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1. Introduction. Recently emergent and re-emergent infectious
diseases pose a worldwide public health concern. Taylor et al. [2001]
estimated that 75% of human infectious diseases originate from an
animal reservoir, many caused by viruses. Human diseases originating
from a nonhuman animal reservoir are referred to as zoonoses. Some
recent emerging and re-emerging viral zoonoses include human immun-
odeficiency virus (HIV), Ebola virus, SARS coronavirus, rabies virus,
avian influenza viruses (AIV), Nipah virus, Hendra virus, hantaviruses,
and West Nile virus. The two strains of HIV, HIV-1, and HIV-2,
evolved from two simian immunodeficiency viruses (SIV) carried by the
chimpanzee and Sooty mangabey, respectively (Bengis et al. [2004]).
Outbreaks of Ebola virus in humans have been associated with disease
in chimpanzees, and the 2003 SARS outbreak originated from the
masked palm civet (Bengis et al. [2004]). The source of Nipah and
Hendra viral outbreaks have been traced to bats, whereas hantaviruses
are carried by wild rodents, primarily rats and mice (Bengis et al.
[2004]), and West Nile virus and avian influenza viruses are bird-borne
pathogens.

Pathogens of wildlife spill over into humans, into domestic animals
and into wild animals. Zoonoses have a negative impact on human
health, agricultural production, and wildlife conservation (Chomel
et al. [2007]). In this review, we concentrate on mathematical mod-
eling techniques that have been applied to the study of viral pathogens
in wildlife with a potential spill over to humans (see Figure 1). Some of
the risk factors associated with the emergence of zoonotic diseases and
spill over into humans include human encroachment, population ex-
pansion, wildlife trade and translocation, consumption of exotic food,
migratory movements, and ecotourism (Daszak et al. [2000], Wolfe
et al. [2005], Chomel et al. [2007]).

To prevent and control the spread of a zoonotic pathogen, it is es-
sential to understand the mechanisms that lead to the persistence of
a pathogen in its animal reservoir, the spread of a pathogen from an
animal reservoir to humans (i.e., host-jumping) and the evolution of
new diseases. Mathematical models of infectious diseases in wildlife
have been used to increase our understanding of these mechanisms and
to test hypotheses about effective methods for prevention and control of
infectious diseases in wildlife and humans. The collection of work in the
books edited by Grenfell and Dobson [1995] and Hudson et al. [2002]
summarizes some of these modeling efforts. Our goals are to provide
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FIGURE 1. Zoonotic viruses infect animal hosts and spill over into humans.

a review of some of the mathematical modeling frameworks developed
for the study of viral zoonoses in wildlife and to provide references
for more detailed analyses. A recent survey of 442 modeling studies
of zoonotic pathogens by Lloyd-Smith et al. [2009] found few dynami-
cal models that account for multi-host pathogens, multiple pathogens,
within-host pathogen dynamics in zoonotic transmission and pathogen
evolution. In this review, we highlight these gaps and others in the
modeling process that need to be filled to address important questions
about viral zoonoses in wildlife. We examine some of the factors govern-
ing viral maintenance and transmission in the primary animal reservoir,
how these factors have been accounted for in mathematical models and
where additional modeling efforts are needed.

2. Maintenance and transmission in reservoir populations.
Four stages of infection are identified from initiation to maintenance
and transmission of a viral pathogen in a reservoir host: (1) contact or
exposure, (2) cellular entry, (3) viral replication, assembly and release,
and (4) transmission (see Figure 2 ). When the disease is maintained in
the reservoir population, the stages are cyclic (1) → (2) → (3) → (4) →
(1). A viral infection begins with contact or exposure of an animal host
with a particular pathogen. At the first stage, environmental conditions
including climate, seasonality, anthropogenic disturbances, landscape,
and resources (i.e., habitat, food, water) may individually or collec-
tively determine whether there is contact between host and pathogen
(Altizer et al. [2006], Previtali et al. [2010]). In addition, the host’s
intrinsic characteristics, its population and social structure, mobility,
behavior, and susceptibility may modulate the extent of its exposure.
In the second stage, the within-host and cellular level, the virus must
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FIGURE 2. Four stages that lead to disease transmission and maintenance in
an animal reservoir.

overcome physical barriers of the host, and must be compatible with
cell receptors to gain entry into a target cell. After viral entry, the third
stage, viral replication depends on host and viral genetics as well as
host factors, such as the immune response, prior exposure, nutritional
status, co-infection, age, sex, and reproductive status. Establishment of
an infection in one host does not necessarily mean transmission to an-
other host, as it may be a dead-end host. Transmission, the fourth stage
of infection, depends on viral load, mode of viral shedding, host fac-
tors, and the community intra- and inter-host ecological interactions.
These latter interactions are also affected by the spatial environment
and anthropogenic factors.

Various modeling approaches are discussed in this review that have
been applied to the study of maintenance and transmission of viral
zoonoses among reservoir populations. Mathematical models and tech-
niques developed for spread of disease in humans often apply to wildlife
populations but there are key differences. For example, the wildlife
reservoir has adapted to the specific viral infection while this is not the
case for humans. In addition, environmental effects and anthropogenic
disturbances have a much greater impact on diseases in wildlife than in
humans. Mathematical models developed for diseases of wildlife often
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concentrate on the population level, omitting steps (2) and (3) (Grenfell
and Dobson [1995], Hudson et al. [2002]). Preventive and control
measures (e.g., vaccination or culling) are often studied in terms of
stages (1) and (4), whereas the effectiveness of treatment strategies
(e.g., drug treatment) are studied within stages (2) and (3). In
Section 3, we summarize some of the mathematical modeling efforts
for stages (1) and (4), and models for stages (2) and (3) in Section 4.

Although the within-host and population dynamics are often modeled
separately, host-pathogen interactions at the within-host level can
influence the dynamics of the system at the population level in a num-
ber of ways. The pathogen may alter the host by changing its repro-
ductive, movement or social behavior (Murray et al. [1986], Murray
and Seward [1992], Klein et al. [2004], van Gils et al. [2007]). A
pathogen may shorten the host lifespan, e.g., H5N1 influenza virus
in chickens (Chen et al. [2006]). A better understanding of the
behavior of the pathogen within-host will lead to better models and
more accurate parameterization for host-pathogen interactions on a
population or evolutionary level (Mideo et al. [2008]). For instance,
knowledge of within-host biology tells us if we need to address time
since infection or changes in immunity, persistently infectious indi-
viduals versus short-term infection resulting in recovery and pos-
sibly immunity. Host biology may tell us that infectivity is age-
dependent or that infection alters behavior, e.g., hantavirus infec-
tion in male rodents increases aggression (Klein et al. [2004]), ra-
bies infection in foxes increases erratic movement (Murray and Se-
ward [1992], Murray et al. [1986]), low pathogenic avian influenza
infection in swans delays migration (van Gils et al. [2007]). Host or
pathogen biology may differ in space or time (seasonality) and the
environment may play a significant role in the contact process, espe-
cially in an animal reservoir, e.g., spatial overlap of habitats leading
to spill over of hantavirus infection in rodents (Allen et al. [2009]).
Multiple hosts may amplify or dilute the pathogen effects or multi-
ple pathogen co-infection may decrease the effectiveness of the im-
mune response. That is, increased biodiversity in bird species reduces
spillover of West Nile virus in humans (Swaddle and Calos [2008]),
reduced species diversity increases infection prevalence of Sin Nom-
bre virus in deer mice (Dizney and Ruedas [2009]), micro- and
macro-parasitic co-infection induces antagonistic immune responses
(Fenton et al. [2008]). In summary, the within-host biology leads to a
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particular choice of model at the population level, such as an SI model
with susceptible and infectious stages or an SIR model with suscep-
tible, infectious, recovered and immune stages. Alternately, an SI 1I 2
model with susceptible and two infectious stages could be applied if the
infection modifies the behavior of some individuals, such as those in in-
fectious stage 2 but not stage 1. These types of models are discussed
in more detail in the following sections.

A variety of models have been applied to wildlife diseases, including
mathematical and statistical models. We restrict this review to viral
zoonoses and to mathematical models, that are either deterministic or
stochastic. In Sections 3 and 4, models that have been developed at
the population level and cellular level, respectively, are summarized.

3. Contact/exposure and transmission. Contact with an in-
fectious host is the first event in a chain that leads to transmission in
a wildlife population. The contact or exposure of a host to a pathogen
is often built on the premise of homogenous mixing in epidemiologi-
cal models. The most common epidemiological models are SIR models,
which are the basis for many population-based disease models (e.g.,
Anderson and May [1992], Grenfell and Dobson [1995], Hethcote [2000],
Hudson et al. [2002], Brauer et al. [2008], Keeling and Rohani [2008]).
For wildlife populations, births and deaths, sex-specific behavior, and
sickness-related behavior may affect exposure or transmission success.
Spatial structure of the population accounts for contacts that may
depend on spatial proximity or habitat heterogeneity. Environmental
variability and anthropogenic disturbances are also important factors
affecting successful transmission. Interactions within and between dif-
ferent species may lead to an amplification or a dilution effect, resulting
in either spatial expansion or contraction of the disease (Schmidt and
Ostfeld [2001], Keesing et al. [2006, 2010]).

3.1. Basic epizootic model. The basic epizootic model is known
as an SIR model. The flow diagram of an SIR model, S → I → R,
means a susceptible individual becomes infectious then recovers and
is immune. The model is the same as the well-known SIR epidemic
model, but the term “epizootic” is used in place of “epidemic” to
emphasize that we are applying these models to outbreaks in animal
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populations. The term epizootic refers to a single outbreak, whereas
enzootic implies persistence of the disease in an animal population. If
there is no immunity, then re-infection may occur and the model is
known as an SIS model; whereas if immunity wanes, then the model is
known as an SIRS model. The simplest type of model assumes homo-
geneous mixing. That is, all susceptible individuals are equally likely
to become infectious depending on the number of contacts (c) per unit
time of an infectious individual with other individuals in the population
and the probability (q) that a contact results in an infection.

Under the assumption that a population mixes homogeneously with a
total population size of N with N = S + I + R, one infectious individ-
ual will infect cq(S/N ) susceptible individuals per unit time. The rate
of new infections in the entire population is thus cq(S/N )I = βSI /N ,
a rate that is referred to as standard incidence or frequency-dependent
incidence. If the population density rather than population size is mod-
eled, then the number of contacts per unit time may depend on popu-
lation density c(N ). If c(N) = c̃N , then the rate is c̃qSI = βSI, which
is referred to as mass action incidence or density-dependent incidence.

Estimating incidence rates for animal populations is generally diffi-
cult. Anderson and May [1992] used an experiment where susceptible
mice were introduced into an infected population at a constant daily
rate to estimate the transmission rate, and Mayberry et al. [2010] fit-
ted domestic sheep and goats with GPS transmitters to monitor their
contacts. But experiments like this are rare. More experimental data
are needed to quantify contact rates in animals (Stallknecht [2007]).

Using standard incidence, neglecting births and deaths not due to
disease, denoting the recovery rate as γ (assuming an exponential dis-
tribution for the infectious period), and disease-related death rate as α,
the SIR model is a system of differential equations for a single outbreak
over time:

dS

dt
= −β

S

N
I,

dI

dt
= β

S

N
I − γI − αI = I

(
β

S

N
− γ − α

)
,

dR

dt
= γI,

(1)
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where S (0) = S 0 > 0, I (0) = I 0 ≥ 0, and R(0) = 0. The variables S ,
I , and R represent the number of susceptible, infectious and recovered
individuals, respectively.

The dynamics of the SIR model are well known (Anderson and May
[1992], Hethcote [2000]). The threshold for a disease outbreak is known
as the basic reproduction number,

R0 =
βS0/N

γ + α
≈ β

γ + α
,(2)

under the assumption that S 0 ≈ N . Here 1/(γ + α) is the aver-
age infectious period, and R0 is the average number of secondary
infections caused by one infectious individual introduced into an en-
tirely susceptible population during an individuals’ infectious period
(Hethcote [2000]). If R0 > 1, then there is an outbreak, a rise in the
number of infectious individuals (see Figure 3 (a)). For example, if the
value of the transmission rate β is large or the length of the infectious
period is long, the value of R0 is also large, resulting in a greater like-
lihood of an outbreak when one infectious individual is introduced. In
the case of mass-action incidence, the basic reproduction number is

R0 =
βS0

γ + α
≈ βN

γ + α
,(3)

assuming S 0 ≈ N . Brauer [2008] considers models in which the contact
rate depends more generally on the total population size or density,
β = β(N ) and also gives expressions for the final size of the outbreak.
See also references (Brauer [1990, 1991], Pugliese [1990, 1991], Thieme
[1992], Zhou and Hethcote [1994], Allen and Cormier [1996]). In the
case of density-dependent incidence, a threshold for pathogen invasion
can be defined in terms of N = NT when R0 = 1 (Lloyd-Smith et al.
[2005]). Pathogen invasion occurs if

N > NT =
γ + α

β
.

The SIS and SIRS models have the same basic reproduction num-
ber as the SIR model. In the SIS model, the recovery rate γI is in
the equation dS/dt . In the SIRS model, there is a loss of immunity,
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FIGURE 3. Parameters and initial conditions for the SIS and SIR models:
γ = 0.1, α = 0.15, S0 = 1000, I0 = 5;R0 = 3. (a) SIR model with standard in-
cidence and disease fatalities reduces the total population size N ; β = 0.75.
(b) SIS model with standard incidence and disease fatalities results in pop-
ulation extinction; β = 0.75. (c) SIR model with mass action incidence and
disease fatalities reduce the total population size N ; β = 7.5 × 10−4 ; NT = 333.
(d) SIS model with mass action incidence and disease fatalities reduce the total
population size N ; β = 7.5 × 10−4 ; NT = 333.

δR is subtracted from dR/dt and added to dS/dt . If R0 > 1 in the
SIS and SIRS models with disease fatalities, then there is a single
outbreak, which may lead to population extinction in the case of stan-
dard incidence. A model with standard incidence, disease fatalities and
R0 > 1, will result in extinction of the entire population, N (t) → 0 (see
Appendix A and Figure 3 (b)). But with mass action incidence, the to-
tal population density is reduced but does not go to zero (Figure 3
(c) and (d)). If there are no disease fatalities, then the population size
remains constant. Many animal reservoirs that maintain the disease in
the wild have adapted to the pathogen so that there are few, if any,
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disease-related mortalities; such is the case with hantavirus (Glass et al.
[1998]). This is a distinct difference between the animal reservoir and
the spill-over infection. Disease-related mortalities are a more common
occurrence in spill over infections, where animal hosts have not adapted
to the pathogen.

The primary reason for the difference between mass action and stan-
dard incidences with disease fatalities is that with standard incidence,
the number of contacts remains the same regardless of the population
size or density, whereas in mass action incidence the number of con-
tacts decreases as the population density decreases. For a few systems
where data are available, either standard or mass action incidence,
have provided reasonable fits to observed data in wildlife. For example,
standard incidence was fit to feline leukemia virus (FeLV) data from
feral cats (Fromont et al. [1997]) and mass action incidence (plus trans-
mission of the virus via the environment) was fit to avian influenza
data from wild birds from the Camargue, France (Roche et al. [2009]).
Estimates for the transmission rate for FeLV were obtained from the
“time between the first contact with a contagious individual and the
onset of infection” (Fromont et al. [1997], Pedersen et al. [1977]). The
reciprocal of this value gives an estimate of β in the case of standard
incidence ranging from 3.08 to 11.76 per year, with population
densities ranging from 120 in rural settings to 1100 in urban settings
(Fromont et al. [1997]). The contact rates for avian influenza, reported
in Roche et al. [2009], were varied (with non transmission parameters
kept fixed) to find the best fit of the model results to data. Contact
rate was not calculated explicitly but the transmission rate was cal-
culated. The value of N was in the region of 105, large enough to use
a deterministic model, and was calculated from ornithological data.
Other possible incidence rates are discussed by McCallum et al. [2001].

A method referred to as the next generation matrix method can be
used to calculate R0 in a mathematical model (Diekmann and Heester-
beek [2000], Diekmann et al. [1990], van den Driessche and Watmough
[2002, 2008]) (see Appendix B). Alternately, another threshold that is
defined in terms of the next generation matrix is important in the con-
trol of specific groups of infectious individuals. This alternate threshold
is known as the type reproduction number (Heesterbeek and Roberts
[2007], Roberts and Heesterbeek [2003]) (see Appendix B). The type
reproduction number and the basic reproduction number are the same
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for this basic SIR model. There are also methods for calculation of R0
for periodic demographics or with seasonal variation in model param-
eters (Bacaer [2007], Bacaer and Guernaoui [2006], Wang and Zhao
[2008]).

The concept of herd immunity comes from the SIR model and is
important in control of infectious diseases. Herd immunity determines
the proportion p of susceptible individuals that should be vaccinated
or removed to prevent an outbreak. That is, the proportion p for herd
immunity is found by solving R0(1 − p) < 1, which yields

p > 1 − 1
R0

.

The minimal proportion to be vaccinated for herd immunity is p =
1 − 1/R0 assuming a homogeneously mixed population (Anderson and
May [1992]). Due to the presence of R0 in this formula, the same limi-
tations for p apply as for R0 , namely that it relies on a large population
size and assumes all individuals are initially susceptible.

The continuous-time SIS and SIR models serve as a point of de-
parture for many other types of modeling formats, discrete-time and
continuous-time, deterministic and stochastic SIS and SIR models (e.g.,
Allen [2010, 2008], Allen and van den Driessche [2008], Andersson and
Britton [2000], Bailey [1990], Caswell [2001]). The basic stochastic SIS
and SIR models include variability due to transmission, recovery and
disease-related deaths. Stochastic SIS and SIR models can be used
to predict the probability of an outbreak, the final size distribution
of an epizootic, the expected duration of an epizootic or the limiting
stationary or quasistationary probability distribution. For example, an
approximation to the probability of an outbreak, PO , in either discrete-
event, stochastic SIS or SIR models depends on the initial number of
infected individuals, I 0 , and on the basic reproduction number R0 , as
defined in (2) or (3):

PO ≈ 1 −
(

1
R0

)I0

given R0 > 1. This is a good approximation if N is large and I 0
is small (Allen [2008]). The probability of no outbreak, (1 − PO) ≈
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FIGURE 4. Three sample paths of a continuous-time, discrete-event, stochas-
tic SIR model are graphed and compared to the deterministic SIR solution.
Parameters and initial conditions for the SIR model with standard incidence
and disease fatalities: γ = 0.1, α = 0.15, β = 0.75, and R0 = 3. (a) S 0 = 1000,
I 0 = 5, PO ≈ 0.996. (b) S 0 = 50, I 0 = 1, PO ≈ 0.667; in approximately one
sample path out of three, there is no outbreak.

(1/R0)I0 , decreases geometrically as I 0 increases. Figure 4 illustrates
three stochastic realizations (or sample paths) of the continuous-time,
discrete-event, stochastic SIR model with S 0 = 1000, I 0 = 5, and
PO = 0.996 (compare with Figure 3 (a)) and with S 0 = 50, I 0 = 1,
and PO = 0.667. Although there has been much theoretical research in
stochastic SIR and SIS epidemic models, fewer stochastic models have
been applied to zoonotic diseases and even fewer to viral zoonoses in
wildlife populations. Thresholds in wildlife populations are more dif-
ficult to assess than in human or domestic animal populations due to
lack of sufficient data (failed outbreaks are often not observed), possi-
bility of alternative but unknown reservoirs and the differences in the
types of thresholds (Lloyd-Smith et al. [2005]).

The basic SIR model (1) does not account for natural births and
deaths, spatial heterogeneity, environmental variability, differences in
susceptibility, co-infections and a multitude of other factors important
in zoonotic diseases. Some of these factors will be examined as we
consider the stages of infection.

3.2. Host factors. Inclusion of natural births and deaths in dis-
ease models enables the pathogen to infect new hosts and the disease
to become enzootic. The population dynamics N , in the absence of
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disease, are often assumed to have the form:

dN

dt
= B(N) − D(N),

where B(N ) and D(N ) are density-dependent birth and death rates,
respectively. If there is constant immigration or births, B(N ) = Λ, and
the death rate is proportional to the population size, D(N ) = mN , then
the disease-free population equilibrium is Λ/m. In an exponentially
growing or declining population, B(N ) = bN and D(N ) = mN , where
b > m or b < m, respectively. One of the most common assumptions
for animal populations is logistic growth, where B(N ) − D(N ) = r
(1 − N /K )N , r = b − m > 0 and K > 0; either the birth rate or
death rate or both may be density-dependent. With logistic growth,
the disease-free population equilibrium is the carrying capacity K .

An SIS model with standard incidence, density-dependent logistic
deaths and disease-reduced fertility has the form:

dS

dt
= b[S + (1 − f)I] −

(
m +

rN

K

)
S − β

S

N
I + γI,

dI

dt
= β

S

N
I −

(
γ + m + α +

rN

K

)
I,

(4)

where r = b − m > 0 (Hethcote et al. [2005]). The density-dependent
term affects only deaths. Infectious animals have reduced fertility by
a factor f , 0 ≤ f ≤ 1. Assuming S (0) = S 0 ≈ N = K , the basic
reproduction number for model (4) is

R0 =
β

b + γ + α
.

The reduction in fertility does not affect the basic reproduction num-
ber. Hethcote et al. [2005] show that with standard incidence and
R0 ≤ 1, the disease cannot persist, limt→∞I (t) = 0. However, if
R0 > 1, either the population reaches an enzootic equilibrium with
the population reduced in density or the population does not survive.

For mass-action incidence in model (4), the basic reproduction num-
ber depends on K , Namely, R0 = βK/(b + γ + α). When R0 = 1 a
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critical carrying capacity can be defined, KT = (b + γ + α)/β, the
minimal density needed for an outbreak. In stochastic epizootic models,
there is also a concept of “critical community size.” This concept is
not as well-defined as the population threshold NT or KT . It was first
introduced by Bartlett [1957] in connection with measles outbreaks.
The disease does not persist if the community size is too small. Only
through introduction of new infectious individuals will there be an-
other outbreak. Unlike the estimate for the probability of an outbreak,
there is no distinct threshold for critical community size in stochas-
tic models. Persistence of wildlife disease between epizootics depends
on the length of the tail of the preceding outbreak, the number of
animals that did not become infected and the rate the susceptible pool
is replenished (Lloyd-Smith et al. [2005]).

For a pathogen that is maintained in a reservoir host, it will often be
the case that R0 > 1. If the pathogen has little effect on the mortality
of the reservoir host, such as in the case of hantaviruses, then it is
more important to monitor the prevalence of infection I /N than to
compute R0 . When infection prevalence increases in the reservoir, then
humans are more likely to come in contact with the infected reservoir
population. Thus, it is infection prevalence rather than R0 that is a
determinant of risk in human infection. Infection prevalence may differ
from animal abundance in that there may be a lag between abundance
and infection (Davis et al. [2005], Adler et al. [2008]).

Differences in reproductive behavior, or behavior due to age or
sex, vertical transmission, heterogeneity in host response and time
since infection may impact the disease dynamics and deserve further
study, particularly in wildlife disease modeling (Busenberg and Cooke
[1993], Woolhouse et al. [1997], Galvani and May [2005], Allen
et al. [2006], Klein and Calisher [2007], Adler et al. [2008], Banerjee
et al. [2008], Keeling and Rohani [2008], Laverty and Adler [2009]).
Reproductive differences between species can be introduced through
the birth rates, that is, births can occur at a constant rate through the
year, as is often modeled for human populations (Anderson and May
[1992]), or as a seasonal pulse, which is often more probable in animal
populations (Keeling and Rohani [2008]). The former case will provide
(assuming no vertical transmission) a constant stream of new suscepti-
bles into the population, whereas seasonal births will provide an influx
of new susceptibles at a given time each year. The implications can be a
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sudden change in the R0 value for the population with a corresponding
change in the level of vaccination required for herd immunity. Behav-
ioral differences in the sexes where male rodents’ aggressive behav-
ior when infected with hantavirus (Klein and Calisher [2007], Klein
et al. [2004]) and vertical transmission when infected with arenavirus
were modeled in (Allen et al. [2006], Banerjee et al. [2008]). Analyses
of the models revealed distinct thresholds that depend on these sex-
ual differences. Age structure or age since infection can be accounted
for in models through either discrete or continuous ages and through
multiple infectious stages indicating time since infection (Keeling
and Rohani [2008]). Models with juveniles and adults whose behav-
ioral differences may affect the disease dynamics have been considered
in wildlife diseases, e.g., spread of rabies (Suppo et al. [2000]) but data
are limited on age-structure or times since infection in wildlife popu-
lations. Addressing the heterogeneity in the host population has not
been well studied but it clearly has implications for the maintenance
and spread of viral pathogens. The best illustration of the importance
of heterogeneity in host response to pathogens is the incidence of super-
spreaders (Woolhouse et al. [1997], Galvani and May [2005]), in which
20% of a host population contributes to 80% of transmission (20/80
rule). Vertical transmission, virus spread from mother to offspring, has
been included in models by assuming infectious females give birth to
infectious offspring with a given probability (Busenberg and Cooke
[1993]).

An SIS model with density-dependent deaths m(N ), vertical trans-
mission b̄ ≤ b (all newborns from infectious parents are infectious) and
mass action incidence has the form:

dS

dt
= S(b − m(N) − βI) + γI,

dI

dt
= I(b̄ − m(N) − α − γ + βS).

The basic reproduction number with vertical transmission is

R0 =
βK

b + γ + α
+

b̄

b + γ + α
,
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where m(K ) = b. The two terms in R0 are due to horizontal (direct
contact) transmission and vertical transmission of the disease. Vertical
transmission provides another avenue for the disease to persist, which
may be an evolutionary advantage for the pathogen.

3.3. Spatial and environmental factors. The geographic
spread of pathogens in wildlife populations has been modeled in a vari-
ety of ways (e.g., Abramson et al. [2003], Allen et al. [2002], Anderson
and May [1986], Ding et al. [2007], Hess [1996], Hess et al. [2002], Lewis
et al. [2006], Maidana and Yang [2009], Murray [1993], Murray and Se-
ward [1992], Ruan and Wu [2009], Suppo et al. [2000], Watts et al.
[2009]). A model for the spatial spread of fox rabies in Murray [1993]
employs partial differential equations. Susceptible and infectious foxes
are modeled in a one-dimensional spatial domain. Infectious foxes are
introduced in a small spatial region [a1 , a2 ] ⊂ R. The model is referred
to as a system of reaction-diffusion equations:

∂S

∂t
= −βSI,

∂I

∂t
= βSI − αI + D

∂2I

∂x2 ,

where S(x, 0) = S0 > 0, x ∈ R, I(x, 0) = I0 , x ∈ [a1 , a2 ] for −∞ < a1
< a2 < ∞ and zero elsewhere. Mass action incidence is assumed and
S and I are the susceptible and infectious population densities. In
particular,

∫
R

I(x, t) dx

is the total number of infected foxes at time t . The equation for immune
animals is omitted because it is assumed that infected foxes do not
recover. Thus, the model is of SI type with N = S + I . Parameter α
is the disease-related death rate and D is the diffusion coefficient.

The diffusion approximation implies that movement of infectious
foxes is random; animals have no preference for any particular direc-
tion. In the absence of movement, D = 0, the model simplifies to the
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well-known SI model. The threshold for disease outbreak is

R0 =
βS0

α
.

In the spatial model, with D > 0, a traveling wave of infection can be
shown to exist if R0 > 1 with spreading speed given by (Murray et al.
[1986], Murray [1993]):

2[D(βS0 − α)]1/2 .

In a more realistic rabies model, Murray [1993] and Murray et al.
[1986] separated the types of rabies cases into nonfurious and furious
types, denoted here by I and F , respectively. Animals with furious
rabies as opposed to nonfurious rabies are more aggressive and may
attack anything that moves; they become confused and wander ran-
domly (Murray et al. [1986]). In their model, it is assumed that rabies
is spread via animals with the furious type. Animals become infected
with rabies, stage I , then may progress to the furious type, F . Including
births and deaths in a logistic type growth function, the model takes
the following form:

∂S

∂t
= rS

(
1 − N

K

)
− βFS,

∂I

∂t
= −I

(
m + r

N

K

)
+ βFS − σI,

∂F

∂t
= −F

(
m + r

N

K

)
+ σI − αF + D

∂2F

∂x2 ,

(5)

where r = b − m, b and m are the density-independent birth and
death rates, respectively, and N = S + I + F is the total population
density. All animals are born susceptible, but all animals are subject
to density-independent and density-dependent deaths. In the absence
of disease, the population grows logistically to carrying capacity K .
Nonfurious foxes progress to the furious type at a rate σ. The rabid
animals (furious rabies) have an additional disease-related mortality
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rate α. The basic reproduction number for model (5) is

R0 =
βσK

(b + σ)(b + α)
.

For this model, there also exist traveling wave solutions, provided
R0 > 1. With parameter values for rabies in foxes, Murray [1993] cal-
culated a spreading speed of 51 km/year. Reaction-diffusion models of
the type (5) have been applied to the spread of hantaviruses and West
Nile virus (Abramson et al. [2003], Lewis et al. [2006], Maidana and
Yang [2009]). Reaction-diffusion models can offer some tractability, al-
lowing R0 to be calculated. However, this tractability does come at a
cost. These models assume that dispersal is short range, which cannot
always be justified.

In addition to simple reaction-diffusion models, other types of
reaction-diffusion models include biased or directed motion and other
types of spatial settings, such as spatially discrete locations or patches
(e.g., Nisbet and Gurney [1982], Hess [1996], Swinton et al. [1998],
Suppo et al. [2000], Allen et al. [2002, 2009], Arino et al. [2007], Ding
et al. [2007], Foley et al. [1999], Gudelj et al. [2004], McCormack and
Allen [2007], Keeling and Rohani [2008]). For example, in the case of
rabies, baits laden with vaccine were deposited in strategic locations in
Canada, the United States and Europe with the goal of stopping the
spread of rabies in wildlife reservoirs, foxes, coyotes and raccoons; this
has been modeled in (Allen et al. [2002], Childs et al. [2007], Coyne
et al. [1989], Ding et al. [2007], Murray and Seward [1992], Smith and
Cheeseman [2002], Suppo et al. [2000], Tilman and Kareiva [1997]).
Childs et al. [2007] and Coyne et al. [1989] fit an SEIR model to spa-
tial data on a raccoon rabies epizootic that occurred during the 1970s
on the east coast of the United States. They found epizootic periods
of 4–5 years and although recurrent epidemics declined in size, the
model agreed most closely with an assumption of little or no immunity
(Childs et al. [2007]). They also used the model to evaluate culling ver-
sus vaccination as control measures for raccoon rabies and found that
the most cost effective strategy involves culling over 32% of the rac-
coons or yearly vaccination of up to 99% of the population (Coyne
et al. [1989]). Smith and Cheeseman [2002] found that culling was
more effective for disease elimination than vaccination for control of fox
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rabies in Europe. Such types of studies on disease spread, vaccination
coverage and other methods for control of zoonotic diseases are im-
mensely valuable for prevention of human infection and conservation
of wildlife.

Another study of a viral disease of wildlife that successfully applied
a metapopulation model was an outbreak of phocine distemper virus
(PDV) in harbour seals (Swinton et al. [1998]). Although PDV is not a
viral zoonoses, the mathematical methods employed are useful to the
study of viral zoonoses and the study is also important for conservation
purposes. A stochastic patch SEIR model was applied to data on an
outbreak in 1988 of PDV in the harbour seal in the North Sea (Swinton
et al. [1998]). Harbour seals have contact with each other when on land
(the patches are called haulouts). The force of infection for patch i was
assumed to have a form equivalent to standard incidence, λi = βiIi/Ni

but also depended on nearest neighbor patches or location of haulouts:

λi = β

⎡
⎢⎢⎣(1 − ρ)

Ii

Ni
+ ρ

∑
j=i−1,i,i+1

Ij

∑
j=i−1,i,i+1

Nj

⎤
⎥⎥⎦ ,

where ρ is the relative frequency of between-haulout mixing. Numerical
investigations conducted on extinction times of the infection as a func-
tion of population size N =

∑
jNj and number of patches showed that

the critical community size is on the order of 108, a value much greater
than the North Sea population of harbour seals (106) (Swinton et al.
[1998]). Stochastic fade-out was observed. The model showed that it
would be highly unlikely for the disease to persist in the population due
to high transmission rates within subpopulations and a small annual
birth rate (Swinton et al. [1998]).

Environmental factors such as seasonality, precipitation, humidity,
vegetation and anthropogenic disturbances impact diseases in wildlife
much more than diseases in humans (e.g., Altizer et al. [2006], Breban
et al. [2010], Glass et al. [2000, 1998], Goodin et al. [2006], Hawley and
Altizer [2011], Hazel et al. [2000], Hess et al. [2002], Pretorius et al.
[1997], Previtali et al. [2010], Sauvage et al. [2007, 2003], Wesley et al.
[2010], Wolf et al. [2006]). For example, in a study of cowpox virus in
wild rodent reservoirs, seroconversion varied seasonally (Hazel et al.
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[2000]). Epizootics of Rift Valley fever virus have been associated with
heavy rainfall (Pretorius et al. [1997]). Human-disturbed landscape
and increased precipitation are associated with hantavirus infection in
rodent reservoirs and high risk for humans (Glass et al. [2000], Goodin
et al. [2006], Previtali et al. [2010]). Persistence of the viral pathogen
in the environment, outside the host, depends on temperature and
humidity. Models for hantavirus with direct transmission and indi-
rect transmission via the environment were considered in (Sauvage
et al. [2003, 2007], Wesley et al. [2010], Wolf et al. [2006]). Indirect
transmission provides a means for the pathogen to persist when direct
transmission is low. Long-distance migration in birds may impact
disease susceptibility due to compromised immune function during
migration (Owen and Moore [2006, 2008], Weber and Stilianakis
[2007]). A few studies have investigated migratory behavior of infected
birds (Owen et al. [2006], van Gils et al. [2007]) but these have not
been mathematically modeled.

Much of the modeling work on spatial effects or the impact of cli-
mate change on viral zoonoses has been computationally intensive. A
computational model for spread of H5N1 avian influenza among birds
was developed based on phylogenetic data of virus isolates, migratory
bird pathways and trade in poultry and wild birds (Kilpatrick et al.
[2006]). The model predicts global spread of H5N1, based on the loca-
tion of H5N1 introductions in various countries. Remote sensing data
on landscape and rainfall patterns have been applied to hantaviruses in
rodents indicating significant relationships between geography, rainfall
and disease in the reservoir (Glass et al. [1998, 2000], Goodin et al.
[2006]). Satellite imagery of vegetation and data on precipitation and
host and pathogen presence can be coupled to form risk maps (e.g.,
Glass et al. [1998, 2000], Goodin et al. [2006], Hess et al. [2002]). A
review article by Clements and Pfeiffer [2010] summarizes some of the
contributions of geographical information systems (GIS), remote sens-
ing (RS) and spatially explicit modeling to human risk and intervention
strategies with respect to rabies, West Nile virus, avian influenza and
other emerging viral zoonoses. Mathematical models coupled with data
from GIS and RS are “powerful and cost-effective tools” for assessing
alternative control strategies (Clements and Pfeiffer [2010]). The im-
portance of space in animal disease ecology has been demonstrated
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theoretically but as noted by Steinberg and Karieva in reference to
spatial ecology (Steinberg and Kareiva [1997], p. 318):

...we know “in theory” that space can make a huge difference, but
we do not know how often “in fact” it does make a difference. ...
Collecting spatially structured data, much less conducting “spatial
experiments,” is costly.

3.4. Multiple species. Multiple species are often involved in viral
zoonoses (Woolhouse et al. [2001]). West Nile virus involves numerous
species of birds, with as many as 300 species known to be infected
(Wonham et al. [2006]). Reservoir competence and disease susceptibil-
ity are known to vary widely within birds (Kilpatrick et al. [2007]).
The reservoir for Nipah and Hendra viruses is fruit bats that transmit
the viruses to pigs and horses, respectively (Daniels et al. [2007]). The
dog is the major reservoir for rabies throughout the world but wildlife
reservoirs for rabies include foxes, coyotes, jackals, skunks, raccoons,
insectivorous bats and yellow mongooses (Hemachudha and Rupprecht
[2005]). Depending on reservoir competence, biodiversity effects can
be amplified or diluted (Schmidt and Ostfeld [2001], Dobson [2004],
Keesing et al. [2006, 2010]).

A mathematical model with n species consisting of n SIR equations
with mass-action incidence has the form:

dSj

dt
= Λj − Sj

(
mj +

n∑
k=1

βjk Ik

)
,

dIj

dt
= −mjIj + Sj

n∑
k=1

βjk Ik − (γj + αj )Ij ,

dRj

dt
= γj Ij − mjRj ,

(6)

where j = 1, . . . , n (Dobson [2004], Keeling and Rohani [2008],
McCormack and Allen [2007]). The parameter Λj is an
immigration/birth rate for species j , mj is the natural mortality
rate and αj is the disease-related mortality rate. The contact rate of
an infectious animal of species Ik with a susceptible animal of species
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Sj is βjk . The initial conditions are Sj (0) > 0, Ij (0) ≥ 0, Rj (0) = 0
with the total population for species j , Nj = Sj + Ij + Rj , a solution
of

dNj

dt
= Λj − mjNj − αjIj .

Species j disease-free state is Nj = Λj/mj = Kj . With immigration,
disease cannot drive any of the populations Nj to extinction, even in
the case of standard incidence rate: βjkSj Ik/Nj . From the inequality,
0 ≤ Ij ≤ Nj , it follows that dNj/dt ≥ Λj − Nj (mj + αj ).

The basic reproduction number R0 for model (6) is the spectral ra-
dius of an n × n matrix M,R0 = ρ(M), where M = [Rjk ] and

Rjk =
Kjβjk

mk + γk + αk
,

with Sj (0) ≈ Kj . The magnitude of the entries Rjk in matrix M de-
pend on the contact rate between an infectious animal of species k
and a susceptible animal of species j , βjk , the density of susceptible
species j , Kj , and the sum of the mortality and recovery rates of the
infectious species k , mk + γk + αk . For standard incidence, the entries
Rjk do not depend on Kj . In human diseases, a matrix known as the
WAIFW matrix (who acquires infection from whom) (Anderson and
May [1992]) is often used to determine the contacts among different
groups. Matrix M plays a similar role. Depending on the magnitude
of the entries Rjk the basic reproduction R0 may either decrease or
increase with multiple hosts, resulting in either an amplification effect
or a dilution effect, respectively (Dobson [2004], McCormack and Allen
[2007]). To eradicate infection in a wildlife reservoir, R0 needs to be
reduced below one. This may be accomplished through direct control
of the reservoir population or possibly through one or more spill over
species, especially if that species has an amplifying effect. Due to the
large number of parameters, estimates of R0 with multiple hosts is
difficult. Alternative measures such as infection prevalence Ij/Nj may
be more easily estimated from data and potentially more relevant for
wildlife diseases (e.g., Adler et al. [2008], Davis et al. [2005]).

The interspecies relationships may be more complex than simply
pathogen transmission; for example, there may be competition for
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resources or predator–prey interactions (e.g., Anderson and May
[1979a, 1979b], Han et al. [2001], van den Driessche and Zeeman [2004]).
The presence of infectious disease may change the competitive hierar-
chy or the predator–prey relationships in unexpected ways, such as
causing oscillations in competing populations or reducing oscillations
in predator–prey systems (Hilker and Schmitz [2008], van den Driessche
and Zeeman [2004]).

3.5. Multiple pathogens. Multiple infections are a frequent oc-
currence in human and animal diseases (e.g., Feng and Velasco-
Hernandez [1997], Glavits et al. [2005], Telfer et al. [2010]). A pre-
existing pathogen infection may impact the course of a viral infection.
For example, an already activated immune response may suppress am-
plification of a new infection. Alternatively, multiple viral infections
in a single host may lead to new viral strains, as in the case of in-
fluenza A virus (Sharp et al. [1997], Suarez et al. [2004]). In some
cases, the effects of co-infection may be of greater magnitude than
the effects associated with the host or the environment (Telfer et al.
[2010]).

A model with n directly transmitted pathogen infections illustrates
some of the complexity in models with multiple pathogens. The
population density in a single host population infected with pathogen j
is denoted as Ij . An SIR model with mass action incidence and multiple
infections but without co-infections has the form:

dS

dt
= Λ − S

⎛
⎝m +

n∑
j=1

βj Ij

⎞
⎠ ,

dIj

dt
= Ij (βjS − m − γj − αj ) , j = 1, 2, . . . , n,

dR

dt
=

n∑
j=1

γj Ij − mR,

(7)

where S (0) = S 0 > 0, Ij (0) ≥ 0, R(0) = 0 and N = S +
∑

n
j=1Ij + R.

The parameter m is the natural mortality rate, Λ is the
immigration/birth rate and αj is the disease-related mortality rate.
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A model with co-infection by two pathogens, j and k , denoted Ijk ,
would include transmission from Ij to Ik and from Ik to Ij .

For model (7), the total population is a solution of the differential
equation

dN

dt
= Λ − mN −

n∑
j=1

αjIj .

The disease-free state is N = Λ/m = K . A pathogen reproduction
number can be defined for each pathogen j :

Rj =
βjK

m + γj + αj
.(8)

Here, it is also assumed that S 0 ≈ N . With standard incidence the
pathogen reproduction number is

Rj =
βj

m + γj + αj
.(9)

Disease cannot drive the population to extinction because of the im-
migration into the population.

Bremermann and Thieme [1989] analyzed system (7) for mass action
incidence with the assumption of density-dependent births, Λ = Nf (N ),
where f is a strictly decreasing function of N , f (0) > m and f (N ) < m
for N large. In this case, a unique disease-free state for N is the solution
K > 0 satisfying f (K ) = b. The pathogen reproduction number is given
by (8). It is also the case for this model that disease does not drive the
population to extinction.

The basic reproduction number for model (7) is

R0 = max
j

{Rj},(10)

where the pathogen reproduction number is defined in (8) or (9) for
mass action or standard incidence, respectively. No pathogen persists
in the population if R0 < 1 (applying techniques from Bremermann
and Thieme [1989]). A competitive exclusion result holds if R0 > 1.
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FIGURE 5. Parameters and initial conditions for the SIR model with two
pathogens and standard incidence: Λ = 50, m = 0.05, β1 = 1, β2 = 0.75,
γ i = 0.2αi = 0.01 for i = 1, 2, S(0) = 1000, I 1 (0) = 1, I 2 (0) = 20 and
R(0) = 0;R1 = 3.85 and R2 = 2.89. Strain 1 is competitively dominant.

Suppose pathogen 1 has the largest reproduction number, R0 = R1 >
1 and Rj < R1 , j = 2, . . . , n. Then pathogen 1 is the only persistent
pathogen, outcompeting all other pathogens (see Figure 5 for standard
incidence and Λ = constant) (Bremermann and Thieme [1989]).

This latter result about the maximal pathogen reproduction
number (10) has led to much speculation about the evolution of
virulence (Dieckmann et al. [2002]). The parameter αj is a mea-
sure of pathogen virulence. The preceding result implies that it is to
the pathogen’s advantage to evolve to reduced virulence, that is, to
evolve so that αj is small and Rj is large (Bremermann and Thieme
[1989], Levin and Pimentel [1981]). A well-known natural experiment
of myxoma virus in rabbits supports this hypothesis (Fenner and
Ratcliffe [1965], Fenner and Myers [1978], Levin and Pimentel [1981]).
The European rabbit, introduced into Australia in the mid 1800s,
rapidly increased to very high densities causing a serious problem to
agriculture. To control the rabbit population, a lethal strain of myx-
oma virus was introduced in the mid 1950s. The initial mortality rate
in infected rabbits was estimated at 99.8% (Fenner and Myers [1978],
Levin and Pimentel [1981]). But over time, the mortality decreased,
the virulence level of the virus decreased in the rabbit population. The
relationship between reduced virulence and disease persistence is not as
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simple as a decrease in pathogen reproduction number with virulence,
αj (see e.g., Ackleh and Allen [2003, 2005], Anderson and May [1992],
Bremermann and Thieme [1989], Day [2002], Day and Burns [2003],
May and Nowak [1994, 1995], Pugliese [2002]). The parameters in the
definition of Rj are generally not independent; for example, trans-
mission may be correlated with virulence (Anderson and May [1992],
Bremermann and Thieme [1989]).

Co-infection and superinfection are two pathways whereby a single
host can be multiply infected with several viral strains or pathogens.
Co-infection of a host with several strains may lead to viral recombi-
nation and a new strain that is more virulent. This is one of the ma-
jor concerns with avian influenza (Suarez et al. [2004]). Superinfection
occurs when pathogens can invade one another sequentially. With co-
infection, superinfection, stochastic effects or density-dependent births
instead of deaths, the competitive exclusion principle no longer holds
(see e.g., Ackleh and Allen [2003, 2005], Adler and Losada [2002],
Allen et al. [2003], Castillo-Chavez and Velasco-Hernandez [1998],
Esteva and Vargas [2003], May and Nowak [1995], Mosquera and Adler
[1998], Nowak and May [1994], Nowak and Sigmund [2002], Pugliese
[2002]). In these latter cases, other factors in combination with the
infection determine the outcome of the pathogen competition. In ad-
dition, calculation of thresholds becomes more complex and explicit
expressions may not be possible. Only a few longitudinal co-infection
studies have been conducted in natural nonhuman animal populations
(e.g., Telfer et al. [2008, 2010]).

4. Cellular entry and viral replication. A virus-cell model is
similar to an SIR model in that uninfected and infected target cells
as well as free virus particles or virions are modeled. However, this
model does not account for many factors that influence the success of
a viral entry, replication and release. Factors that affect viral infection
include the host immune response, host and viral genetics and activ-
ity along nonimmune signaling pathways (e.g., cell-death, metabolism)
that correlate with productive infection. Some of these factors will be
mentioned briefly in the following sections.

4.1. Basic virus-cell model. Let V denote virions that enter a
healthy target cell T changing this target cell into an infected one
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I , where the virus is capable of replication and release. We refer to
this model as a TIV model, where there are two types of target cells,
healthy and infected, and the virus particles or virions. This model
has been extensively investigated with respect to human infectious
diseases, in particular HIV-1 (e.g., Nowak and May [2000], Perelson
and Nelson [1999]). The TIV model is a system of three differential
equations,

dT

dt
= λ − βV T − δT T,

dI

dt
= βV T − δI I,

dV

dt
= πI − cV − β1V T,

(11)

where T (0) = T 0 > 0, I (0) = I 0 ≥ 0 and V (0) = V 0 > 0. The
expression βVT represents rate of viral entry into a host cell; λ is a
constant reproductive rate of target cells; δT , δI and c are death rates
of healthy target cells, infected target cells and virions, respectively.
The death rate of infected target cells exceeds that of healthy cells,
δI > δT . The parameter π represents rate of reproduction of virions
from one infected cell and is sometimes written as π = N δI , where N
is known as the burst size, N ≥ 2. Sometimes the expression βVT is
divided by total number of cells, T + I , so that the incidence rate is
standard (see e.g., Gourley et al. [2008]). In the absence of infection,
the disease-free equilibrium target cell population is T̄ = λ/δT . The
loss of virions because of entry into a target cell is often not accounted
for in this model, namely, −β1VT , in the equation for dV /dt , because
this term is small compared to the viral clearance rate, cV . Generally,
β1 ≥ β, since one or more virion may be associated with infection of a
target cell. Tuckwell and Le Corfec [1998] and De Leenheer and Smith
[2003] assume β1 = β.

The basic reproduction number for model (11), computed from the
next generation matrix approach (Appendix B), with next generation
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matrix

M =

⎡
⎢⎣0

βT̄

c + β1 T̄

N 0

⎤
⎥⎦ ,

is given by

R0 = ρ(M) =

√
βNT̄

c + β1 T̄
(12)

when T0 ≈ T̄ . In the case of standard incidence, R0 =
√

βN/(c + β1 T̄ ).
When controlling either the virus or the infected cells but not both,
the type reproduction number is T = (R0)2 , the square of the basic
reproduction number (Yuan and Allen [2011]) (see Appendix B). It
is this latter expression that is often reported in the literature (e.g.,
Perelson and Nelson [1999], Nowak and May [2000]). The infection
at the within-host level may be controlled through reduction of the
burst size proportionally by 1 − p, e.g., through drugs that cause in-
fected cells to produce uninfected virions (Perelson and Nelson [1999]).
To ensure R0 < 1 requires that the proportion p > 1 − 1/T . If the
term −β1VT is omitted in dV /dt , then a simpler expression for the
basic reproduction number is

R0 =

√
βNT̄

c
.(13)

The TIV model (11) has been mathematically analyzed by De
Leenheer and Smith [2003] in two cases: β1 = β and β1 = 0. It has
been shown in both cases that R0 < 1 implies global asymptotic stabil-
ity of the disease-free equilibrium T̄ (De Leenheer and Smith [2003]). In
addition, if R0 > 1, there exists a unique chronic disease equilibrium:

(Tc, Ic , Vc) =
(

Tc,
λ

δI

[
1 − Tc

T̄

]
,

λ

βTc

[
1 − Tc

T̄

])
,(14)

with Tc = c/(βN ) if β1 = 0 and Tc = c/[β(N − 1)] if β1 = β. Note that
the healthy T cell population is reduced as well as the total number of
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T cells at the chronic disease equilibrium; Tc + Ic < T̄ due to the fact
that δI > δT . Furthermore, if β1 = 0, or if β1 = β and βλ < δT δI ,
then the chronic disease equilibrium is globally asymptotically stable
(De Leenheer and Smith [2003]). Although the R0 in (De Leenheer
and Smith [2003]) differs from the one given in (12), the threshold
value R0 = 1 is the same.

The basic TIV model has been extended to include some of the
immune system components e.g., dendritic cells, macrophages, helper
T cells, cytotoxic T lymphocytes and antibodies (Asachenkov et al.
[1994], Marchuk [1997], Nowak and May [2000], Wodarz [2007], Lee
et al. [2009]). Because these mathematical models are useful for inter-
preting patient data and testing hypotheses, they have been primarily
applied to human diseases, HIV-1, hepatitis B and C viruses, lym-
phocytic choriomeninigitis virus, influenza virus and cytomegalovirus
(Asachenkov et al. [1994], Lee et al. [2009], Marchuk [1997], Nowak
and May [2000], Perelson [2002], Perelson and Nelson [1999], Wodarz
[2007]). The virus and intracellular dynamics are probably one of
the most neglected modeling areas for viral zoonoses (Pulliam [2008],
Lloyd-Smith et al. [2009]).

4.2. Host immune response. The host immune response is re-
sponsible for eliminating the source of infection, the infected cells and
the virions from a host. The immune system is very complex, involving
many types of molecules, cells and chemicals (e.g., Murphy et al. [2008],
Perelson [2002]). Two important cellular components of the adaptive
immune response are B cells and T cells. The B cells are responsible
for generation of antibody molecules and T cells are responsible for
production of cytokines and killing of infected cells. In response to a
viral pathogen, B cells are activated to produce antibodies, molecules
specific to a particular virus particle. Antibodies bind to a specific virus
particle so that it can be recognized and cleared by multiple mecha-
nisms, including by macrophages, which can then present antigen to T
cells. Natural killer cells also are activated by receptors on the surface
of infected cells. They bind to these receptors and release chemicals in-
side the cell that may either kill the infected cell or cause the infected
cell to stop replication of the virus particle. Helper T cells assist in
both B cell and cytotoxic T lymphocyte (CTL) activation.
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In a simplified version of the immune response, Wodarz [2007] in-
cludes the actions of antibodies A and CTLs C to the TIV model (11):

dT

dt
= λ − βVT − δT T,

dI

dt
= βVT − δI I − σC IC ,

dV

dt
= πI − cV − σAVA,

dA

dt
= ρAVA − δAA,

dC

dt
= ρC IC − δC C,

(15)

where T (0) > 0, I (0) ≥ 0, V (0) ≥ 0, A(0) ≥ 0, and C (0) ≥ 0. In
this new model, antibodies are activated by the virus ρAVA and CTLs
are activated by infected cells ρC IC . Antibodies play an important
role in long-term immunization, so that the death rate of antibodies
is relatively small, δA 	 1. Infected cells are killed by CTLs, σC IC ,
and the virus is bound to antibodies σAVA. For this model, the basic
reproduction number is given by (13). The presence of A and C reduces
the viral load and number of infected cells. Further studies are needed
to understand the dynamics of model (15) and to consider alternate
formulations for activation of A and C in animal reservoirs.

Because model (15) does not include the activity of the innate im-
mune response prior to antibody production and CTL activity, there
may be delays prior to activation (Eikenberry et al. [2009], Lee et al.
[2009]). In long-term infections, the immune response adapts to the
persistent infection, caused by a down-regulation of the immune re-
sponse (Schönrich et al. [2008]). When a virus jumps to a naive host,
the immune response may be very strong. For example, in some viral
infections, the CTL response can lead to tissue damage and if severe
enough, host death (Wodarz [2007]). Wodarz [2007] refers to this latter
type of response as CTL-induced pathology. In addition, the immuno-
logical response and infection length are influenced by current infec-
tions and infection history (Telfer et al. [2008]). Pedersen and Fenton
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[2007] emphasize the importance of understanding the community ecol-
ogy at the level of the within-host, that is, a tri-trophic level interaction
among the immune system, pathogen community and their respective
target cells. The differences in the immune response to a viral pathogen
by a reservoir as opposed to a spill over species needs further investi-
gation. These differences in responses are key to understanding host-
switching and cross-species pathogen transmission (Childs et al. [2007],
Hochberg and Holt [1990], Parrish et al. [2008], Pedersen and Davies
[2009], Pulliam [2008], Schönrich et al. [2008]). Mathematical mod-
els with multiple pathogens are just beginning to explore the role of
the within-host immune response on the population dynamics (Fenton
[2008], Fenton et al. [2008], Hawley and Altizer [2011], Pugliese and
Gandolfi [2008]).

4.3. Viral quasispecies. The viral genetic variation has been in-
cluded in the basic TIV model into what is referred to as viral quasis-
pecies models (Bull et al. [2005], Lauring and Andino [2010], Nowak
and May [2000]). Eigen [1971] introduced the concept of quasispecies
in 1971 to describe the origin of life and more recently, this con-
cept has been applied to RNA viruses (Holmes [2010], Lauring and
Andino [2010], Más et al. [2010]). Regardless if one uses the concept of
quasispecies to describe intra-host variation of RNA viruses or
population theories, it is well supported that RNA viruses have a
high mutation rate and lack error-correcting mechanisms. This lack
of error correction results in a greater diversity and distribution of
the viral genetics that may be selected upon within the host follow-
ing a successful infection. Insight into the mechanism in which viruses
adapt to new hosts is critical since many new viral zoonoses are RNA
viruses, such as hantaviruses, avian influenza viruses, Nipah virus and
SARS CoV. Hence, modeling of this phenotype of RNA viruses can
shed light on how to predict which viruses in wildlife have intrinsic
genetic character that would permit spill over into other species and
amplification.

A simple mathematical model for viral quasispecies assumes the pos-
sibility of n viral strains (Bull et al. [2005], Nowak and May [2000]).
Mutation occurs during replication within an infected cell and leads to
production of a mutant type. Assuming the master viral sequence is
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type 1, then the probability of a mutation from genotype 1 to j is q j1 .
In general, qij is the mutation from genotype j to i , j 
= i and qii is
the probability that genotype i does not mutate. A simple model for
viral quasispecies has the following form (Nowak and May [2000]):

dT

dt
= λ − δT T − T

n∑
i=1

βiVi,

dIi

dt
= T

n∑
j=1

qij βjVj − δiIi , i = 1, . . . , n,

dVi

dt
= πiIi − ciVi,

where Q = [qij ] is an n × n mutation matrix, πi = Niδi and Ni is the
burst size for viral strain i . Initial conditions are T (0) > 0, Ii(0) ≥ 0,
and Vi(0) ≥ 0. Assuming there is no back mutation; that is, strain j
mutates to i , where i ≥ j but there is no mutation from i to j , then
matrix Q is a lower triangular matrix:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q11 0 0 · · · 0

q21 q22 0 · · · 0

q31 q32 q33 · · · 0
...

...
...

. . .
...

qn1 qn2 qn3 · · · qnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The entries qij are probabilities with the property that the column sum
is equal to one. For example, if there are only two strains, then

Q =

[
q11 0

1 − q11 1

]
.

In the absence of mutation, Q = I an identity matrix, the basic re-
production number is

R0 = max
i

{Ri}
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where Ri =
√

βiNiT̄ /ci is the strain reproduction number and T̄ =
λ/δT . A competitive exclusion result applies to this model, similar to
the result for multiple pathogens (see (10)). If R0 > 1 and R1 = R0 >
Rj , j 
= 1, then strain 1, the virus with the greatest strain reproduction
number outcompetes all other virus strains and persists (De Leenheer
and Pilyugin [2008]). If all strain reproduction numbers are less than
one, that is, if R0 < 1, then all strains die out. With mutation, Q 
= I,
and R0 > 1, more than one strain persists (De Leenheer and Pilyugin
[2008]).

Interesting questions arise about quasispecies when studying control
of RNA viruses. Ribavirin is a drug used as an antiviral therapy, which
acts as a mutagenic agent for some RNA viruses (Chung et al. [2007],
Graci et al. [2008], Grand-Pérez et al. [2002]). To eradicate an RNA
virus, ribavirin therapy is given to patients in the hope that it will lead
to a nonviable pathogen referred to as lethal mutagenesis (Chung et al.
[2007], Graci et al. [2008]). In theory, as the mutation rates increase,
the dominant strain changes to another strain (an error catastrophe)
or results in complete eradication of all strains (extinction catastrophe)
(Bull et al. [2005]).

A new approach suggested by Grenfell et al. [2004] combines epidemi-
ology and evolutionary biology, and is applicable to rapidly evolving
RNA viruses. Using a two-tiered approach, Koelle et al. [2010] model
the epidemiological dynamics as the first tier via a stochastic SiIiRi

model for each antigenic variant, then the genetic sequence evolution
as the second tier to model production of new antigenic variants. The
modeling simulations can be related to phylogenetic diagrams of virus
lineages (e.g., influenza A and B) (Koelle et al. [2010]).

5. Summary. Gaps exist in modeling of wildlife viral zoonoses
that need further investigation to move the field forward. Models that
can evaluate the genomic trajectory of particular RNA viruses in reser-
voir host species are essential to understanding how viral zoonoses are
maintained in nature. Additionally, models that incorporate selective
pressures (e.g., resources such as food and water, predators, breeding
cycles), infection history and the heterogeneity in an animal’s ability to
maintain and amplify a pathogen can be used to probe how viruses are
maintained in their reservoirs and to determine what drives spill over
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into new nonreservoir species. There is a need for increased surveillance
of wildlife diseases and inclusion of this data in model formulation and
analysis. Difficulties encountered due to case acquisition and under-
reporting, and lack of existing wildlife surveillance infrastructure and
validated diagnostic tests need to be overcome (Stallknecht [2007]).
Modeling is crucial given that the successful spill over event is rare,
and can help drive hypothesis testing that can capture such events in
controlled experimental or field settings. With respect to immunolog-
ical pressures, many unanswered questions need to be addressed with
models. For example, what are the mechanisms of the immune response
in the wildlife host that lead to a persistent infection or to the possi-
bility of a superspreader? How and why does it differ in the spill over
dead-end host that either dies or has no productive infection? How
does the immune response differ when a host is infected with a sin-
gle versus multiple pathogens? What effects do seasonality or climate
change have on the immune response and disease susceptibility? What
are the drivers of host-switching events that lead to emergence of new
disease? Formulation and analysis of more detailed within-host models
to existing population level model structures will be necessary to accu-
rately evaluate and predict risk of infection and development of disease
in animal populations.

Our objective in this review is to emphasize the role of mathemat-
ical models in the study of viral zoonoses. The models described are
mathematical, deterministic and stochastic, and are therefore limited
in scope. We did not discuss statistical models or statistical techniques
that are valuable in the study of viral zoonoses and that are especially
important in fitting models to data. We mentioned briefly some of the
computationally intensive models that use information about geogra-
phy, landscape and environment to identify factors associated with high
prevalence of disease in wildlife or to model disease spread. The list of
references provides some additional sources for more details.

Deterministic and stochastic mathematical models are powerful and
cost-effective tools. When used in conjunction with laboratory and field
data and geographic information and remote sensing tools, they lead to
a better understanding of the four stages of infection and transmission
(Figure 2). Developing new models that cross disciplinary boundaries
(integrating stages (1), (2), (3), and (4)), accurately describing the
dynamics that take place within the wildlife reservoir and between
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hosts and generating new hypotheses about viral evolution will help
address some unanswered questions in the study of viral zoonoses in
wildlife and spur new research in this area.
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Appendix A

The SIS model with standard incidence, disease fatalities and no
natural births and deaths can be expressed as a function of the pro-
portion of infectious individuals. This leads to a differential equation
for i = I /N , where 0 ≤ i ≤ 1,

di

dt
= i[β − γ − α − (β − α)i].

Analysis of the preceding autonomous differential equation shows that
if β ≤ γ + α, then i(t) → 0. But if β > γ + α, then i(t) → i∗ = 1 −
γ/(β − α) ∈ (0, 1). The differential equation for the total population
size can be expressed as

dN

dt
= −αiN.(A1)

Hence, if i(t) → i∗, then N (t) → 0.

The SIRS model with standard incidence, disease fatalities, no natu-
ral births and deaths and temporary immunity δ, can be expressed in
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terms of the proportion of susceptible or infectious individuals, where
s + i + r = 1,

ds

dt
= −βsi + δ(1 − i − s) + αis,

di

dt
= i[βs − γ − α + αi].

The preceding system can be easily shown to have a unique locally
stable positive equilibrium (s∗, i∗), s∗, i∗ ∈ (0, 1) iff β > γ + α; the
equilibrium s = 1 and i = 0 is a saddle point. Application of Dulac’s
criteria with Dulac function B = 1/(si) shows there are no periodic
solutions. Hence, if β > γ + α, then (s(t), i(t)) → (s∗, i∗); whereas
if β ≤ γ + α, (s(t), i(t)) → (1, 0). But if i(t) → i∗ > 0, the total
population size is a solution of (A1), which implies N (t) → 0.

Appendix B

The next generation matrix approach is used to define the basic repro-
duction number. It is assumed that the population has a stable disease-
free equilibrium in the absence of disease. Only variables that repre-
sent infected individuals are considered. If �I = (I1 , . . . , In )T denotes
the vector of infected individuals, then linearizing the system of differ-
ential equations about the disease-free equilibrium yields d�I/dt = J�I,
where J = F − V . Matrix F represents the rate of acquisition of new
infections and matrix V represents the rate of recovery and transitions
between infected classes. Some sufficient conditions guarantee that the
basic reproduction number is the spectral radius of the next genera-
tion matrix (van den Driessche and Watmough [2002, 2008]). If these
conditions are satisfied, then the next generation matrix, defined as
M = FV −1 , gives

R0 = ρ(M).

The type reproduction number is defined in terms of the next
generation matrix M . Only those variables in the vector of infected
individuals �I that are to be controlled are considered. For example,
to eliminate disease spread by controlling I 1 , let eT = (1, 0, . . . , 0),
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P = (pij ), p11 = 1 and pij = 0, i , j 
= 1, 1. In the first generation, the
number of infections of type 1 is eTMe = m11 . In the second genera-
tion, the number of infections of type 1 is eT M [(I − P )M ]e, where I
is the identity matrix of order n. Therefore, in generation j , the num-
ber of infections of type 1 is eT M [(I − P )M ]j−1e. In general, the type
reproduction for control of host type 1 is

T1 = eT M

∞∑
k=0

[(I − P )M ]k e

= eT M [I − (I − P )M ]−1e

provided ρ((I − P )M) < 1 and M is irreducible (Heesterbeek and
Roberts [2007], Roberts and Heesterbeek [2003]). If all infected indi-
viduals I 1 , . . . , In are to be controlled, then P , e and eT are replaced
by the identity matrix, and the spectral radius of the resulting matrix
is taken. In this case the type reproduction number is the same as the
basic reproduction number T = ρ(M) = R0 .
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