# Photometric Measurement of Aydin Controls 8980 CRTs 

John Boreczky Paul Green

Technical Report
August 1990

Technical Report Documentation Page

| 1. Roport Mo. UMTRI-90-28 | 2 Government Acceecion Na . |  | 3. Recipients Catalog No. |  |
| :---: | :---: | :---: | :---: | :---: |
| 4. Tite and Subtite PHOTOMETRIC MEASUREMENT OF AYDIN CONTROLS 8980 CRTs |  |  | $\begin{aligned} & \text { 5. Aloport Dat } \\ & \text { August, } 1990 \\ & \hline \end{aligned}$ |  |
|  |  |  | Q. Performing Organization Code |  |
| 7. Author(e) John Boreczky and Paul Green |  |  | 2. Performing Organization Report Na. UMTRI-90-28 |  |
| 2. Porforming Organization Nome and Addrees The University of Michigan Transportation Research Institute Ann Arbor, Michigan 48109-2150 U.S.A. |  |  | 10. Wort Unit No. (TRALS) |  |
|  |  |  | $\begin{aligned} & \text { 11. Contract or Grant No. } \\ & \text { P.O. No. } 042 \mathrm{M} 3092711 \\ & \hline \end{aligned}$ |  |
|  |  |  | 13. Type of Report and Period Covered Final |  |
| 12. Sponeoring Agency Neme and Addrees Dow Chemical Company Global Process Control Research Building 294 <br> Midland. MI 48667 |  |  |  |  |
|  |  |  | 14. Spensoring Agency Code |  |
| 15. Supplementery Notee Revised - October 8, 1990 |  |  |  |  |
| 16. Abetract <br> This report describes measurements taken for three Aydin Controls 19-inch color CRTs. Measurements of uniformity (center and four corners for 6 colors), color (32 combinations in the center), and reflectance (at four angles) were made using a Photo Research PR-1980A photometer, with each measurement taken on two of the three units. <br> The display units were reasonably uniform although corner luminances were always below those measured in the center, with worst case values being $76 \%$ and $65 \%$ for the two displays. Colors were fairly consistent between displays, and there were no differences due to location (other than the luminance differences just mentioned). The settings for white had a slight bluish tint to them. Reflectance, was $98 \%$ for the polished glass face vs. $33 \%$ for the non-glare coated display (both measured at 0 degrees incidence). These measurements suggest the displays examined are adequate for control room use. |  |  |  |  |
| 17. Kay Words <br> Human factors, ergonomics, human engineering, engineering psychology, user interfaces, photometry, display evaluation |  | 18. Distribution |  |  |
| 19. Security Craseif. (of thio report) Unclassified | 20. Security Craecif. (of this page) Unclassified |  | 21. No. of Pages 22 | 22. Price |

## TABLE OF CONTENTS

INTRODUCTION ..... 1
Brief Introduction to Color Measurement. ..... 1
TEST PLAN ..... 3
Test Equipment and Materials. ..... 3
Test Activities and Their Sequence. ..... 3
RESULTS AND DISCUSSION ..... 6
Uniformity ..... 6
Color. ..... 7
Reflectance ..... 7
REFERENCES ..... 8
APPENDIX A - RGB-PEN COMBINATIONS ..... 9
APPENDIX B - RAW UNIFORMITY DATA ..... 10
APPENDIX C - RAW COLOR DATA ..... 13
APPENDIX D - RAW REFLECTANCE DATA ..... 18

## INTRODUCTION

Dow Chemical is developing a new CRT-based system for chemical process control (Mod 6) to replace the existing system (the "cans," Mod 5). The system is to be fielded on a world-wide basis.

Considerable effort is being expended to make the user interiace to the system (the controls and displays the operators interact with) easy to use. By improving operator control over chemical processes, the operators will be better able to make use of the available resources, input materials, fuel, etc., and to maximize the quality and quantity of the output, and hence plant profitability. Further, when alarms occur, the operators will be able to identify the cause and correct it more quickly.

A part of this effort involves verifying that the displays Dow will be producing meet accepted national and international human factors engineering standards (e.g., Human Factors Society, 1988). The research reported here describes several tests conducted for that purpose.

## Brief Introduction to Color Measurement

This section is not intended to explain in detail the science of color measurement but rather to provide a rationale for the test plan. Readers interested in further details of color measurement and color discrimination should consult Billmeyer and Saltzman (1981) or Silverstein and Merrifield (1985). The $\Delta E\left(Y u^{\prime} v^{\prime}\right)$ formula is from the ANSI standard (Human Factors Society, 1988), while discussion of gamma correction is from Silverstein and Merrifield.

The color of a light source is not defined in terms of the physical properties of that light, but rather on the subjective perception of a human observer. Therefore, most color measurement systems quantitatively define the response of the average human eye to a light source. For this reason it is important to remember that although measurements can be made to arbitrary levels of precision, values beyond 1 or 2 decimal places usually have no practical significance.

The most common way to describe the light produced by a CRT is in terms of luminance, expressed in candela/meter ${ }^{2}\left(\mathrm{~cd} / \mathrm{m}^{2}\right.$ ), and chromaticity (color), expressed in the x and y coordinates of the 1931 Commission Internationale de l'Eclairage (CIE) chromaticity system.

The luminance of a light source is determined by measuring the amount of light that passes through a filter that approximates the response of the human eye to light at various wavelengths. There are two such response characteristics, called "photopic" and "scotopic." The former applies to daytime viewing conditions, the latter to nighttime. The CIE defined three ideal colored lights (primaries) which, when combined in various proportions, can match any color of light (as determined by a human observer). The CIE chromaticity, a unique color identifier, is determined by measuring the proportions (tristimulus values) of the primaries needed to reproduce a given light source. The three ideal primaries, $\overline{\mathrm{x}}, \overline{\mathrm{y}}, \overline{\mathrm{z}}$, are intended to correspond to red, green, and blue, respectively. In order to simplify calculations, the tristimulus value $Y$
is defined to be equal to the luminance, and therefore can be measured with a photopic filter. The tristimulus values $X$ and $Z$ are measured with other filters. The CIE chromaticity coordinates of the light source are easily computed from $X, Y$, and $Z$

$$
x=\frac{X}{X+Y+Z} \quad y=\frac{Y}{X+Y+Z} \quad Z=\frac{Z}{X+Y+Z}
$$

Normally only $x$ and $y$ are specified since $z=1-(x+y)$. The appearance of a color (chromaticity and luminance) is fully specified by the values of $x, y$, and $Y$. Colors are often plotted on chromaticity diagrams using the x and y coordinates.

Although the CIE $x, y$ coordinates can be used to tell whether or not two colors appear the same, they cannot be used to measure the discriminability of colors, since it is easier to perceive color differences in some areas of the CIE $x, y$ chromaticity diagram than others. One attempt to correct this problem is the 1976 CIE $u^{\prime}, v^{\prime}$ 'Uniform-Chromaticity-Scale (UCS) diagram. The $u^{\prime}$ and $v^{\prime}$ coordinates are computed from the CIE $x, y$ coordinates as follows:

$$
u^{\prime}=\frac{4 x}{-2 x+12 y+3}
$$

$$
v^{\prime}=\frac{9 y}{-2 x+12 y+3}
$$

The advantage of this system is that pairs of colors that are equidistant in $\mathrm{u}^{\prime}, \mathrm{v}$ space are equally distinguishable.

There are two formulas commonly used to estimate the discriminability of color pairs based on the CIE UCS diagram. The $\Delta E\left(L^{*} u^{*} v^{*}\right)$ formula is used to estimate absolute color discriminability. The $\Delta \mathrm{E}\left(\mathrm{Y}^{\prime} \mathrm{v}^{\prime}\right)$ formula is used to assess the legibility of colored characters on a colored background, which is more suitable for this work. The $\Delta E\left(Y u^{\prime} v^{\prime}\right)$ formula is as follows:

$$
\Delta E \text { units }\left(C I E ~ Y u^{\prime} v^{\prime}\right)=\sqrt{\left(155 \Delta Y / Y_{M}\right)^{2}+\left(367 \Delta u^{\prime}\right)^{2}+\left(167 \Delta v^{\prime}\right)^{2}}
$$

where: $\quad Y_{M}=$ maximum luminance of text or background in $\mathrm{cd} / \mathrm{m}^{2}$
$\Delta Y=$ difference in luminance between text and background
$\Delta u^{\prime}=$ difference between $u^{\prime}$ coordinates of text and background
$\Delta \mathrm{v}^{\prime}=$ difference between $\mathrm{v}^{\prime}$ coordinates of text and background
Unfortunately, CRT colors are not selected by CIE coordinates but by RGB values. The RGB values for a given display pixel determine the intensity of the electron guns (drive voltage) which stimulate the red, green, and blue phosphors for that pixel. The first problem with this arrangement is that the same drive voltage produces different luminances for the three primary colors. At a given drive voltage, green is brighter than red, which is brighter than blue. The second problem is that the drive voltage vs. luminance curves (plotted on a log-log scale) have different slopes for the three primaries. Thus a white pixel will begin to look bluish as the drive voltages are proportionally reduced. Gamma correction is the technique of using photometric and electrical measurements to transform the drive voltage/luminance equations into linear functions for a specific display. Using gamma correction, it is possible to convert the RGB drive voltages into CIE $x, y$ coordinates. This technique is beyond the scope of this study. Readers interested in further details should consult the references listed at the beginning of this section.

## TEST PLAN

## Test Equipment and Materials

The displays measured were three Aydin Controls model 8980 19-inch diagonal color CRTs, serial numbers ENG-2053, 2055 and 2058, unit number ID 8865. Displays 2053 and 2058 had a standard polished glass face. Display 2055 had a non-glare coating. All displays were mounted on adjustable stands. These displays were connected to an IBM AT with a Quantum Data video generator board, model ACF-400. Screen images were generated by the Fox program supplied with the video generator. A crosshair image was used for aiming the photometer at the center of the display, whereas all measurements were taken with the display filled with a solid color.

Display luminance was measured using a Photo Research model 1980A digital spot photometer (Photo Research, 1984), which has an adjustable field of view. The photometer was mounted on a tripod. For collecting the reference reflectance levels a $98 \%$ reflecting surface provided with the photometer was used.

Readings from the photometer were keyed into an Excel spreadsheet (MicroSoft, 1986) running on a Macintosh SE computer. Included in the spreadsheet were functions to compute CIE $x, y$ coordinates from the various photometer readings.

For measurements of reflectance, a Kodak model 650 H 35 mm slide projector was used as the light source. An aluminum plate with a small hole was inserted into the slide mechanism to provide a narrow beam of light.

## Test Activities and Their Sequence

The displays examined were in the display evaluation room (\#180) of Building 424 used by the Global Process Control Group at the Dow facility in Midland, MI. The windows in the doors to the room, the only sources of external illumination, were covered with cardboard. Measurements were taken with the room lights out. The only illumination remaining was light from the test display, and stray light from the controlling AT, the Mac used to record the data, and from the photometer display. All sources were aimed away from the photometer to minimize the extent to which stray light would influence the readings. The contrast and brightness of the displays were set to a comfortable viewing level by Dow personnel with the room lighting on. Each test display was degaussed after being turned on and also before being measured.

Each photometer measurement is made by taking a reading through each of 4 separate filters. The photopic filter is used to measure the luminance in $\mathrm{cd} / \mathrm{m}^{2}$ and also provides the green tristimulus value Y , while the blue filter provides the blue tristimulus value $\mathbf{Z}$. The red filter provides the larger peak of the red tristimulus curve, and the $\mathrm{X}_{\mathrm{E}}$ filter provides the smaller peak of the red tristimulus curve, which are added together to compute the red tristimulus value X .

Since the filters used to make the photometer measurements do not provide a perfect representation of the CIE tristimulus values for all luminance and illumination conditions, it is necessary to calculate calibration constants using a source of known

CIE $x, y$ coordinates under similar conditions. An IBM Monochrome Display was used as the known source. The P39 phosphor used in this display has CIE coordinates of $x$ $=.223$ and $\mathrm{y}=.698$ (Cakir, Hart, and Stewart, 1980). The calibration constants were determined to be $\mathrm{C} 1=1.00002$ and $\mathrm{C} 2=1.325326$. Thus, the formulas used to compute the CIE $x, y$ coordinates from the photometer readings are as follows:

$$
x=\frac{\left(X+X_{B}\right){ }^{*} C 1}{\left(X+X_{B}\right)^{*} C 1+Y+Z^{*} C 2} \quad y=\frac{Y}{\left(X+X_{B}\right)^{*} C 1+Y+Z^{*} C 2}
$$

where: $\quad X$ is the photometer reading taken through the red filter $X_{5}$ is the photometer reading taken through the $X_{5}$ filter Y is the photometer reading taken through the photopic filter Z is the photometer reading taken through the blue filter C1 $=1.00002$
$C 2=1.325326$
Six sets of measurements were taken, two concerning screen uniformity, two concerning colors, and two concerning reflectance. (See Table 1.) The purpose of the uniformity tests was to determine if the corners and center of the display had similar luminance and chromaticity values, since decisions about contrast adequacy could depend upon where on the screen the information was presented. The purpose of the colors test was to determine the CIE coordinates for the colors currently selected for the user interface. The reflectance data will be used to assess the effect of glare and provide a basis for examining at a later time the effects of alternative control room illumination levels on display legibility.

Table 1. Description of tests conducted on various displays.

| Test | Display |
| :--- | :--- |
| Uniformity 1 | ENG 2053-Display 1 |
| Colors 1 | ENG 2053- Display 1 |
| Reflectance 1 | ENG 2058- Display 2 |
| Uniformity 2 | ENG 2058- Display 2 |
| Colors 2 | ENG 2058- Display 2 |
| Reflectance 2 | ENG 2055- Display 3 |

In the uniformity tests measurements were taken with the field of view set at 20 minutes of arc with the photometer 54 inches from the display. (Thus the on screen size of the target circle was .31 inches.) Measurements were taken in the center of the screen and the four corners, about 1 inch from the screen edge along the diagonal in the following order--center, upper left, upper right, lower right, lower left. Six colors were examined--dark grey (grey \#4, pen 104), medium grey (grey \#8, pen 108), light grey (grey \#12, pen 112), pure red (pen 1), pure green (pen 2), and pure blue (pen 4). These colors were chosen to determine if the output of one or more of the electron guns fell off in the corners of the display.

The initial set of measurements was taken after the display had warmed up for 30 minutes. Atter an additional 15 minutes, the first few measurements were re-taken (center location) and it was found the values had increased by $50 \%$. A new measurement was taken every minute until the reading began to stabilize about 20
minutes later. To avoid warmup problems, all of the displays to be used that day were then turned on and allowed to warm up. Because the other displays were not used until several hours later, warmup time for them should have been adequate and changes due to warmup were not checked.

In the color tests, the photometer was aimed at the center of the display with a 20 minutes of arc field of view from a distance of 54 inches. Colors measured include pens 100-115 (colors 1-16, black through white), 116 (gold), 117 (dark green), 118 (green), 119 (yellow), 120 (orange), 121 (red), 122 (magenta), 123 (violet), 124 (lavender), 125 (pink), 126 (light pink), 127 (light blue), 128 (blue), 129 (brown), 130 (cyan), and 131 (dark blue). Measurements were only taken in the center of the display and CIE coordinates (computed by the spreadsheet) were checked to make sure the color shown and $x, y$ values agreed. The RGB gun values corresponding to each pen number are shown in Appendix $A$.

For the reflectance measurements, the photometer was placed 47-1/2 inches from the display with the field of view set at 6 minutes of arc and a number 4 neutral density filter was used to keep the values from going off scale. This cuts the amount of light reaching the photometer by a factor of 10,000 . Measurements were taken at zero degrees (reference) and with the photometer $15^{\circ}, 30^{\circ}$, and $45^{\circ}$ to the right of the normal to the screen center. The projector was placed 32-1/2 inches from the display. As the display was rotated, the projector was moved so that the incident light was always perpendicular to the center of the display. (See Olson and Bender, 1986 for related research.)

## RESULTS AND DISCUSSION

The raw data appears in Appendices B, C, and D. The Photopic Filter value for each measurement is the luminance. All values are in candelas per square meter. There were no missing data. In several cases (described earlier) measurements were repeated to get rid of misleading information resulting from warmup lags. Those original data were discarded.

The long time period needed for display warmup was one of the more dramatic surprises of the measurement procedure. More than an hour elapsed from the time Display 1 was turned on until the readings stabilized enough so that uniformity measurements could be taken. There was even a substantial ( $10-25 \%$ ) difference between the uniformity measurements and the color measurements taken an hour later. Since the displays have less than half of their maximum luminance when they are first turned on, it is necessary to let them warm up for 2 hours before use if they are allowed to cool off.

The Excel spreadsheet running on the Macintosh computer was very useful for providing real-time quality control of the data. The built in $x, y$ computations were quite helpful in spotting erroneous entries (either due to misreading the display or typos). Erroneous entries appeared either as values that were not physically achievable (not in the CIE space) or mismatches between color appearance and the associated color name at coordinates identified (for example, a pen color that looked green but whose coordinates corresponded to pink). To some extent, these on-the-spot calculations also helped spot the warmup shift and the absence of the color uniformity variations.

## Uniformity

The uniformity measurements uncovered substantial differences in the luminances of various portions of the screens. Such variations are common in contemporary displays. (See Linzmayer and the MacUser Labs staff, 1989; Mello, 1989; Eckhardt, 1990a,b.) The variations found are not obvious at first glance to the eye though they were easily measured using the digital photometer. The uniformity data appears in Appendix B.

The uniformity data for display 1 (ENG 2053) show that the luminance of the corners, but especially the lower left corner is consistently less ( $76 \%$ to $95 \%$ ) than the center of the display. This occurs because the measurements are taken perpendicular to the display but the path of the electron beam is linear between the electron gun and each point on the tube surface (hence, measurements of the corner are at an angle to the light path). The effect is more pronounced at the lower luminance grey levels. The pure color data indicates that the three primary guns have similar uniformity patterns. (This data also highlights the need for gamma correction in order to compare the output of the three guns.) The CIE $x, y$ coordinates of these colors are very uniform, which means that although colors may vary in luminance in different areas of the display, the chromaticity does not change.

The upper left corner of display 2 (ENG 2058) is the dimmest, providing $65 \%$ to $92 \%$ of the luminance of the center of the display. Again, the effect is greater at lower
luminances. However, the blue gun produces the least luminance in the lower right corner, where the red and green guns have their highest values. This produces a larger variation in the CIE $x, y$ coordinates of the gray levels than on display 1 . There is also more variation in CIE coordinates within each gun. This means that not only will colors vary in luminance on this display, but that colors will appear more yellow in the lower right corner of the display.

## Color

The color data for displays 1 and 2 appear in Appendix C. There is very little difference in color between the two displays, although the grays of display 2 are slightly more blue at higher luminance levels. Differences in color are particularly small when one of the colors was above $35 \mathrm{~cd} / \mathrm{m} 2$, which is recommended by the ANIS standard. On both displays, white (and the grays) has a light blue tint. This is normal for most color displays (Eckhardt, 1990a), and is due to the color of the phosphor used.

With regard to design requirements, the ANSI Standard (Human Factors Society, 1988) requires that color combinations have a $\Delta \mathrm{E}$ of 100 or more, a requirement met by numerous color combinations here.

## Reflectance

The reflectance data is straightforward. (See Appendix D.) Display 2, with a polished glass face, had a sharp drop in luminous reflectance as the observer moves off-center, with the straight-on luminance being even greater than that of the $98 \%$ reflecting reference surface. These properties would produce a large amount of glare, as the reflections of light sources in the room would wash out the output of the display. There was some chromaticity difference between the angular measurements, but not a great deal.

Display 3, with a non-glare coating, showed less variation in luminous reflectance due to angle than display 2 . This is accomplished by reducing the reflectance from all angles substantially. Even the $0^{\circ}$ measurement is less than $33 \%$ as luminous as the reference surface. This should be sufficient to keep glare to an acceptable level under normal lighting conditions.

## REFERENCES

Billmeyer, F.W., Jr. and Saltzman, M. (1981). Principles of Color Technology (2nd ed.), New York: Wiley.

Cakir, A., Hart, D.J., and Stewart, T.F.M. (1980). Visual Display Terminals, Chichester, U.K.: Wiley.

Eckhardt, R. (1990a). Color Monitors Put to the Test, MacWorld, July, 146-155.
Eckhardt, R. (1990b). Monochrome Monitor Mania, MacWorld, April, 132-140.
Human Factors Society (1988). American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (ANSI/HFS Standard 1001988), Santa Monica, CA: The Human Factors Society.

Linzmayer, O.W. and the MacUser Labs staff (1989). MacUser, October, $\underline{5}(10)$, 182-200.

Mello, A. (1989). Screen Tests, MacWorld, August, 148-156.
MicroSoft, Inc. (1986). MicroSoft Excel User's Guide (version 2.2), Bellvue, WA: MicroSoft.

Olson, P.L. and Bender, M. (1986). Photometric Measurement of Bus Windshield Light Reflection Arising from Bus Interior Light Sources (Technical Report UMTRI-869), Ann Arbor, MI: The University of Michigan Transportation Research Institute, January.

Photo Research (1984). Instructions and Maintenance Manual for the PR-1980A Pritchard Photemeter, Burbank, CA: Kollmorgen Corporation, April.

Rosch, W.L. and the MacUser Labs staff (1990), In Living Color, MacUser, May, $\underline{6}(5)$, 32-55.

Silverstein, L.D. and Merrifield, R.M. (1985). The Development and Evaluation of Color Systems for Airborne Applications (Technical Report DOT/FAA/PM-8519), Washington, D.C.: Federal Aviation Administration, July.

Thorell, L.G. and Smith, W.J. (1990). Using Computer Color Effectively: An Illustrated Reference, Englewood Cliffs, NJ : Prentice-Hall.

## APPENDIX A - RGB-PEN COMBINATIONS

| Pen\# | Color | Red | Green | Blue |
| ---: | :--- | ---: | ---: | ---: |
| 0 | black | 0 | 0 | 0 |
| 1 | red gun | 255 | 0 | 0 |
| 2 | green gun | 0 | 255 | 0 |
| 3 | yellow | 255 | 255 | 0 |
| 4 | blue gun | 0 | 0 | 255 |
| 5 | magenta | 255 | 0 | 255 |
| 6 | cyan | 0 | 255 | 255 |
| 7 | white | 255 | 255 | 255 |
| 100 | black | 0 | 0 | 0 |
| 101 | gray 1 | 17 | 17 | 17 |
| 102 | gray 2 | 34 | 34 | 34 |
| 103 | gray 3 | 51 | 51 | 51 |
| 104 | gray 4 | 68 | 68 | 68 |
| 105 | gray 5 | 85 | 85 | 85 |
| 106 | gray 6 | 102 | 102 | 102 |
| 107 | gray 7 | 119 | 119 | 119 |
| 108 | gray 8 | 136 | 136 | 136 |
| 109 | gray 9 | 153 | 153 | 153 |
| 110 | gray 10 | 170 | 170 | 170 |
| 111 | gray 11 | 187 | 187 | 187 |
| 112 | gray 12 | 204 | 204 | 204 |
| 113 | gray 13 | 221 | 221 | 221 |
| 114 | gray 14 | 238 | 238 | 238 |
| 115 | white | 255 | 255 | 255 |
| 116 | gold | 204 | 153 | 0 |
| 117 | dark green | 0 | 119 | 0 |
| 118 | green | 0 | 170 | 0 |
| 119 | yellow | 255 | 255 | 0 |
| 120 | orange | 255 | 102 | 51 |
| 121 | red | 238 | 0 | 0 |
| 122 | magenta | 255 | 0 | 102 |
| 123 | violet | 102 | 0 | 102 |
| 124 | lavender | 255 | 51 | 255 |
| 125 | pink | 255 | 153 | 255 |
| 126 | light pink | 255 | 204 | 255 |
| 127 | light blue | 204 | 255 | 255 |
| 128 | blue | 0 | 204 | 255 |
| 129 | brown | 68 | 0 | 0 |
| 130 | cyan | 0 | 153 | 204 |
| 131 | dark blue | 0 | 51 | 255 |
|  |  |  |  |  |
|  |  | 0 | 0 |  |
| 10 |  |  |  |  |

## APPENDIX B - RAW UNIFORMITY DATA

## Uniformity Data Set 1

| Uniformity | N1 $=$ | 1.00002 | CON2= | 1.32533 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Display 1 | GREY\#4,No Lights,pen 104,20 mins arc, corners 1 |  |  |  |  |
| Dark Gray |  |  |  |  |  |
| Photopic Filter | 3.930 | 3.850 | 3.840 | 4.040 | 2.980 |
| Red Filter | 2.710 | 2.580 | 2.650 | 2.760 | 2.010 |
| Blue Filter | 5.300 | 5.250 | 4.980 | 5.230 | 4.020 |
| Xb Filter | 0.910 | 0.902 | 0.851 | 0.890 | 0.690 |
| L | 3.930 | 3.850 | 3.840 | 4.040 | 2.980 |
| x | 0.248 | 0.244 | 0.251 | 0.250 | 0.245 |
| $y$ | 0.270 | 0.269 | 0.275 | 0.276 | 0.271 |
| Medium Gray | grey\#8, pen 108,20 mins of arc, etc |  |  |  |  |
| Photopic Filter | 23.100 | 19.900 | 21.300 | 22.000 | 17.900 |
| Red Filter | 16.100 | 13.550 | 14.830 | 15.200 | 12.150 |
| Blue Filter | 30.000 | 25.900 | 27.300 | 28.000 | 23.300 |
| Xb Filter | 5.120 | 4.400 | 4.630 | 4.780 | 3.950 |
| L | 23.100 | 19.900 | 21.300 | 22.000 | 17.900 |
| x | 0.252 | 0.249 | 0.253 | 0.253 | 0.248 |
| y | 0.275 | 0.276 | 0.277 | 0.278 | 0.276 |
| Light Gray | grey \#12,pen 112 |  |  |  |  |
| Photopic Filter | 48.000 | 45.500 | 50.400 | 49.600 | 45.500 |
| Red Filter | 36.000 | 32.100 | 37.700 | 36.900 | 32.300 |
| Blue Filter | 61.400 | 59.100 | 63.600 | 63.100 | 58.000 |
| Xb Filter | 11.050 | 10.420 | 11.500 | 11.430 | 10.170 |
| L | 48.000 | 45.500 | 50.400 | 49.600 | 45.500 |
| x | 0.267 | 0.256 | 0.268 | 0.266 | 0.258 |
| y | 0.272 | 0.274 | 0.274 | 0.273 | 0.276 |
| Pure Red |  |  |  |  |  |
| Photopic Filter | 16.670 | 14.670 | 16.100 | 15.500 | 13.730 |
| Red Filter | 29.100 | 25.600 | 28.000 | 27.000 | 23.900 |
| Blue Filter | 1.487 | 1.343 | 1.389 | 1.416 | 1.288 |
| Xb Filter | 0.212 | 0.191 | 0.197 | 0.202 | 0.185 |
| L | 16.670 | 14.670 | 16.100 | 15.500 | 13.730 |
| x | 0.611 | 0.611 | 0.611 | 0.610 | 0.609 |
| y | 0.348 | 0.347 | 0.349 | 0.348 | 0.347 |
| Pure Green |  |  |  |  |  |
| Photopic Filter | 57.500 | 52.100 | 53.400 | 53.000 | 49.800 |
| Red Filter | 32.300 | 29.400 | 30.400 | 30.100 | 27.900 |
| Blue Filter | 10.500 | 9.800 | 9.890 | 9.800 | 9.280 |
| Xb Filter | 0.970 | 0.921 | 0.914 | 0.901 | 0.875 |
| L | 57.500 | 52.100 | 53.400 | 53.000 | 49.800 |
| $x$ | 0.318 | 0.318 | 0.320 | 0.320 | 0.317 |
| y | 0.549 | 0.546 | 0.546 | 0.546 | 0.548 |


| Pure Blue |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Photopic Filter | 9.470 | 8.760 | 8.910 | 8.940 | 8.020 |
| Red Filter | 1.380 | 1.251 | 1.268 | 1.260 | 1.190 |
| Blue Filter | 88.300 | 82.500 | 83.700 | 83.600 | 76.200 |
| Xb Filter | 18.600 | 17.100 | 17.400 | 17.400 | 15.500 |
| L | 9.470 | 8.760 | 8.910 | 8.940 | 8.020 |
| x | 0.136 | 0.134 | 0.135 | 0.135 | 0.133 |
| y | 0.065 | 0.064 | 0.064 | 0.065 | 0.064 |

## Uniformity Data Set 2

| Uniformity | CON1 $=$ | 1.00002 | CON2= | 1.32533 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Display 2 | Center | Top Left | Top Right | Low Right | Low Left |
| Dark Gray,pen | 104 |  |  |  |  |
| Photopic Filter | 4.260 | 2.750 | 3.960 | 4.440 | 3.390 |
| Red Filter | 3.240 | 2.040 | 3.000 | 3.400 | 2.490 |
| Blue Filter | 5.660 | 3.500 | 4.920 | 5.350 | 4.560 |
| Xb Filter | 0.975 | 0.603 | 0.865 | 0.911 | 0.780 |
| L | 4.260 | 2.750 | 3.960 | 4.440 | 3.390 |
| x | 0.264 | 0.263 | 0.269 | 0.272 | 0.257 |
| $y$ | 0.267 | 0.274 | 0.276 | 0.280 | 0.267 |
| Medium Gray,pen 108 |  |  |  |  |  |
| Photopic Filter | 20.600 | 15.600 | 20.600 | 20.600 | 16.700 |
| Red Filter | 15.200 | 11.250 | 15.100 | 15.400 | 12.020 |
| Blue Filter | 30.700 | 22.000 | 29.400 | 28.000 | 24.400 |
| Xb Filter | 5.260 | 3.750 | 5.030 | 4.780 | 4.160 |
| L | 20.600 | 15.600 | 20.600 | 20.600 | 16.700 |
| x | 0.250 | 0.251 | 0.253 | 0.259 | 0.248 |
| $y$ | 0.252 | 0.261 | 0.258 | 0.264 | 0.256 |
| Light Gray,pen 112 |  |  |  |  |  |
| Photopic Filter | 48.800 | 44.000 | 49.200 | 45.700 | 41.400 |
| Red Filter | 37.400 | 32.200 | 37.300 | 34.300 | 30.100 |
| Blue Filter | 69.500 | 60.200 | 68.600 | 62.700 | 58.800 |
| Xb Filter | 12.910 | 10.500 | 12.730 | 11.210 | 10.270 |
| L | 48.800 | 44.000 | 49.200 | 45.700 | 41.400 |
| x | 0.263 | 0.256 | 0.263 | 0.261 | 0.253 |
| $y$ | 0.255 | 0.264 | 0.259 | 0.262 | 0.259 |
| Pure Red, pen 1 |  |  |  |  |  |
| Photopic Filter | 16.500 | 11.400 | 16.110 | 16.900 | 12.950 |
| Red Filter | 28.100 | 19.530 | 28.100 | 29.400 | 22.500 |
| Blue Filter | 1.348 | 1.445 | 1.606 | 1.487 | 1.416 |
| Xb Filter | 0.190 | 0.220 | 0.237 | 0.210 | 0.210 |
| L | 16.500 | 11.400 | 16.110 | 16.900 | 12.950 |
| x | 0.607 | 0.597 | 0.608 | 0.611 | 0.605 |
| $y$ | 0.354 | 0.345 | 0.346 | 0.349 | 0.345 |
| Pure Green, pen 2 |  |  |  |  |  |
| Photopic Filter | 47.300 | 38.700 | 48.900 | 50.000 | 43.300 |
| Red Filter | 26.000 | 20.000 | 27.200 | 27.800 | 22.900 |
| Blue Filter | 8.460 | 6.990 | 8.610 | 9.210 | 7.490 |
| Xb Filter | 0.788 | 0.695 | 0.778 | 0.879 | 0.705 |
| L | 47.300 | 38.700 | 48.900 | 50.000 | 43.300 |
| x | 0.314 | 0.301 | 0.317 | 0.316 | 0.307 |
| $y$ | 0.555 | 0.564 | 0.554 | 0.550 | 0.564 |


| Pure Blue, pen | 4 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Photopic Filter | 9.400 | 8.670 | 9.330 | 8.320 | 8.910 |
| Red Filter | 1.346 | 1.396 | 1.389 | 1.288 | 1.296 |
| Blue Filter | 86.100 | 80.000 | 85.600 | 79.000 | 83.300 |
| Xb Filter | 18.000 | 16.300 | 17.800 | 16.100 | 17.200 |
| L | 9.400 | 8.670 | 9.330 | 8.320 | 8.910 |
| $x$ | 0.135 | 0.134 | 0.135 | 0.133 | 0.134 |
| $y$ | 0.066 | 0.065 | 0.066 | 0.064 | 0.065 |

## APPENDIX C - RAW COLOR DATA

## Color Data Set 1

| Colors | CON1 $=1.00002$ |
| :--- | :--- |
| Display 1 | $C O N 2=1.32533$ |



Photopic Filter
Red Filter
Blue Filter
Xb Filter
L
$x$

| y |  |
| :--- | :--- |
| Color2, pen |  |
|  |  |

Photopic Filter
Red Filter
Blue Filter
Xb Filter
L
x

| y |
| :--- |
| Color3, pen |
|  |

Photopic Filter
Red Filter
Blue Filter
Xb Filter
L
x
$y$
Color 4
Photopic Filter
Red Filter
Blue Filter
Xb Filter
L
$x$

| y |
| :--- |
| Color5, pen |
|  |

Photopic Filter
Red Filter
Blue Filter
Xb Filter
L
$x$
$y$
1.0000 y

Color6pen 105
Photopic Filter 8.3300
Red Filter $\quad 5.7900$
Blue Filter 11.2800
Xb Filter 1.9400
8.3300
0.2493
0.2686

Color7, pen 106
0.1910 Photopic Filter 12.7300
0.1330 Red Filter 8.8700
0.3280 Blue Filter 19.9900
0.0575 Xb Filter 2.9100
12.7300
0.2310
0.2496

Color8, pen 107
0.9320 Photopic Filter 18.0600
0.6430 Red Filter 12.5900
1.4100 Blue Filter 23.9000
0.2440 Xb Filter 4.0700
0.9320 L 18.0600
$0.0000 \mathrm{x} \quad 0.2509$
Color9, pen 108
2.4700 Photopic Filter 24.5000
1.7000 Red Filter 17.2000
3.5300 Blue Filter 31.9000
0.6060 Xb Filter 5.4300
2.4700 L 24.5000
$0.0000 \mathrm{x} \quad 0.2531$
1.0000 y 0.2740

Color10pen 109
4.9500 Photopic Filter 31.7000
3.4400 Red Filter 22.3000
6.8000 Blue Filter 40.9000
1.1600 Xb Filter 6.9800
$4.9500 \mathrm{~L} \quad 31.7000$
$0.0000 \mathrm{x} \quad 0.2542$
1.0000 y 0.2752

Color11, pen
110
Photopic Filter 39.8000
Red Filter 28.1000
Blue Filter $\quad 50.9000$
Xb Filter 8.7100
L 39.8000
$\mathrm{x} \quad 0.2555$
$y$
0.2763

Color12, pen 111
Photopic Filter 47.0000
Red Filter 34.5000
Blue Filter $\quad 60.0000$
Xb Filter $\quad 10.5800$
L 47.0000
$x$
0.2627
$y$
0.2739

Color13, pen 112
Photopic Filter 53.9000
Red Filter $\quad 41.5000$
Blue Filter 68.1000
Xb Filter $\quad 12.6300$
L 53.9000
$x \quad 0.2730$
$y \quad 0.2718$
Color14,pen 113
Photopic Filter 61.3000
Red Filter 48.6000
Blue Filter $\quad 77.0000$
Xb Filter $\quad 14.7100$
L
61.3000
x
0.2793
$\begin{array}{ll}\mathrm{y} & 0.2704\end{array}$
Color15,pen 114
Photopic Filter 67.2000
Red Filter $\quad 54.6000$
Blue Filter 84.3000
Xb Filter $\quad 16.6000$
L
67.2000
x
0.2847
0.2687

| Color16, pen | 11568.4000 | C21,pen120,orange |  | Color26, pen | 125, pink |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Photopic Filter |  | Photopic Filter | 26.1000 | Photopic Filter | 47.0000 |
| Red Filter | 55.5000 | Red Filter | 34.8000 | Red Filter | 42.6000 |
| Blue Filter | 84.7000 | Blue Filter | 5.8200 | Blue Filter | 90.7000 |
| Xb Filter | 16.7000 | Xb Filter | 0.8380 | Xb Filter | 18.8000 |
| L | 68.4000 | L | 26.1000 | L | 47.0000 |
| x | 0.2855 | x | 0.5131 | x | 0.2686 |
| $y$ | 0.2705 | y | 0.3758 | $y$ | 0.2056 |
| Color17, pen | 116,gold | Color22, pen | 121,red | C27,pen126 | ghtPink |
| Photopic Filter | 32.4000 | Photopic Filter | 14.8600 | Photopic Filter | 59.7000 |
| Red Filter | 30.1000 | Red Filter | 26.2000 | Red Filter | 51.2000 |
| Blue Filter | 4.5000 | Blue Filter | 1.3200 | Blue Filter | 91.2000 |
| Xb Filter | 0.4630 | Xb Filter | 0.1890 | Xb Filter | 18.7000 |
| L | 32.4000 | L | 14.8600 | L | 59.7000 |
| x | 0.4434 | x | 0.6137 | x | 0.2791 |
| y | 0.4701 | $y$ | 0.3456 | y | 0.2384 |
| Color18,pen | 117,darkGreen | C23,pen122, | magenta | C28, pen127, 1 | ghtBlue |
| Photopic Filter | 12.5300 | Photopic Filter | 18.6000 | Photopic Filter | 69.2000 |
| Red Filter | 6.5700 | Red Filter | 30.4000 | Red Filter | 50.3000 |
| Blue Filter | 2.0500 | Blue Filter | 16.4000 | Blue Filter | 91.9000 |
| Xb Filter | 0.1890 | Xb Filter | 2.8800 | Xb Filter | 18.6000 |
| L | 12.5300 | L | 18.6000 | L | 69.2000 |
| x | 0.3071 | x | 0.4521 | X | 0.2651 |
| y | 0.5694 | $y$ | 0.2527 | y | 0.2663 |
| Color19,pen | 118,green | C24,pen 123 | ,violet | Color29, pen | 128,blue |
| Photopic Filter | 28.5000 | Photopic Filter | 3.5700 | Photopic Filter | 46.3000 |
| Red Filter | 14.7900 | Red Filter | 4.0300 | Red Filter | 22.0000 |
| Blue Filter | 4.6800 | Blue Filter | 15.5300 | Blue Filter | 90.8000 |
| Xb Filter | 0.4290 | Xb Filter | 2.7800 | Xb Filter | 18.7000 |
| L | 28.5000 | L | 3.5700 | L | 46.3000 |
| x | 0.3049 | $x$ | 0.2199 | x | 0.1963 |
| y | 0.5709 | y | 0.1153 | $y$ | 0.2233 |
| Color20,pen | 119,yellow | C25,pen124, | avender | C30,pen 129,b | brown |
| Photopic Filter | 70.5000 | Photopic Filter | 28.9000 | Photopic Filter | 0.7850 |
| Red Filter | 63.4000 | Red Filter | 33.2000 | Red Filter | 1.3800 |
| Blue Filter | 14.3000 | Blue Filter | 89.8000 | Blue Filter | 0.0945 |
| Xb Filter | 1.1910 | Xb Filter | 18.8000 | Xb Filter | 0.0145 |
| L | 70.5000 | L | 28.9000 | L | 0.7850 |
| x | 0.4193 | x | 0.2601 | x | 0.6051 |
| $y$ | 0.4577 | $y$ | 0.1446 | y | 0.3406 |

125 doesnt
look
pink
126 is very
light

| Color31, pen | 130, cyan |
| :--- | ---: |
| Photopic Filter | 28.3000 |
| Red Filter | 12.4400 |
| Blue Filter | 65.5000 |
| Xb Filter | 12.2400 |
| L | 28.3000 |
| X | 0.1766 |
| y | 0.2024 |
| Color32, pen 131, | dark blue |
| Photopic Filter | 11.2200 |
| Red Filter | 2.2700 |
| Blue Filter | 88.6000 |
| Xb Filter | 18.6000 |
| L | 11.2200 |
| X | 0.1396 |
| y | 0.0750 |

## Color Data Set 2

| Colors $\quad$ CON $1=$ | 00002 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{ll}\text { Display } 2 \quad & \text { CON2 }=1 \\ 6\end{array}$ | $1.32532$ |  |  |  |  |
| Color1 Pen 100, black |  | C6,pen105, | ey 5 | Color11,pen | 110 |
| Photopic Filter | 0.0266 | Photopic Filte | 7.5500 | Photopic Filter | 35.4000 |
| Red Filter | 0.0241 | Red Filter | 5.6800 | Red Filter | 26.1000 |
| Blue Filter | 0.0146 | Blue Filter | 10.3900 | Blue Filter | 52.1000 |
| Xb Filter | 0.0028 | Xb Filter | 1.7800 | Xb Filter | 8.9700 |
| L | 0.0266 | L | 7.5500 | L | 35.4000 |
| x | 0.3693 | x | 0.2592 | $x$ | 0.2514 |
| y | 0.3651 | $y$ | 0.2623 | y | 0.2537 |
| Color2, pen101 |  | Color7, pen | 106 | Color12,pen | 111 |
| Photopic Filter | 0.2500 | Photopic Filter | 11.3700 | Photopic Filter | 43.4000 |
| Red Filter | 0.2070 | Red Filter | 8.5000 | Red Filter | 32.1000 |
| Blue Filter | 0.1920 | Blue Filter | 16.1400 | Blue Filter | 62.2000 |
| Xb Filter | 0.0320 | Xb Filter | 2.7800 | Xb Filter | 11.0000 |
| L | 0.2500 | L | 11.3700 | L | 43.4000 |
| x | 0.3215 | X | 0.2561 | x | 0.2551 |
| $y$ | 0.3363 | $y$ | 0.2582 | y | 0.2569 |
| Color3, pen 102 |  | Color8,pen | 107 | Color13, pen | 112 |
| Photopic Filter | 0.9780 | Photopic Filter | 16.0100 | Photopic Filter | 50.0000 |
| Red Filter | 0.7730 | Red Filter | 11.8800 | Red Filter | 38.6000 |
| Blue Filter | 1.0330 | Blue Filter | 23.3000 | Blue Filter | 70.7000 |
| Xb Filter | 0.1780 | Xb Filter | 3.9600 | Xb Filter | 13.2200 |
| L | 0.9780 | L | 16.0100 | L | 50.0000 |
| x | 0.2884 | x | 0.2525 | $x$ | 0.2650 |
|  | 0.2965 | $y$ | 0.2552 | y | 0.2557 |
| Color4,pen 103, grey | 3 | Color9, pen | 108 | Color 14, pen | 113 |
| Photopic Filter | 2.3900 | Photopic Filter | 21.7000 | Photopic Filter | 56.8000 |
| Red Filter | 1.8400 | Red Filter | 16.0000 | Red Filter | 45.6000 |
| Blue Filter | 2.8900 | Blue Filter | 31.5000 | Blue Filter | 80.0000 |
| Xb Filter | 0.4970 | Xb Filter | 5.4000 | Xb Filter | 15.5000 |
| L | 2.3900 | L | 21.7000 | L | 56.8000 |
| x | 0.2731 | x | 0.2522 | x | 0.2729 |
| $y$ | 0.2793 | $y$ | 0.2558 | y | 0.2537 |
| Color5, pen 104,grey | 4 | Color10,pen | 109 | Color15, pen | 114 |
| Photopic Filter | 4.5800 | Photopic Filter | 28.1000 | Photopic Filter | 63.7000 |
| Red Filter | 3.4800 | Red Filter | 20.7000 | Red Filter | 52.6000 |
| Blue Filter | 6.0200 | Blue Filter | 41.2000 | Blue Filter | 88.8000 |
| Xb Filter | 1.0290 | Xb Filter | 7.0800 | Xb Filter | 17.9000 |
| L | 4.5800 | L | 28.1000 | L | 63.7000 |
| x | 0.2642 | x | 0.2514 | x | 0.2799 |
| $y$ | 0.2683 | $y$ | 0.2543 | $y$ | 0.2529 |


| Color16, pen 115 |  | en120, | nge | Color26, pen | 25,pink |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Photopic Filter | 70.0000 | Photopic Filter | 25.2000 | Photopic Filter | 45.0000 |
| Red Filter | 59.3000 | Red Filter | 34.9000 | Red Filter | 41.3000 |
| Blue Filter | 96.4000 | Blue Filter | 5.0300 | Blue Filter | 94.4000 |
| Xb Filter | 19.8000 | Xb Filter | 0.7440 | Xb Filter | 19.8000 |
| L | 70.0000 | L | 25.2000 | L | 45.0000 |
| x | 0.2857 | x | 0.5280 | $x$ | 0.2643 |
| y | 0.2528 | y | 0.3733 | $y$ | 0.1946 |
| Color17, pen 116,gold |  | Color22, pen | 121,red | C27,pen126, | htPink |
| Photopic Filter | 28.1000 | Photopic Filter | 15.3000 | Photopic Filter | 56.1000 |
| Red Filter | 27.9000 | Red Filter | 26.7000 | Red Filter | 49.2000 |
| Blue Filter | 3.7800 | Blue Filter | 1.2730 | Blue Filter | 94.8000 |
| Xb Filter | 0.3970 | Xb Filter | 0.1800 | Xb Filter | 19.7000 |
| L | 28.1000 | L | 15.3000 | L | 56.1000 |
| $x$ | 0.4608 | x | 0.6128 | x | 0.2749 |
| $y$ | 0.4576 | y | 0.3488 | $y$ | 0.2238 |
| Color18,pen117,dark | green | C23, pen122,m | magenta | C28, pen 127, | ghtBlue |
| Photopic Filter | 10.1100 | Photopic Filter | 19.0000 | Photopic Filter | 65.7000 |
| Red Filter | 5.3300 | Red Filter | 31.1000 | Red Filter | 48.3000 |
| Blue Filter | 1.6700 | Blue Filter | 15.8000 | Blue Filter | 96.0000 |
| Xb Filter | 0.1566 | Xb Filter | 2.7600 | Xb Filter | 19.8000 |
| L | 10.1100 | L | 19.0000 | L | 65.7000 |
| x | 0.3081 | x | 0.4588 | $x$ | 0.2609 |
| $y$ | 0.5677 | y | 0.2575 | y | 0.2517 |
| Color19,pen 118, gr | een | C24, pen 123, | iolet | Color29, pen 1 | 28,blue |
| Photopic Filter | 23.2000 | Photopic Filter | 3.5600 | Photopic Filter | 42.6000 |
| Red Filter | 12.0600 | Red Filter | 4.2200 | Red Filter | 18.8000 |
| Blue Filter | 3.8500 | Blue Filter | 14.5600 | Blue Filter | 93.4000 |
| Xb Filter | 0.3600 | Xb Filter | 2.6100 | Xb Filter | 19.5000 |
| L | 23.2000 | L | 3.5600 | L | 42.6000 |
| x | 0.3050 | x | 0.2301 | x | 0.1871 |
| y | 0.5697 | y | 0.1199 | y | 0.2081 |
| Color20,pen 119,yel | low | C25, pen124, | avender | C30,pen 129, | rown |
| Photopic Filter | 65.9000 | Photopic Filter | 30.3000 | Photopic Filter | 0.9150 |
| Red Filter | 61.0000 | Red Filter | 33.9000 | Red Filter | 1.6080 |
| Blue Filter | 11.0900 | Blue Filter | 96.5000 | Blue Filter | 0.0845 |
| Xb Filter | 1.1110 | Xb Filter | 20.6000 | Xb Filter | 0.0128 |
| L | 65.9000 | L | 30.3000 | L | 0.9150 |
| x | 0.4352 | x | 0.2562 | x | 0.6121 |
| y | 0.4618 | $y$ | 0.1425 | $y$ | 0.3456 |


| Color31, pen 130,cyan <br> Photopic Filter | 24.6000 |
| :--- | ---: |
| Red Filter | 10.3300 |
| Blue Filter | 68.2000 |
| Xb Filter | 12.7800 |
| L | 24.6000 |
| X | 0.1673 |
| y | 0.1781 |
| Color32, pen 131, | blue |
| Photopic Filter | 11.8000 |
| Red Filter | 2.2400 |
| Blue Filter | 94.1000 |
| Xb Filter | 19.9000 |
| L | 11.8000 |
| X | 0.1396 |
| y | 0.0744 |

## APPENDIX D - RAW REFLECTANCE DATA

## Reflectance Data Set 1

| Reflectance | CON1 $=$ | 1.00002 | CON2 $=$ | 1.32533 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Display 2 |  |  |  |  | minutes |
| Center | $15^{\circ}$ | Left | $30^{\circ}$ | Left | $45^{\circ}$ |
| Left | Reference |  |  |  |  |

## Reflectance Data Set 2

| Reflectance | CON1= | 1.00002 | CON2= | 1.32533 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Display 3,ENG 2055 | Center | $15^{\circ}$ Left | $30^{\circ}$ Left | $45^{\circ}$ Left | reference |
| Use ND4 Filter and 6 minute |  |  |  |  |  |
| Photopic Filter | 2100 | 1550 | 1200 | 1080 | 6420 |
| Red Filter | 1860 | 1370 | 1060 | 950 | 5850 |
| Blue Filter | 1240 | 890 | 670 | 610 | 3330 |
| Xb Filter | 220 | 180 | 140 | 120 | 560 |
| L | 2100 | 1550 | 1200 | 1080 | 6420 |
| x | 0.357 | 0.362 | 0.365 | 0.362 | 0.372 |
| $y$ | 0.361 | 0.362 | 0.365 | 0.365 | 0.372 |
| reference 98\% r | ctance |  |  |  |  |

