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The Use of Cluster Analysis in Typological 
Research on Community College Students

Peter Riley Bahr, Rob Bielby, Emily House

In Chapter Three in this volume, Peter Riley Bahr makes the case for the 
need to differentiate and identify types of community college students, 
described there as “the varied answers to who is enrolling in a given com-
munity college, how they are using the community college, and to what 
end they are using it.” The chapter demonstrates through an application 
that understanding who students are with respect to their use of the com-
munity college has substantial value to community college stakeholders as 
they seek to address a range of policy- and practice-relevant questions. In 
other words, there is much to be gained by community college stakehold-
ers from a comprehensive system of classification (a typology) of student 
behavioral profiles (Bahr, 2010, 2011).

One useful and increasingly popular method of classifying students is 
known commonly as cluster analysis (Ammon, Bowman, and Mourad, 
2008; Bahr, 2010; Boughan, 2000; Hagedorn and Prather, 2005; VanDer-
Linden, 2002). The variety of techniques that comprise the cluster ana-
lytic family are intended to sort observations (for example, students) 
within a data set into subsets (clusters) that share similar characteristics 
and differ in meaningful ways from other subsets (Borden, 2005; Jain and 
Dubes, 1988; Punj and Stewart, 1983). In the case of community college 
students, for example, clusters may be formed on the basis of student aspi-
rations (VanDerLinden, 2002), student course-taking and enrollment 
behaviors (Bahr, 2010), student demographic characteristics (Ammon, 
Bowman, and Mourad, 2008), or any combination of these or other mea-
sures (Boughan, 2000). These clusters assist in the identifi cation of 

This chapter provides an introduction to the family of partitional 
cluster analytical methods, with specific attention to research on 
community college students. Key decision points and common 
approaches in the use of cluster analysis are described.
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patterns of behaviors or characteristics in data sets that contain an other-
wise incomprehensible amount of student information.

The goal of cluster analysis, broadly stated, is to fi nd the arrangement 
of observations and clusters that maximizes both within-group homogene-
ity and between-group heterogeneity (Borden, 2005; Everitt, Landau, 
Leese, and Stahl, 2011). Within-group homogeneity refers to the extent to 
which observations that are assigned to a given cluster share similar attri-
butes on the variables included in the cluster analysis. Between-group het-
erogeneity refers to the extent to which each cluster is dissimilar in the 
aggregate from other clusters with respect to the variables included in the 
analysis. As Cormack (1971) described it, the goal of cluster analysis is to 
arrive at groups of observations that have “internal cohesion and external 
isolation” (p. 329). Thus, the optimal cluster solution places together into 
clusters those students who are most alike on the variables of interest and 
simultaneously creates clusters that on average are most different from 
one another on the variables of interest.

In this chapter, we provide an introduction to the cluster analytic 
method as it pertains to research on community college students. The execu-
tion of cluster analysis requires a number of carefully considered method-
ological decisions. The fi rst set of decisions concerns the selection of the 
variables that will be included in the analysis, the scaling of these variables, 
and the structure of the data. The second involves the selection of a proxim-
ity metric by which within-group homogeneity and between-group hetero-
geneity will be calculated. Then, the cluster technique itself must be selected. 
Finally, one must decide how to make sense of the identifi ed clusters.

In the sections that follow, we describe each stage of the decision-
making process and detail several common approaches at each stage. 
Although the intent of this chapter is not to develop a detailed manual for 
the use of cluster analysis, we cite many comprehensive sources through-
out to aid researchers in locating additional informational resources.

Data Preparation

Thanks in part to the increasing focus on data-driven decision making in 
community colleges (Morest and Jenkins, 2007) and the growth of state-
wide data systems (Ewell and Boeke, 2007; Ewell and Jenkins, 2008), the 
number and size of data resources that are available to community college 
researchers have grown substantially in recent years. However, the increase 
in data resources has been accompanied by an increase in the complexity 
of the data as well, making cluster analysis all the more useful as an ana-
lytical tool. Still, cluster analysis has its own complexities ( Jain, Murty, 
and Flynn, 1999; Punj and Stewart, 1983; Rapkin and Luke, 1993), begin-
ning with the preparation of the data. In this section, we describe data 
preparation for cluster analysis: selecting variables, transforming the scales 
of variables, and structuring the data.
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Variable Selection. As with most other analytical procedures, vari-
able selection is a critical aspect of cluster analysis (Borden, 2005). Per-
haps more than most other analytical procedures, though, the results of 
cluster analysis are highly sensitive to variable selection (Fowlkes, Gnana-
desikan, and Kettenring, 1988). For example, demographic characteristics 
such as race, sex, age, and citizenship frequently are available in data sets 
that pertain to community college students, and such variables are used in 
analyses nearly as a matter of course. However, as Bahr (2010) explained, 
“The inclusion of race, sex, and age presumes that these variables are not 
just important predictors of cluster membership, but, rather, important 
variables in their own right for defi ning a ‘type’ of student” (pp. 727–728), 
which may or may not agree with objectives that underlie a researcher’s 
use of cluster analysis

In this respect, researchers must be wary of using every variable that 
is available in a given data set simply because it is available and instead 
focus on selecting variables that are pertinent to the research questions of 
interest (Punj and Stewart, 1983; Rapkin and Luke, 1993). For example, if 
a researcher is seeking to understand students’ enrollment or course-
taking patterns, demographic variables are not dimensions on which the 
clusters should be projected. Instead, one might consider course credit 
load, number of enrolled semesters, course success rate, number of 
courses attempted in math or English, and the like. Furthermore, simula-
tion models have shown that the inclusion of variables that are unrelated 
to the true clusters in a data set reduces the capability of cluster analytic 
algorithms to return an optimal solution (Milligan, 1980). Therefore, 
whenever possible, it is important to consider carefully the variables that 
are available and select only those that are relevant for the research ques-
tions that underlie the analysis.

Of note, one aspect of variable selection with which researchers need 
not be concerned when using cluster analysis is the distinction between 
independent and dependent variables (Punj and Stewart, 1983). As Bahr 
(2010) explained, “Cluster analytic techniques do not presuppose the seg-
regation of type and outcome variables” (p. 745, italics in original). Thus, 
variables that typically would be considered outcomes, such as degree 
completion, may be employed together in a cluster analysis with variables 
that typically would be considered predictors, such as course credit load, 
if the research questions justify this joint use.

While selecting variables based on specifi c research questions is greatly 
preferred, a number of other variable selection techniques exist for instances 
in which the appropriate set of variables is not clear (Steinley, 2006). Similar 
to stepwise techniques in multiple regression (Beale, 1970), these methods 
compare the statistical properties of cluster solutions based on varying sets 
of variables and select the set of variables that optimizes the chosen metric. 
Although we do not discuss these alternatives here, we refer readers to 
Steinley (2006) and Steinley and Brusco (2008) for further information.
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Transforming the Scales of Variables. If the variables selected for 
the cluster analysis are continuous (as opposed to dichotomous, nominal, 
or ordinal), it is common to transform the scales of the variables in order to 
reduce the effect on the cluster analytic process of differences in ranges, 
magnitudes, and units of measurement (Gnanadesikan, Kettenring, and 
Tsao, 1995; Hunt and Jorgensen, 2011; Jain, Murty, and Flynn, 1999; 
Milligan and Cooper, 1988; Rapkin and Luke, 1993). In many cases, this 
transformation is accomplished by what is known commonly as standard-
ization or autoscaling. The mean of a given variable is subtracted from each 
value of that variable, and this difference is divided by the standard devia-
tion of the variable, resulting in a transformed variable that has a mean of 
zero and a standard deviation of one. The autoscaling equation is presented 
below:

k
k k

i
i

k

* =
−( )

σ

In this equation, ki is the unstandardized value of variable k for obser-
vation i (the value of a variable for a given student), k̄ is the mean of vari-
able k for all observations in the data set, σk is the standard deviation of 
variable k for all observations in the data set, and ki* is the autoscaled 
value of variable k for observation i.

While autoscaling is a convenient method to ensure that continuous 
variables in a cluster analysis have the same mean and variance, it is some-
what arbitrary and applies an implicit weighting scheme to the data (Ever-
itt, Landau, Leese, and Stahl, 2011; Steinley, 2006). In effect, each variable 
is weighted by the inverse of its standard deviation, thereby decreasing the 
weight of variables that have greater variance and, conversely, increasing 
the weight of variables that have lower variance. This weighting scheme 
may have signifi cant consequences for the solution that is returned by the 
cluster analytic procedure because a variable in the data that, as a practical 
matter, varies little is given equal standing with a variable that varies greatly. 
As Milligan and Cooper (1988) argued, “There is no compelling reason to 
practice democracy while performing all cluster analyses” (p. 183).

As an alternative, Milligan and Cooper (1988) suggested that each 
value of a given variable be divided by the range of that variable rather 
than the standard deviation. They offered two different formulas to accom-
plish this end:
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Here, kmin and kmax refer to the minimum and maximum values, 
respectively, of variable k for all observations in the data set. The benefi t of 
the second option over the fi rst is that it produces scaled values that are 
bounded between zero and one, so long as the unscaled variable does not 
have negative values.

Milligan and Cooper (1988) argued that these range-based scaling 
techniques produce scaled variables with desirable qualities for cluster 
analysis, but their conclusions are not universally accepted (Gnanadesi-
kan, Kettenring, and Tsao, 1995). In addition, the range-based transforma-
tion limits the interpretability of the variables, particularly when compared 
with traditional autoscaling. With autoscaling, a one-unit change in a 
standardized variable represents a change of one standard deviation in the 
unstandardized variable. The same does not hold for range-based scaling.

We should note here that scale transformation does not necessarily 
entirely solve the problem of extreme values and outliers on a given vari-
able. Some of the most common cluster analytic techniques are based on 
the means of variables and therefore may be infl uenced greatly by extreme 
values even when the variables are standardized (Rapkin and Luke, 1993). 
Therefore, it is important for researchers to examine the distribution of 
each variable to be included in the cluster analysis in order to identify 
extreme values, explore why these values exist in the data, and consider 
appropriate solutions if an intervention appears to be warranted. Some of 
the potential solutions include deleting extreme values (which generally is 
not preferred), adjusting the values of extreme observations to a certain 
percentile of the distribution of that variable (for example, adjusting 
downward to equal the 99.9th percentile those values on a given variable 
that exceed the 99.9th percentile), and accommodating extreme values 
through the choice of cluster analytic technique. Although a detailed dis-
cussion of extreme values and outliers is outside the scope of this chapter, 
we refer readers to Fox (2008) for a discussion of outlier identifi cation 
and to Punj and Stewart (1983) and Steinley (2006) for discussions of out-
liers as they pertain specifi cally to cluster analysis.

Data Structure. Whether or not a researcher elects to transform the 
scales of variables, the next step to consider is the manner in which the 
data will be structured. Prior to the cluster analysis, the data should be 
assembled in one of two forms ( Jain and Dubes, 1988; Jain, Murty, and 
Flynn, 1999; Everitt, Landau, Leese, and Stahl, 2011). The fi rst possible 
form is a typical N (observations) by p (variables) matrix, with each row 
representing one observation (for example, a student) and each column 
representing one variable. The second possible form is an N × N proximity 
matrix in which each cell represents the distance between two observa-
tions on the selected proximity metric, which we discuss later.

Computationally, most statistical software will transform a standard 
N × p data matrix into an N × N proximity matrix in the process of calcu-
lating a cluster solution. As data generally are arranged in the N × p 
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format, leaving one’s data in this form removes a step from the process of 
executing a cluster analysis and reduces the possibility of user error.

However, there are some advantages to converting an N × p data 
matrix into an N × N proximity matrix prior to running the cluster analy-
sis (Everitt, Landau, Leese, and Stahl, 2011). First, some proximity met-
rics may not be available in a particular statistical program and therefore 
must be calculated by hand. Second, the N × N matrix allows one to 
explore the data visually before executing the cluster analysis (Borden, 
2005). This visual exploration may aid in the selection of an appropriate 
cluster technique and help the researcher develop expectations concern-
ing the fi ndings.

Such visual exploration, however, is constrained by the size of the 
data set. A data set that contains only 500 students would produce an 
N × N dissimilarity matrix containing 250,000 cells. Although the matrix 
is symmetric ( Jain and Dubes, 1988), meaning that the diagonal contains 
zeros and the upper and lower halves of the matrix are identical, one still 
would be faced with an unwieldy amount of information. Thus, the choice 
of data format likely will be governed as much by the need for effi ciency 
as by the desire for control over the analysis.

Proximity Metrics

The next step in the cluster analytic process is selecting a proximity met-
ric. A proximity metric is used to measure the distance between a given 
observation and another such observation, as well as the distance between 
an observation and a cluster of other such observations, with respect to 
the variables selected for the cluster analysis. In other words, in order to 
evaluate a particular set of assignments of observations to clusters, one 
must decide on a method of measuring the proximity of observations to 
one another, keeping in mind that the goal of cluster analysis is to produce 
the set of clusters that minimizes the distance between observations that 
share a cluster and maximizes the distance between clusters.

In this section, we fi rst defi ne important terminology and then 
describe several proximity metrics that are used frequently in cluster anal-
ysis. We organize the proximity metrics by the level of measurement of 
variables to which the metrics apply (for example, continuous, dichoto-
mous, nominal, and ordinal). The set of metrics detailed here is in no way 
exhaustive, but the citations we provide will guide readers to more exten-
sive lists and descriptions.

Terminology. Three terms occur especially frequently in the litera-
ture on proximity metrics: dissimilarity, distance, and similarity (Gower, 
1985). Dissimilarity typically describes proximity metrics that are used for 
continuous variables (Hunt and Jorgensen, 2011), and these measure the 
degree to which two observations differ on the variables included in the 
cluster analysis. Dissimilarity metrics may be referred to as distance 
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metrics when they satisfy the triangular inequality (Everitt, Landau, Leese, 
and Stahl, 2011; Gower and Legendre, 1986). In contrast, similarity met-
rics typically are used with dichotomous, nominal, and ordinal variables, 
that is, categorical variables (Hunt and Jorgensen, 2011). Similarity met-
rics, when used with categorical variables, may be understood as the 
degree to which two observations share the same values on the variables 
included in the cluster analysis (StataCorp, 2007).

As a general rule, researchers are constrained to select a proximity 
metric that applies to either continuous variables or categorical variables 
(Borden, 1995, 2005), although there are a few exceptions to this rule. In 
other words, in most cases, all of the variables to be used in the cluster 
analysis share a level of measurement (for example, all continuous, all 
dichotomous). Note that nominal and ordinal variables may be treated as 
such, though this constrains the researcher to a subset of all proximity 
metrics. Alternatively, nominal and ordinal variables may be converted 
into sets of dichotomous dummy variables (Everitt, Landau, Leese, and 
Stahl, 2011; Hunt and Jorgensen, 2011). However, this conversion raises 
some analytical concerns, which we discuss later.

Dissimilarity Metrics for Continuous Variables. A large number of 
dissimilarity metrics are available for use with continuous variables, and 
Euclidean distance is among the most commonly used ( Jain and Dubes, 
1988). Euclidean distance represents an intuitive understanding of the 
measurement of the distance between two observations as the linear dis-
tance between points in space (Everitt, Landau, Leese, and Stahl, 2011; 
Jain, Murty, and Flynn, 1999; Rapkin and Luke, 1993). It is calculated as 
follows:

d x xij ik jk
k

p

= −( )
=

∑ 2

1

Here, dij is the dissimilarity of observations i and j. The terms xik and 
xjk represent the values of continuous variable k for observations i and j, 
respectively. The portion within the parentheses represents the difference 
between observations i and j on variable k. Much like the calculation of a 
standard deviation, the difference between the two observations on this 
variable is squared to eliminate negative values, the squared differences of 
the comparisons on all of the p variables (that is, all of the variables 
included in the analysis) are summed, and then the square root of the sum 
is calculated.

Although conveniently intuitive and used frequently in cluster analy-
sis, Euclidean distance is sensitive to the infl uence of outliers due to the 
squaring of the parenthetical term (Cormack, 1971). In addition, it is 
highly sensitive to differentials in the scales of the variables, generally 
requiring that the scales be transformed prior to the analysis ( Jain and 
Dubes, 1988).
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Another common distance metric for continuous data is the absolute 
value distance (Everitt, Landau, Leese, and Stahl, 2011; Jain and Dubes, 
1988). Absolute value distance is calculated as follows:

d x xij ik jk
k

p

= −
=

∑
1

Similar to the benefi ts of using the least absolute deviations estimator 
in a regression context (Angrist and Pischke, 2009), the use of absolute 
value distance reduces the impact of extreme values and outliers on the 
cluster analytic process because the differences between observations are 
not squared in the calculation. However, this metric lacks the intuitive 
interpretation offered by Euclidean distance. In fact, it has been referred to 
as the taxicab metric, the city block metric, and the Manhattan metric 
because proximity is measured not linearly but instead with joints compa-
rable to corners on a street map (Borden, 2005; Jain and Dubes, 1988; 
Rapkin and Luke, 1993). Moreover, absolute value distance is less compu-
tationally effi cient than is Euclidean distance. Regardless, the central con-
cern in selecting between these and other dissimilarity metrics should be 
the degree to which they fi t the characteristics of the data and the degree 
of clarity that they provide to the proximity of observations (Everitt, 
Landau, Leese, and Stahl, 2011).

Similarity Metrics for Dichotomous variables. In circumstances in 
which the variables to be used in the cluster analysis are dichotomous 
(variables that have only two values, typically zero and one), one would 
select from among a wide range of similarity metrics designed for this 
level of measurement (Borden, 2005; Gower and Legendre, 1986; Hubálek, 
1982; StataCorp, 2007). As a general rule, these similarity metrics draw on 
the idea that on each dichotomous variable that is included in the cluster 
analysis, a given two observations (for example, two students) will match 
by sharing a value of one (a 1–1 match), match by sharing a value of zero 
(a 0–0 match), or not match because one observation has a value of one 
on the variable while the other observation has a value of zero. Each of the 
similarity metrics that is available for such data combines the information 
on all comparisons for two observations into a particular expression of the 
ratio of matches to comparisons. The various similarity metrics differ from 
each other primarily with respect to the weight given to 1–1 matches ver-
sus 0–0 matches and the weight given to matches versus mismatches.

The most common of the similarity metrics for dichotomous variables 
is a simple matching coeffi cient, which represents the proportion of the 
variables included in the analysis on which two observations match (Jain 
and Dubes, 1988). Many of the more complex expressions of similarity 
metrics arise from concerns about how to deal with 0–0 matches, where 
two observations match because neither has the characteristic indicated 
by a given variable, as opposed to 1–1 matches, where two observations 
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match because they share the characteristic indicated by that variable 
(Cormack, 1971). For example, noting that two students enrolled in reme-
dial mathematics (a 1–1 match on a hypothetical variable remedial math) 
may be more informative for the purpose of a given cluster analysis than 
noting that two students match because neither enrolled in remedial 
mathematics (a 0–0 math). Not matching on this variable could mean that 
one student enrolled in college-level math, while the other did not enroll 
in math at all. In other words, the presence of a characteristic may differ in 
importance from the absence of this characteristic (Gower and Legendre, 
1986). In such cases, when a 1–1 match is more informative than is a 0–0 
match, a recommended similarity metric is the Jaccard coeffi cient (Jain 
and Dubes, 1988), which is the ratio of 1–1 matches to the sum of 1–1 
matches and all mismatches.

Similarity Metrics for Nominal and Ordinal Variables. When the 
cluster analysis to be performed draws on variables that are nominal or 
ordinal, one method of handling the variables is to recode them into a 
series of dichotomous dummy variables, where each dummy variable rep-
resents one value or level of a given nominal or ordinal variable. However, 
such manipulations result in large numbers of 0–0 matches and, conse-
quently, even greater concern about the selection of an optimal similarity 
metric (Cormack, 1971). Instead, Everitt, Landau, Leese, and Stahl (2011) 
suggest the use of the following metric:

s
p

sij ijk
k

p

=
=

∑1

1

Here, sij denotes the similarity between observations i and j across p 
variables. The match or mismatch of observations i and j on variable k is 
denoted by sijk, which is assigned a value of one if the two observations 
match on k and a value of zero if the two observations do not match on k. 
The sum of the matches and mismatches is calculated and then divided by 
the total number of variables (p), resulting in a similarity coeffi cient that is 
equivalent to the simple matching coeffi cient discussed earlier for dichot-
omous variables. Unfortunately, this metric is not a standard option for 
cluster analysis in many statistical programs (StataCorp, 2007). Therefore, 
its use requires the researcher to calculate the N × N proximity matrix.

Gower: A Versatile Similarity Metric. Gower (1971) proposed a 
similarity metric that may be applied to data sets that contain variables of 
any level of measurement (Everitt, Landau, Leese, and Stahl, 2011; Stata-
Corp, 2007). It is calculated as follows:
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Here again, sij is the similarity of two observations i and j across p 
variables. The term δijk is a quantity that is equal to one when a valid com-
parison may be made between the two observations on a given variable k 
and zero otherwise. Cases in which valid comparisons cannot be made 
typically occur when one or both of the observations have a missing value 
on a given variable. However, listwise deletion of observations with miss-
ing values on any variable included in the analysis often is a default setting 
of cluster analytic procedures in statistical software (such as StataCorp, 
2007). Therefore, the denominator simply will be a count of the total 
number of variables on which the two observations were compared.

The innovative aspect of the Gower coeffi cient is the handling of sijk, 
which is the similarity of two observations i and j on a given variable k. 
When the variable of interest is dichotomous, nominal, or ordinal, a sim-
ple matching metric (detailed earlier) is used, where matches are assigned 
a value of one and mismatches are assigned a value of zero. When k is 
continuous, sijk is calculated as follows:

s
x x

k k
ijk

ik jk

max min

= −
−
−

1

Here, xik and xjk represent the values for observations i and j, respec-
tively, on variable k. The denominator is the range of variable k. The quo-
tient of the absolute difference between xik and xjk and the range of k is the 
dissimilarity of observation i and j on variable k, and it has a potential 
range of zero to one, assuming that the variable k does not have negative 
values. Subtracting this quotient from one produces a similarity that then 
may be combined with the similarities calculated for dichotomous, nomi-
nal, and ordinal variables.

Returning to the general Gower equation presented earlier in this sec-
tion, the sum of the similarities (sijk) across all of the variables is divided 
by the number of variables on which comparisons were made (δijk), result-
ing in a coeffi cient (sij) that represents the degree of similarity between 
observations i and j across all of the variables. Hence, the Gower coeffi -
cient is quite versatile in that it may be used with variables that have any 
level of measurement. Still, it is important to note that, with respect to cat-
egorical variables, the Gower coeffi cient suffers the limitation discussed 
earlier of treating 1–1 matches and 0–0 matches as equal in importance. 
This limitation should be contemplated carefully in light of the research 
questions to be addressed and weighed against the benefi ts of the 
versatility.

Cluster Techniques

Once the proximity metric has been selected, one may proceed to the clus-
ter analysis itself. Here we discuss two common and closely related 
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methods of cluster analysis that are classified as partition methods. In 
addition to the partition methods, a number of other classes of cluster 
analytic techniques are available, but partition methods typically are pre-
ferred when one has a large data set (Hunt and Jorgensen, 2011; Jain and 
Dubes, 1988; Jain, Murty, and Flynn, 1999), as often is the case with data 
sets composed of student records.

k-Means. The cluster analysis technique known as k-means is an 
iterative algorithm that attempts to generate the most appropriate fi t of 
observations to clusters, given the number of clusters (k) selected by the 
researcher prior to the execution of the cluster analysis (Everitt, Landau, 
Leese, and Stahl, 2011; Hunt and Jorgensen, 2011). In other words, the 
researcher selects the number of clusters in advance, which is the k in 
“k-means” (Rapkin and Luke, 1993). The algorithm generates the assign-
ment of students to clusters that minimizes differences between observa-
tions within a cluster and maximizes the differences between clusters.

The algorithm begins by selecting starting sets of observations equal 
to the number of clusters that the researcher selects. These starting sets of 
observations constitute the initial centroids on which the clusters are 
built. In k-means cluster analysis, a centroid may be understood as the 
multivariate mean of each cluster—the “center” of each cluster (Steinley, 
2006). Interestingly, the starting sets need not be equal in size. However, 
no observation ever is assigned to more than one cluster at a given time 
(Hautamäki and others, 2005). Therefore, using one very large starting set 
to form one of the initial centroids would require that the remaining start-
ing sets for the other initial centroids be correspondingly small.

The selection of the starting sets of observations may be accomplished 
in a number of ways (Punj and Stewart, 1983; Steinley, 2006). One com-
mon method is to select randomly k observations such that each randomly 
selected observation becomes the initial centroid of a cluster. Another 
common method is to partition the data set randomly into k groups, allo-
cating randomly each observation in the data to one starting set. Both 
methods depend on the random number generator of the statistical soft-
ware, which necessitates setting the starting number so that the results 
may be replicated. As a third alternative, a researcher may have an idea 
about which observations should be assigned to the starting sets to form 
the initial centroids, perhaps based on some criterion in the data, and 
these observations may be identifi ed and used in this manner. In fact, 
these “rational starts” (Steinley, 2006) have been recommended by some 
to achieve optimal cluster solutions when using k-means (Milligan, 1980).

Once the initial centroids are constructed from the starting sets, the 
algorithm proceeds by assigning each observation to the cluster to which 
it is closest in terms of its multivariate mean (Steinley, 2006). Then the 
multivariate mean of each centroid is recomputed, and the proximity of 
each observation to its assigned cluster and the centroids of the other clus-
ters is reevaluated. Observations are moved if they are closer in terms of 
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multivariate mean to the centroid of another cluster than to the centroid 
of the cluster to which they currently are assigned, and the centroids again 
are recomputed. The process continues in this iterative fashion until no 
observations are moved after the centroids are recomputed, until a prede-
termined number of iterations have been completed, or until some other 
user-determined stopping rule is achieved.

Here k-means sometimes suffers from problems related to local 
optima, meaning that the algorithm may produce a cluster solution that is 
optimal with respect to the starting sets of observations but not optimal 
with respect to the data set as a whole (Falkenauer and Marchand, 2001; 
Hunt and Jorgensen, 2011; Jain and Dubes, 1988; Jain, Murty, and Flynn, 
1999; Milligan, 1980; Steinley, 2003, 2006). Therefore, if one uses a ran-
dom number generator to build starting sets, it may be prudent to explore 
several different starting numbers in succession and then compare the 
resulting cluster solutions to ascertain that the clusters are similar regard-
less of the starting number.

k-Medians. As with most other statistical procedures that depend on 
the mean, one of the major challenges of k-means cluster analysis is its 
sensitivity to the infl uence of outliers and extreme values (Hautamäki and 
others, 2005). Similar to the calculation of a univariate mean, the multi-
variate mean of a centroid tends to be drawn disproportionately toward 
extreme values. As the centroids shift, the measured proximity of individ-
ual observations changes, possibly resulting in observations being reas-
signed to the “wrong” clusters (assuming that there is a “correct” 
underlying cluster structure to the data). The impact on cluster solutions 
of this sensitivity to extreme values requires determined efforts by the 
researcher to identify and resolve outlying observations prior to perform-
ing k-means cluster analysis.

The technique known as k-medians cluster analysis seeks to remedy 
this problem by relying on the multivariate median as the center of each 
cluster rather than a mean-based centroid. Under some circumstances, 
this may result in decreased infl uence of outliers on the cluster solution 
because the calculation of a median is dependent only on the rank order 
of values rather than the distance between values (Steinley, 2006). Still, 
k-means remains a highly popular cluster analytic method, in part for its 
intuitive nature and in part because it produces cluster solutions that are 
competitive with those produced by other partitioning procedures 
(Milligan, 1980), particularly when it is implemented thoughtfully, with 
attention to variable selection and scale, extreme values, selection of start-
ing sets, and so forth.

Examination of the Results

No discussion of cluster analysis would be complete without some consid-
eration of how to examine and make sense of the identified clusters. The 
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possibilities in this respect are numerous (Punj and Stewart, 1983) but 
ultimately should be guided by the nature of the data, the particular analy-
sis that was executed, and the focal research questions of the study. Still, 
we recommend that, at a minimum, the researcher conduct three prelimi-
nary steps to begin making sense of the identified clusters.

First, calculate measures of central tendency, such as the mean and 
the median, for each variable in each cluster and for the data set as a 
whole, and determine the size of each cluster relative to the data set as a 
whole. These statistics will provide the researcher with a sense of where 
the center of mass lies for each cluster, relative to the other clusters and 
relative to all students in the data set, answering the question, “Who are 
the students in each cluster?”

Second, calculate measures of dispersion, such as the standard devia-
tion and the range, for each variable in each cluster and for the data set as 
a whole. These statistics will allow the researcher to determine how much 
variation exists on each variable within each cluster. This is an important 
step because the center of mass for a particular variable in a particular 
cluster may be deceiving in that the cluster may contain students who, in 
the aggregate, exhibit a high level of variability on that variable. To aid in 
this examination, we recommend that the researcher calculate the 10th 
and 90th percentiles of any continuous variables, thereby trimming the 
extreme values to garner a sense of the amount of variation that exists 
among the middle 80 percent of the students in a cluster (Bahr, 2010). 
Taken together, these statistics allow the researcher to answer the ques-
tion, “How consistent are the characteristics that I observe in each 
cluster?”

Finally, if the researcher has executed several different cluster analy-
ses, using the same data set but differing numbers of presumed clusters 
(differing values of k), different starting sets, or different proximity met-
rics, we recommend the execution of simple cross-tabulations of the 
several cluster solutions (Bahr, 2010; Rapkin and Luke, 1993). These 
cross-tabulations can be enormously informative concerning how the 
cluster algorithm perceives the similarities or differences of the clusters in 
that one will be able to observe, for example, how clusters of students in 
one cluster solution are collapsed to produce a solution that entails fewer 
presumed clusters or subdivided to produce a solution that entails a 
greater number of presumed clusters.

Conclusion

With respect to the diversity of the student body and the variability of stu-
dents’ means and ends, the community college is a complex postsecondary 
environment. As a result, the community college researcher is faced with a 
complex and challenging task in answering questions about who is enroll-
ing in the college, how they are using the college, and to what end they are 
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using it. Cluster analysis is one promising technique for answering such 
questions, but its use requires careful consideration of a number of meth-
odological decisions. In this chapter, we provided an introduction to some 
of the critical decision points and common approaches in executing a 
cluster analysis of data that address community college students.
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