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Somatic Mutations in the Chromatin Remodeling Gene
ARID1A Occur in Several Tumor Types
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ABSTRACT: Mutations in the chromatin remodeling gene
ARID1A have recently been identified in the majority of
ovarian clear cell carcinomas (OCCCs). To determine the
prevalence of mutations in other tumor types, we evalu-
ated 759 malignant neoplasms including those of the pan-
creas, breast, colon, stomach, lung, prostate, brain, and
blood (leukemias). We identified truncating mutations in
6% of the neoplasms studied; nontruncating somatic mu-
tations were identified in an additional 0.4% of neoplasms.
Mutations were most commonly found in gastrointestinal
samples with 12 of 119 (10%) colorectal and 10 of 100
(10%) gastric neoplasms, respectively, harboring changes.
More than half of the mutated colorectal and gastric can-
cers displayed microsatellite instability (MSI) and the mu-
tations in these tumors were out-of-frame insertions or
deletions at mononucleotide repeats. Mutations were also
identified in 2–8% of tumors of the pancreas, breast, brain
(medulloblastomas), prostate, and lung, and none of these
tumors displayed MSI. These findings suggest that the
aberrant chromatin remodeling consequent to ARID1A
inactivation contributes to a variety of different types of
neoplasms.
Hum Mutat 33:100–103, 2012. C© 2011 Wiley Periodicals, Inc.
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Advances in sequencing technologies and bioinformatics, cou-
pled with the identification of the sequence of the human genome,
have enabled more than a dozen tumor types to be evaluated for
mutations over their entire exomes [Meyerson et al., 2010; Stratton,
2011]. These studies have demonstrated that the landscape of each
particular tumor type is defined by a small number of genes mutated
at a high frequency, called “gene mountains” and a larger number of
gene “hills” that are present in a smaller proportion of cases [Wood
et al., 2007].

Members of our group recently used next generation sequencing
to evaluate the exomes of ovarian clear cell carcinomas (OCCCs)
and identified truncating mutations in ARID1A (MIM# 603024) in
57% of these tumors [Jones et al., 2010]. Independently, Wiegand
et al. [2010] discovered a high prevalence of ARID1A mutations
in both OCCC (45%) and endometriod carcinoma of the ovary
(30%). Combining both studies, two mutations were identified in
the same tumor in 30% of the mutated cases, which, taken together
with the inactivating nature of the mutations and their remarkable
frequency, provided unequivocal evidence that ARID1A is a tu-
mor suppressor gene in these two tumor types. In addition, loss of
ARID1A expression was observed in approximately 20% of uterine
carcinomas [Wiegand et al., 2011]. In previous studies, chromo-
somal translocations involving ARID1A were identified in a breast
and a lung cancer, though the interpretation of these alterations was
challenging [Huang et al., 2007].

The protein encoded by ARID1A is a key component of the highly
conserved SWI–SNF (switch/sucrose non-fermentable) chromatin
remodeling complex that uses adenosine triphosphate (ATP)-
dependent helicase activities to allow access of transcriptional ac-
tivators and repressors to DNA [Wang et al., 2004; Wilson and
Roberts, 2011]. The protein therefore appears to be involved in
regulating processes including DNA repair, differentiation, and de-
velopment [Weissman et al., 2009]. Functional studies by Nagl
et al. [2007] have demonstrated that the SWI–SNF complex sup-
presses proliferation. The ARID1A-encoded protein, BAF250a, is
one of two mutually exclusive ARID1 subunits. BAF250a has
a DNA-binding domain that specifically binds to AT-rich DNA
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Table 1. Mutations in the Chromatin Remodeling Gene, ARID1A

Sample Tumor type Nucleotide (genomic)b Nucleotide (cDNA)c Amino acid (protein) Mutation type MSI status

399 Breast g.chr1:26928914delC c.1323delC Fs Indel MSS
3814 Breast g.chr1:26979235G>A c.6259G>A p.G2087R Missense MSS
5887 Breast g.chr1:26978695A>T c.5719A>T p.I1907F Missense MSS
C-122 Breast g.chr1:26965396C>T c.2830C>T p.Q944X Nonsense MSS
Co001 Colon g.chr1:26896495delG c.1014delG Fs Indel MSI-high
Co001 Colon g.chr1:26973994delC c.4689delC Fs Indel MSI-high
Co014 Colon g.chr1:26970279delA c.3281delA Fs Indel MSI-high
Co024 Colon g.chr1:26970342delC c.3344delC Fs Indel MSI-high
Co024 Colon g.chr1:26978524delG c.5548delG Fs Indel MSI-high
Co038 Colon g.chr1:26973659delC c.4354delC Fs Indel MSI-high
Co038 Colon g.chr1:26978524delG c.5548delG Fs Indel MSI-high
Co083 Colon g.chr1:26978524delG c.5548delG Fs Indel MSI-high
Co097 Colon g.chr1:26978524dupG c.5548dupG Fs Indel MSI-high
Hx132 Colon g.chr1:26931798delC c.1848delC Fs Indel ND
Hx132 Colon g.chr1:26965600_26965602delAAC c.2944_2946delAAC In-frame del Indel ND
Hx164 Colon g.chr1:26930536C>T c.1657C>T p.Q553X Nonsense MSS
Hx245 Colon g.chr1:26979204C>A c.6228C>A p.Y2076X Nonsense MSS
Hx290 Colon g.chr1:26978814_26978820dupACAGAGC (hom) c.5838_5844dupACAGAGC Fs Indel MSS
Hx308 Colon g.chr1:26978810_26978811insAGCACAG c.5834_5835insAGCACAG Fs Indel ND
Hx326 Colon g.chr1:26962098_26962099dupTA c.2467_2468dupTA Fs Indel MSS
G07 Gastric g.chr1:26896360dupC c.879dupC Fs Indel MSI-high
G08 Gastric g.chr1:26896308delG c.827delG Fs Indel MSI-high
G13 Gastric g.chr1:26974048_26974049delCA c.4743_4744delCA Fs Indel MSI-high
G13 Gastric g.chr1:26978524delG c.5548delG Fs Indel MSI-high
G13 Gastric g.chr1:26974277C>T c.4972C>T p.R1658W Missense MSI-high
G18 Gastric g.chr1:26978335G>T c.5359G>T p.E1787X Nonsense MSS
G21 Gastric g.chr1:26978524delG c.5548delG Fs Indel MSI-high
G24 Gastric g.chr1:26973829T>A c.4524T>A p.Y1508X Nonsense MSI-high
G61 Gastric g.chr1:26978524delG c.5548delG Fs Indel ND
G61 Gastric g.chr1:26979396delC c.6420delC Fs Indel ND
G84 Gastric g.chr1:26961335dupG c.2357dupG Fs Indel MSS
G144 Gastric g.chr1:26896335delG c.854delG Fs Indel MSS
G280 Gastric g.chr1:26896450_26896456delGGGCGCC c.969_975delGGGCGCC Fs Indel MSS
L11C Lung g.chr1:26965400delG c.2834delG Fs Indel ND
L17C Lung g.chr1:26979379_26979384delATTCTG c.6403_6408delATTCTG In-frame del Indel MSS
MB118PTa Medulloblastoma g.chr1:26896496delG c.1015delG Fs Indel MSS
MB155PT Medulloblastoma g.chr1:26974198_26974199InsC c.4893_4894InsC Fs Indel MSS
MB156PT Medulloblastoma g.chr1:26974673delG c.5012delG Fs Indel MSS
Pa07Ca Pancreas g.chr1:26972534C>T c.3826C>T p.R1276X Nonsense MSS
Pa37X Pancreas g.chr1:26978923_26978924delTG c.5947_5948delTG Fs Indel MSS
Pa102Ca Pancreas g.chr1:26965645G>A IVS10+1G>A Splice site Splice site MSS
Pa144X Pancreas g.chr1:26959958_26959959insT c.1945_1946insT Fs Indel MSS
Pa158X Pancreas g.chr1:26961274dupC c.2296dupC Fs Indel MSS
Pa166X Pancreas g.chr1:26978941C>T c.5965C>T p.R1989X Nonsense MSS
Pa194X Pancreas g.chr1:26978941C>T c.5965C>T p.R1989X Nonsense MSS
Pa194X Pancreas g.chr1:26979263C>G c.6287C>G p.S2096X Nonsense MSS
Pa197X Pancreas g.chr1:26930464C>T c.1585C>T p.Q529X Nonsense MSS
Pa198X Pancreas g.chr1:26978524dupG c.5548dupG Fs Indel MSS
Pa216X Pancreas g.chr1:26961380delG c.2402delG Fs Indel MSS
SW32 Prostate g.chr1:26972768delC c.3977delC Fs Indel ND
SW32 Prostate g.chr1:26978524dupG c.5548dupG Fs Indel ND
Pr04PT Prostate g.chr1:26972790_26972792het_delGCA c.3999_4101delGCA In-frame del Indel MSI-high

aMutation previously reported.
bGenomic co-ordinates refer to hg18.
cReference sequence CCDS285.1.
MSI, microsatellite instability; MSS, microsatellite stable; ND, not determined.

sequences and is thought to confer specificity to the complex [Wu
et al., 2009].

Passenger mutations are best defined as those that do not confer
a selective growth advantage to the cells in which they occur, while
driver mutations are those which do confer a growth advantage. It is
often difficult to distinguish driver mutations from passenger mu-
tations when the mutations occur at low frequency. One of the best
examples of this challenge is provided by IDH1 mutations. A single
mutation of IDH1, R132H, was discovered in a whole exomic screen
of 11 colorectal cancers (CRCs) [Sjöblom et al., 2006]. This muta-
tion was not identified in more than 200 additional CRC samples
and was presumed to be a passenger mutation. However, frequent
IDH1 mutations at the identical residue were found when brain

tumors, such as lower grade astrocytomas and oligodendrogliomas
were evaluated [Parsons et al., 2008; Yan et al., 2009]. Thus, the
IDH1 mutation in that original CRC in retrospect was undoubtedly
a driver.

This example illustrates that once a genetic alteration is identified
as a driver in one tumor type, infrequent mutations of the same type
in the same gene in other tumors can be more reliably interpreted.
Given that, it is now known that ARID1A is a bona fide tumor
suppressor gene in OCCC, we applied this principle to the evaluation
of ARID1A mutations in other tumor types. As described below, we
studied more than 700 different neoplasms of seven different types
using Sanger sequencing to determine the contribution of ARID1A
alterations to tumorigenesis in general.
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Figure 1. A: Examples of truncating mutations in ARID1A in gastric, colon, breast, and pancreatic cancers. Arrows indicate the position of the
mutation. Note that in the breast primary tumor (399), there were contaminating nonneoplastic cells that reduced the relative peak heights of the
mutant alleles. B: Distribution and types of mutations identified in ARID1A to date. Exons are indicated in blue with the ARID (AT-rich interactive
domain), DNA-binding domain shown in green, the HIC (hypermethylated in cancer) domain in purple, and the LXXLL (leucine rich) motifs in pink.
Black arrows indicate the position of insertion or deletion mutations, red arrows indicate nonsense mutations, blue arrows indicate missense
variants, and gray arrows indicate splice site alterations. Mutations listed above the figure represent those reported in this study; those below
were identified in Jones et al. [2010] and Wiegand et al. [2010] in ovarian cancers; Gui et al. [2011] in bladder cancer; Varela et al. in renal cancer,
and Birnbaum et al. in pancreatic cancer.

Somatic mutations were identified in 43 of the 759 neoplasms
studied (6%) (Table 1). Eight neoplasms contained two or three
(one case) different mutations, presumably on different alleles, so
the total number of mutations was 52. A relatively high frequency of
mutations was observed in neoplasms of the colon (10%; 12/119),
stomach (10%; 10/100), and pancreas (8%; 10/119). Though only a
small number of prostate tumors was available for study, we iden-
tified two carcinomas with mutations among the 23 studied. Mu-
tations were observed in three of 125 (2%) medulloblastomas, in
four of 114 (4%) breast cancers, and in two of 36 (6%) lung car-
cinomas (Table 1; Fig. 1). No mutations were observed among 34
glioblastomas or 89 leukemias tested.

As expected for inactivating mutations of a tumor suppressor
gene, the mutations were distributed throughout the gene and in-
cluded nonsense variants, out-of-frame and in-frame small inser-
tions and deletions, as well as a small number (three) of missense
changes. Mutations were most commonly observed in a seven-base
G tract around position g.chr1:26978524 (genomic coordinates refer
to hg18) (c.5548), where there were six single base pair deletions and
three duplications among gastric, colon, prostate, and pancreas car-
cinomas. This G tract is the longest mononucleotide repeat in the
coding region and the probability of slippage at mononucleotide
repeats clearly increases with run length [Eshleman et al., 1996;
Markowitz et al., 1995]. Thirty-eight of the 43 samples with somatic
mutations were available for microsatellite instability (MSI) testing.

Twelve tumors (six colon, five gastric, and one prostate) were shown
to be MSI high, and all carried mutations at mononucleotide tracts
in the ARID1A gene (Table 1). It is therefore possible that ARID1A,
such as TGFβRII or BAX, is associated with MSI and that the ho-
mopolymeric repeat frameshifts may result from defects in mis-
match repair [Markowitz et al., 1995; Rampino et al., 1997]. Though
the interpretation of mutations in mismatch repair-deficient tumors
is challenging [Kern, 2002], the fact that approximately 40% of the
CRCs with ARID1A mutations did not have MSI leaves little doubt
that ARID1A plays a role in this tumor type.

The identification of mutations in ARID1A in several different
types of cancer indicates that this gene has a wider role in hu-
man tumorigenesis than previously appreciated. These findings are
supported by the demonstration of loss of the ARID1A protein,
BAF250a, by immunohistochemistry in 14% of gastric and anaplas-
tic thyroid carcinomas [Wiegand et al., 2011] and by the identifi-
cation of ARID1A point mutations in 3 of 48 pancreatic cancers by
Birnbaum et al. [2011]. More recently, ARID1A mutations have also
been observed in 13% of bladder carcinomas [Gui et al., 2011]. In ad-
dition, ARID1A appears to be frequently mutated in gastrointestinal
tumors displaying high levels of MSI. Mutations in other members
of the SWI–SNF chromatin remodeling complex have also been
reported. For example, truncating mutations in SMARCA4/BRG1
were identified in three pancreatic cancers, in a medulloblastoma,
and in several lung cancers [Jones et al., 2008; Medina et al., 2008;
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Parsons et al., 2011]. More recently, 41% of renal cancers have been
shown to have truncating mutations in the SWI–SNF chromatin
remodeling complex gene, PBRM1 [Varela et al., 2011]. In addition,
a pattern of somatic mutation of genes involved more generally in
chromatin remodeling is starting to appear. MLL3 appears to be
involved in a small number of colon and pancreatic cancers and
medulloblastomas [Jones et al., 2008; Parsons et al., 2011; Wood
et al., 2007]; MLL2 is mutated in 14% of medulloblastomas and
a large fraction of non-Hodgkin’s lymphomas [Morin et al., 2011;
Parsons et al., 2011] and JARID1C is genetically altered in a small
proportion of kidney cancers [Dalgliesh et al., 2010]. These data
collectively link genetic alterations to epigenetic changes and pave
the way for a better understanding of both.
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