age

coyotes from a captive colony comprised of animals of wild-
caught and colony parentage, maintained at the USDA/
APHIS Wildlife Services National Wildlife Research Cen-

ter’s Logan Field Station in Millville, UT between 2004 and
2006. A total of 44 pups (26 males, 18 females) from 11
litters participated in the trials; three of the litters (20

animals) were wild-born in 2004, while eight of the litters

Figure 1 Ontogenetic variation in cranial and

mandibular size and shape among coyotes

Canis latrans aged, from top, 1 day, 6 weeks,

12 weeks and 26 weeks is visually dramatic.
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(24 animals) were captive-born in 2005 (supporting informa-
tion Table S1). All animals were captive reared, and

although the current study did not investigate whether the
observed ontogenetic patterns are equivalent to those found
in the wild, rearing conditions at the Logan Field Station

were designed to be naturalistic. All animals were main-
tained on a commercially produced wet food diet designed
for fur bearing animals which contained chicken (beaks, feet

and feathers) and grain. Before weaning, pups also received
a milk replacement powder commercially produced for
puppies and reconstituted with water; during weaning, pups
received a pea-sized kibble version of the wet food

diet, moistened with water. Pups younger than 6weeks
were maintained in litter groups. Following weaning at
c. 6weeks, pups were housed in either small groups of litter-

mates (two or three individuals) or singly, until 4months,
when all animals were subsequently housed singly. Captive-
born pups were initially housed indoors in 0.6� 1.2m wire

dog kennels with plastic floor pans while wild-born pups
were maintained in a wire enclosure in an open pole-barn
with gravel flooring. Following weaning, animals were

moved to 3.7� 1.2m chain-link fenced enclosures with a
concrete floor and containing a 0.6m2 round plastic den box
within the pole barn. Animals had no access to bones, other
foods or chew toys except during performance trials.

Feeding biomechanics were investigated using an ontoge-
netic series of 187 coyote skulls (102 males and 85 females)
of known age (La Croix et al., 2011), collected incidentally

from captive animals of wild-caught and colony parentage
that were maintained at the Logan Field Station between
1979 and 2006. Individuals ranged in age from 1 day to

13.3 years, including 79 specimens under the age of
6months. All skulls were catalogued into either the Michi-
gan State University Museum collection, or the Logan Field
Station collection in Millville, UT (supporting information

Table S2). Within the ontogenetic series, 179 specimens were
captive-born, including all specimens under the age of
1 year, while eight were wild-born. Exact dates of death were

known for all individuals and exact dates of birth were
known for all captive-born animals. For animals obtained
from the wild as pups, dates of birth were estimated by the

original collectors based on deciduous tooth eruption and
den observations, and those dates of birth were used here.
Collector and animal records for all specimens are main-

tained at the Logan Field Station. USDA/APHIS/WS/
NWRC IACUC approved the study protocol QA-1179.

Feeding performance

Feeding performance trials were conducted from 2004 to
2006 using repeated measures on 44 coyotes between the

ages of 6 and 80.3weeks. Pups born in 2004 were tested at
14-week intervals; the testing interval was later adjusted and
pups born in 2005 were tested every 8weeks, in order to

document performance at as many ages as possible. Feeding
performance trials were carried out in home enclosures
18–24 h after the animals’ last feedings. Variation in feeding

performance (mechanical processing ability) was deter-

mined using a standardized food item, a commercially
produced dog biscuit (following Tanner et al., 2010) which

challenged the animals to break and crush a hard object into
pieces that could be swallowed. This task is not unlike a wild
coyotes’ need to crush the skeletons and skulls of large

rodents and lagomorphs and the exoskeletons of insects
before swallowing. On the day of testing, animals that did
not consume a pre-test biscuit (a 4 g, Iams brand puppy dog

biscuit) within 5min of delivery, with the Tester (S. L. C.)
present in the kennel block, were excluded from the test.
Qualifying animals were then presented with a standardized
food item, a 32 g, Iams brand, adult large dog biscuit. Three

trials were conducted serially, with at least a 60 s delay
between finishing ingestion of one biscuit and delivery of
the next; animals that failed to consume a biscuit within

10min were excluded from further testing for that day. Each
trial was videotaped in natural light using a Sony Handycam
Vision CCD-TRV65 NTSC – VideoHi8TR Steady Shot

with � 72 digital zoom (Sony Corporation, Tokyo, Japan).
The video camera was mounted on a tripod outside the
subject’s kennel with a viewpoint 0.92m above the ground.

The time (in seconds) required to consume the biscuit was
later calculated from these videotapes. Our measure of
feeding performance was consumption time, defined as the
sum of the periods of continuous and sustained chewing,

including breaking up of the biscuit into pieces that could be
swallowed. Timing began with the first audible crunch of the
biscuit into more than one piece and concluded when the

biscuit was completely consumed. Only the best consump-
tion time from each animal’s three consecutive biscuit trials
was used in feeding performance analyses, provided that

best time was for a biscuit completely processed within the
10-min trial period; two females, aged 20weeks, and one
female, aged 28weeks, were excluded from the analysis as
they failed to completely consume a biscuit within 600 s. All

6-week old pups, none of which were able to bite biscuits (4 g
or 32 g) into pieces, were assigned the maximum consump-
tion time of 600 s in order to permit the development of

growth curves of feeding performance and the calculation of
conservative estimates of maturation.

Direct measurements of bite strength

We obtained 40 direct measurements of bite strength using a

bite force transducer (Kistler, Amherst, NY) from 12
animals, ranging in age from 52 to 406weeks, at Logan
Field Station (see supporting information S3). The transdu-

cer was baited with meat and hand-held by the investigator
(S. L. C.). Direct measurement of bite strength required an
animal’s willingness to approach the investigator at the
kennel fence and voluntarily bite down on the transducer.

When a coyote voluntarily bit down, a piezoelectric plate
embedded in the transducer measured the force generated in
Newtons, and this was recorded from a handheld charge

amplifier. Similar devices have been used with wild hyenas
(Tanner, 2007), captive hyenas (Binder, 1998; Binder &
Van Valkenburgh, 2000), captive short-tailed opossums

(Thompson, Biknevicius & German, 2003) and with both
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captive and wild American alligators (Erickson et al., 2003).
While voluntary bites probably do not reflect maximum bite

force since feedback from the periodontal ligaments protects
an animal from biting so forcefully that it damages its teeth,
the voluntary bites do provide functional measurements of

bite force for comparison with mechanical estimates of bite
strength. We report the best voluntary bite force generated
for each individual and the tooth position of the bite force

transducer; three individuals provided data at both 52 and
104weeks of age and one individual provided data at both
406 and 414weeks of age.

Tooth eruption and replacement

As is characteristic of most mammals, coyotes are diphyo-

dont, having two sets of teeth during their lifetime. During
ontogeny, feeding performance may be affected by the loss
of these deciduous teeth and the eruption of adult teeth.

Here, the ontogenetic series of known-age skulls was
visually examined for tooth eruption and replacement pat-
terns. A tooth was recorded as erupted if any part of that

tooth (e.g. a dorsal tip) protruded above the alveolus.
Previously, it had been observed (by S. L. C.) during the
flensing and preparation of these skull specimens that a
tooth which protruded above the alveolus also pierced the

gum line. Therefore, we also included data for the tooth
eruption of the 24 coyote pups used in the feeding perfor-
mance trials between the ages of 4 and 12weeks; again, a

tooth that protruded above the gum line was recorded as an
erupted tooth. To document patterns of tooth eruption and
replacement, we recorded the age at which all specimens or

live animals evidenced eruption of the deciduous or adult
tooth of interest.

Mechanical advantage and bite strength

Mammalian mastication, including that of carnivores, has
been described by various authors (Turnbull, 1970; Simp-

son, 1978; Hiiemae & Crompton, 1985; Schumacher, 1985;
Van Valkenburgh, 1989; Weijs, 1994; Langenbach, 2001).
Carnivore jaw movement is restricted to a mostly hinge-like

action in a single plane and has been modeled as a modified
Class I lever (Turnbull, 1970). By modeling the jaw as a
lever, it becomes possible to assess feeding ability and to

calculate the mechanical advantage of the feeding apparatus
(Radinsky, 1981; Greaves, 1983; Greaves, 1985; Thomason,
1991; Smith, 1993). In addition, relative bite strength can be

inferred by estimating both the mechanical advantage of the
primary masticatory muscles (here, the temporalis) and the
size of those muscles (Radinsky, 1981; Hildebrand, 1984;
Binder, 1998). These simple lever models are most useful for

deriving a comparative bite strength measure, rather than
absolute values; for some skull shapes, these models under-
estimate relative bite strength (Ellis et al., 2008).

The length of the in-lever arm is measured as the distance
between the muscle insertion point and the mandibular
condyle, and the length of the out-lever arm is measured as

the distance between the mandibular condyle and the bite

point on the mandible (Fig. 2). Adductor muscle size is
estimated from the maximal width across the zygomatic
arches (Radinsky, 1981; Gittleman & Van Valkenburgh,

1997; Binder, 1998). Over ontogeny, as the length of the in-
lever arm increases relative to that of the out-lever
arm, mechanical advantage increases (Hurov et al., 1988;
Gittleman & Van Valkenburgh, 1997). Here, the length of

the in-lever arm for the primary masticatory muscle,
the temporalis, was measured as the distance between the
dorsal tip of the coronoid process and the mandibular

condyle, and the length of the out-lever arm was measured
as the distance between the mandibular condyle and the bite
point (Fig. 2). The bite point was the highest cusp of the

mandibular first molar; this carnassial tooth is the largest
tooth in the mouth.

Linear measures of the skull were obtained using a digital

caliper accurate to 0.01mm; each measurement was taken in
triplicate and then averaged. Following Radinsky (1981),
mechanical advantage was calculated as the in-lever arm
length divided by the out-lever arm length. Evaluation

of relationships among the measurements comprising
mechanical advantage was accomplished by regression of
the out-lever on the in-lever and by examination of

the residuals; statistical analyses were performed using
STATISTICA, version 8.0 (StatSoft Inc., 2007, http://www.
statsoft.com). Relative bite strength was calculated by

multiplying mechanical advantage of the temporalis by
maximum zygomatic arch breadth (ZAB) (Fig. 2, the widest
point on the skull) (Radinsky, 1981; Hildebrand, 1984;
Binder, 1998).

Figure 2 Traditional linear measures of the skull used to calculate

mechanical advantage of the temporalis, and to estimate bite

strength. The in-lever arm length is the distance between the

mandibular condyle and the dorsal tip of the coronoid process. The

out-lever arm length is the distance between the mandibular condyle

and the bite point (here, the dorsal tip of the mandibular carnassial

tooth, M1). Maximum zygomatic arch breadth was a proxy for muscle

mass in estimating bite strength.
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Age and timing of maturation

To determine the age at which feeding performance and

biomechanical variables (mechanical advantage, maximum
ZAB and relative bite strength) attained adult values, we
used a series of non-linear growth models to find the one
that best fit the data. Coyotes are known to exhibit sexual

size dimorphism as adults (Bekoff, 1977), so we considered
male and female data separately when fitting growth curves.
Eight models (Chapman-Richards, Logistic, Monomolecu-

lar, Gompertz, German Gompertz, Von Bertalanffy, Quad-
ratic and Linear) were fitted to the data for each feeding
performance and biomechanical variable and assessed for

their relative goodness-of-fit using Akaike information cri-
terion (AIC) (following Zelditch et al., 2003). The model
with the lowest AIC value was judged to be the best so long

as the residuals were not serially autocorrelated. Some
models were excluded because they induced autocorrela-
tions among residuals in one or more of the analyses; where
several models fit equally well, the model with the highest

AIC weight was selected as best (supporting information
Table S4).

For feeding performance, we chose the Gompertz model as

formalized by Fiorello & German (1997), herein referred to as
the GermanGompertzmodel (following Zelditch et al., 2003),
because this model fit the data well for both sexes and was the

only model that did not induce autocorrelations among
residuals for this variable (Table 1, supporting information
Table S4). This model was the basis for estimating the
parameters of feeding performance maturation:

xðtÞ ¼ Ae�k e
�bt

where x(t) is feeding performance at time t,A is the asymptotic
maturity, k is the initial rate of growth (initial rate of approach
to asymptotic value) and b is the decay of the growth rate

(Gaillard et al., 1997; Zelditch et al., 2003).
No growth model could be fit to the data for mechanical

advantage of the temporalis for either sex due to autocorre-

lations among the residuals.
For maximum ZAB, we chose the monomolecular

model (following Gaillard et al., 1997) because it not only
fit the data well for both sexes, but also had the highest

AIC weight of the several models that fit equally well
(Table 1, supporting information Table S4). This model
was the basis for estimating the parameters of maximum

ZAB maturation:

xðtÞ ¼ Af1� ekðT0�tÞg

where x(t) is maximum ZAB at time t, A is the asymptotic
maturity, k is the rate of growth (rate of approach to

asymptotic value) and T0 is the age at which growth begins
(Gaillard et al., 1997; Zelditch et al., 2003).

For relative bite strength, we chose the logistic model

(following Gaillard et al., 1997) because this model fit the
data well for both sexes and it had a higher AIC weight than
the general Chapman-Richards model (Table 1, supporting
information Table S4). This model was the basis for estimat-

ing the parameters of relative bite strength maturation:

xðtÞ ¼ A=f1þ ekðT0�tÞg

where x(t) is the relative bite strength at time t, A is the
asymptotic maturity, k is the rate of growth (rate of approach
to asymptotic value), and T0 is the age at the curve inflexion

point (where growth has attained 50% of asymptotic value)
(Gaillard et al., 1997; Zelditch et al., 2003).

For all variables, we report age at maturity as the

estimated age at which the measurement of interest reaches
95% of asymptotic (adult) value (following Tanner et al.,
2010). Data for individuals above the 95% breakpoint were
subsequently regressed on age to ensure that age had no

further significant impact on the measurement of interest.
Evaluation of growth models and estimation of parameters
were performed using GrowChoice (Sheets, 2003).

Results

Feeding performance

Six-week-old coyotes were unable to bite a 32 g biscuit into
pieces (Fig. 3). After 12weeks of age, however, animals

successfully consumed the biscuit within 600 s. As expected,
coyote feeding performance improved over ontogeny, as
evidenced by reduced biscuit consumption times (Fig. 3).

Males showed faster processing times than females, at most
ages (Fig. 3).

Measured bite strength

Although we recorded 40 bites on the bite force transducer
from 12 coyotes, for a number of reasons, we were unable to

Table 1 Best-fitting models for the estimates of feeding performance and skull biomechanics maturation

Best-fit model

Female Male

AIC weight AC % Var AIC weight AC % Var

Feeding performance German Gompertz 1.000 NS 0.862 1.000 NS 0.918

Biomechanics

Maximum ZAB Monomolecular 0.4486 NS 0.992 0.4619 NS 0.991

Relative bite strength Logistic 0.7082 NS 0.978 0.7287 NS 0.976

The AIC weight evaluates relative goodness-of-fit by balancing the distance between model and data by degrees of freedom. AC refers to serial

autocorrelation among residuals of the model (‘NS’ indicates there was no statistically significant serial autocorrelation). Per cent variance

explained (% Var) by the best-fit model is also given.
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collect sufficient data to document early ontogenetic
changes in bite strength. First, some animals, especially
juveniles, were simply unwilling to approach the transducer

in proximity to the investigator. Second, animals willing to
interact with the transducer would frequently remove the
meat covering, test the transducer gently with their teeth and

then cease interacting with the device. Further, some used
their incisors while others used their carnassials. The indivi-
dual that produced the largest bite force did so in repeated

bouts of highly motivated tugging with the transducer
positioned at his carnassial teeth. The bite force data we
collected showed that older animals exhibited greater bite
strength compared with younger animals, that males bit

more forcefully than females of the same age, and that
greater bite strength was generated at the carnassial (P4)
position compared with those generated more anteriorly

(Fig. 4). The largest bite force of 708N was obtained from
our oldest subject, a male aged 414weeks.

Tooth eruption and replacement

An examination of the ontogenetic series of coyote skulls

revealed that eruption of the deciduous teeth begins at

c. 2 weeks of age. This concurs with existing literature on

coyote tooth eruption: upper canines (Day 14), lower
canines and upper incisors (Day 14–15), and lower incisors
(Day 16) (Bekoff & Jamieson, 1975; Bekoff, 2001). Further,

we observed that by weaning at 6weeks of age, the coyote
pup dental formula is I3/3 C1/1 P2/2 M1/1 for 28 deciduous
teeth total. The specific teeth present in the 6-week-old pup

are dI1, dI2, dI3, dC1, dP2, dP4 and dM1 in the upper jaw
and di1, di2, di3, dc1, dp2, dp4 and dm1 in the lower jaw (see
supporting information Fig. S1). Note that dP4/dm1 con-
stitute the deciduous carnassial pair. The first permanent

teeth, P1/p1, erupt at 8weeks of age and are fully erupted by
12weeks of age. Replacement of the deciduous incisors
begins by 12weeks, with lower incisors lost first, followed

by upper incisors; adult incisors are fully present by
18weeks of age. Between 14 and 20weeks, the remaining
canines, premolars and molars are replaced, and adult teeth,

P3/p3 and M2/m2, erupt. By 21weeks of age, coyotes lack
only the adult m3 in the lower jaw; this tooth erupts during
the 21st week. By 26weeks of age, coyotes have attained

their complete adult dental formula of I3/3, C1/1, P4/4, M2/
3 for 42 teeth total.

Mechanical advantage and bite strength

The ontogeny of mechanical advantage of the temporalis
did not follow a traditional growth pattern in coyotes,

unlike feeding performance and other biomechanical esti-
mates. Instead, mechanical advantage data formed two
discrete clouds, one containing smaller values representing

young animals, and the other containing larger values
representing older animals (Fig. 5). The transition between
these two clouds of data points occurred in the age range

during which the deciduous carnassials and most of the

Figure 3 Growth plots of coyote feeding performance for females (a)

and males (b) as measured by consumption time, in seconds, for a

32 g dog biscuit. At 6 weeks of age, coyote pups of both sexes were

unable to process the biscuit. Only data performance for animals

under 81 weeks of age are shown here.

Figure 4 Plot of bite strength, measured in Newtons (N), obtained

using a piezoelectric transducer, for male and female coyotes. The

tooth position of the transducer during the bite is indicated: incisors (I);

premolar 2/3 (P2/3); carnassial (P4).
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post-canine teeth were replaced. Indeed, the mechanical
advantage in the younger group with deciduous dentition

was significantly lower than in the older group of animals
with adult dentition (supporting information Fig. S2).
Mechanical advantage for coyote pups aged 2–14weeks

ranged from 0.313 to 0.420, with some 2-week-old pups
having a mechanical advantage equivalent to pups that were
10weeks older. Mechanical advantage for coyotes over the

age of 21weeks ranged from 0.451 to 0.559, with animals
aged 21weeks exhibiting a mechanical advantage equivalent
to animals twice that age.

Examination of the components of mechanical advantage

of the temporalis showed that the ontogenies for both the in-
lever arm length and the out-lever arm length were char-
acterized by early rapid growth (Fig. 6). However, while out-

lever arm length increased more quickly than did in-lever
arm length at the earliest ages (Fig. 6, supporting informa-
tion Fig. S3), the latter continued to grow after the length of

the out-lever arm stabilized (supporting information Fig.
S3). It was also noted that the lever arm lengths for animals
under 14weeks of age represented animals with primarily
deciduous dentition, whereas those for older animals repre-

sented animals with adult dentition. Further, the bite point

physically shifted during tooth replacement so that the
endpoint of the out-lever arm length moved from the
deciduous carnassial tooth to the newly erupted adult

carnassial tooth. Before the replacement of the deciduous
carnassial teeth, the out-lever arm underwent an unusually
large increase in length at 12–14weeks of age which, in a
punctuated increase, brought its length within the range of

animals over 6weeks older.
Early growth in maximum ZAB (Fig. 7a) and relative bite

strength (Fig. 7b) exhibited patterns similar to those for

feeding performance and lever arm lengths: they underwent
rapid early growth before asymptotic maturation was
achieved by 30 (maximum ZAB) and 31.5weeks (relative

bite strength) of age. Maximum ZAB increased especially
quickly at the youngest ages.

Ages at maturity

The German Gompertz growth model, the best-fitting

model for feeding performance (Table 1, supporting infor-
mation Table S4), indicated that adult feeding performance
was not attained until 34.6weeks in males and 36weeks in
females; asymptotic feeding performance was achieved sig-

nificantly faster by males than females (P=0.001) (Table 2).
The monomolecular growth model, the best-fitting model
for maximum ZAB (Table 1, supporting information Table

S4), is typified by extremely rapid growth at the youngest
ages. Despite explosive early growth, maximum ZAB did
not reach maturity until 26.9weeks in females and

30.4weeks in males; asymptotic maximum ZAB was

Figure 5 Plot of mechanical advantage of the temporalis for coyotes

by age. Only data for coyotes aged o100 weeks are diagrammed.

Figure 6 Growth plots for the components of the mechanical advan-

tage of the temporalis: the in-lever arm length (distance between the

mandibular condyle and the dorsal tip of the coronoid process) and

out-lever arm length (distance between the mandibular condyle and

the bite point). Only data for coyotes aged o100 weeks are dia-

grammed.

Figure 7 Plots of maximum zygomatic arch breadth (ZAB), as mea-

sured from skulls (a), and relative bite strength, as estimated by

models (b), by age, in weeks, for coyotes. Only data for coyotes aged

o100 weeks are diagrammed.
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significantly larger for males (Po0.001), but growth rate
was significantly faster for females (P=0.006) (Table 2).

The model that best fit relative bite strength, the logistic
model (Table 1, supporting information Table S4), esti-
mated maturation for relative bite strength at 29.1weeks

for females and 31.5weeks for males; asymptotic relative
bite strength was significantly greater for males than females
(Po0.001). Females were significantly younger than males

at the growth curve inflexion point, by which they had
reached 50% of their adult relative bite strength
(P=0.005) (Table 2).

Maturation and life history

Feeding performance and biomechanics reach maturity long
after weaning at 6weeks of age (Table 3); further, during the
course of ontogeny, feeding performance maturation lags

considerably behind biomechanical maturation (Fig. 8a), as
well as skull size and shape maturation (Fig. 8b and c). At
weaning, feeding performance for males is extremely imma-
ture at only 16% of adult values; likewise, for females, it is

only 23% of the adult values (Table 4). Six weeks later, at
the onset of tooth replacement, feeding performance among
females has improved to 42% of the adult values, while

males show an even greater improvement to 47% of the
adult values. By the time adult dentition is complete at
26weeks, feeding performance for both sexes has improved

to c. 86% of adult values but does not reach full maturity for
another 8–10weeks (Fig. 8a, Table 3). Because data for the
mechanical advantage of the temporalis did not fit a tradi-

tional growth curve, we were unable to model predictions of
maturity. Instead, we calculated the relative maturity of
mechanical advantage of the temporalis for the younger
cloud of data by dividing its mean value by that of the older

(adult) cloud of data. Mean value of mechanical advantage
of the temporalis for younger females was 0.376, and for
older females it was 0.508; males had greater mechanical

advantage at both ages than did females, 0.383 among the
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Table 3 Age at maturation (95% of adult value), as estimated from

best-fit models; feeding performance and biomechanics (this study)

and skull size and shape (La Croix et al., 2011)

Age at maturation

(weeks)

Best-fit modelFemale Male

Feeding performance 36.0 34.6 German Gompertz

Biomechanics

Maximum ZAB 26.9 30.4 Monomolecular

Relative bite strength 29.1 31.5 Logistic

Skull size

Ventral cranium 22.0 22.5 Logistic

Lateral cranium 21.8 22.5 Logistic

Lateral mandible 21.7 23.0 Logistic

Skull shape

Ventral cranium 18.1 17.2 Logistic

Lateral cranium 20.7 20.9 Logistic

Lateral mandible 28.2 28.2 Logistic
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younger males, and 0.516 among the older males (Table 5).
Relative maturity of mechanical advantage of the tempor-

alis for young animals of both sexes is extremely mature at
74% of the adult value, especially in contrast to other
biomechanical estimates (Fig. 8a). Maturation of mechan-
ical advantage occurs after deciduous tooth replacement but

before eruption of adult dentition is complete (Fig. 8a).
Maximum ZAB for both sexes is only one-third of adult size
at birth, but doubles by the age of weaning 6weeks later

(Table 4). By the onset of deciduous tooth replacement,
rapid early growth in maximum ZAB is apparent, as females
are already at 79% of the adult values and males are at 76%

of the adult values (Fig. 8a). Subsequently growth slows,
with female coyotes reaching adult maximum ZAB 1week
after adult dentition is completely erupted; males mature
3weeks after females (Table 3). The maturation of relative

bite strength among males lags slightly behind females
throughout development, and reaches adult values after

females have matured. At birth, relative bite strength among
males and females is c. 26% of adult values, which is
less mature than maximum ZAB, but more mature than
feeding performance (Table 4, Fig. 8a). By the age of

weaning, relative bite strength has improved to 46% of
adult values for females and 42% of adult values for males.
At the onset of deciduous tooth replacement, females con-

tinue to show greater maturity, at 65% of adult values, than
do males, which are at 61% of adult values. With the
completion of adult tooth eruption at 26weeks, relative bite

strength remains more mature for females, at 93% of adult
values, than for males, which are at 90% of adult values.
Females attain relative bite strength maturity 3weeks after
adult dentition is complete and 2weeks before males reach

Figure 8 Timeline illustrating the relative matur-

ity of coyote feeding performance to that of

feeding biomechanics (a), skull size (b) and skull

shape (c) in relation to major life-history events.

Relative maturity for biomechanics (this study)

and skull morphology (La Croix et al., 2011) is

indicated with a dashed line, and for feeding

performance (this study) with a solid line. Ma-

turation of mechanical advantage of the tem-

poralis (a) does not follow a traditional growth

pattern, but is, instead maintained within two

discrete ranges throughout ontogeny, one for

younger animals and one for older animals (see

supporting information Fig. S2); here, we have

diagrammed the relative maturity of the young-

er group as calculated by dividing the mean

younger group mechanical advantage by that of

the older (adult) group (see Table 5).
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maturity (Table 3). Female coyotes attain their adult max-
imum ZAB and relative bite strength earlier than males, but
they are disadvantaged in comparison to males with smaller
maximum ZABs and lower relative bite strength; female

feeding performance not only matures later than males, but
it is also significantly less than that of males (Table 2).

Discussion

Our results demonstrate that juvenile coyotes are handi-

capped by an immature food processing apparatus, rela-
tively poor biomechanical abilities and slower food
processing times compared with adults. For newly weaned

6-week-olds, such handicaps might be insurmountable.
While initial parental provisioning provides pups with
access to adult food items, pups must still be capable of

processing those foods. That coyote feeding performance
and biomechanics do not mature until long after weaning
may, in part, explain why juvenile coyotes capitalize on that
portion of the adult diet that is most easily obtained or

subdued (Clark, 1972; Bowen, 1978; Johnson, 1978; Andelt
et al., 1987; Gese, Ruff & Crabtree, 1996; Hidalgo-Mihart
et al., 2001; Arjo et al., 2002; Hernandez et al., 2002).

Juvenile coyotes ingest mostly small mammals, vegetation,
invertebrates and birds whereas adults consume larger
mammals, fewer invertebrates and few birds (Hawthorne,

1970).

Our results also show that the development of feeding
performance is asynchronous with development of both

feeding biomechanics and skull morphology (La Croix
et al., 2011) (Fig. 8a–c). Feeding performance, feeding
biomechanics and skull morphology exhibit different tem-
poral patterns of development, especially relative to early

life-history milestones. Skull size, mandibular shape and
feeding biomechanics are dramatically more mature across
ontogeny than is feeding performance, and these features

achieve adult values much earlier in life. In particular, the
relative maturity of mandibular shape during the youngest
age intervals contributes to the interesting pattern of mature

and constant mechanical advantage during early ontogeny;
despite the early maturation of these features, feeding
performance nevertheless lags behind. Cranial shape, the
only measure aside from feeding performance that is ex-

tremely immature at birth, matures much more quickly than
does feeding performance over the course of ontogeny.
Indeed, feeding performance lags behind the relative matur-

ity of all other measures considered here, and matures much
later than most (Fig. 9a).

The developmental asynchrony shown here between feed-

ing performance and morphological variables suggests that
a certain minimum threshold of physical growth and devel-
opment, together with the associated development of bio-

mechanics, are required to produce effective mastication. In
addition, feeding biomechanics exhibits interesting develop-
mental patterns during ontogeny, suggesting adaptations in
young animals to balance conflicting demands of their

immediate need to process food with growth of the feeding
apparatus toward an adult form. There is also evidence that
males and females resolve these conflicts differently, as

females trade earlier maturity for smaller maximum ZAB,
decreased relative bite strength, and diminished feeding
performance, compared with males.

At weaning, coyote pups are unable to do more than
nibble at the edges of a test biscuit. However, feeding
performance quickly shows dramatic improvement and 12-
week-old pups can process a 32 g biscuit; their feeding

Table 4 Relative maturity of feeding performance, maximum zygomatic arch breadth (ZAB) and relative bite strength, based on parameters of its

best-fit model

Age (weeks)

Feeding performance Maximum ZAB Relative bite strength

Female Male Female Male Female Male

0 0.058 0.020 0.338 0.318 0.272 0.251

4 0.162 0.093 0.549 0.518 0.391 0.359

6 0.233 0.158 0.628 0.594 0.456 0.420

8 0.311 0.238 0.693 0.659 0.524 0.483

12 0.473 0.418 0.791 0.758 0.653 0.609

16 0.619 0.590 0.858 0.829 0.764 0.722

20 0.736 0.726 0.903 0.879 0.847 0.812

24 0.822 0.824 0.934 0.914 0.905 0.878

26 0.854 0.860 0.946 0.928 0.926 0.903

28 0.882 0.889 0.955 0.939 0.942 0.923

32 0.923 0.931 0.970 0.957 0.965 0.953

36 0.950 0.958 0.980 0.970 0.980 0.971

Relative maturity is calculated by dividing a model’s predicted value at a given age by the corresponding asymptotic value.

Table 5 Mean values of mechanical advantage of the temporalis, for

two age groups of coyotes and relative maturity of the younger group

(indicated in bold), as calculated by dividing mean younger group

mechanical advantage by that of the older (adult) group

Mechanical advantage of the temporalis

Age (weeks) Female Male All

Younger 0.1–14.3 0.376 0.383 0.380

Older 21.1–516.3 0.508 0.516 0.512

Relative maturity of younger group 0.742 0.743 0.743
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performance has already improved to nearly half of adult
values (Fig. 8a). However, by 12weeks of age the biomecha-
nics that contribute to mastication are already nearly 80%
mature, so feeding performance remains relatively immature

in comparison to feeding biomechanics. Despite rapid early
improvement in feeding performance, its maturation occurs
late, relative to the maturation of feeding biomechanics, and

especially late relative to achievement of maturity in skull
size and shape (Fig. 9a).

During early ontogeny, the relative maturity of feeding

biomechanics might lead one to expect more mature feeding
performance, especially because mechanical advantage of
the temporalis is maintained at c. 74% of adult values

during the first 14weeks of life (Fig. 8a). Remarkably, early
mechanical advantage is accomplished by an elegant main-
tenance of in- and out-lever arm length proportions over a
developmental period wherein dramatic changes in cranial

and mandibular size and shape occur (La Croix et al., 2011),
including tooth eruption and replacement. Isometric growth
might be expected to maintain these lever arm length

proportions, but we found that this was not the case
(supporting information Fig. S3). Initially, growth in the
length of the out-lever arm is greater than that of the in-lever

arm; at 12weeks, the distance between the deciduous bite
point and the mandibular condyle is already equivalent to
the length of the adult out-lever arm. Subsequently, and in
conjunction with ongoing tooth row elongation, the adult

mandibular carnassial erupts slightly behind the deciduous
carnassial and replaces it; the distance between the mandib-
ular condyle and the adult bite point is conserved as the out-
lever arm stops growing. In contrast, the in-lever arm length

continues to increase, resulting in a shift in the mechanical
advantage of the temporalis from the range of young
animals to that of adults. By 21weeks, growth of the in-

lever arm length also ceases, resulting in maturation of the
mechanical advantage of the temporalis. This early matura-
tion age for mechanical advantage makes it temporally

disjunct from the maturation of feeding performance, thus
younger animals are beneficiaries of a unique punctuated
growth pattern during the period when they are constrained

by immature chewing muscles and tooth replacement. In the
absence of this maturation pattern, feeding performance
would undoubtedly fare worse, particularly during the
challenging period immediately after weaning, when young

animals must first feed themselves.
Conflicting demands between the immediate need to

process food and the growth of the feeding apparatus

toward an adult form were resolved differently by females
and males. During ontogeny, growth of the maximum ZAB
is significantly faster for females than for males, affording

them early advantage as they achieve their adult maximum
ZAB and adult relative bite strength sooner than males. The
males however, continue to grow, albeit more slowly and
achieve larger maximum ZABs and larger relative bite

Figure 9 Timelines illustrating: (a) the age at

maturation for coyote feeding performance,

biomechanics and skull morphology in relation

to major life-history events. Maturation for skull

morphology (La Croix et al., 2011) is indicated

with a dashed line, and for feeding perfor-

mance and biomechanics (this study) with a

solid line. Where maturation age differed be-

tween sexes for a measure, the latest matura-

tion age is diagrammed. (b) Comparison of

maturation timing of feeding performance and

biomechanics for coyotes and spotted hyenas

in relation to major life-history events. Matura-

tion for coyotes (this study and La Croix et al.,

2011) is indicated with a dashed line, and for

spotted hyenas (Tanner et. al., 2010 and J. B.

Tanner, unpubl. data) with a solid line. The

latest maturation age is diagrammed for all

measures.
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strengths. This pays off for males with faster feeding
performances that mature earlier than those of females who

are slower at processing food, and who achieve adult food-
processing levels later.

Maturation of maximum ZAB, relative bite strength and

mandibular shape is more temporally coincident with ma-
turation of feeding performance than is skull size, skull
shape or mechanical advantage of the temporalis (La Croix

et al., 2011) (Fig. 9a). Because mechanical advantage of the
temporalis matures so early (21weeks), it is the subsequent
and ongoing growth in maximum ZAB, reflecting augmen-
tation of the temporalis muscles after 21weeks of age that

drives the development of relative bite strength and ulti-
mately, that of feeding performance. The maturation of
maximum ZAB by 30weeks appears to set the foundation

for the maturation of relative bite strength by 32weeks and
maturation of feeding performance by 36weeks. It should
be noted that maximum ZAB, used here as a proxy for

muscle strength in the calculation of relative bite strength,
probably underestimates mass and cross-sectional area of
the primary mastication muscles, because it does not take

into account the substantial relative narrowing of the
basicranium during coyote growth and development; this
change in skull shape yields a larger space within the
zygomatic arch for temporalis muscle deposition after skull

shape reaches maturity (La Croix et al., 2011).
It is not presently known whether the asynchrony shown

here among the development of feeding performance, feed-

ing biomechanics and skull morphology in the coyote
represents a more generalized mammalian pattern. In fact,
only one other study, on the spotted hyena Crocuta crocuta

(Tanner et al., 2010), has concurrently examined ontoge-
netic patterns of feeding performance, biomechanics and
skull shape change in relation to life-history milestones.
Hyenas, unlike coyotes, are capable of cracking open large

bones as adults, using craniodental adaptations for duro-
phagy that include a vaulted forehead, a large sagittal crest,
massive zygomatic arches and robust premolars with crack-

resistant enamel. Another distinction between hyenas and
coyotes may similarly be related to morphological demands
of durophagy; that is, the hyena’s life history is notable for

its protracted period of maternal dependence relative to
those in other large carnivores (Watts et al., 2009). Previous
research has shown that skull ontogeny in the spotted

hyena, like that of coyotes, demonstrates relative synchrony
in cranial and mandibular growth but asynchrony in cranial
and mandibular shape development, cranial size and shape
maturation, and mandibular size and shape maturation

(Tanner et al., 2010; La Croix et al., 2011). The most striking
differences between coyotes and hyenas, however, are the
sequence of maturation events and their timing relative to

key life-history milestones (Fig. 9b). Feeding performance in
coyotes matures after the maturation of skull size and shape
and is the last measure to mature. By contrast, in the spotted

hyena, feeding performance maturation is dramatically
delayed, occurring long after skull size maturation, but
slightly before full maturation of skull shape (Watts et al.,

2009). Patterns of maturation in regard to feeding biome-

chanics also differ between coyotes and hyenas. Whereas
maturation of mechanical advantage of the temporalis

coincides with maturation of skull size in both species,
maximum ZAB matures before relative bite strength in
coyotes, but this pattern is reversed in hyenas. Further,

whereas maturation of maximum ZAB and relative bite
strength are temporally coincident in coyotes, they are
temporally disjunct in hyenas. Although use of maximum

ZAB as a proxy for muscle strength may underestimate
relative bite strength in coyotes, this problem would only be
exacerbated in a hypercarnivore like the spotted hyena with
its massive temporalis muscles.

Feeding performance in both coyotes and spotted hyenas
matures long after weaning, suggesting that young indivi-
duals experience significant handicaps during feeding be-

tween weaning and the age at which performance maxima
are achieved. However, whereas all aspects of maturation in
behavioral and morphological traits associated with feeding

have reached full maturity by the age of sexual maturity in
coyotes, this is not the case in spotted hyenas. Indeed,
various morphological aspects of the feeding apparatus,

such as maximum ZAB and adult skull shape, do not reach
full maturity until long after puberty in spotted hyenas, and
feeding performance maxima are not achieved until the
mean age of first parturition. Delayed feeding performance,

biomechanics and skull maturation during ontogeny of
spotted hyenas may be explained as trade-offs associated
with the ability to crack open large bones in adulthood. The

dominant feature of post-weaning shape change in the
spotted hyena skull is the development of the bony areas of
muscle insertion: zygomatic arches expand and the sagittal

and nuchal crests develop (Tanner et al., 2010). It has
previously been shown for coyotes, which lack such specia-
lized adult function as bone cracking, that there is a more
modest delay in skull maturation than that seen in spotted

hyenas (La Croix et al., 2011). Here, we have shown that a
substantial delay in maturation also exists for the achieve-
ment of feeding performance and feeding biomechanics, but

this delay is shorter in the less-specialized species.
The temporal coincidence of weaning and adult tooth

eruption may imply that juveniles are capable of effectively

competing for food with conspecifics at this time (Biknevicius
& Van Valkenburgh, 1996). However, neither the results
presented here nor the data from hyenas (Binder, 1998; Binder

& Van Valkenburgh, 2000; Tanner, 2007) support that
hypothesis. Instead, our data suggest that juvenile coyotes
are handicapped in their feeding performance, biomechanics,
and skull morphology for up to 7months. Even though bi-

parental provisioning may occur after weaning in coyotes, as
it does in other canids, provisioning stops long before juve-
niles reach their adult performance capabilities. Thus, young

animals must feed themselves after weaning and adult tooth
eruption despite being considerably disadvantaged relative to
the adults with which they must compete for food. Such

handicaps are apparent in the generalist coyote as well as in
the highly specialized bone-cracking hyenas.

Factors other than biomechanical constraints, as seen in

coyotes, or selective pressures associated with adult dietary
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demands, as seen in hyenas, may influence the maturation of
feeding performance in these and other carnivores, and thus

determine how long young animals remain handicapped
during feeding competition. First, feeding performance
requires a functional relationship between the parts of the

skull; for example, the cranium and the mandible must work
in concert with each other to form an effective feeding
apparatus. This feeding apparatus must remain functional

across ontogeny, while shape and size of both cranium and
mandible are changing. Asynchronous development of cra-
nium and mandible might delay maturation of feeding
performance. Second, efficient food processing takes prac-

tice; the effects of learning were not considered here. Third,
tooth development and strength may limit biting ability.

By looking at the ontogeny of feeding performance and

biomechanics concurrently, examining their maturation
patterns, and placing both within the context of life history,
we can shed light on the processes at work during the

protracted period of morphological and behavioral devel-
opment of carnivores. Additional studies on carnivores are
needed to provide a richer context for interpreting the

relationships between life histories and the maturation of
morphology and behavior, and life history. We have demon-
strated here, that, while mandibular growth patterns are
important to early mechanical advantage of the temporalis,

it is the ongoing development of the primary mastication
muscles, the temporalis that can have an acute effects on the
maturation of bite strength and ultimately feeding perfor-

mance and fitness.
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Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Figure S1. Schedule of tooth eruption and replacement
(including post-canine teeth) in coyotes. The presence of
each deciduous (D) or Adult (A) tooth is indicated for the

cranium (a) and mandible (b). All coyote skull specimens
examined at each age displayed the specified tooth config-
uration.

Figure S2. Comparison of mean mechanical advantage
of the temporalis between coyotes with primarily deciduous
dentition and those with primarily adult dentition.

Figure S3. Plots of the regression of the out-lever arm

length (distance between the mandibular condyle and the
bite point) on the in-lever arm length (distance between the
mandibular condyle and the dorsal tip of the coronoid

process) (a) and the residuals (b).
Table S1. Canis latrans specimens
Table S2. Canis latrans feeding performance subjects.

Table S3. Canis latrans bite strength subjects.
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Table S4.Relative fit of the eight growth models fitted to
the feeding performance, maximum zygomatic arch breadth

and relative bite strength. The AIC weight evaluates relative
goodness-of-fit by balancing the distance between model and
data by degrees of freedom. AC refers to serial autocorrela-

tion among residuals of the model (statistically significant are
indicated by an asterisk). The AIC is not applied to models
with significant AC. The model judged best is in bold type.
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