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Abstract 
 
 

 
Small area estimates provide a critical source of information used by a variety of 

stakeholders to study human conditions and behavior at the local level. Statistical 

agencies regularly collect survey microdata from small geographic areas but are 

prevented from identifying these areas in public-use microdata sets due to disclosure 

concerns. Alternative data dissemination methods include releasing summary tables for 

small areas and accessing restricted identifiers via Research Data Centers. This 

dissertation proposes a new method of disseminating public-use microdata that contains 

more geographical details than are currently being released. The basic idea is to replace 

the observed survey values with imputed, or synthetic, values. Data confidentiality is 

enhanced because no actual values are released.  

This dissertation proposes three statistical methods for generating synthetic data 

for small geographic areas. The first method utilizes a fully-parametric hierarchical 

Bayesian model that is used to generate synthetic microdata from the posterior predictive 

distribution. The second method consists of a nonparametric procedure for generating 

synthetic data for continuous non-normal distributions. The third method accounts for 

complex sample design features and permits the generation of synthetic data for both 

sampled and nonsampled small areas.  

These three methods are demonstrated and evaluated using a mix of public-use 

and restricted microdata from the American Community Survey and National Health 



xi 
 

Interview Survey. Each of the methods is evaluated using empirical, simulation, and 

cross-validation studies. The analytic validity of the methods is assessed by comparing 

the small area estimates obtained from the synthetic data with those obtained from the 

observed data.  
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Chapter 1 

Introduction 

1  Introduction 

Increasingly, researchers are demanding greater access to survey microdata for 

small geographic areas to compute estimates that may influence policy and intervention 

strategies at local levels. Statistical agencies regularly collect survey and census data 

from small geographic areas, but are prevented from releasing detailed geographical 

identifiers in public-use data sets due to privacy concerns and disclosure risks.  

The conflicting tradeoff between data utility and data protection has motivated 

statistical agencies to consider data dissemination procedures that allow researchers to 

access restricted geographical identifiers while keeping disclosure risks at tolerable 

levels. Existing data dissemination practices include: 1) releasing summary tables 

containing aggregate-level data for small geographic areas; 2) suppressing geographical 

details in public-use microdata files for areas that do not meet a predefined population 

threshold (e.g., 100,000 persons) and; 3) permitting access to restricted geographical 

identifiers through a limited number of Research Data Centers (RDCs).  

Each of the current data dissemination practices has limitations that may 

discourage users from using the survey data. For example, summary tables are limited to 

existing data products and cells may still be suppressed due to insufficient cell sizes. 

Public-use microdata provide users with additional flexibility to perform customized 

analyses on-demand, but the lowest level of geography (such as Public-Use Microdata 
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Areas (PUMAs)) may not be sufficient for small area estimation. Accessing the raw 

microdata is possible in an RDC, but potential users must apply for a clearance request, 

travel to the nearest RDC, and pay usage fees, which may not be possible for some data 

users.  

This dissertation proposes a fourth data dissemination approach that statistical 

agencies may adopt to release more detailed geographical information in public-use 

microdata sets. The approach builds on the method, originally proposed by Rubin (1993), 

of creating multiply-imputed, or synthetic, data sets that are released to the public in lieu 

of the observed survey data sets. The basic idea is to treat the non-sampled portion of the 

population as missing data to be replaced with multiply-imputed data. Samples are then 

drawn from the synthetic data populations and released as public-use data sets. Valid 

inferences are obtained by applying standard combining rules to the synthetic data 

(Raghunathan, Reiter, and Rubin, 2003). Data confidentiality is greatly enhanced because 

no observed data values are released to the public. 

The synthetic data literature focuses on preserving statistics about the entire 

sample, but ignores the preservation of small area statistics. Statistics about small areas 

can be extremely valuable to data users, but detailed geographical identifiers are almost 

always suppressed from public-use microdata sets. Releasing synthetic data for small 

geographic areas may be ideally suited for releasing restricted geographical information 

while overcoming the limitations of other disclosure avoidance methods. 

Several methodological challenges must be overcome in order to determine 

whether synthetic data can be a viable alternative to existing data dissemination methods. 

Small area inferences obtained from the synthetic data should resemble the corresponding 
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inferences obtained from the actual data. Distributions of variables observed in small 

geographic areas should also be preserved, including those that do not follow standard 

parametric forms (e.g., Gaussian) as is often the case for many key survey variables. 

Finally, many survey data sets are collected under a complex sample design. The 

synthetic data should account for complex design features, such as stratification, 

clustering, and weights to ensure that valid inferences for small areas can be preserved 

(Reiter, Raghunathan, and Kinney, 2006). 

In this dissertation, I develop methods of generating synthetic data for small area 

estimation that address these issues. Each chapter answers one of the following research 

questions: 

Chapter 2: How to generate synthetic data sets that preserve inferences obtained 

from small geographic areas? 

Chapter 3: How to generate synthetic data sets based on nonparametric methods 

that preserve non-standard distributional forms for continuous variables? 

Chapter 4: How to generate synthetic data sets for small geographic areas that 

incorporates complex sample design features into the synthetic data generation 

process? 

1.1  Background and Significance 

Many statistical agencies and survey organizations disseminate data on individual 

units in public-use data files (i.e., microdata). Data disseminators strive to release files 

that are informative for a wide range of statistical analyses, yet safe from disclosures 

instigated by data users seeking to learn respondents’ identities or sensitive attributes.  
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Disclosure risks have received much attention due to the proliferation of readily 

available commercial and non-commercial databases. Coupled with advances in 

statistical, computing, and data linkage techniques, the potential exists for an intruder to 

re-identify a de-identified survey record. Statistical agencies that fail to prevent 

disclosures of respondents’ identities may be subject to serious legal consequences. An 

act of disclosure may discourage the public from participating (or providing accurate 

answers) in future surveys if they believe their privacy is threatened. 

Data disseminators use many techniques to minimize disclosure risks. They 

include recoding exact values if they exceed a specific threshold (e.g., recoding 80,000 to 

“50,000 or more”), recoding variables into coarse categories (e.g., releasing only 5-year 

intervals for age), swapping the values of variables for records that are statistically 

similar (Dalenius and Reiss, 1982; Reiss, 1984), and adding random noise to data values. 

Although these methods enhance confidentiality protection to some degree, they can also 

distort relationships between variables in the data set and can introduce bias. They can 

complicate analyses for data users because specialized analytic methods may be needed 

to adjust for the distorted data (e.g., using measurement error models to analyze data with 

added noise). 

An alternative disclosure limitation method is to synthesize the observed data 

using a probabilistic imputation model. The basic idea of releasing multiply-imputed, or 

synthetic, data sets in lieu of the observed data sets was initially proposed by Rubin 

(1993) and further developed by Raghunathan et al. (2003) and Reiter (2005). Synthetic 

data has been shown to have advantages over alternative statistical perturbation methods 

(Winkler, 2004; Reiter, 2005). Fully-synthetic data has two key advantages: it offers 
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enhanced confidentiality protection because no observed information is released and the 

approach allows data users to produce valid inferences for various estimands by using 

complete-data statistical methods and software. 

The basic idea behind synthetic data generation is to treat the unobserved portion 

of the population as missing data to be replaced with multiply-imputed data. The 

observed data is used to construct a posterior predictive distribution from which the 

multiply-imputed values are drawn. Multiple synthetic populations are generated and a 

sample is drawn from each synthetic population which comprises the public-use data 

files. Synthetic sample sizes can be drawn such that they exceed the observed sample size 

to facilitate the application of direct estimation methods during analysis. 

From these publicly-released synthetic data sets, data users can make inferences 

about a scalar population quantity � � ���, ��, such as the population mean of Y or the 

population regression coefficients of Y on X. In each synthetic data set, the user estimates 

Q with some point estimator q and an associated measure of uncertainty v. Let 

�	�
�, ��
�; 
 � 1,2, … ,�� be the values of q and v computed on the M synthetic data sets. 

It is assumed that these quantities are estimated based on a simple random sampling 

design. Under assumptions described in Raghunathan et al. (2003), the data user can 

obtain valid inferences for scalar Q by combining the 	�
� and ��
� using the following 

quantities: 

 	�� ��	�
�/��

��  

 

(1) 
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 �� ���	�
� � 	�����

�� /�� � 1�  

(2) 

   

 �̅� ����
�/��

��  

 

(3) 

 

where 	�� is used to estimate Q, and  

 

 �� � �1 ������� � �̅� (4) 

is used to approximate the variance of 	��. A disadvantage of �� is that it can be 

negative. Negative values generally can be avoided by making M and the synthetic 

sample size  !"# large. A more precise variance estimator that is always positive is 

outlined in Raghunathan et al. (2003). Inferences for scalar Q are based on a normal 

distribution when �� $ 0, n, M,  !"# are large. For moderate M, inferences can be based 

on t-distributions (Reiter, 2002). 

      Under a fully-synthetic design all variables are synthesized and few (if any) 

observed data values are released. This design offers greater privacy and confidentiality 

protection compared to synthesizing only a subset of variables (Drechsler, Bender, and 

Raessler, 2008), but the analytic validity of inferences drawn from the synthetic data may 

be poor if important relationships are omitted or mis-specified in the imputation model. A 

less extreme approach involves synthesizing a partial set of variables or records that are 

most vulnerable to disclosure (Little, 1993; Kennickell, 1997; Liu and Little, 2002; 

Reiter, 2003). If implemented properly, this approach yields high analytic validity 
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because inferences are less sensitive to the specification of the imputation model. 

However, partial synthesis may not provide the same level of protection as full synthesis 

because the observed sample units, and the majority of their data values, are released to 

the public (Drechsler, Bender, and Raessler, 2008). 

The existing synthetic data literature focuses on preserving statistics about the 

entire sample, but doesn’t address the problem of preserving statistics within small 

geographic areas. Building synthetic data generation models that incorporate the 

hierarchical structure associated with each geographical area (e.g., state, county) offers a 

promising solution. The main goal of this strategy is to enable data users to produce valid 

statistics for various levels of geography using a single set of synthetic data files.  

In order to achieve approval from statistical agencies, as well as data users, the 

hierarchical synthetic data approach must be flexible enough to overcome several 

practical challenges, such as preserving variable distributions that do not follow strict 

parametric forms. Many key survey variables are not easily simulated using parametric 

distributions. This is an open area of research in the synthetic data literature, and more 

broadly, in the multiple imputation literature (He and Raghunathan, 2006). 

Another practical issue for generating hierarchical synthetic data is that the 

approach should be flexible enough to handle different types of surveys, such as those 

that were collected using an EPSEM design, or more sophisticated sampling designs that 

may include clustering, stratification, and unequal probabilities of selection. Accounting 

for complex design features in multiple imputations for missing data has been addressed 

in the literature (Reiter, Raghunathan, and Kinney, 2006), but not in the context of 

synthetic data for small area estimation. 
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1.2  Modeling Approach and Evaluation 

The approach here adopts Bayesian methods, using a hierarchical imputation 

model, to generate synthetic data for small area estimation. There involves three stages. 

In the first, sequential regression models are fit using the observed data within small 

areas (e.g., counties) to approximate the joint density of the set of variables to be 

synthesized. In the second, the joint sampling distribution of the population regression 

parameters is approximated and the between-area variation is modeled by incorporating 

area-level covariates. In the third, the population parameters are simulated and synthetic 

data is generated by taking independent draws from the posterior predictive distribution 

within each small area.  

The modeling approach is modified in later chapters to incorporate a 

nonparametric adjustment procedure to handle continuous variables that do not follow a 

standard distributional form (Chapter 3), and to account for complex sample design 

features in the synthetic data generation process and also generate valid synthetic data for 

non-sampled small areas (Chapter 4).  

The proposed synthetic data procedures are demonstrated on and evaluated 

against actual survey data obtained from the American Community Survey and National 

Health Interview Survey. Both surveys suppress small area identifiers (e.g., county- and 

sub-county identifiers) in public-use data files. In this demonstration project, we use a 

mix of public-use microdata and restricted-use microdata to evaluate the methods using 

different levels of geography provided in each survey data set (i.e., Public-Use Microdata 

Areas for ACS public-use data; and counties for restricted-use ACS and NHIS data). The 
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validity of univariate and multivariate small area inferences are assessed by comparing 

the inferences obtained from the synthetic data sets with those obtained from the actual 

data sets. 

 

1.3  Benefits and Potential Impacts 

This research has several potential impacts. The most important is the potential 

for greater access to detailed geographical information in public-use data sets while 

preserving data confidentiality. Existing procedures for accessing survey data for small 

geographic areas is somewhat cumbersome and may not be convenient for all data 

consumers. Synthetic data offers a more flexible alternative and since no actual data is 

released to the public, confidentiality protection is enhanced.  

This research also addresses an important gap in the literature, which is how to 

preserve small area statistics in synthetic microdata sets. Small area statistics are quite 

valuable to researchers, policy-makers, and students, but they are difficult to obtain due 

to privacy concerns.  

The methods proposed in this dissertation are flexible, do not require Markov 

Chain Monte Carlo (MCMC) algorithms (Geman and Geman, 1984; Gelfand and Smith, 

1990), and can be applied to various types of survey data sets. These procedures may be 

adopted by statistical agencies and lead to new data products. 

 This research may also stimulate a shift in how public-use data files are released 

to the public. Some statistical agencies are already moving towards customized data 

extract systems. The synthetic data framework is flexible enough to handle detailed users 

requests and could be operationalized in an automated fashion, so that users can choose 
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exactly which variables and complex design features to incorporate into the synthetic data 

generation process. 
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Chapter 2 

Synthetic Data for Small Area Estimation in the American Community Survey 

 

1  Introduction 

Demand for small area estimates is growing heavily among a variety of 

stakeholders who use these data to advance the study of issues affecting communities and 

the lives of their residents (Tranmer et al., 2005). Statistical agencies regularly collect 

data from small geographic areas and are therefore in a unique position to meet some of 

this demand. However, they are often prevented from doing so, because releasing 

detailed geographical identifiers for small areas can increase the risk of respondent re-

identification and inadvertent disclosure of confidential information.  

In order to minimize the risk of disclosure, statistical agencies commonly adopt 

one of the following methods of data dissemination: 1) release summary tables that 

contain aggregated data for specific geographic areas (e.g., counties, census tracts, block 

groups); 2) suppress geographical details in public-use microdata sets for all areas that 

fail to meet a predefined population threshold (e.g., 100,000) and; 3) release the 

unmasked confidential data set to data users via a secure enclave or Research Data Center 

(RDC). Although useful in some situations each approach has limitations that preclude its 

ability to meet the growing demand for small area data that is being fueled by 

researchers, analysts, policy-makers, and community planners. 



12 
 

For example, summary tables are useful tools for describing basic profiles of 

housing- and/or person-level characteristics within a wide variety of geographical areas, 

but their utility is limited for addressing complex scientific hypotheses that require 

additional variables, interactions, or modeling approaches not obtainable from existing 

aggregated data products. Releasing public-use microdata mitigates this issue by enabling 

users to perform customized analyses that go beyond the capabilities of published 

summary tables, but the suppression of identifiers for the smallest geographic areas limits 

their use for studying small area phenomenon. Releasing microdata via a Research Data 

Center overcomes the limitations of the previous two by permitting users access to the 

full unmasked microdata, including detailed geographical identifiers. In order to access 

data within an RDC, one must submit a research proposal, apply for special sworn status, 

pay a data usage fee, and travel sometimes long distances to the nearest RDC facility. 

Unfortunately, these requirements are too restrictive for many analysts. 

 

1.1  Synthetic Data for Small Geographic Areas 

 This chapter investigates a fourth approach that statistical agencies may adopt to 

release more detailed geographical information in public-use data sets without 

compromising on data confidentiality. The approach extends the idea, originally proposed 

by Rubin (1993), of replacing the observed data values with multiply-imputed, or 

synthetic, values. The general idea is to treat the unobserved portion of the population as 

missing data to be multiply imputed using a predictive model fitted using the observed 

data. A random sample of arbitrary size is then drawn from each synthetic population, 

which comprises the public-use data sets. Valid inferences are obtained by analyzing 
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each synthetic data set separately and combining the point estimates and standard errors 

using combining rules developed by Raghunathan, Reiter, and Rubin (2003).  

The synthetic data literature focuses on preserving statistics about the entire 

sample, but preserving small area statistics is not addressed. Statistics about small areas 

can be extremely valuable to data users, but detailed geospatial information is almost 

always suppressed in public-use survey data. Significant theoretical and practical 

research on model-based small area estimation has led to a greater understanding of how 

small area data can be summarized (and potentially simulated) by statistical models 

(Platek et al., 1987; Rao, 2003).  

 

1.2  Fully Synthetic versus Partially Synthetic Data 

There are two general synthetic data approaches: full synthesis and partial 

synthesis.  Under a fully synthetic design all survey variables are synthesized and no real 

data is released. This approach provides the highest level of privacy and confidentiality 

protection (Drechsler, Bender, and Raessler, 2008), but the analytic validity of inferences 

drawn from the synthetic data may be poor if important relationships are omitted or mis-

specified in the imputation model. Partial synthesis involves synthesizing a subset of 

variables or records that are pre-identified as being the most vulnerable to disclosure 

(Little, 1993; Kennickell, 1997; Liu and Little, 2002; Reiter, 2003, 2005). If implemented 

properly, this approach yields high analytic validity as inferences are less sensitive to 

misspecification of the imputation model, but because the observed sample units and the 

majority of their data values are released to the public, it does not provide the same level 

of disclosure protection as full synthesis (Drechsler, Bender, and Raessler, 2008).  



14 
 

At the present time, statistical agencies have only released partially synthetic data 

files (Rodriguez, 2007; Abowd, Stinson, and Benedetto, 2006; Kinney and Reiter, 2008). 

There are worthwhile reasons why fully synthetic data may be more appropriate for small 

area applications. Perhaps, the most important reason is that complete synthesis offers 

stronger levels of disclosure protection than partial synthesis. Data disseminators are 

obligated by law to prevent data disclosures and may face serious penalties if they fail to 

do so. Maintaining high levels privacy protection should take precedence over 

maintaining high levels of analytic validity. This point is particularly important for small 

geographic areas, which may contain sparse subpopulations and higher proportions of 

unique cases that are especially susceptible to re-identification. A secondary benefit of 

fully synthetic data is that arbitrarily large sample sizes may be drawn from the synthetic 

populations, facilitating analysis for data users who would otherwise be forced to exclude 

areas with insufficient sample sizes, or apply complex indirect estimation procedures to 

compensate for the lack of sampled cases.  

 

1.3  Organization of Chapter 

This chapter proposes an extension to Rubin’s synthetic data method for the 

purpose of creating fully synthetic, public-use microdata sets for small geographic areas. 

A hierarchical Bayesian model is developed that accounts for multiple levels of 

geography and “borrows strength” across related areas. A sequential multivariate 

regression procedure is used to approximate the joint distribution of the observed data, 

which is used to simulate synthetic values from the posterior predictive distribution 

(Raghunathan et al., 2001). How statistical agencies may generate fully synthetic data for 
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small geographic areas is demonstrated using a subset of data from the U.S. American 

Community Survey. Synthetic data is generated for several commonly used household- 

and person-level variables and their analytic validity is assessed by comparing inferences 

obtained from the synthetic data with those obtained from the actual data. The empirical 

evaluation of the disclosure risk properties of the proposed synthetic data approach are 

left to future work. Limitations of the approach and possible extensions are discussed in 

the final section. 

 

2  Review of Fully Synthetic Data 

2.1  Creation of Fully Synthetic Data Sets 

 The general framework for creating and analyzing fully synthetic data sets is 

described in Raghunathan, Reiter, and Rubin (2003) and Reiter (2004). Suppose a sample 

of size   is drawn from a finite population Ω � ��, �� of size ', with � � ��(; ) �
1,2, … ,'� representing design, geographical, or other auxiliary information available for 

all ' units in the population, and � � ��(; ) � 1,2, … , '� representing the survey 

variables of interest. It is assumed that there is no confidentiality concern over releasing 

information about � and synthesis of these auxiliary variables is not needed, but the 

method can be extended to synthesize these variables if necessary. Let �*+! �
��(; ) � 1,2, … ,  � be the observed portion of � corresponding to sampled units and 

�#*+! � ��(; ) �  � 1,  � 2, … , '� be the unobserved portion of � corresponding to the 

nonsampled units. The observed data set is , � ��, �*+!�. For simplicity, assume there 

are no item missing data in the observed survey data set, but that methods exist for 

handling this situation (Reiter, 2004). 
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 Fully synthetic data sets are constructed in two steps. First, � synthetic 

populations -�
� � .��, ��
��; 
 � 1,2, … ,�/ are generated by taking independent draws 

from the Bayesian posterior predictive distribution of 0��#*+!|�, �*+!� conditional on the 

observed data ,. Alternatively, one can generate synthetic values of � for all ' units to 

ensure that no observed values of � are released. The number of synthetic populations � 

is determined based on the desired accuracy for synthetic data inferences and the risk of 

disclosing confidential information. A modest number of fully synthetic data sets (e.g., 5, 

10, or 20) are usually sufficient to ensure valid inferences (Raghunathan et al., 2003). In 

the second step, a random sample of size  !"# is drawn from each of the 
 � 1,2, … ,� 

synthetic data populations, ,�
� � 23( , 4(�
�, ) � 1,2, … ,  !"#5. The corresponding � 

synthetic samples ,!"# � �,�
�; 
 � 1,2, … ,�� comprise the public-use data sets, which 

are released to, and analyzed by, data users. In practice, the first step of generating 

complete synthetic populations is unnecessary and we only need to generate values of � 

for units in the synthetic samples. The complete synthetic population setup is useful for 

theoretical development of combining rules. 

 

2.2  Obtaining Inferences from Fully Synthetic Data Sets 

 From the publicly-released synthetic data sets, data users can make inferences 

about a scalar population quantity � � ���, ��, such as the population mean of � or the 

population regression coefficients of � on �.  Suppose the analyst is interested in 

obtaining a point estimate 	 and an associated measure of uncertainty � of � from a set 

of synthetic samples ,!"# drawn from the synthetic populations -!"# � �-�
�; 
 �
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1,2, … ,�� under simple random sampling. The values of 	 and � computed on the M 

synthetic data sets are denoted by �	�
�, ��
�, 
 � 1,2, … ,��. 
Consistent with the theory of multiple imputation for item missing data (Rubin, 

1987; Little and Rubin, 2002), combining inferences about � � ���, �� from a set of 

synthetic samples ,!"# is achieved by approximating the posterior distribution of � 

conditional on ,!"#. The suggested approach, outlined by Raghunathan, Reiter, and 

Rubin (2003), is to treat �	�
�, ��
�; 
 � 1,2, … ,�� as sufficient summaries of the 

synthetic data sets ,!"# and approximate the posterior density 0��|,!"#� using a normal 

distribution with the posterior mean � computed as the average of the estimates, 

 	�� ��	�
��

�� /� 

(1) 

 

and the approximate posterior variance is computed as, 

 �� � �1 ������� � �6 (2) 

where �̅� � ∑ ��
��
�� /� is the overall mean of the estimated variances across all 

synthetic data sets (“within variance”) and �� � ∑ �	�
� � 	����/�� � 1��
��  is the 

variance of 	�
� across all synthetic data sets (“between variance”).  

Under certain regulatory conditions specified in Raghunathan, Reiter, and Rubin 

(2003), 	�� is an unbiased estimator of � and �� � �6 is an unbiased estimator of the 

variance of �. The 
�� �� adjusts for using only a finite number of synthetic data sets. It 

should be noted that the subtraction of the within imputation variance in �� is due to the 

additional step of sampling the units that comprise the synthetic samples from each 

multiply-imputed synthetic population. Because of this additional sampling step, the 
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between imputation variance contains the true between and nearly twice the amount of 

within variance needed to obtain an unbiased estimate of T. 

When  ,  !"#, and � are large, inferences for scalar � can be based on normal 

distributions. For moderate �, inferences can be based on t-distributions with degrees of 

freedom 8� � �� � 1��1 � 96����, where 96 � �1 ������6/�̅�, so that a �1 � :�% 

interval for � is 	�� < =>?�:/2�@�� as described in Raghunathan and Rubin (2000). 

Extensions for multivariate � are described in Reiter and Raghunathan (2007) and Reiter 

(2005). 

 A limitation of the variance estimator �� is that it can produce negative variance 

estimates. Negative values of �� can generally be avoided by increasing � or  !"#. 

Numerical routines can be used to calculate the integrals involved in the construction of 

��, yielding more precise variance estimates (Raghunathan, Reiter, and Rubin, 2003). A 

simpler variance approximation that is always positive is shown in Reiter (2002). 

 

3  Creation of Synthetic Data Sets for Small Geographic Areas 

Hierarchical models have been used in several applications of small area 

estimation (Fay and Herriot, 1979; Malec et al., 1997). See Rao (2003) for a 

comprehensive review of design-based, empirical Bayes, and fully Bayesian approaches 

for small area estimation. Hierarchical models have also been used for multiple 

imputation of missing data in multilevel data structures (Yucel, 2008; Reiter, 

Raghunathan, and Kinney, 2006).  

The approach involves three stages. In the first, the joint density of the variables 

to be synthesized is approximated by fitting sequential regression models based on the 
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observed data within each small area. In the second, the sampling distribution of the 

unknown regression parameters estimated in stage 1 is approximated and the between-

area variation is modeled using auxiliary information. In the third, the unknown 

regression parameters are simulated and used to draw synthetic microdata values from the 

posterior predictive distribution. 

Only two levels of geography are considered. Consider “small areas” as counties 

nested within states in the U.S. In illustrating the modeling steps, the models are kept 

relatively simple from a computational perspective to make the modeling practical. 

Despite the simplified presentation, the framework can handle more sophisticated 

modeling approaches.  

 

3.1  Stage 1: Approximation of Joint Density via Sequential Regression 

 Suppose that a simple random sample of size   is drawn from a finite population 

of size '. Assuming units were sampled from each county, let  A! and 'A! denote the 

respective sample and population sizes for county B � �1,2, … , C!� nested within state 

D � �1,2,… , E�. Let �A! � ��(A!,F; ) � 1,2, … ,  A!; 	H � 1,2, … , -� represent the  A! I - 

matrix of survey variables collected from each survey respondent located in county B and 

state D. Let �A! � ��(A!,J; ) � 1,2, … ,  A!,  A! � 1,… ,'A!; 	K � 1,2, . . , M� represent the 

'A! I M matrix of auxiliary or administrative variables known for every population 

member in a particular county and state. Here only the survey variables �A!,F are 

synthesized, but it is straightforward to synthesize the auxiliary variables �A!,J as well. 

A desirable property of synthetic data is that the multivariate relationships among 

the observed variables are maintained in the synthetic data, i.e., the joint distribution of 
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variables given the auxiliary information 0��A!,�, �A!,�, … , �A!,N|�A!,J� is preserved. 

Specifying and simulating from the joint conditional distribution can be difficult for 

complex data structures involving large numbers of variables representing a variety of 

distributional forms. Alternatively, one can approximate the joint density as a product of 

conditional densities (Raghunathan et al., 2001). That is, the joint density 

0��A!,�, �A!,�, … , �A!,N|�A!,J� can be factored into the following conditional densities: 

0��A!,�|�A!,J�, 0��A!,�|�A!,�, �A!,J�,…,0��A!,N|�A!,�, … , �A!,N��, �A!,J�. In practice, a 

sequence of generalized linear models are fit based on the observed county-level data 

where the variable to be synthesized comprises the outcome variable that is regressed on 

any auxiliary variables or previously fitted variables, e.g.,  �(A!,� � ��(A!�OA!,� � P(A!, 
�(A!,� � ��(A!, �(A!,��OA!,� � P(A! ,…,	�(A!,N � ��(A!, �(A!,�, �(A!,�, … , �(A!,N��	�OA!,N � P(A!. 
The choice of model (e.g., Gaussian, binomial) is dependent on the type of variable to be 

synthesized (e.g., continuous, binary). It is assumed that any complex survey design 

features are incorporated into the generalized linear models and that each variable has 

been appropriately transformed to satisfy modeling assumptions. After fitting each 

conditional density, the vector of regression parameter estimates OQA!,F, the corresponding 

covariance matrix RSA!,F, and the residual variance TUA!,F�  are extracted from each of the - 

regression models and incorporated into the hierarchical model described below. 

H � �1,2, … , -� is used to index the set of parameters associated with the HVW synthetic 

variable of interest and the HVW regression model from which the direct estimates are 

obtained.  

 

3.2  Stage 2: Sampling Distribution and Between-Area Model 
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In the second stage, the joint sampling distribution of the design-based county-

level regression estimates OQA!,F (obtained from each conditional model fitted in Stage 1) 

is approximated by a multivariate normal distribution, 

 OQA!,F	~	�R'�OA!,F, RSA!,F� (3) 

where OA!,F is the �M � H� I 1 matrix of unknown regression parameters and RSA!,F is the 

corresponding �M � H� I �M � H� estimated covariance matrix obtained from Stage 1. The 

unknown county-level regression parameters OA!,F are assumed to follow a multivariate 

normal distribution,  

 OA!,F	~	�R'�OFY!, ΣF� (4) 

where Y! � �Y!,[; \ � 1,2, … , ]� is a ] I 1 matrix of state-level covariates, OF is a 

�M � H� I ] matrix of unknown regression parameters, and ΣF is a �M � H� I �M � H� 
covariance matrix. State-level covariates are incorporated into the hierarchical model in 

order to “borrow strength” from related areas. Prior distributions may be assigned to the 

unknown parameters OF and ΣF, but for computational simplicity I assume that OF and ΣF 

are fixed at their respective maximum likelihood estimates (MLE), a common assumption 

in hierarchical models for small area estimation (Fay and Herriot, 1979; Datta, Fay, and 

Ghosh, 1991; Rao, 1999). Details for obtaining the maximum likelihood estimates using 

the expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977) are 

provided in Appendix 1.  

Based on standard theory of the normal hierarchical model (Lindley and Smith, 

1972), the unknown regression parameters OA!,F can be drawn from the following 

posterior distribution,  
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 ÔA!,F	~	�R' _�RSA!,F�� � ΣSF������RSA!,F��OQA!,F � ΣSF��OQFY!�, �RSA!,F�� � ΣSF�����` (5) 

 

where ÔA!,F is a simulated vector of values for the unknown regression parameters OA!,F . 

 

3.3  Stage 3: Simulating from the Posterior Predictive Distribution 

The ultimate objective is to generate synthetic populations for each small area 

using an appropriate posterior predictive distribution. Simulating a synthetic variable 

�̂A! � ��̂
A!,F; 
 � 1,2, … , 'A!; H � 1,2, … , -� for observed variable �A! for synthetic 

population unit 
 � �1,2, … ,'A!� is achieved by drawing, in sequential fashion, from the 

posterior predictive distributions 0��̂A!,�|�A!, ÔA!,��, 0��̂A!,�|�̂A!,�, �A!, ÔA!,��, …, 

0��̂A!,N|�̂A!,�, �̂A!,�, … , �̂A!,N��, �A!, ÔA!,��. For example, if the first variable to be 

synthesized �A!,� is normally distributed then �̂A!,� can be drawn from a normal 

distribution with location and scale parameters �A!ÔA!,� and TA!,��  , respectively, where 

TA!,��  may be drawn from an appropriate posterior predictive distribution 

0�TaA!,�� |�A!,�, �A!, TA!,�� 	�, or fixed at the maximum likelihood estimate TUA!,��  (obtainable 

from Stage 1). Generating a second (normally distributed) synthetic variable �̂A!,� from 

the posterior predictive distribution 0��̂A!,�|�̂A!,�, �A!, ÔA!,�� is achieved by drawing �̂A!,� 

from 'b��A!, �̂A!,��ÔA!,�, TA!,�� 	c, and so on up to 

�̂A!,N~'b��A!, �̂A!,�, �̂A!,�, … , �̂A!,N���ÔA!,N , TA!,N� 	c. Alternatively, if the variable under 

synthesis �A!,F is binary, then �̂A!,F is drawn from a binomial distribution 

d) b1, Ĥ.��A!, �̂A!,�, �̂A!,�, … , �̂A!,F���ÔA!,N/c, where Ĥ.��A!, �̂A!,�, �̂A!,�, … , �̂A!,F���ÔA!,N/ is 

the predicted probability computed from the inverse-logit of 

.��A!, �̂A!,�, �̂A!,�, … , �̂A!,F���ÔA!,N/. For polytomous variables, the same procedure is used 
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to obtain posterior probabilities for each categorical response, which are used to generate 

the synthetic values from a multinomial distribution. The iterative simulation process 

continues until all synthetic variables ��̂A!,�, �̂A!,�, … , �̂A!,N� are generated. The procedure 

is repeated M times to create multiple populations of synthetic variables 

2�̂A!,��
� , �̂A!,��
� , … , �̂A!,N�
� ; 
 � 1,2, … ,�5. In addition, the entire cycle may be repeated several 

times to minimize ordering effects (Raghunathan et al., 2001). 

The complete synthetic populations may be disseminated to data users, or a 

simple random sample of arbitrary size may be drawn from each population and released. 

Stratified random sampling may be used if different sampling fractions are to be applied 

within small areas. Inferences for a variety of estimands can be obtained using the 

combining rules in Section 2.2. 

 

4  Application: American Community Survey (Public-Use Microdata) 

In this section, consider a subset of public-use microdata from the 2005-2007 U.S. 

American Community Survey (ACS). The ACS is an ongoing national survey that 

provides yearly estimates on a variety of topics, including income and benefits, health 

insurance, disabilities, family and relationships, among others. The ACS collects 

information on persons living in housing units and group quarters facilities in all 3,142 

counties. Data collection is conducted using a mixed-mode design. First, questionnaires 

are mailed to all sampled household addresses obtained from a Master Address File. 

Approximately six weeks after the questionnaire is mailed the Census Bureau attempts to 

conduct telephone interviews for all addresses that do not respond by mail. Following the 

telephone operation, a sample is taken from addresses which have not been interviewed 
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and these addresses are visited by a field representative. Full details of the ACS 

methodology can be found elsewhere (Census Bureau, 2009). 

The smallest geographic unit that is identified in the public-use ACS microdata is 

a Public-Use Microdata Area (PUMA). PUMAs are census areas that contain at least 

100,000 persons, are nested within states or equivalent entities, cover the entirety of the 

United States, Puerto Rico, Guam, and the U.S. Virgin Island, are built on counties and 

census tracts, and are contiguous. For this application, I restrict the ACS sample to the 

Northeast region of 9 states and 405 PUMAs. ACS data was collected in each of these 

PUMAs during the 3-year study period. I also restrict the data to seven household- and 

seven person-level variables measured on the 599,450 households and 1,506,011 persons 

in the ACS Northeast region sample. The variables, shown in Table 2.0, were chosen by 

statisticians at the U.S. Census Bureau specifically for this project.  

� � 10 fully synthetic data sets are generated for each “small area” or PUMA. 

To ensure that each synthetic data set contains ample numbers of households and/or 

persons within PUMAs, synthetic samples are larger than the observed sample sizes, 

approximately equivalent to 20% of the total number of households located in each 

PUMA based on the 2000 decennial census counts. This yielded a total synthetic sample 

size of 3,963,715 households and 10,192,987 persons in the Northeast region.  
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Table 2.0. List of ACS Variables Used in Synthetic Data Application. Variables 

Shown in the Order of Synthesis. 

Variable Type Range/Categories  Transformation 

Household variables 

  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
    (excl. bedrooms) 
  Income   
  Tenure 
   

 
count 
continuous 
count 
continuous 
count 
 
continuous 
polytomous 
 

 
1 - 20 
1 - 516 
0 - 5 
1 - 600 
1 - 7 
 
0 – 2,158,100 
recoded; mortgage/loan, own 
free and clear, rent 

  
-- 
log 
-- 
cube root 
-- 
 
cube root 
-- 
 

Person variables 

  Sampling weight 
  Gender 
  Education 
 
  Hispanic ethnicity 
  Age 
  Race 
  Living in poverty 

 
continuous 
binary 
polytomous 
 
binary 
continuous 
polytomous 
binary 

 
1 - 814 
male, female 
recoded; < 12 years, 12 years, 
13-15 years, 16+ years 
yes, no 
0 - 95 
recoded; white, black, other 
yes, no 

  
log 
-- 
-- 
 
-- 
-- 
-- 
-- 

 

The first survey variable to be synthesized was household size. Creating a 

household size variable facilitates the generation of synthetic person-level variables in a 

later step. Household size was simulated using a Bayesian Poisson-Gamma model 

conditional on the observed household size variable with unknown hyperparameters fixed 

at their marginal maximum likelihood estimates (obtained using Newton-Raphson 

algorithm; see Appendix 2 for details). All subsequent variables were synthesized using 

the hierarchical modeling approach described in Section 3. State-level covariates Y! 
incorporated into the hierarchical model included: population size (2005 estimate: log-

transformed), number of metropolitan and micropolitan areas obtained from the Census 

Bureau website for year 2005. 
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For numerical variables (continuous, count), design-based estimates of regression 

parameters were obtained by fitting normal linear models within each PUMA and 

synthetic values were drawn from the Gaussian posterior predictive distribution. For 

binary variables, logistic regression models were used to obtain the design-based 

parameter estimates and synthetic values were drawn from the binomial posterior 

predictive distribution. The same approach was applied to polytomous variables after 

breaking them up into a series of binary variables. To ensure the stability of the design-

based regression estimates, a minimum PUMA sample size rule of 15 ∙ H was applied 

within each PUMA. If a PUMA did not meet this sample size threshold, then nearby 

PUMAs were pooled together until the criterion was met. 

After the household variables were synthesized, the synthetic household data sets 

were converted to person-level data sets and the person-level variables were synthesized 

unconditional to the household-level variables. Taylor series linearization (Binder, 1993) 

was used to adjust the variances of the design-based regression estimates for the 

additional homogeneity due to persons clustered within households. Finally, to reduce the 

ordering effect induced by synthesizing the variables in a prescribed order, we repeat the 

entire synthetic data process 4 additional times, each time conditioning on the full set of 

synthetic variables generated from the previous implementations. All estimates are based 

on unweighted data. 

 

4.1  Validity of Univariate Estimates 

 Figures 2.1 and 2.2 contain back-to-back histograms depicting the overall 

distributions of each household- and person-level variable, respectively. The actual 
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distribution is shown in red and the synthetic distribution in blue. All variables are 

presented on the untransformed scale. The results are mixed. For some variables, the 

synthetic data distribution resembles the actual data distribution reasonably well, but for 

others, the correspondence is poor. The continuous variables, shown in the top row of 

each figure, exhibit the most discordance. Although the bulk of the actual distributions 

are generally maintained in the synthetic data, not every peak and valley is preserved. 

Those variables which do not follow a smooth parametric form tend to be most 

susceptible to a lack of correspondence. (This is expected because the parametric model 

is dominating the result. A more careful modeling approach, such as a mixture model, 

would generate synthetic data that is better matched distributionally.) For example, the 

age distribution shown in Figure 2.2 has an approximately bimodal shape which is poorly 

reflected in the synthetic data. A mixture model or nonparametric imputation procedure 

might do a better job of preserving non-standard distributional forms than the parametric 

procedure we consider here. 
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Figure 2.1. Back-to-Back Histograms of Actual (Red) and Synthetic (Blue) 

Distributions for ACS Household-Level Variables in the Northeast Region. 
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Figure 2.2 Back-to-Back Histograms of Actual (Red) and Synthetic (Blue) 

Distributions for ACS Person-Level Variables in the Northeast Region. 

 
 

 Although it is useful to compare synthetic and actual variable distributions, data 

users are ultimately interested in the validity of the estimates obtained from the synthetic 

data. Tables 2.1, 2.2, and 2.3 provide summary measures at the PUMA-, state- and 

region-levels, respectively, for univariate estimands obtained from the synthetic and 

actual data. The list of variables in column 1 includes the original set of ACS variables as 

well as recoded variables (income percentiles) and subgroups (income x tenure; poverty x 

race/ethnicity). The second column of Table 2.1 shows the average PUMA mean 

obtained from the synthetic and actual data. The third and fourth columns show the 
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average PUMA standard deviation and standard error of the mean. The last column 

contains the intercept and slope values obtained from regressing the actual PUMA means 

against the corresponding synthetic means. Intercept values close to 0 and slope values 

close to 1 indicate strong correspondence between the synthetic and actual means.  

 For the 15 household-level estimands, all but 2 of them yield an average synthetic 

PUMA mean lying within one average standard error from the average actual PUMA 

mean. Although these results should not be treated as a full endorsement of the synthetic 

data, they do provide some reassurance that the synthetic data yield valid estimates for 

most PUMAs. The two outlying averages correspond to the recoded income variables 

representing the 75th and 90th percentiles, which tend to be overestimated in the synthetic 

data, on average. For the person-level variables, only 1 estimand out of a total of 16 

yielded an average synthetic PUMA mean which differed from the average actual PUMA 

mean by more than one average standard error. The average standard errors of the PUMA 

means tend to be similar with a slight overestimation of the synthetic standard errors. It 

should be noted that the synthetic standard deviations tend to be smaller than the actual 

standard deviations, on average, for the transformed continuous variables (sampling 

weight, electricity costs, income). The underestimation could be due to the failure of the 

imputation model and transformation in preserving the tail-end of the distribution in the 

synthetic data, a problem which has been highlighted in earlier research on the estimation 

of totals in skewed populations (Rubin, 1983).  

 Differences between the synthetic and actual estimands are more apparent for 

state- and region-level inferences. Many of the synthetic means differ from the 

corresponding actual means by more than one standard error, on average. Rare  
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Table 2.1 Summary Measures of Actual and Synthetic PUMA Means. 
 Avg. 

Mean 

Avg. Standard 

Deviation 

Avg. Standard 

Error of Mean 

Regression of 

Actual Means on 

Synthetic Means 

 Actual Synthetic Actual Synthetic Actual Synthetic Intercept Slope 

Household variables   

  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
  Income   
  Tenure (%) 
    Mortgage/loan 
    Own free & clear 
    Rent   
Recodes & Subgroups 

  Income > 50th pctile, % 
  Income > 75th pctile, % 
  Income > 90th pctile, %   
  Income (Mortgage=1) 
  Income (Own=1) 
  Income (Rent=1) 

 
2.34 
33.71 
2.77 

125.08 
3.12 

80588.33 
 

47.35 
24.64 
28.01 

 
50.00 
25.72 
10.12 

103894.40 
74032.48 
47159.14 

 
2.34 

33.45 
2.80 

126.80 
3.14 

81688.73 
 

48.07 
24.61 
27.32 

 
50.87 
27.85 
12.18 

104244.70 
71863.12 
48156.89 

 
1.48 

20.03 
1.01 

85.39 
1.13 

75075.73 
 

47.69 
41.85 
40.17 

 
47.69 
40.80 
27.15 

80618.94 
79477.16 
43253.29 

 
1.53 

17.80 
1.01 

82.80 
1.13 

65523.63 
 

47.73 
41.86 
40.00 

 
47.67 
41.74 
28.93 

72318.61 
54722.52 
42830.20 

 
0.04 
0.55 
0.03 
2.32 
0.03 

2020.90 
 

1.28 
1.12 
1.09 

 
1.29 
1.10 
0.73 

3536.80 
4844.70 
2495.06 

 
0.04 
0.49 
0.04 
2.49 
0.04 

2097.89 
 

1.57 
1.21 
1.55 

 
1.25 
1.05 
0.66 

2991.05 
3182.60 
2609.88 

 
0.00 
0.19 
-0.07 
1.55 
-0.01 

2645.00 
 

-0.01 
0.00 
-0.00 

 
-0.01 
-0.00 
0.00 

2274.00 
-1749.00 
3437.00 

 
1.00 
1.00 
1.01 
0.97 
1.00 
0.95 

 
1.00 
0.99 
1.03 

 
0.99 
0.94 
0.81 
0.98 
1.06 
0.91 

Person variables   

  Sampling weight 
  Gender (%) 
  Education (%) 
    < 12 years 
    12 years 
    13-15 years 
    16+ years   
  Hispanic (%) 
  Age 
  Race (%) 
    White 
    Race 
    Other 
  Poverty (%) 
Subgroups 

  Poverty (White=1) 
  Poverty (Black=1) 
  Poverty (Other=1) 
  Poverty (Hispanic=1) 

 
35.37 
47.92 

 
32.46 
23.56 
19.48 
24.50 
9.46 
39.44 

 
79.14 
9.73 
11.13 
9.08 

 
8.09 
15.90 
14.88 
16.84 

 
35.74 
48.05 

 
33.24 
22.99 
19.25 
24.53 
10.32 
38.85 

 
77.34 
10.46 
12.20 
9.59 

 
8.39 

16.63 
15.93 
17.83 

 
21.53 
49.93 

 
46.30 
41.64 
39.38 
41.07 
23.23 
22.76 

 
31.68 
20.86 
20.86 
26.66 

 
25.09 
32.76 
32.70 
34.20 

 
21.20 
49.93 

 
46.69 
41.32 
39.19 
41.30 
25.15 
31.00 

 
34.31 
23.39 
29.07 
27.55 

 
25.67 
33.24 
33.60 
34.92 

 
0.37 
0.85 

 
0.79 
0.71 
0.67 
0.70 
0.41 
0.39 

 
0.56 
0.37 
0.48 
0.46 

 
0.60 
3.59 
2.29 
3.12 

 
0.63 
0.73 

 
1.06 
0.86 
0.79 
0.93 
1.02 
0.62 

 
1.18 
0.86 
1.07 
0.90 

 
1.02 
5.36 
3.90 
5.20 

 
0.49 
0.03 

 
-0.04 
-0.00 
0.01 
-0.02 
-0.01 
9.92 

 
-0.01 
-0.01 
-0.01 
-0.01 

 
-0.00 
-0.01 
-0.00 
-0.01 

 
0.98 
0.94 

 
1.10 
1.03 
0.98 
1.06 
1.02 
0.76 

 
1.04 
1.04 
1.02 
1.01 

 
1.01 
0.99 
0.96 
0.99 

 

characteristics tend to be overestimated in synthetic data. For example, the region-level 

estimate of the percentage of Hispanics in the synthetic and actual data is 10.31% and 

7.97%, respectively; the average percentages of 10.32% and 7.72%, respectively; and the 

combined percentage of all other races is 12.35% and 9.82%, respectively. The 

overestimation of the higher-level inferences, though also present to a lesser degree in the 

PUMA estimates, is likely due to the pooling of neighboring PUMAs when the number 

of cases with the attribute of interest did not meet the threshold required for producing 

reliable direct estimates of the regression parameters in Step 1.  
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Table 2.2 Summary Measures of Actual and Synthetic State Means. 
 Avg.  

Mean 

Avg. Standard  

Error of Mean 

 Actual Synthetic Actual Synthetic 

Household variables   

  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
  Income   
  Tenure (%) 
    Mortgage/loan 
    Own free & clear 
    Rent   
 
  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)    
  Income (Mortgage=1) 
  Income (Own=1) 
  Income (Rent=1) 

 
2.22 

33.45 
2.80 

117.34 
3.14 

78316.75 
 

50.80 
25.43 
23.77 

 
49.77 
24.50 
9.16 

97833.55 
70704.19 
45081.03 

 
2.22 

33.06 
2.81 

118.35 
3.15 

78833.83 
 

51.22 
25.59 
23.19 

 
50.36 
26.60 
10.90 

98362.78 
68179.32 
45784.78 

 
0.01 
0.14 

0.006 
0.44 

0.007 
431.89 

 
0.31 
0.27 
0.24 

 
0.30 
0.25 
0.16 

18149.30 
892.40 
514.83 

 
0.01 
0.12 

0.008 
0.55 

0.009 
498.09 

 
0.37 
0.29 
0.38 

 
0.33 
0.28 
0.16 

19303.22 
598.15 
602.48 

Person variables   

  Sampling weight 
  Gender (%) 
  Education (%) 
    < 12 years 
    12 years 
    13-15 years 
    16+ years   
  Hispanic (%) 
  Age 
  Race (%) 
    White 
    Black 
    Other 
  Poverty (%) 
 
  Poverty (White=1) 
  Poverty (Black=1) 
  Poverty (Other=1) 
  Poverty (Hispanic = 1) 

 
34.70 
48.27 

 
31.18 
23.86 
20.14 
24.82 
6.63 

40.03 
 

85.95 
5.84 
8.21 
8.14 

 
7.32 

16.13 
14.41 
15.40 

 
34.94 
48.38 

 
31.90 
23.26 
19.72 
25.11 
7.40 

39.63 
 

84.17 
6.51 
9.31 
8.62 

 
7.63 

16.32 
15.77 
15.84 

 
0.09 
0.19 

 
0.18 
0.17 
0.16 
0.17 
0.07 
0.87 

 
0.10 
0.06 
0.09 
0.10 

 
0.10 
1.62 
0.64 
0.91 

 
0.15 
0.15 

 
0.22 
0.19 
0.15 
0.20 
0.17 
1.70 

 
0.21 
0.12 
0.19 
0.18 

 
0.19 
1.98 
1.19 
1.55 
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Table 2.3 Actual and Synthetic Region Mean. 
 Mean Standard  

Error of Mean 

 Actual Synthetic Actual Synthetic 

Household variables   

  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
  Income   
  Tenure (%) 
    Mortgage/loan 
    Own free & clear 
    Rent   
 
  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)     
  Income (Mortgage=1) 
  Income (Own=1) 
  Income (Rent=1) 

 
2.29 

32.05 
2.81 

124.80 
3.17 

80670.94 
 

48.47 
26.11 
25.42 

 
50.00 
25.47 
10.00  

103512.60 
69698.64 
48384.96 

 
2.30 

33.49 
2.79 

125.63 
3.13 

81559.97 
 

47.65 
24.86 
27.49 

 
50.43 
27.58 
12.08 

106186.80 
68948.59 
50286.02 

 
0.002 
0.03 

0.001 
0.12 

0.002 
113.32 

 
0.07 
0.06 
0.06 

 
0.07 
0.06 
0.04 

175.28 
221.26 
145.61 

 
0.002 
0.02 

0.002 
0.13 

0.002 
171.51 

 
0.12 
0.06 
0.09 

 
0.09 
0.07 
0.05 

264.66 
128.81 
152.03 

Person variables   

  Sampling weight 
  Gender (%) 
  Education (%) 
    < 12 years 
    12 years 
    13-15 years 
    16+ years   
  Hispanic (%) 
  Age 
  Race (%) 
    White 
    Black 
    Other 
  Poverty (%) 
 
  Poverty (White=1) 
  Poverty (Black=1) 
  Poverty (Other=1) 
  Poverty (Hispanic = 1) 

 
33.42 
48.13 

 
32.15 
24.21 
19.62 
24.02 
7.97 

39.69 
 

82.46 
7.72 
9.82 
8.32 

 
6.63 

17.15 
15.52 
19.63 

 
35.81 
48.05 

 
33.29 
22.94 
19.17 
24.60 
10.31 
38.85 

 
77.33 
10.32 
12.35 
9.39 

 
7.06 

17.86 
16.92 
20.85 

 
0.02 
0.04 

 
0.04 
0.04 
0.03 
0.04 
0.02 
0.02 

 
0.03 
0.02 
0.02 
0.02 

 
0.02 
0.11 
0.09 
0.12 

 
0.02 
0.03 

 
0.07 
0.05 
0.04 
0.05 
0.07 
0.04 

 
0.08 
0.05 
0.07 
0.04 

 
0.04 
0.20 
0.19 
0.27 

 

The variability in the synthetic household- and person-level estimates across 

PUMAs is depicted via scatter plots of actual and synthetic estimates in Figures 2.3 and 

2.4, respectively. The estimates lie closely along the 45 degree line for most household- 

and person-level variables. However, some PUMA estimates deviate from the 45 degree 

line by a significant margin. For example, synthetic estimates of age (Figure 2.4, middle 
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right-most plot) are overestimated at the extreme values and underestimated in between. 

This is not surprising due to the bimodal nature of age (see Figure 2.2) which is 

inadequately accounted for in the parametric imputation model. The bias introduced due 

to pooling of nearby PUMAs is evident for low-prevalence PUMA estimates (e.g., 

prevalence of African-Americans, Figure 2.4, bottom row, second-to-left plot) which are 

significantly overestimated in the synthetic data. Despite a few limitations of the 

synthetic data, it is encouraging that these imputations result in reasonable PUMA 

estimates for a wide range of variables.  

Figure 2.3 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) PUMA Means for 

Household-Level Variables. 

 



35 
 

Figure 2.4 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) PUMA Means for 

Person-Level Variables. 

 

Scatter plots of synthetic and actual standard deviations of PUMA means shown 

in Figures 2.5 and 2.6 are another indicator of the quality of the synthetic data. Ideally, 

each scatter plot point should fall directly on the 45 degree line if the synthetic data 

accurately reflects the variability of the actual distribution. The results are mixed across 

variables. For some variables, the synthetic standard deviations are tightly clustered 

around the 45 degree line, but for other variables, the points exhibit significant variable 

(or systematic, in the case of age) departures from the line, indicating poor model fit due 

to a failure of the imputation model. 
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Figure 2.5 Scatter Plot of Standard Deviations of Synthetic (y-axis) and Actual (x-

axis) PUMA Means for Household-Level Variables. 
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Figure 2.6 Scatter Plot of Standard Deviations of Synthetic (y-axis) and Actual (x-

axis) PUMA Means for Person-Level Variables. 

 

 Unlike the standard deviations, we would expect the standard errors of the 

synthetic PUMA means to be larger than the actual standard errors. No auxiliary 

information was incorporated into the imputation model – all variables used in the 

imputation model underwent synthesization, yielding a fully synthetic design. Figures 2.7 

and 2.8 show scatter plots of the synthetic and actual standard errors. As expected, the 

synthetic data yield larger standard errors on average for these univariate estimates.  

  



38 
 

 

 

Figure 2.7 Scatter Plot of Standard Errors of Synthetic (y-axis) and Actual (x-axis) 

PUMA Means for Household-Level Variables. 
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Figure 2.8 Scatter Plot of Standard Errors of Synthetic (y-axis) and Actual (x-axis) 

PUMA Means for Person-Level Variables. 

 

Next we focus on recoded variable and subgroup estimates. Such estimates are 

important to data users who may have interest in analyzing particular subsets of the 

population. Obtaining valid subgroup estimates from synthetic data can be tricky. If the 

subgroups of interest are not accounted for in the imputation model, then it is unlikely 

that the resulting subgroup inferences will be useful to the analyst. Thus, obtaining valid 

subgroup inferences requires that the imputer’s model is in agreement or is “congenial” 

with the analyst’s model of interest (Meng, 1994).  
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Figures 2.9 and 2.10 show scatter plots of PUMA means and standard errors for 

various recoded variables, including binary indicators of household income greater than 

the 50th, 75th, and 90th percentiles and subgroups which denote household income by 

tenure status (mortgage/loan, own free & clear, and rent), and poverty status by 

race/ethnicity (white, black, other, Hispanic). Starting with the recoded income estimates, 

the synthetic 50th and 75th percentile estimates correspond well with the actual estimates 

as indicated by the tightly clustered points which lie about the 45-degree line. On the 

other hand, for the 90th percentile plot, the points tend to lie above for the 45-degree line 

for PUMAs with the highest income proportions. Thus, the synthetic data performs 

reasonably well for estimating less moderate income percentiles, but is somewhat poor 

for the extreme percentiles.  

For both subgroup estimates (income by tenure; poverty by race), the synthetic 

data does reasonably well. Except for a few outlying points associated with the extreme 

PUMAs, the majority of points lie along the 45-degree line. This is remarkable 

considering the joint probabilities associated with these subgroups were not explicitly 

accounted for in the imputation model, i.e., the imputation model consisted of main 

effects only and did not include any interactions. The fact that the imputation model can 

still produce valid subgroup estimates despite being uncongenial to the analyst’s model is 

a reassuring for several reasons. It is difficult for the imputer to foresee how the analyst 

will use the data. It might not be practical for an imputer, from a computational 

perspective, to account for all interactions and higher-order terms in the imputation 

model. Although it is most wise to ensure that all relevant interactions are accounted for 
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during the imputation process, these results suggest that omitted interactions may still 

yield valid estimates for certain subgroups.  

 

Figure 2.9 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) PUMA Means for 

Subgroups and Recoded Variable Groups. 
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Figure 2.10 Scatter Plot of Standard Errors for Synthetic (y-axis) and Actual (x-

axis) PUMA Means for Subgroups and Recoded Variable Groups. 

 

4.2  Validity of Multivariate Estimates 

The next set of analyses assesses the analytic validity of synthetic multivariate 

estimates obtained from several multiple regression models. Tables 2.4, 2.5, and 2.6 show 

coefficient estimates (and their standard errors) for six regression models (3 household 

and 3 person) fit at the PUMA-, state-, and region-level, respectively. The state- and 

region-level models were fitted on data that was aggregated from the PUMAs up to the 

state and region, respectively. The dependent variable for the household regression 

models include the continuous income variable and two recoded binary income variables 

indicating whether the income value met or exceeded the 50th and 75th percentiles, 
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respectively. For the person-level regression models, the binary outcome variables 

include poverty status and earning a college diploma. Two models are fit for the latter 

outcome with a squared age term incorporated into one of the models (Model 6). 

The synthetic PUMA coefficient estimates correspond reasonably well with the 

actual estimates, on average. Out of the 24 average synthetic PUMA household-level 

coefficient estimates, only 5 differ from the actual estimates by more than one average 

standard error.  For the person-level main effects models, all of the PUMA estimates are 

reliably close to the actual estimates, on average. The squared term model (Model 6) 

yields a few synthetic estimates that notably differ from the actual estimates, including 

the squared term itself which is essentially zero (the actual estimate happens to be close 

to zero as well). This is not surprising considering that the squared term was deliberately 

omitted from the imputation model; thus, we should expect the synthetic term to be 

biased towards zero. The average state- and region-level synthetic coefficient estimates 

are similar to the actual estimates, on average, but like the synthetic univariate estimates 

obtained from aggregate areas (see section 4.1), they often differ by more than one 

standard error from the actual estimate indicating weaker correspondence relative to the 

PUMA estimates. 
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Table 2.4. PUMA-Level Linear and Logistic Regression Coefficients and Standard 

Errors Obtained from Actual and Synthetic Data Sets. 
 Model 1: Y= Income  

(linear) 

Model 2: Y= Income 

 (> 50pct; logistic) 

Model 3: Y=Income  

(> 75pct; logistic) 

Household-level 
covariates 

Avg.  
Actual  OQA! (SE) 

Avg.  
Synthetic OQA! (SE) 

Avg.  
Actual OQA! (SE) 

Avg.  
Synthetic OQA! (SE) 

Avg.  
Actual OQA! (SE) 

Avg.  
Synthetic OQA! (SE) 

  Intercept   
  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
  Tenure  
    Mortgage/loan 
    Own free & clear 
    Rent   

26.83 (2.55) 
1.56 (0.24) 
-0.39 (0.56) 
1.30 (0.35) 
1.05 (0.30) 
1.31 (0.28) 

 
Ref 

-3.92 (0.79) 
-5.81 (0.82) 

27.28 (2.46) 
1.62 (0.22) 
-0.38 (0.56) 
1.16 (0.32) 
1.02 (0.27) 
1.27 (0.27) 

 
Ref 

-3.38 (0.70) 
-6.49 (0.79) 

-2.21 (0.64) 
0.40 (0.07) 
-0.07 (0.15) 
0.19 (0.08) 
0.17 (0.07) 
0.23 (0.07) 

 
Ref 

-0.87 (0.17) 
-1.30 (0.21) 

-2.15 (0.44) 
0.29 (0.04) 
-0.06 (0.10) 
0.20 (0.06) 
0.18 (0.05) 
0.22 (0.05) 

 
Ref 

-0.59 (0.13) 
-1.14 (0.15) 

-4.15 (0.77) 
0.24 (0.06) 
-0.09 (0.17) 
0.32 (0.10) 
0.22 (0.08) 
0.29 (0.08) 

 
Ref 

-0.59 (0.20) 
-1.27 (0.31) 

-3.60 (0.46) 
0.29 (0.04) 
-0.07 (0.10) 
0.21 (0.06) 
0.19 (0.05) 
0.24 (0.05) 

 
Ref 

-0.62 (0.13) 
1.24 (0.17) 

 Model 4: Y= Poverty  

(logistic) 

Model 5: Y= College 

graduate  (logistic) 

Model 6: Y=College 

graduate (logistic) 

Person-level 
covariates 

Avg.  
Actual  OQA! (SE) 

Avg.  
Synthetic OQA! (SE) 

Avg.  
Actual OQA! (SE) 

Avg.  
Synthetic OQA! (SE) 

Avg.  
Actual OQA! (SE) 

Avg.  
Synthetic OQA! (SE) 

  Intercept 
  Sampling weight 
  Gender  
  Education  
    < 12 years 
    12 years 
    13-15 years 
    16+ years   
  Hispanic  
  Age 
  Race  
    White 
    Black 
    Other 
  Poverty  
  Age2 

-3.14 (0.54) 
0.29 (0.15) 
-0.32 (0.14) 

 
Ref 

-0.29 (0.22) 
-0.56 (0.23) 
-1.35 (0.29) 
0.32 (0.34) 
-0.00 (0.00) 

 
Ref 

-0.01 (0.37) 
0.39 (0.28) 

-- 
-- 

-3.02 (0.85) 
0.28 (0.23) 
-0.33 (0.13) 

 
Ref 

-0.29 (0.23) 
-0.56 (0.25) 
-1.33 (0.32) 
0.27 (0.55) 
-0.00 (0.01) 

 
Ref 

-0.09 (0.55) 
0.37 (0.42) 

-- 
-- 

-1.37 (0.34) 
-0.12 (0.09) 
-0.00 (0.10) 

 
-- 
-- 
-- 
-- 

-0.74 (0.32) 
0.02 (0.00) 

 
Ref 

-0.66 (0.34) 
0.15 (0.21) 
-1.14 (0.26) 

-- 

-1.00 (0.38) 
-0.11 (0.11) 
-0.03 (0.08) 

 
-- 
-- 
-- 
-- 

0.79 (0.28) 
0.01 (0.00) 

 
Ref 

-0.53 (0.29) 
0.16 (0.20) 
-1.13 (0.28) 

-- 

-4.12 (0.40) 
-0.22 (0.10) 
-0.02 (0.10) 

 
-- 
-- 
-- 
-- 

-0.79 (0.34) 
0.19 (0.01) 

 
Ref 

-0.73 (0.35) 
0.17 (0.22) 
-1.03 (0.26) 
-0.00 (0.00) 

-1.13 (0.38) 
-0.11 (0.11) 
-0.03 (0.08) 

 
-- 
-- 
-- 
-- 

-0.78 (0.28) 
0.02 (0.002) 

 
Ref 

-0.52 (0.29) 
0.18 (0.21) 
-1.12 (0.28) 
-0.00 (0.00) 

 

Scatter plots of synthetic and actual PUMA regression coefficients and their 

standard errors for each of the six models are shown in Appendix 3 (Figures A3.1-

A3.12). In general, the synthetic coefficient estimates tend to agree with the actual 

estimates for the models that do not include recoded variables or higher-order terms 

(Models 1, 4, and 5). However, agreement tends to decline for models 2, 3, and 6 that 

involve the modeling of recoded variables (income percentiles) and squared terms (age), 

which were not explicitly accounted for in the imputation models. For example, it is clear 

from Figures A3.11 and A3.12 that the squared age term is attenuated towards zero in the 

synthetic data. To avoid attenuation it is recommended that all relevant squared terms be 
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included in the imputation process. For the percentile regression coefficients, many of the 

synthetic estimates appear to be valid but the validity tends to decrease for the extreme 

PUMAs, where the points tend to depart the furthest from the 45 degree line.  

 

Table 2.5. State-Level Linear and Logistic Regression Coefficients and Standard 

Errors Obtained from Actual and Synthetic Data Sets. 
 Model 1: Y= Income  

(linear) 

Model 2: Y= Income 

 (> 50pct; logistic) 

Model 3: Y=Income  

(> 75pct; logistic) 

Household-level 
covariates 

Avg.  
Actual  OQ! (SE) 

Avg.  
Synthetic OQ! (SE) 

Avg.  
Actual OQ! (SE) 

Avg.  
Synthetic OQ! (SE) 

Avg.  
Actual OQ! (SE) 

Avg.  
Synthetic OQ! (SE) 

  Intercept 
  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
  Tenure 
    Mortgage/loan 
    Own free & clear 
    Rent   

25.64 (0.51) 
1.57 (0.06) 
-0.28 (0.10) 
1.26 (0.08) 
1.07 (0.07) 
1.42 (0.06) 

 
Ref 

-3.66 (0.15) 
-5.64 (0.17) 

26.36 (0.54) 
1.65 (0.08) 
-0.26 (0.10) 
1.13 (0.07) 
1.01 (0.08) 
1.33 (0.06) 

 
Ref 

-3.15 (0.14) 
-6.36 (0.21) 

-2.43 (0.12) 
0.40 (0.01) 
-0.05 (0.03) 
0.19 (0.02) 
0.17 (0.02) 
0.25 (0.01) 

 
Ref 

-0.84 (0.03) 
-1.31 (0.04) 

-2.33 (0.09) 
0.30 (0.01) 
-0.04 (0.02) 
0.20 (0.01) 
0.18 (0.01) 
0.24 (0.01) 

 
Ref 

-0.56 (0.02) 
-1.14 (0.04) 

-4.43 (0.15) 
0.23 (0.01) 
-0.07 (0.03) 
0.33 (0.02) 
0.22 (0.02) 
0.32 (0.01) 

 
Ref 

-0.53 (0.04) 
-1.29 (0.07) 

-3.80 (0.11) 
0.30 (0.01) 
-0.05 (0.02) 
0.21 (0.01) 
0.19 (0.01) 
0.25 (0.01) 

 
Ref 

-0.60 (0.03) 
-1.25 (0.05) 

 Model 4: Y= Poverty  

(logistic) 

Model 5: Y= College 

graduate  (logistic) 

Model 6: Y=College graduate  

(logistic) 

Person-level 
covariates 

Avg.  
Actual  OQ! (SE) 

Avg.  
Synthetic OQ! (SE) 

Avg.  
Actual OQ! (SE) 

Avg.  
Synthetic OQ! (SE) 

Avg.  
Actual OQ! (SE) 

Avg.  
Synthetic OQ! (SE) 

  Intercept 
  Sampling weight 
  Gender 
  Education  
    < 12 years 
    12 years 
    13-15 years 
    16+ years   
  Hispanic  
  Age 
  Race 
    White 
    Black 
    Other 
  Poverty 
  Age2 

-3.30 (0.09) 
0.33 (0.03) 
-0.30 (0.03) 

 
Ref 

-0.28 (0.05) 
-0.52 (0.05) 
-1.31 (0.06) 
0.36 (0.09) 

-0.001 (0.001) 
 

Ref 
-0.49 (0.10) 
0.42 (0.06) 

-- 
-- 

-3.17 (0.19) 
0.31 (0.03) 
-0.29 (0.03) 

 
Ref 

-0.29 (0.05) 
-0.48 (0.06) 
-1.30 (0.07) 
0.21 (0.16) 

-0.003 (0.001) 
 

Ref 
-0.64 (0.30) 
0.44 (0.10) 

-- 
-- 

-1.60 (0.06) 
-0.09 (0.02) 
-0.02 (0.02) 

 
-- 
-- 
-- 
-- 

-0.55 (0.08) 
0.02 (0.004) 

 
Ref 

-0.66 (0.11) 
0.09 (0.05) 
-1.10 (0.05) 

-- 

-1.11 (0.09) 
-0.10 (0.35) 
-0.04 (0.02) 

 
-- 
-- 
-- 
-- 

-0.61 (0.07) 
0.01 (0.003) 

 
Ref 

-0.51 (0.10) 
0.05 (0.05) 
-1.10 (0.07) 

-- 

-4.32 (0.07) 
-0.18 (0.02) 
-0.03 (0.02) 

 
-- 
-- 
-- 
-- 

-0.55 (0.09) 
0.19 (0.002) 

 
Ref 

-0.67 (0.11) 
0.12 (0.05) 
-0.99 (0.05) 

-0.002 (0.000) 

-1.27 (0.09) 
-0.10 (0.40) 
-0.04 (0.02) 

 
-- 
-- 
-- 
-- 

-0.60 (0.07) 
0.02 (0.0004) 

 
Ref 

-0.49 (0.11) 
0.07 (0.05) 
-1.09 (0.07) 

-0.0e-7 (0.0e-8) 
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Table 2.6. Region-Level Linear and Logistic Regression Coefficients and Standard 

Errors Obtained from Actual and Synthetic Data Sets. 
 Model 1: Y= Income 

(linear) 

Model 2: Y= Income 

 (> 50pct; logistic) 

Model 3: Y=Income  

(> 75pct; logistic) 

Household-level 
covariates 

Actual  OQ  (SE) 

Synthetic OQ  (SE) 

Actual OQ   (SE) 

Synthetic OQ   (SE) 

Actual OQ   (SE) 

Synthetic OQ   (SE) 

  Intercept 
  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
  Tenure  
    Mortgage/loan 
    Own free & clear 
    Rent   

20.78 (0.11) 
1.40 (0.01) 
0.91 (0.02) 
1.08 (0.02) 
1.58 (0.02) 
1.37 (0.01) 

 
Ref 

-4.27 (0.04) 
-5.91 (0.04) 

22.94 (0.12) 
1.61 (0.01) 
0.51 (0.03) 
0.83 (0.02) 
1.53 (0.02) 
1.30 (0.02) 

 
Ref 

-3.79 (0.04) 
-6.53 (0.04) 

-3.00 (0.02) 
0.32 (0.00) 
0.19 (0.01) 
0.12 (0.00) 
0.23 (0.00) 
0.23 (0.00) 

 
Ref 

-0.90 (0.01) 
-1.21 (0.01) 

-2.55 (0.02) 
0.26 (0.00) 
0.09 (0.00) 
0.12 (0.00) 
0.21 (0.00) 
0.21 (0.00) 

 
Ref 

-0.63 (0.01) 
-1.07 (0.01) 

-5.13 (0.03) 
0.19 (0.00) 
0.22 (0.01) 
0.26 (0.00) 
0.29 (0.00) 
0.28 (0.00) 

 
Ref 

-0.64 (0.00) 
-0.96 (0.01) 

-4.12 (0.02) 
0.24 (0.00) 
0.11 (0.01) 
0.15 (0.00) 
0.27 (0.00) 
0.22 (0.00) 

 
Ref 

-0.62 (0.01) 
-0.96 (0.01) 

 Model 4: Y= Poverty  

(logistic) 

Model 5: Y= College 

graduate (logistic)  

Model 6: Y=College 

graduate (logistic) 

Person-level 
covariates 

Actual  OQ  (SE) 

Synthetic OQ  (SE) 

Actual OQ   (SE) 

Synthetic OQ   (SE) 

Actual OQ   (SE) 

Synthetic OQ   (SE) 

  Intercept   
  Sampling weight 
  Gender  
  Education  
    < 12 years 
    12 years 
    13-15 years 
    16+ years   
  Hispanic  
  Age 
  Race  
    White 
    Black 
    Other 
  Poverty 
  Age2 

-2.52 (0.02) 
0.15 (0.01) 
-0.30 (0.01) 

 
Ref 

-0.37 (0.01) 
-0.66 (0.01) 
-1.47 (0.01) 
0.70 (0.01) 
-0.00 (0.00) 

 
Ref 

0.89 (0.01) 
0.51 (0.01) 

-- 
-- 

-2.60 (0.04) 
0.19 (0.01) 
-0.31 (0.01) 

 
Ref 

-0.33 (0.01) 
-0.59 (0.01) 
-1.34 (0.02) 
0.70 (0.02) 
-0.00 (0.00) 

 
Ref 

0.88 (0.02) 
0.54 (0.01) 

-- 
-- 

-2.45 (0.01) 
0.19 (0.00) 
0.01 (0.00) 

 
-- 
-- 
-- 
-- 

-1.00 (0.01) 
0.02 (0.00) 

 
Ref 

-0.61 (0.01) 
0.42 (0.01) 
-1.19 (0.01) 

-- 

-1.61 (0.01) 
0.08 (0.00) 
-0.02 (0.01) 

 
-- 
-- 
-- 
-- 

-1.03 (0.01) 
0.01 (0.00) 

 
Ref 

-0.64 (0.01) 
0.34 (0.01) 
-1.11 (0.02) 

-- 

-5.23 (0.01) 
0.15 (0.00) 
-0.02 (0.00) 

 
-- 
-- 
-- 
-- 

-1.09 (0.01) 
0.18 (0.00) 

 
Ref 

-0.68 (0.01) 
0.42 (0.01) 
-1.08 (0.01) 
-0.00 (0.00) 

-1.76 (0.01) 
0.08 (0.00) 
-0.02 (0.01) 

 
-- 
-- 
-- 
-- 

1.03 (0.01) 
0.02 (0.00) 

 
Ref 

-0.63 (0.01) 
0.36 (0.01) 
-1.10 (0.02) 
-0.00 (0.0) 

 

 

4.3  Propensity Score Balance 

 Another indicator of the quality of the synthetic data is to assess the covariate 

balance between the synthetic and actual data. This is most easily performed using 

propensity scores (Rubin and Rosenbaum, 1983). Propensity scores are often used to 

identify imbalances in in two or more groups (e.g., treatment and control groups) based 

on the distribution of a set of observed covariates. Biases caused by covariate imbalances 

may be adjusted by performing a weighted analysis with weights inversely proportional 

to the propensity scores (Ekholm and Laaksonen, 1991). 
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To assess the covariate balance between the synthetic and actual data sets, a 

randomly selected synthetic data set and the actual data are stacked vertically. Then an 

actual data indicator variable is regressed against all synthetic and actual variables using 

a logistic regression model. The fitted model is used to obtain estimates of the propensity 

of a record belonging to the actual data. The propensity scores are then sorted and 

classified into deciles and the proportions of synthetic and actual records are compared. If 

the synthetic and actual covariates are fully balanced, then the proportion of synthetic 

versus actual data should be the same for each decile group. A chi-squared test with 9 

degrees of freedom (if deciles are used) can be performed to assess the equivalence of the 

actual data proportions across the groups.  

We use the propensity score balance method to assess the similarity of the 

synthetic and actual data in each PUMA. Tables 2.7 and 2.8 show summary statistics of 

the estimated probabilities of belonging to the actual data in each PUMA obtained from 

the household- and person-level propensity models, respectively, and associated test 

statistics. The overall mean estimated propensity score was 0.13, which reflects the true 

proportion of actual data in each PUMA and the oversampling of synthetic data. Within 

each PUMA, the propensity scores were sorted and grouped into deciles and a chi-square 

statistic was computed. Small chi-square values indicate that the synthetic and actual data 

sets are balanced or statistically independent from each other, based on the set of 

covariates, while large values indicate poor covariate balance between the two data sets. 

The mean chi-square p-value for the household- and person-level data was 0.02 and 

0.001, respectively. This suggests that the synthetic data is not statistically balanced with 

the actual data based on the set of synthetic covariates. These results should be 
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interpreted with caution, however, as the large sample sizes tend to produce overpowered 

tests. In addition, the independence assumption is violated between the two data sets 

(Raghunathan, 2008).  

Table 2.7 Estimated Propensities of Belonging to the Actual Household-Level Data  

Households; PUMAs Mean Min Max 

Estimated probabilities Ĥ 0.13 0.08 0.20 h� statistic  45.38 27.03 182.09 

P-value 0.02 <0.000 0.14 

 

Table 2.8 Estimated Propensities of Belonging to the Actual Person-Level Data 

Persons; PUMAs Mean Min Max 

Estimated probabilities Ĥ 0.13 0.06 0.17 h� statistic  216.71 96.95 625.27 

P-value 0.001 < 0.000 0.003 

 

 

5  ACS-Based Simulation 

This section evaluates the repeated sampling properties for small area inferences 

drawn from the synthetic data based on a simulation application. In this simulation, the 

2005-2007 ACS data is treated as a population from which subsamples are drawn. 500 

stratified random subsamples are drawn from each PUMA with replacement. Each 

subsample accounts for approximately 30% of the total sample in each PUMA. Each 

ACS subsample is used as the basis for constructing a synthetic population from which 

100 synthetic samples are drawn. A total of 50,000 synthetic data sets are generated. 

Two types of inferences can be obtained from the synthetic data: conditional and 

unconditional. Conditional synthetic inferences are obtained from synthetic samples that 

are based on a single observed sample drawn from the population. This is the situation 

most commonly encountered in practice, where a survey is carried out on a single 
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population-based sample and the synthetic data is generated conditional on that sample. 

Unconditional inferences are obtained from synthetic samples that are based on multiple, 

or repeated, population-based samples. Obtaining unconditional inferences is not feasible 

in practice but is possible in the simulation study considered here.  

To obtain conditional inferences, 500 sets of 10 synthetic samples are randomly 

selected (with replacement) from each of the 100 synthetic samples generated conditional 

on each of the 500 ACS subsamples. For each set of 10 synthetic samples, a synthetic 

estimate and associated 95% confidence interval is obtained for each variable in each 

PUMA using the combining rule equations [1] and [2] in Section 2.2. To obtain 

unconditional inferences, 100 sets of 10 synthetic samples are randomly selected with 

replacement across each of the 100 ACS subsamples and estimates are obtained again 

using the relevant combining rules. 

We use two evaluative measures to assess the validity of the synthetic data 

estimates. The first one is confidence interval coverage (CIC). For conditional inference, 

CIC is defined as the proportion of times that the synthetic data confidence interval, 

computed at the 0.05 level,bijU?,!"#, k	jU?,!"#c contains the actual estimate 4UlAV: 
�mnm � o�4UlAV ∈ 	 bijU?,!"#, k	jU?,!"#c� 

where o�∙� is an indicator function. �mnm � 1 if ijU?,!"# q 4UlAV q k	jU?,!"# and �r � 0 

otherwise. 

For unconditional inference, the only difference is that the CIC is calculated as the 

proportion of times that the synthetic data confidence interval contains the “true” 

population value �F*F, i.e., ijU?,!"# q �F*F q k	jU?,!"#.  
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The second evaluative measure is referred to as the confidence interval overlap 

(CIO; Karr et al., 2006). CIO is defined as the average relative overlap between the 

synthetic and actual data confidence intervals.  For every estimate the average overlap is 

calculated by, 

�mns � �� tuvwxy�zvwxyu{|}�z{|} � uvwxy�zvwxyu~���z~�� � , 

where klAV and ilAV denote the upper and the lower bound of the confidence interval for 

the actual estimate 4UlAV,  k!"# and i!"# denote the upper and the lower bound of the 

confidence interval for the synthetic data estimate 	U�, and k*��� and i*��� denote the 

upper and lower bound of the overlap of the confidence intervals from the original and 

from the synthetic data for the estimate of interest. �mns can take on any value between 0 

and 1. A value of 0 means that there is no overlap between the two intervals and a value 

of 1 means the synthetic interval completely covers the actual interval. Calculating the 

confidence interval overlap is only possible for conditional, not unconditional, inferences. 

This measure yields a more accurate assessment of data utility in the sense that it 

accounts for the significance level of the estimate. That is, estimates with low 

significance might still have a high confidence interval overlap and therefore a high data 

utility even if their point estimates differ considerably from each other.  

 

5.1  Validity of Univariate Estimates  

Table 2.9 shows the average confidence interval coverage (CIC) and confidence 

interval overlap (CIO) across all PUMAs for each household-level estimate. The 

conditional CIC is high for basic (non-recoded) estimates ranging from 0.86-0.99. The 

income/tenure subgroup estimates also yield relatively high conditional CIC values 
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(range: 0.89-0.97). For the income percentile estimates, the CIC values tend to decline 

monotonically as the percentiles increase. The same general trend is observed for the 

conditional CIO values, which closely resemble the CIC values. Regarding the 

unconditional inferences, the CIC values tend to be slightly higher than the corresponding 

values obtained from the conditional evaluation. The actual CIC  values, obtained from 

the actual ACS subsamples, tend to be very close to the synthetic CIC values, if not 

slightly higher, except for the aforementioned percentile estimates which demonstrate 

weaker coverage for the most extreme percentiles.  

  

Table 2.9 Simulation-Based Confidence Interval Results for PUMA Means.  
 Conditional Inference Unconditional Inference 

 CIC CIO CIC CIC (Actual) 
Household size 
Sampling weight 
Bedrooms 
Electricity cost/mo. 
Rooms 
Household income 
Tenure 
  Own free & clear 
  Rent 
Income > 50th pctile  
Income > 75th pctile  
Income > 90th pctile  
Income (Mortgage=1) 
Income (Own=1) 
Income (Rent=1) 

0.99 
0.95 
0.89 
0.86 
0.97 
0.90 

 
0.93 
0.94 
0.89 
0.71 
0.52 
0.89 
0.91 
0.97 

0.97 
0.99 
0.87 
0.87 
0.93 
0.91 

 
0.92 
0.96 
0.92 
0.71 
0.60 
0.88 
0.98 
0.93 

0.98 
0.99 
0.93 
0.91 
0.98 
0.94 

 
0.96 
0.96 
0.94 
0.80 
0.62 
0.94 
0.96 
0.99 

0.98 
0.98 
0.98 
0.98 
0.98 
0.98 

 
0.98 
0.98 
0.98 
0.98 
0.97 
0.97 
0.96 
0.96 

 

Although the synthetic PUMA means exhibit good confidence interval properties, 

the CIC and CIO values are less impressive for the state-level means. Table 2.10 shows 

the average CIC and CIO values across all states. The conditional CIC and CIO measures 

range from 0.18-0.88 and 0.29-0.99, respectively. The CIO values tend to be relatively 

higher than the CIC values suggesting that these estimates have higher data utility than 
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their corresponding CIC values might indicate. The same pattern is generally true for the 

unconditional inference. The unconditional synthetic CIC values fail to reach the actual 

CIC values by a notable margin for all estimates.  

 

Table 2.10 Simulation-Based Confidence Interval Results for State Means.  
 Conditional Inference Unconditional Inference 

 CIC CIO CIC CIC (Actual) 
Household size 
Sampling weight 
Bedrooms 
Electricity cost/mo. 
Rooms 
Household income 
Tenure 
  Own free & clear 
  Rent 
Income > 50th pctile  
Income > 75th pctile  
Income > 90th pctile  
Income (Mortgage=1) 
Income (Own=1) 
Income (Rent=1) 

0.88 
0.67 
0.25 
0.18 
0.67 
0.42 

 
0.64 
0.60 
0.68 
0.27 
0.40 
0.58 
0.53 
0.81 

0.89 
0.99 
0.60 
0.60 
0.76 
0.75 

 
0.70 
0.85 
0.85 
0.29 
0.47 
0.75 
0.99 
0.80 

0.90 
0.76 
0.37 
0.31 
0.75 
0.56 

 
0.73 
0.70 
0.68 
0.34 
0.36 
0.61 
0.63 
0.87 

0.98 
0.99 
0.98 
0.98 
0.98 
0.99 

 
0.98 
0.98 
0.99 
0.98 
0.98 
0.98 
0.98 
0.98 

 

5.2  Validity of Multivariate Estimates  

 Multivariate simulation results are shown in Table 2.11. This table shows average 

CIC and CIO values for regression coefficient estimates obtained within each PUMA 

from a household-level regression model. The conditional CIC and CIO values are high 

and range from 0.93-0.99 and 0.90-0.98, respectively, indicating good analytic validity 

for these multivariate statistics. The unconditional CIC values range from 0.85-0.92 the 

CIC values obtained from the actual data (0.98). Because the analytic model being 

evaluated here is the same model used to impute the synthetic data, it is not surprising 

that the analytic validity of the estimates is high. This result underscores the importance 

of ensuring that the imputation model sufficiently overlaps with the analytic small area 

model of interest. 
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Additional simulation-based summary measures PUMA-, state-, and region-level 

estimands can be found in Appendix 4.  

 

Table 2.11 Simulation-Based Confidence Interval Results for PUMA Regression 

Coefficients  
 Conditional Inference Unconditional Inference 

Covariates CIC CIO CIC CIC (Actual) 
Regression of income 

(cube root) on 

  Intercept 
  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
  Tenure  
    Mortgage/loan 
    Own free & clear 
    Rent   

 
 

0.98 
0.98 
0.99 
0.98 
0.99 
0.98 

 
Ref 
0.95 
0.93 

 
 

0.97 
0.95 
0.97 
0.98 
0.97 
0.97 

 
Ref 
0.90 
0.96 

 
 

0.92 
0.91 
0.92 
0.91 
0.91 
0.92 

 
Ref 
0.87 
0.85 

 
 

0.98 
0.98 
0.98 
0.98 
0.98 
0.98 

 
Ref 
0.98 
0.98 

 
  

6  Application: Restricted ACS County-Level Data  

In addition to the public-use microdata, restricted ACS microdata for years 2005-2009 

were obtained from the Michigan Census Research Data Center and used to demonstrate 

the proposed synthetic data method. The restricted data contain identifiers for all counties 

in the United States. We restrict the data to the Northeast region which contains 217 

counties, in contrast to the public-use microdata which contains 405 public-use microdata 

areas (PUMAs). Although 3 years of microdata were used in the public-use application, 

we use the restricted 5-year data set to facilitate the disclosure review and allow the 

publication of estimates for all counties. The same variables shown in Table 2.0 were 

synthesized in this application. The synthetic data estimates are based on � � 10 

imputations.  
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Tables 2.12 and 2.13 show summary measures of actual and synthetic county 

means and regression coefficients. In general and without going into great detail, the 

synthetic means and regression coefficients correspond relatively closely to the actual 

estimates, on average, as was found for the public-use application (Sections 4.1 and 4.2).  

Figures 2.11 and 2.12 present scatter plots of the actual and synthetic means for 

all counties in the Northeast region. (Plots of county-level regression estimates are not 

shown, but yielded similar correspondence as was shown for the PUMA estimates). In 

general, the correspondence between actual and synthetic means is reasonably good as 

indicated by the points lying closely along the 45-degree line. Overall, the results of the 

restricted-data application are similar to the public-use application. 

As in the public-use application, the actual and synthetic point estimates 

correspond relatively closely when applied to actual counties, with the aforementioned 

exceptions (e.g., bimodal age variable). This finding should give confidence to the 

synthetic data methodology, as the method is more practically useful when applied to 

actual small areas, such as counties, as opposed to combined counties or PUMAs.  
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Table 2.12 Summary Measures of Actual and Synthetic County Means. 
 Avg. Mean Avg. Standard 

Deviation 

Avg. Standard 

Error of Mean 

Regression of Actual 

Means on Synthetic 

Means 

 Actual Synthetic Actual Synthetic Actual Synthetic Intercept Slope 

Household variables 

  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms 
  Income 
  Tenure (%) 
    Mortgage/loan 
    Own free & clear 
    Rent 
 
  Income > 50th pctile,% 
  Income > 77th pctile,% 
  Income > 90th pctile,% 
  Income (Mortgage=1) 
  Income (Own=1) 
  Income (Rent=1) 

 
2.12 
9.99 
2.88 

118.89 
3.23 

67983.9 
 

49.00 
31.12 
19.88 

 
44.65 
19.34 
6.78 

84667.0 
61076.6 
38844.5 

 
2.12 
10.20 
2.82 

119.37 
3.18 

67382.4 
 

47.03 
30.37 
22.60 

 
44.56 
21.49 
8.38 

86992.6 
60456.9 
36921.9 

 
1.46 
7.21 
0.96 

78.72 
1.19 

68481.3 
 

49.38 
45.53 
38.86 

 
48.24 
37.34 
22.96 

69019.2 
76053.1 
37759.4 

 
1.45 
7.04 
1.09 
78.33 
1.28 

54081.9 
 

49.30 
44.97 
41.00 

 
48.19 
38.69 
24.58 

58960.1 
45083.6 
32527.3 

 
0.02 
0.11 
0.02 
1.25 
0.02 

1067.3 
 

0.82 
0.77 
0.63 

 
0.80 
0.59 
0.35 

1536.0 
2132.8 
1436.0 

 
0.01 
0.11 
0.01 
1.10 
0.02 
692.6 

 
0.74 
0.72 
0.63 

 
0.56 
0.43 
0.24 

1195.3 
1232.7 
1166.5 

 
0.02 
0.01 
0.15 
9.90 
0.09 

4681.7 
 

0.04 
0.05 
-0.05 

 
0.01 
-0.00 
0.56 

5460.0 
1717.0 
3480.0 

 
0.99 
0.98 
0.97 
0.91 
0.99 
0.94 

 
0.95 
0.85 
1.09 

 
0.97 
0.91 
0.74 
0.91 
0.98 
0.99 

Person variables 

  Sampling weight 
  Gender (%) 
  Education (%) 
    < 12 years 
    12 years 
    13-15 years 
    16+ years 
  Hispanic (%) 
  Age 
  Race (%) 
    White 
    Black 
    Other 
  Poverty (%) 
 
  Poverty (White=1; %) 
  Poverty (Black=1; %) 
  Poverty (Other=1; %) 
  Poverty (Hispanic=1; %) 

 
10.27 
48.63 

 
31.48 
28.34 
20.33 
19.85 
3.85 
40.89 

 
92.21 
3.55 
4.24 
8.65 

 
7.93 
20.48 
16.62 
19.92 

 
10.67 
48.63 

 
31.67 
27.74 
20.25 
20.35 
4.23 
41.16 

 
91.34 
4.01 
4.65 
9.04 

 
8.19 
21.30 
17.84 
21.11 

 
7.59 

49.97 
 

46.31 
44.40 
40.11 
38.72 
15.72 
22.98 

 
22.17 
14.54 
14.54 
27.54 

 
26.41 
36.86 
35.37 
37.08 

 
8.02 
49.97 

 
46.31 
44.06 
40.04 
39.14 
16.99 
30.34 

 
24.08 
16.26 
18.61 
28.13 

 
26.84 
37.03 
36.07 
37.96 

 
0.08 
0.53 

 
0.49 
0.48 
0.43 
0.40 
0.14 
0.25 

 
0.20 
0.13 
0.16 
0.30 

 
0.30 
4.62 
2.96 
3.52 

 
0.14 
0.44 

 
0.39 
0.57 
0.50 
0.51 
0.26 
0.27 

 
0.36 
0.26 
0.27 
0.53 

 
0.51 
3.52 
4.38 
5.54 

 
-0.09 
0.04 

 
0.09 
0.01 
0.01 
-0.01 
-0.00 
22.02 

 
0.01 
-0.01 
-0.00 
-0.00 

 
-0.00 
-0.01 
0.01 
-0.01 

 
0.97 
0.91 

 
0.71 
0.97 
0.96 
1.00 
1.00 
0.46 

 
1.00 
1.00 
1.00 
1.00 

 
1.00 
1.01 
0.87 
0.98 
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Table 2.13 County-Level Linear and Logistic Regression Coefficients and Standard 

Errors Obtained from Actual and Synthetic Data Sets 
 Y=Income (linear) Y=Income (>50pct; logistic) Y=Income 

(>75pct; logistic) 

Household-level 
covariates 

Actual 
Beta (SE) 

Synthetic 
Beta (SE) 

Actual 
Beta (SE) 

Synthetic 
Beta (SE) 

Actual 
Beta (SE) 

Synthetic 
Beta (SE) 

Intercept 
Household size 
Sampling weight 
Total bedrooms 
Electricity bill/mo. 
Total rooms 
Tenure 
  Mortgage/loan 
  Own free & clear 
  Rent 

24.34 (1.11) 
1.52 (0.14) 
-0.04 (0.24) 
1.15 (0.19) 
0.99 (0.18) 
1.25 (0.14) 

 
Ref 

-3.47 (0.37) 
-6.01 (0.44) 

24.26 (1.09) 
1.44 (0.14) 
-0.05 (0.26) 
1.23 (0.18) 
1.04 (0.17) 
1.26 (0.13) 

 
Ref 

-3.05 (0.34) 
-6.84 (0.47) 

-2.86 (0.29) 
0.37 (0.04) 

0.006 (0.07) 
0.19 (0.05) 
0.18 (0.05) 
0.25 (0.04) 

 
Ref 

-0.80 (0.09) 
-1.45 (0.14) 

-2.82 (0.23) 
0.28 (0.03) 
-0.01 (0.05) 
0.24 (0.04) 
0.20 (0.04) 
0.24 (0.03) 

 
Ref 

-0.57 (0.08) 
-1.31 (0.14) 

-5.15 (0.39) 
0.21 (0.04) 
0.03 (0.09) 
0.34 (0.06) 
0.24 (0.06) 
0.32 (0.05) 

 
Ref 

-0.52 (0.12) 
-1.45 (0.26) 

-4.42 (0.28) 
0.29 (0.03) 
-0.01 (0.07) 
0.25 (0.05) 
0.21 (0.04) 
0.26 (0.04) 

 
Ref 

-0.62 (0.10) 
-1.57 (0.31) 

 Y=Poverty 

(logistic) 

Y=College graduate 

(logistic) 

Y=College graduate 

(logistic) 

Person-level 
covariates 

Actual 
Beta (SE) 

Synthetic 
Beta (SE) 

Actual 
Beta (SE) 

Synthetic 
Beta (SE) 

Actual 
Beta (SE) 

Synthetic 
Beta (SE) 

Intercept 
Sampling weight 
Gender: Male 
Education 
  <12 years 
  12 years 
  13-15 years 
  16+years 
Hispanic 
Age 
Race 
  White 
  Black 
  Other 
Poverty 
Age (squared) 

-2.39 (0.16) 
0.25 (0.07) 
-0.33 (0.08) 

 
Ref 

-0.36 (0.12) 
-0.62 (0.13) 
-1.52 (0.18) 
0.36 (0.29) 
-0.00 (0.00) 

 
Ref 

0.28 (0.34) 
0.41 (0.25) 

-- 
-- 

-2.32 (0.24) 
0.25 (0.10) 
-0.34 (0.08) 

 
Ref 

-0.35 (0.13) 
-0.63 (0.15) 
-1.59 (0.30) 
0.27 (0.63) 
0.01 (0.07) 

 
Ref 

0.22 (0.87) 
0.41 (0.56) 

-- 
-- 

-2.27 (0.12) 
0.03 (0.05) 
-0.06 (0.06) 

 
-- 
-- 
-- 
-- 

-0.70 (0.34) 
0.02 (0.001) 

 
Ref 

-1.06 (0.36) 
0.23 (0.24) 
-1.26 (0.17) 

-- 

-2.17 (0.13) 
0.03 (0.05) 
-0.06 (0.05) 

 
-- 
-- 
-- 
-- 

-0.66 (0.67) 
0.02 (0.05) 

 
Ref 

-0.65 (0.80) 
0.33 (0.36) 
-1.26 (0.28) 

-- 

-4.99 (0.18) 
-0.00 (0.05) 
-0.08 (0.06) 

 
-- 
-- 
-- 
-- 

-0.66 (0.36) 
0.17 (0.007) 

 
Ref 

-1.01 (0.38) 
0.21 (0.25) 
-1.15 (0.17) 
-0.00 (0.00) 

-2.18 (0.14) 
0.03 (0.05) 
-0.06 (0.05) 

 
-- 
-- 
-- 
-- 

-0.66 (0.67) 
0.02 (0.05) 

 
Ref 

-0.65 (0.80) 
0.33 (0.36) 
-1.26 (0.28) 
-0.01 (0.02) 
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Figure 2.11 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) County Means for 

Household-Level Variables. 
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Figure 2.12 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) County Means for 

Person-Level Variables. 

 

 

7 Conclusions 

 In this chapter, I demonstrated a new synthetic data methodology for 

disseminating public-use microdata for small geographic areas. Data users are 

increasingly interested in producing small area estimates, but statistical agencies are 

prevented from releasing these data due to disclosure concerns. Compared with current 

practices of disseminating small area data via research data centers, geographically 

suppressed public-use microdata, and  summary/aggregate tables, the synthetic data 
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framework offers data users the flexibility of performing their own customizable 

geographic analyses using data that can presumably be released to the public without 

restriction. 

 The empirical evaluations show that the synthetic data generated from the 

Bayesian hierarchical model produces both valid univariate and multivariate statistics 

computed within the smallest geographic areas. However, limitations of the method were 

apparent when producing estimates for larger (aggregate) areas and simulating synthetic 

data for non-standard distribution; both situations yielded low analytic validity. The low 

analytic validity for state- and region-level estimates could be attributable to the choice of 

covariates incorporated into the hierarchical model. Only 3 state-level covariates (number 

of metropolitan and micropolitan areas, and log population size) were used in this 

demonstration, but a broader set of variables that are highly correlated with the variables 

undergoing synthesis may yield improvements. In addition, the “empirical” Bayesian 

approach considered here by fixing the hyperparameters at their maximum likelihood 

estimates may have underestimated the synthetic standard errors and shortened 

confidence intervals to the extent that they did not adequately cover the actual estimate of 

interest at reasonable rates. A fully-Bayesian approach, accounting for the variation in the 

hyperparameters, might improve confidence interval coverage of estimates computed for 

aggregate areas.  

 Regarding the preservation of skewed and non-standard distributions, parametric 

imputation models are inherently limited in this task as demonstrated in this study. 

Extending the proposed methodology to handle nonparametric distributions is a natural 

next step and a fruitful area for future work. Although the ACS samples all 
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geographically-relevant areas, another possible extension is the generation of synthetic 

data for non-sampled small areas in complex sample surveys (e.g., NHIS). 

 Despite the potential for future improvements, the method shows promise and 

could be adopted by large-scale survey projects, including the American Community 

Survey, to release more geographically-relevant data to the public. Such efforts could 

potentially help meet the growing demand for such data, which is expected to grow 

among a variety of data users across many disciplines. 
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Appendix 1  EM Algorithm for Estimating Bayesian Hyperparameters 

The EM algorithm is used to estimate the unknown population parameters OFand 

ΣFfrom the following setup, 

OQA!,F	~	�R'�OA!,F, RSA!,F� 
OA!,F	~	�R'�OFY!, ΣF� 

where H � �1,2,… , -� is used to index the set of parameters associated with the HVW 

synthetic variable of interest and the HVW regression model from which the direct 

estimates OQA! and RSA! were obtained in Step 1.  

 The E step consists of solving the following expectations,  

OA!,F∗ � ��OA!,F� � _�V�A!,F�� � ΣF������V�A!,F�� OQA! � ΣF��OFY!�` 
_OA!,F�OA!,F��`∗ � �bOA!,FOA!,F� c � �V�A!,F�� � ΣF����� � OA!,F∗ �OA!,F∗ �� 

Once these expectations are computed they are then incorporated into the 

maximization (M-step) of the unknown hyperparameters OF and	ΣSF using the following 

equations, 

OQF � O�!,F∗ Y!�Y!Y!���� , where O�!∗ � �∑ OA!∗m~A�� � C!� , and 

ΣSF � �����OA!,F∗ � OQFY!��OA!,F∗ � OQFY!��m~
A�� � C!��

!�� � E�  

 After convergence the maximum likelihood estimates are incorporated into the 

posterior distribution of OA!,F shown in equation [5]. 
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Appendix 2  Creation of Synthetic Household Size 

Let YWA! be the number of people in household � � �1,2, … ,  A!� in county 

B � �1,2, … , C!� within state D � �1,2, … , E�. Assume that YWA!~-�)DD� ��A!� and 

�A!~������:!, O!�. Conditional on the data and �:!, O!; D � 1,2, … , E� it is 

straightforward to simulate values of YWA!.  
First, obtain the marginal maximum likelihood estimates of �:!, O!; D � 1,2, … , E� 

through Newton-Raphson for each state independently. Also, obtain the covariance 

matrix RS! � C���:U!, OQ!� by inverting the observed Fisher Information matrix. The 

marginal likelihood is given by, 

������~�|~�A!�~��
m~
A�� �����|~#|~

W�� �A!��|~ /Γ�:!�¢�A!£ 

�������~�#|~��|~ �A!�¤|~��~��/Γ�:!�O!�~
m~
A�� ¢�A! 

��¥Γ�Y�A! � :!�¦�O! �  A!����¤|~��~�/Γ�:!�m~
A�� O!�~ 

where Y�A! � ∑ YWA!#|~W��  . Taking the logarithms, the quantity to be maximized with 

respect to :! and �! via the Newton-Raphson is, 

i ��¥
�§Γ�Y�A! � :!� � �Y�A! � :!�
�§�O! �  A!�¦ � C!
�§Γ�:!� � C!:!
�§�O!�m~
A��  

The first and second derivatives of this function are, 

¨i¨:! ��¥©�Y�A! � :!� � 
�§�O! �  !�¦ � C!©�:!� � C!
�§�O!�m~
A��  
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¨i¨O! � ��¥�Y�A! � :!�/�O! �  !�¦ � C!:!/O!m~
A��  

¨�i¨:!� ��©ª�Y�A! � :!� � C!©ª�:!�m~
A��  

¨�i¨O!� ��¥�Y�A! � :!�/�O! �  !��¦m~
A�� � :!C!/O!� 

¨�i¨O!¨:! � ��1/�O! �  !�m~
A�� � C!/O! 

The logarithm of the gamma function, its first and second derivatives can be 

accurately approximated as follows, 


�§Γ�«� � �
�§�B(«(�¬
(��  

©�«� � ¨̈« 
�§Γ�«� � �∑ )B(«(���¬(��∑ B(«(�¬(��  

©ª�«� � ­∑ )B(«(���¬(��∑ B(«(�¬(�� ®� � ∑ )�) � 1�B(«(���¬(��∑ B(«(�¬(��  

The constants B( can be found in Abramowitz and Stegun (1965). The Newton-

Raphson method is applied iteratively to obtain maximum likelihood estimates of :! and 

O!, 
­:!,#��O!,#��® � ¯ ¨�i ¨:!,#�⁄ ¨�i ¨:!,#¨O!,#⁄¨�i ¨O!,#¨:!,#⁄ ¨�i ¨O!,#�⁄ ±�� ­¨i ¨:!,#⁄¨i ¨O!,#⁄ ® 

The logarithm of the estimates for :! and O! are then assumed to follow the 

hierarchical model,  
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t
�§	:U!
�§	OQ!�~' ²t
�§	:!
�§	O!� , ³1/:U! 00 1/OQ!´ RS! ³1/:U! 00 1/OQ!´µ � ' ³t
�§	:!
�§	O!� , ΣS!´ 
t
�§	:!
�§	O!�~' ¯t¶·� , ³Ω�� Ω��Ω�� Ω��´± � ' ³t¶·� , Ω´ 

The Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin, 

1977) is used to obtain maximum likelihood estimates of �¶, ·, Ω�. The E step is carried 

out by solving the following expectation equations, 

t
�§	:!∗
�§	O!∗� � � t
�§	:!
�§	O!� � ²�ΣS!�� � Ω����� ¸ΣS!�� t
�§	:U!
�§	OQ!� � Ω�� t¶·�¹µ 
²­
�§	:!
�§	O! ®­
�§	:!
�§	O! ®

�µ∗ � � ¯t
�§	:!
�§	O!� t
�§	:!
�§	O!�
�±

� �ΣS!�� � Ω����� � t
�§	:!∗
�§	O!∗� t
�§	:!∗
�§	O!∗�
�

 

and the M step is performed by solving the following maximization equations, 

t¶S·S� � ²�t
�§	:!∗
�§	O!∗�
�

!�� µ E�  

Ω� � ¯Ω��� Ω���Ω��� Ω���± � ²�­t
�§	:!∗
�§	O!∗� � t¶S·S�®
�

!�� ­t
�§	:!∗
�§	O!∗� � t¶S·S�®
�µ E�  

It is then straightforward using this setup to synthesize the number of members in 

each household by treating the parameter estimates of �¶, ·, Ω� as known and retracing 

back to simulate values of YWA! using the following 3 steps: 

Step 1: Simulate Gamma parameters :! and O! from the bivariate normal distribution, 

t:a!Ô!�~�3H �' ²�ΣS!�� � Ω������ ¸ΣS!�� t
�§	:U!
�§	OQ!� � Ω�� t¶S·S�¹ , �ΣS!�� � Ω������	µ� 
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Step 2: Simulate Poisson parameter �A! from the Gamma distribution given the county 

population size, number of households, and simulated parameters obtained from Step 1, 

�ºA!~������Y�A! � :a!, Ô! �	 A!� 
Step 3: Simulate household size YWA!	from the Poisson distribution, 

ŶWA!~-�)DD� ��ºA!�. 
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Appendix 3  Scatter Plots of Synthetic and Actual PUMA Regression Coefficients 

 

Figure A3.1 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) PUMA Regression 

Coefficients of Household Income on Basic Household Characteristics. 

 

 

 

 

 

 

 

 

 

 



67 
 

Figure A3.2 Scatter Plot of Standard Errors of Synthetic (y-axis) and Actual (x-axis) 

PUMA Regression Coefficients of Household Income on Basic Household 

Characteristics. 
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Figure A3.3 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) PUMA Regression 

Coefficients of Household Income Greater than the 50
th

 Percentile on Basic 

Household Characteristics. 
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Figure A3.4 Scatter Plot of Standard errors of Synthetic (y-axis) and Actual (x-axis) 

PUMA Regression Coefficients of Household Income Greater than the 50
th

 

Percentile on Basic Household Characteristics. 
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Figure A3.5 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) PUMA Regression 

Coefficients of Household Income Greater than the 75
th

 Percentile on Basic 

Household Characteristics. 
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Figure A3.6 Scatter Plot of Standard Errors of Synthetic (y-axis) and Actual (x-axis) 

PUMA Regression Coefficients of Household Income Greater than the 75
th

 

Percentile on Basic Household Characteristics. 
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Figure A3.7 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) PUMA Regression 

Coefficients of Poverty Status on Personal Demographics. 
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Figure A3.8 Scatter Plot of Standard Errors of Synthetic (y-axis) and Actual (x-axis) 

PUMA Regression Coefficients of Poverty Status on Personal Demographics. 
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Figure A3.9 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) PUMA Regression 

Coefficients of College Graduation on Personal Demographics. 
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Figure A3.10 Scatter Plot of Standard Errors of Synthetic (y-axis) and Actual (x-

axis) PUMA Regression Coefficients of College Graduation on Personal 

Demographics. 
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Figure A3.11 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) PUMA 

Regression Coefficients of College Graduation on Personal Demographics and Age 

Squared Term. 
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Figure A3.12 Scatter Plot of Standard Errors of Synthetic (y-axis) and Actual (x-

axis) PUMA Regression Coefficients of College Graduation on Personal 

Demographics and Age Squared Term. 
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Appendix 4 Simulation Results 

Table A4.1 Conditional Simulation-Based Summary Measures of Actual and 

Synthetic PUMA Means  
 Avg. 

Mean 

Avg. Standard 

Deviation 

Avg. Standard 

Error of Mean 

Regression of 

Actual Means on 

Synthetic Means 

 Actual Synthetic Actual Synthetic Actual Synthetic Intercept Slope 

Household variables   

  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
  Income   
  Tenure (%) 
    Own free & clear 
    Rent   
 
  Income > 50th pctile,% 
  Income > 75th pctile,% 
  Income > 90th pctile,%    
  Income (Mortgage=1) 
  Income (Own=1) 
  Income (Rent=1) 

 
2.23 

33.81 
2.79 

132.4 
3.14 

82675.8 
 

24.78 
22.74 

 
51.26 
25.96 
10.15 

101587.8 
74266.1 
45652.0 

 
2.23 

33.50 
2.81 

134.23 
3.15 

83847.9 
 

25.10 
22.25 

 
51.44 
28.47 
12.75 

103392.6 
71587.9 
46677.1 

 
1.42 

20.27 
0.98 

83.70 
1.15 

78151.7 
 

42.47 
39.51 

 
47.96 
41.30 
27.59 

80397.4 
81705.7 
42759.2 

 
1.49 

17.25 
0.99 

82.62 
1.16 

68654.3 
 

42.58 
39.60 

 
47.76 
42.13 
29.67 

74279.4 
55286.5 
41501.9 

 
0.07 
0.99 
0.05 
3.97 
0.06 

3631.6 
 

2.02 
1.91 

 
2.30 
1.96 
1.30 

5255.6 
8070.6 
4544.0 

 
0.07 
0.85 
0.05 
4.02 
0.06 

3277.0 
 

2.09 
2.00 

 
2.07 
1.79 
1.22 

4726.8 
5407.1 
4690.3 

 
0.02 
0.67 
0.22 

10.94 
0.16 

2571.0 
 

0.02 
-0.03 

 
0.02 
0.01 
0.00 

4086.2 
-237.8 
2313.6 

 
0.99 
0.99 
0.91 
0.91 
0.93 
0.96 

 
0.91 
1.14 

 
0.96 
0.89 
0.77 
0.94 
1.04 
0.93 

 

Table A4.2 Unconditional Simulation-Based Summary Measures of Actual and 

Synthetic PUMA Means  
 Avg. 

Mean 

Avg. Standard 

Deviation 

Avg. Standard 

Error of Mean 

Regression of 

Actual Means on 

Synthetic Means 

 Actual Synthetic Actual Synthetic Actual Synthetic Intercept Slope 

Household variables   

  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
  Income   
  Tenure (%) 
    Own free & clear 
    Rent   
 
  Income > 50th pctile,% 
  Income > 75th pctile,% 
  Income > 90th pctile,% 
  Income (Mortgage=1) 
  Income (Own=1) 
  Income (Rent=1) 

 
2.23 

33.82 
2.79 

132.45 
3.14 

82696.2 
 

24.78 
22.74 

 
51.18 
25.99 
10.16 

101624.5 
74242.0 
45694.9 

 
2.23 

33.50 
2.81 

134.23 
3.15 

83849.7 
 

25.10 
22.25 

 
51.50 
28.47 
12.74 

103421.6 
71593.8 
46681.0 

 
1.42 

20.35 
0.98 

83.87 
1.15 

78585.2 
 

42.52 
39.56 

 
48.01 
41.37 
27.71 

81163.2 
83850.3 
44233.6 

 
1.49 

17.28 
0.99 

82.69 
1.16 

68746.9 
 

42.59 
39.61 

 
47.76 
42.15 
29.70 

74480.3 
55457.5 
41647.6 

 
0.04 
0.54 
0.03 
2.18 
0.03 

2000.2 
 

1.11 
1.05 

 
1.26 
1.08 
0.71 

2906.1 
4527.4 
2561.8 

 
0.08 
1.13 
0.06 
5.03 
0.07 

4305.6 
 

2.58 
2.51 

 
2.37 
2.15 
1.49 

6003.4 
7157.2 
5896.7 

 
0.04 
0.69 
0.24 

11.34 
0.17 

2738.6 
 

0.02 
-0.03 

 
0.02 
0.01 
0.00 

4608.3 
979.2 
2747.8 

 
0.98 
0.99 
0.91 
0.90 
0.94 
0.95 

 
0.91 
1.14 

 
0.96 
0.89 
0.77 
0.94 
1.02 
0.92 
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Table A4.3 Conditional Simulation-Based Summary Measures 

 of Actual and Synthetic State Means  
 Avg.  

Mean 

Avg. Standard  

Error of Mean 

 Actual Synthetic Actual Synthetic 

Household variables   

  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
  Income   
  Tenure (%) 
    Own free & clear 
    Rent   
 
  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)    
  Income (Mortgage=1) 
  Income (Own=1) 
  Income (Rent=1) 

 
2.08 

32.86 
2.82 

124.96 
3.14 

78077.48 
 

27.71 
19.64 

 
47.68 
23.03 
9.06 

94908.97 
69422.16 
42773.76 

 
2.08 

32.47 
2.81 

124.99 
3.14 

78222.90 
 

28.52 
19.68 

 
47.43 
25.04 
10.94 

95882.56 
66704.91 
43427.09 

 
0.01 
0.16 
0.01 
0.50 
0.01 

493.05 
 

0.30 
0.26 

 
0.32 
0.26 
0.17 

716.69 
981.42 
583.99 

 
0.02 
0.30 
0.02 
1.12 
0.02 

998.70 
 

0.72 
0.62 

 
0.58 
0.48 
0.31 

1419.67 
1611.02 
1555.05 

 

Table A4.4 Unconditional Simulation-Based Summary Measures  

of Actual and Synthetic State Means  
 Avg.  

Mean 

Avg. Standard  

Error of Mean 

 Actual Synthetic Actual Synthetic 

Household variables   

  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
  Income   
  Tenure (%) 
    Own free & clear 
    Rent   
 
  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)    
  Income (Mortgage=1) 
  Income (Own=1) 
  Income (Rent=1) 

 
2.11 

34.19 
2.80 

124.32 
3.13 

77999.08 
 

26.83 
20.57 

 
47.94 
23.05 
8.98 

95182.15 
69556.97 
43088.50 

 
2.11 

33.84 
2.80 

124.52 
3.13 

78228.85 
 

27.61 
20.49 

 
47.72 
25.12 
10.85 

96080.19 
66873.80 
43822.45 

 
0.02 
0.29 
0.01 
0.90 
0.01 

899.06 
 

0.54 
0.47 

 
0.58 
0.47 
0.30 

1306.66 
1788.97 
1061.24 

 
0.02 
0.25 
0.01 
0.90 
0.02 

788.85 
 

0.56 
0.50 

 
0.52 
0.43 
0.28 

1126.27 
1274.80 
1259.94 
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Table A4.5 Conditional and Unconditional Simulation-Based Summary  

Measures of Actual and Synthetic PUMA Regression Coefficients  
 Conditional Unconditional 

 
 
Covariates 

Avg.  
Actual  OQA! (SE) 

Avg. 
Synthetic OQA! (SE) 

Avg.  
Actual  OQA! (SE) 

Avg. 
Synthetic OQA! (SE) 

Regression of 

income (cube root) 

on 

  Intercept 
  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
  Tenure  
    Mortgage/loan 
    Own free & clear 
    Rent   

 
 
 

26.80 (4.63) 
1.56 (0.43) 
-0.39 (1.02) 
1.30 (0.63) 
1.05 (0.53) 
1.31 (0.50) 

 
Ref 

-3.92 (1.44) 
-5.79 (1.48) 

 
 
 

26.73 (4.75) 
1.66 (0.43) 
-0.41 (1.07) 
1.23 (0.62) 
1.05 (0.52) 
1.30 (0.51) 

 
Ref 

-3.28 (1.32) 
-6.18 (1.48) 

 
 
 

26.83 (2.55) 
1.56 (0.24) 
-0.39 (0.56) 
1.30 (0.35) 
1.05 (0.30) 
1.31 (0.28) 

 
Ref 

-3.92 (0.79) 
-5.81 (0.82) 

 
 
 

26.74 (4.54) 
1.65 (0.41) 
-0.41 (1.03) 
1.24 (0.60) 
1.05 (0.50)  
1.30 (0.49) 

 
Ref 

-3.28 (1.24) 
-6.16 (1.40) 

 

 

Table A4.6 Conditional and Unconditional Simulation-Based Summary  

Measures of Actual and Synthetic State Regression Coefficients  
 Conditional Unconditional 

 
Covariates 

Avg.  
Actual  OQ! (SE) 

Avg. 
Synthetic OQ! (SE) 

Avg.  
Actual  OQ! (SE) 

Avg. 
Synthetic OQ! (SE) 

Regression of 

income (cube root) 

on 

  Intercept 
  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
  Tenure  
    Mortgage/loan 
    Own free & clear 
    Rent   

 
 
 

25.23 (0.92) 
1.58 (0.10) 
-0.24 (0.18) 
1.29 (0.14) 
1.08 (0.13) 
1.42 (0.10) 

 
Ref 

-3.61 (0.28) 
-5.57 (0.30) 

 
 
 

25.35 (0.97) 
1.68 (0.12) 
-0.26 (0.21) 
1.21 (0.13) 
1.08 (0.12) 
1.39 (0.10) 

 
Ref 

-3.04 (0.26) 
-6.08 (0.32) 

 
 
 

25.27 (0.51) 
1.58 (0.06) 
-0.25 (0.10) 
1.28 (0.08) 
1.08 (0.07) 
1.43 (0.06) 

 
Ref 

-3.61 (0.15) 
-5.58 (0.17) 

 
 
 

25.34 (0.92) 
1.68 (0.07) 
-0.26 (0.20) 
1.21 (0.13) 
1.08 (0.12) 
1.39 (0.10) 

 
Ref 

-3.04 (0.25) 
-6.07 (0.31) 
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Chapter 3 

Synthetic Data for Continuous Non-Normal Distributions:  

A Nonparametric Simulation Approach for Small Area Estimation 

 

1  Introduction 

One of the primary functions of a statistical agency is to collect high quality 

survey data and make these data widely available to data users in the public domain. 

Scientific surveys serve as the principal data sources for many academic researchers, 

analysts, and policy-makers who use these data to test theories of human behavior and, in 

turn, inform important policy decisions. The greatest impact of policy decisions and 

interventions is arguably felt at the local level where people are most likely to be exposed 

to changes in infrastructure and resource availability. Several studies have shown that 

neighborhood- and community-level factors are associated with numerous health and 

behavioral outcomes (Diez Roux, 2001; Mujahid et al., 2008; Auchincloss et al., 2008; 

Fisher et al., 2004). These findings underscore the need for high quality survey data 

which is being demanded by researchers interested in studying how small area factors 

influence the characteristics and well-being of the population. 

Many statistical agencies release estimates for various levels of geography. For 

example, the Census Bureau releases summary tables containing estimates of 

demographic, social, and economic characteristics of people, households, and housing 

units for large areas (e.g., national, region, division), small areas (e.g., tracts, block 

groups), and many intermediate areas (e.g., state, county, census tract) (U.S. Census 
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Bureau, 2011). The Census Bureau also administers specialized programs for producing 

updated estimates of income and poverty statistics for school districts, counties, and 

states (Bell et al., 2007), and health insurance estimates for counties and states (Fisher 

and Turner, 2004).  

The production of these small area estimates can be quite useful for many 

research and evaluation purposes, but oftentimes these estimates are too limiting for data 

users who require microdata to perform their own customizable geographical analyses. 

Such data is needed to test complex hypotheses which require analytic estimates and 

sophisticated modeling approaches. The Census Bureau and other statistical agencies try 

to meet this demand by releasing public-use microdata files. However, the usefulness of 

these public-use files for geographically-based analyses is limited, because geographic 

identifiers are suppressed for areas with fewer than 100,000 residents. Disclosure 

concerns prohibit the release of small area identifiers for areas that do not meet this pre-

specified threshold. To overcome this limitation, data users may access the suppressed 

geographic identifiers in a Research Data Center (RDC). However, working in an RDC is 

not always ideal for prospective data users for several reasons. First, prospective users are 

usually required to submit a research proposal that is subject to approval by the agency 

responsible for the collection and storage of the restricted data. This requirement may be 

too burdensome for users whose analytic objectives are exploratory in nature and whose 

research questions are not yet well-defined. Second, there is a significant cost burden 

associated with using the RDC. Many federal RDCs charge a usage fee upward of 

$20,000 per year, which can be difficult to cover for data users who lack external funds. 
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Finally, there is no guarantee that small area outputs generated from the RDC will pass 

disclosure review and be permitted for publication. 

 

1.1 Multiple Imputation for Disclosure Avoidance 

To facilitate access to public-use microdata for small geographic areas while 

maintaining confidentiality protections, we propose the dissemination of synthetic data. 

As originally described by Rubin (1993), synthetic data consists of multiply-imputed data 

values that overwrite the observed data values. The synthetic values are drawn from a 

posterior predictive distribution based on the observed data, similar to how multiply-

imputed values are generated for handling survey nonresponse (Rubin, 1987). In the 

general synthetic data framework, we treat the unobserved portion of the population as 

missing data to be multiply-imputed using values generated from a predictive model 

fitted using the observed data. Random samples of arbitrary size are then drawn from the 

synthetic populations and are released as public-use microdata files. Valid inferences are 

obtained by analyzing each synthetic data set separately and combining the point 

estimates and standard errors using standard combining rules developed by Raghunathan, 

Reiter, and Rubin (2003). Several statistical agencies have experimented with releasing 

synthetic data files in practical survey applications. (Abowd, Stinson, and Benedetto, 

2006; Rodriguez, 2007; Kinney and Reiter, 2008), but no study has considered the 

synthetic data approach for the purpose of disseminating public-use microdata for small 

geographic areas.  

 

1.2 The Inferential Validity and Utility of Synthetic Data 
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 A key requirement for obtaining high analytic validity from the synthetic data is 

that the imputation model is correctly specified and reflects all of the key relationships 

and variables that are of interest to data users. That is, the synthetic data reflect only those 

relationships included in the data generation models. When the imputer’s model 

corresponds to the analyst’s model, then the models are said to be “congenial” in the 

context of multiple imputation for survey nonresponse (Meng, 1994). The lack of 

correspondence (or congeniality) between the two models can lead to biased synthetic 

data inferences. This is an important point of contention among data users, who may be 

interested in analyzing complex relationships, interactions, and higher-order terms in the 

synthetic data that are usually unbeknownst to the data imputer prior to synthesis (Reiter, 

2009). This issue has raised skepticism among the data user community who fear that the 

synthetic data will not yield valid inferences. 

 Ideally, the data imputer will know in advance the types of relationships and 

estimands that are of potential interest to data users, and will incorporate those features 

into the data generation process to protect against bias. However, knowing exactly how 

the synthetic data will be used is not always possible, and the imputer must guess as to 

which relationships to include in the model. One approach to protecting against bias is to 

incorporate as many variables, interactions, and higher-order terms as possible into the 

synthetic data generation model. However, incorporating all-possible analytic features 

into the model may not be practically feasible in all cases and compromises may be 

needed. Such compromises should be chosen to maximize analytic validity for the 

majority of data usages, while simultaneously ensuring a high level of validity for 

complex analytic objectives that are of interest to a small percentage of data users.  
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 A second approach to protecting against bias is to relax the distributional 

assumptions associated with parametric imputation models in order to improve model fit 

and protect against model misspecification. This approach has led to several innovations 

in the use of semi-parametric and non-parametric imputation models for the purpose of 

generating synthetic data. Raghunathan, Reiter, and Rubin (2003) evaluated a 

multivariate normal and a nonparametric Bayesian bootstrap procedure to generate 

synthetic data sets based on the 1994 Consumer Expenditure Survey. In simulations, the 

authors found that the sampling properties of inferences from synthetic data sets and the 

actual data sets were very similar for both the parametric and nonparametric synthetic 

data generation methods. The authors note, however, that the parametric approach should 

protect confidentiality more effectively because the values are drawn from a smooth 

distribution and do not contain any fully observed records, unlike the Bayesian bootstrap 

which samples from observed records. Reiter (2005) presented a nonparametric 

imputation method based on classification and regression tree (CART) models to 

generate synthetic data. In most cases, the repeated sampling properties of the synthetic 

data mimicked those of the corresponding actual data for both descriptive and analytic 

estimands. However, the author warns that CART models may not be suitable when trees 

are built from only a small number of units, in which case they may fail to split on certain 

variable categories. There is also the concern that nonparametric synthesizers may 

replicate the data too well and fail to provide sufficient protection for cases with a 

particularly high of disclosure. In the context of CART, imputers can prune branches 

from the trees or otherwise coarsen the imputations for these cases. Caiola and Reiter 

(2010) considered imputation models based on random forests (RF), which are 
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collections of CARTs based on random subsamples of the original data where each tree is 

grown using random samples of predictors. They found the RF synthesizer to be an 

effective method for preserving descriptive estimands, non-linear relationships, 

interactions, and subgroup analyses based on three categorical variables. Disclosure risk 

assessments also indicated sufficient reduction in the risk of re-identification. Woodcock 

and Benedetto (2009) developed a new imputation strategy based on kernel density 

estimation for variables with very skewed and multimodal distributions, which they 

found to deliver better data utility and lower disclosure risk compared to alternative 

nonparametric methods.  

The synthetic data methods discussed in the above literature review focus on 

preserving statistics about the entire sample. The development of nonparametric methods 

for generating synthetic data for small domains and small geographic areas is an 

underdeveloped area, but one that shows great promise. If created with special care, the 

dissemination of synthetic data sets for small geographic areas may offer an appealing 

alternative to working in research data centers and may even generate broader interest 

and utilization of survey data sets in schools and local organizations.  

 

1.3 Organization of Chapter 

 In this chapter, I propose a Bayesian hierarchical model for the purpose of 

creating fully-synthetic continuous variables for small geographic areas. A hierarchical 

version of the sequential multivariate regression procedure (Raghunathan et al, 2001) is 

implemented that accounts for multiple levels of geography and borrows strength across 

related areas. We introduce a nonparametric component of the procedure that is 
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implemented at the final stage of the data generation process when the synthetic 

continuous values are drawn. The random effect terms are modeled parametrically. The 

analytic validity of the method is evaluated using public-use and restricted microdata 

from the American Community Survey (ACS) for years 2005-2007 and 2005-2009, 

respectively. We focus the evaluation on a selection of skewed and bimodal variables 

obtained from the ACS.  Fully-synthetic data inferences are compared against the actual 

data inferences for both descriptive and analytic statistics. The disclosure risk properties 

of the synthetic data are not addressed in this chapter.  

 

2  Review of Fully Synthetic Data 

2.1  Creation of Fully Synthetic Data Sets 

 The general framework for creating and analyzing fully synthetic data sets is 

described in Raghunathan, Reiter, and Rubin (2003) and Reiter (2004). Suppose a sample 

of size   is drawn from a finite population Ω � ��, �� of size ', with � � ��(; ) �
1,2, … ,'� representing design, geographical, or other auxiliary information available for 

all ' units in the population, and � � ��(; ) � 1,2, … , '� representing the survey 

variables of interest. It is assumed that there is no confidentiality concern over releasing 

information about � and synthesis of these auxiliary variables is not needed, but the 

method can be extended to synthesize these variables if necessary. Let �*+! �
��(; ) � 1,2, … ,  � be the observed portion of � corresponding to sampled units and 

�#*+! � ��(; ) �  � 1,  � 2, … , '� be the unobserved portion of � corresponding to the 

nonsampled units. The observed data set is , � ��, �*+!�. For simplicity, I assume there 
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are no item missing data in the observed survey data set, but methods exist for handling 

this situation (Reiter, 2004). 

 Fully synthetic data sets are constructed in two steps. First, � synthetic 

populations -�
� � .��, ��
��; 
 � 1,2, … ,�/ are generated by taking independent draws 

from the Bayesian posterior predictive distribution of 0��#*+!|�, �*+!� conditional on the 

observed data ,. Alternatively, one can generate synthetic values of � for all ' units to 

ensure that no observed values of � are released. The number of synthetic populations � 

is determined based on the desired accuracy for synthetic data inferences and the risk of 

disclosing confidential information. A modest number of fully synthetic data sets (e.g., 5, 

10, or 20) are usually sufficient to ensure valid inferences (Raghunathan et al., 2003). In 

the second step, a random sample of size  !"# is drawn from each of the 
 � 1,2, … ,� 

synthetic data populations, ,�
� � 23( , 4(�
�, ) � 1,2, … ,  !"#5. The corresponding � 

synthetic samples ,!"# � �,�
�; 
 � 1,2, … ,�� comprise the public-use data sets, which 

are released to, and analyzed by, data users. In practice, the first step of generating 

complete synthetic populations is unnecessary and we only need to generate values of � 

for units in the synthetic samples. The complete synthetic population setup is useful for 

theoretical development of combining rules. 

 

2.2  Obtaining Inferences from Fully Synthetic Data Sets 

 From the publicly-released synthetic data sets, data users can make inferences 

about a scalar population quantity � � ���, ��, such as the population mean of � or the 

population regression coefficients of � on �.  Suppose the analyst is interested in 

obtaining a point estimate 	 and an associated measure of uncertainty � of � from a set 
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of synthetic samples ,!"# drawn from the synthetic populations -!"# � �-�
�; 
 �
1,2, … ,�� under simple random sampling. The values of 	 and � computed on the M 

synthetic data sets are denoted by �	�
�, ��
�, 
 � 1,2, … ,��. 
Consistent with the theory of multiple imputation for item missing data (Rubin, 

1987; Little and Rubin, 2002), combining inferences about � � ���, �� from a set of 

synthetic samples ,!"# is achieved by approximating the posterior distribution of � 

conditional on ,!"#. The suggested approach, outlined by Raghunathan, Reiter, and 

Rubin (2003), is to treat �	�
�, ��
�; 
 � 1,2, … ,�� as sufficient summaries of the 

synthetic data sets ,!"# and approximate the posterior density 0��|,!"#� using a normal 

distribution with the posterior mean � computed as the average of the estimates, 

 	�� ��	�
��

�� /� 

(1) 

 

and the approximate posterior variance is computed as, 

 �� � �1 ������� � �6 (2) 

where �̅� � ∑ ��
��
�� /� is the overall mean of the estimated variances across all 

synthetic data sets (“within variance”) and �� � ∑ �	�
� � 	����/�� � 1��
��  is the 

variance of 	�
� across all synthetic data sets (“between variance”).  

Under certain regulatory conditions specified in Raghunathan, Reiter, and Rubin 

(2003), 	�� is an unbiased estimator of � and �� � �6 is an unbiased estimator of the 

variance of �. The 
�� �� adjusts for using only a finite number of synthetic data sets. It 

should be noted that the subtraction of the within imputation variance in �� is due to the 

additional step of sampling the units that comprise the synthetic samples from each 
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multiply-imputed synthetic population. Because of this additional sampling step, the 

between imputation variance already reflects the within imputation variability, which is 

not the case in the usual multiple imputation framework.  

When  ,  !"#, and � are large, inferences for scalar � can be based on normal 

distributions. For moderate �, inferences can be based on t-distributions with degrees of 

freedom 8� � �� � 1��1 � 96����, where 96 � �1 ������6/�̅�, so that a �1 � :�% 

interval for � is 	�� < =>?�:/2�@�� as described in Raghunathan and Rubin (2000). 

Extensions for multivariate � are described in Reiter and Raghunathan (2007) and Reiter 

(2005). 

 A limitation of the variance estimator �� is that it can produce negative variance 

estimates. Negative values of �� can generally be avoided by increasing � or  !"#. 

Numerical routines can be used to calculate the integrals involved in the construction of 

��, yielding more precise variance estimates (Raghunathan, Reiter, and Rubin, 2003). A 

simpler variance approximation that is always positive is shown in Reiter (2002). 

 

3 Extension to Small Geographic Areas 

In this section, we first introduce a fully-parametric synthetic data generation 

procedure for continuous variables that is based on a hierarchical Bayesian model to 

generate synthetic data for small geographic areas. The procedure involves three stages. 

In the first stage, the joint density of the variables under consideration is approximated by 

fitting a series of sequential linear regression models based on the observed data within 

each small area. In the second stage, the sampling distribution of the unknown regression 

parameters estimated in stage 1 is approximated and the between-area variation is 
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modeled using auxiliary information for larger geographic areas. In the final stage, the 

unknown regression parameters are simulated from the posterior distribution and used to 

draw synthetic values from the posterior predictive distribution. We then introduce a 

modification of the procedure to allow for nonparametric simulation of the synthetic 

values. The modification is designed to handle skewed and bimodal continuous variable 

distributions. To simply explanation of the method, I define “small areas” to be counties 

nested with states.  

 

3.1  Parametric Approach 

3.1.1  Stage 1: Approximation to the Joint Density via Sequential Regression  

For descriptive purposes, I introduce the following notation. I define “small 

areas” as counties, nested within states, which could also be nested within even larger 

areas (e.g., regions). In specific terms, suppose that a sample of size   is drawn from a 

finite population of size '. Let  A! and 'A! denote the respective sample and population 

sizes for county B � �1,2, … , C!� nested within state D � �1,2,… , E�. Let �A! �
��(A!,F; ) � 1,2, … ,  A!; 	H � 1,2, … , -� represent the  A! I - matrix of continuous survey 

variables collected from each survey respondent located in county B and state D. Let 

�A! � ��(A!,J; ) � 1,2, … ,  A!,  A! � 1,… ,'A!; 	K � 1,2, . . , M� represent the 'A! I M matrix 

of auxiliary or administrative variables known for every population member in a 

particular county and state. Although I consider synthesis of the survey variables �A! 
only, it is straightforward to synthesize the auxiliary variables �A! as well. 

A desirable property of synthetic data is that the multivariate relationships among 

the observed variables are maintained in the synthetic data, i.e., the joint distribution of 
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variables given the auxiliary information 0��A!,�, �A!,�, … , �A!,N|�A!,J� is preserved. 

Specifying and simulating from the joint conditional distribution can be difficult for 

complex data structures involving large numbers of variables representing a variety of 

distributional forms. Alternatively, one can approximate the joint density as a product of 

conditional densities (Raghunathan et al., 2001). That is, the joint density 

0��A!,�, �A!,�, … , �A!,N|�A!,J� can be factored into the following conditional densities: 

0��A!,�|�A!,J�, 0��A!,�|�A!,�, �A!,J�,…,0��A!,N|�A!,�, … , �A!,N��, �A!,J�. In practice, a 

sequence of generalized linear models are fit based on the observed county-level data 

where the variable to be synthesized comprises the outcome variable that is regressed on 

any auxiliary variables or previously fitted variables, e.g.,  �(A!,� � ��(A!�OA!,� � P(A!, 
�(A!,� � ��(A!, �(A!,��OA!,� � P(A! ,…,	�(A!,N � ��(A!, �(A!,�, �(A!,�, … , �(A!,N��	�OA!,N � P(A!. 
The choice of model (e.g., Gaussian, binomial) is dependent on the type of variable to be 

synthesized, but we only consider continuous variables and corresponding linear 

regression models. It is assumed that any complex survey design features are 

incorporated into the generalized linear models. After fitting each conditional density, the 

vector of regression parameter estimates OQA!,F, the corresponding covariance matrix RSA!,F, 

and the residual variance TUA!,F�  are extracted from each of the - regression models and 

incorporated into the hierarchical model described below. H � �1,2, … , -� is used to 

index the set of parameters associated with the HVW synthetic variable of interest and the 

HVW regression model from which the direct estimates are obtained.  

 

3.1.2  Stage 2: Sampling Distribution and Between-Area Model 
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In the second stage, the joint sampling distribution of the design-based county-

level regression estimates OQA!,F (obtained from each conditional model fitted in Stage 1) 

is approximated by a multivariate normal distribution, 

 OQA!,F	~	�R'�OA!,F, RSA!,F� (3) 

where OA!,F is the �M � H� I 1 matrix of unknown regression parameters and RSA!,F is the 

corresponding �M � H� I �M � H� estimated covariance matrix obtained from Stage 1. The 

unknown county-level regression parameters OA!,F are assumed to follow a multivariate 

normal distribution,  

 OA!,F	~	�R'�OFY!, ΣF� (4) 

where Y! � �Y!,[; \ � 1,2, … , ]� is a ] I 1 matrix of state-level covariates, OF is a 

�M � H� I ] matrix of unknown regression parameters, and ΣF is a �M � H� I �M � H� 
covariance matrix. State-level covariates are incorporated into the hierarchical model in 

order to “borrow strength” from related areas. Prior distributions may be assigned to the 

unknown parameters OF and ΣF, but for computational simplicity I assume that OF and ΣF 

are fixed at their respective maximum likelihood estimates (MLE), a common assumption 

in hierarchical models for small area estimation (Fay and Herriot, 1979; Datta, Fay, and 

Ghosh, 1991; Rao, 1999). Details for obtaining the maximum likelihood estimates using 

the expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977) are 

provided in Appendix 1. 

Based on standard theory of the normal hierarchical model (Lindley and Smith, 

1972), the unknown regression parameters OA!,F can be drawn from the following 

posterior distribution,  
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 ÔA!,F	~	�R' _�RSA!,F�� � ΣSF������RSA!,F��OQA!,F � ΣSF��OQFY!�, �RSA!,F�� � ΣSF�����` (5) 

 

where ÔA!,F is a simulated vector of values for the unknown regression parameters OA!,F . 

 

 

3.1.3  Stage 3: Simulating from the Posterior Predictive Distribution 

The ultimate objective is to generate synthetic populations for each small area 

using an appropriate posterior predictive distribution. Simulating a synthetic variable 

�̂A! � ��̂
A!,F; 
 � 1,2, … , 'A!; H � 1,2, … , -� for observed variable �A! for synthetic 

population unit 
 � �1,2, … ,'A!� is achieved by drawing, in sequential fashion, from the 

posterior predictive distributions 0��̂A!,�|�A!, ÔA!,��, 0��̂A!,�|�̂A!,�, �A!, ÔA!,��, …, 

0��̂A!,N|�̂A!,�, �̂A!,�, … , �̂A!,N��, �A!, ÔA!,��. For example, under the assumption of normality, 

the first variable to be synthesized �A!,� can be drawn from a normal distribution with 

location and scale parameters �A!ÔA!,� and TA!,��  , respectively, where TA!,��  may be drawn 

from an appropriate posterior predictive distribution 0�TaA!,�� |�A!,�, �A!, TA!,�� 	�, or fixed at 

the maximum likelihood estimate TUA!,��  (obtainable from Stage 1). Once the first synthetic 

variable �̂A!,� is generated, a second (normally distributed) synthetic variable �̂A!,� can be 

drawn from the posterior predictive distribution 0��̂A!,�|�̂A!,�, �A!, ÔA!,��, which is 

achieved by drawing �̂A!,� from 'b��A!, �̂A!,��ÔA!,�, TA!,�� 	c, and so on up to 

�̂A!,N~'b��A!, �̂A!,�, �̂A!,�, … , �̂A!,N���ÔA!,N , TA!,N� 	c. The iterative process continues until all 

synthetic variables ��̂A!,�, �̂A!,�, … , �̂A!,N� are generated. The procedure is repeated M times 

to create multiple populations of synthetic variables 2�̂A!,��
� , �̂A!,��
� , … , �̂A!,N�
� ; 
 � 1,2, … ,�5. 
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In addition, the entire cycle may be repeated several times to minimize ordering effects 

(Raghunathan et al., 2001). 

The complete synthetic populations may be disseminated to data users, or a 

simple random sample of arbitrary size may be drawn from each population and released. 

Stratified random sampling may be used if different sampling fractions are to be applied 

within small areas. Inferences for a variety of estimands can be obtained using the 

combining rules in Section 2.2. 

 

3.2  Nonparametric Approach 

 We now consider a modified approach to the parametric framework described in 

3.1 that does not require the synthetic values to be drawn from a univariate normal 

distribution. The final stage in the parametric approach (stage 3) described in 3.1.3 is 

replaced with a distribution-free simulation procedure, while the first two stages 

(Sections 3.1.1 and 3.1.2) remain the same. The method still relies on multivariate 

normality to model the random effects and to obtain the posterior distribution of ÔA!,F in 

equation (5). 

 

3.2.1  Method 

 Recall from 3.1.3 the fully-parametric iterative simulation procedure proceeds as 

follows. The first continuous and normally distributed observed variable �A!,� �
��(A!,�; ) � 1,2, … ,  A!� was simulated from a normal distribution with location and scale 

parameters �A!ÔA!,� and TA!,�� , respectively, i.e., 

�̂A!,� ~ 'b�A!ÔA!,�, TA!,�� 	c, 
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where �A! is an 'A! I M matrix of auxiliary or administrative variables known for every 

population member in a particular county and state. The second observed variable to be 

synthesized �A!,�, is simulated by drawing from a normal distribution with location and 

scale parameters��A!, �̂A!,��ÔA!,� and TA!,�� , respectively, i.e., 

�̂A!,� ~ 'b��A!, �̂A!,��ÔA!,�, TA!,�� 	c 
where the location parameter ��A!, �̂A!,��ÔA!,� conditions on the previously synthesized 

variable �̂A!,�. The iterative procedure continues until the final variable �A!,N is 

synthesized,  

�̂A!,N~'b��A!, �̂A!,�, �̂A!,�, … , �̂A!,N���ÔA!,N , TA!,N� 	c. 
The general form of the simulation procedure for the  HVW�H � 1,2, … , -� synthetic 

variable can therefore be written as, 

 �̂A!,F~'b��A!, �̂A!,�, �̂A!,�, … , �̂A!,F���ÔA!,F, TA!,F� 	c. (6) 

The nonparametric simulation procedure that we now describe removes the 

assumption of univariate normality. The general procedural steps for synthesizing the HVW 

variable are implemented as follows. First, we use the location parameter from (6) to 

obtain predicted values based on the vector of simulated beta coefficients ÔA!,F, any 

previously synthesized variables ��̂A!,�, �̂A!,�, … , �̂A!,F���, and any auxiliary information 

�A! that is known for each population member in county B nested within state D. 

Specifically, we refer to these synthetically-based predicted values as those obtained from 

the following equation, 

 �SA!,F,!"# � ��A!, �̂A!,�, �̂A!,�, … , �̂A!,F���ÔA!,F (7) 
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which is computed for population unit 
 � �1,2, … ,'A!� located in the small area (or 

county) of interest.  

Second, we modify (7) to obtain another set of predicted values that are based on 

the set of observed variables �A! instead of the synthetically-generated ones �̂A!, 
 �SA!,F,*+! � ��A!, �A!,�, �A!,�, … , �A!,F���ÔA!,F (8) 

In the third step, the differences between the observed survey values �A!,F and the 

observed predicted values �A!,F are obtained to create a  A! I 1 vector of deviations, 

  ∆A!,F� �A!,F � �SA!,F,*+! (9) 

In the fourth step, we account for the uncertainty associated with the distribution 

of deviated values by resampling the vector ∆A!,F using an approximate Bayesian 

Bootstrap (ABB) procedure (Rubin and Schenker, 1996), which is a more 

computationally direct procedure than the original Bayesian Bootstrap (Rubin, 1981). 

The ABB procedure is implemented by drawing the components of an  A!-dimensional 

vector ∆A!,F,�¼�½¼ from ∆A!,F with replacement, i.e., ∆A!,F,�¼�½¼� E¾E¿¾�∆A!,F�. The 

final part of the ABB procedure is to draw the components of a 'A!-dimensional vector 

∆A!,F,rÀÀ from ∆A!,F,�¼�½¼ with replacement, i.e., ∆A!,F,rÀÀ� E¾E¿¾�∆A!,F,�¼�½¼�. 
The final step of the simulation process is to generate synthetic variables using the 

components from the previous steps. Specifically, the HVWsynthetic variable is generated 

using the following equation,  

 �̂A!,F � ��A!, �̂A!,�, �̂A!,�, … , �̂A!,F���ÔA!,F � ∆A!,F,rÀÀ 

� �̂A!,F,!"# � ∆A!,F,rÀÀ 

 

(10) 

 The resulting synthetic data may be analyzed per usual using the combining rules 

presented in Section 2.2. 
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A few general remarks can be made about this simulation method. Firstly, 

generating the synthetic values does not rely on any standard distributions as it relaxes 

the assumption of univariate normality. However, the method still relies on multivariate 

normality in the hierarchical model, which may not be an adequate assumption if the 

random effects follow a non-normal distribution. Secondly, due to the nonparametric 

nature of the method, and the fact that the synthetic values are based on deviations from 

the actual values, means there is no need to apply a transformation to the variables, prior 

to the synthesis, in order to achieve normality. This is a useful property of the method as 

choosing a suitable transformation can be a difficult task, particularly when the 

appropriate transformation may vary across geographic areas in spatial applications. The 

effectiveness of the method for synthesizing non-transformed variables will be assessed 

in the next section. Lastly, the method can be easily implemented in a variety of 

hierarchical synthetic data applications involving continuous variables. It can also be 

applied in conjunction with parametric simulation models (e.g., binomial) in applications 

involving a mix of continuous and non-continuous variables. 

 

4  Application: American Community Survey (Public-Use Microdata) 

The nonparametric simulation method in 3.2.1 is evaluated using a subset of 

public-use microdata from the 2005-2007 U.S. American Community Survey (ACS). The 

ACS is an ongoing national survey that provides yearly estimates regarding income and 

benefits, health insurance, disabilities, family and relationships, among other topics. The 

ACS collects information on persons living in housing units and group quarters facilities 

in all 3,142 counties. Data collection is conducted using a mixed-mode design. First, 
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questionnaires are mailed to all sampled household addresses obtained from the Master 

Address File. Approximately six weeks after the questionnaire is mailed the Census 

Bureau will attempt to conduct telephone interviews for all addresses that do not respond 

by mail. Following the telephone operation, a sample is taken from addresses which were 

not interviewed and these addresses are visited by a field interviewer. Full details of the 

ACS methodology can be found elsewhere (Census Bureau, 2009). 

The smallest geographic unit that is identified in the public-use ACS microdata is 

a Public-Use Microdata Area (PUMA). PUMAs are census areas that contain at least 

100,000 persons, are nested within states or equivalent entities, cover the entirety of the 

United States, Puerto Rico, Guam, and the U.S. Virgin Island, are built on counties and 

census tracts, and are contiguous. For this application, the ACS sample is restricted to the 

Northeast region, which contains 9 states and 405 PUMAs. ACS data was collected in 

each of these PUMAs during the 3-year study period. The evaluation is conducted on 5 

continuous variables (three household- and two person-level variables) measured on 

599,450 households and 1,506,011 persons. The variables, shown in Table 3.0, include 

the household- and person-level sampling weights, electricity cost/month, household 

income, and age of all household residents. None of these variables follows a normal 

distribution. The first four variables are right-skewed and the last variable (age) is 

bimodal. These variables were suggested by statisticians at the U.S. Census Bureau for 

this project.  

� � 10 fully synthetic data sets are generated for each “small area” or PUMA. 

To ensure that each synthetic data set contains ample numbers of households and/or 

persons within PUMAs,  the synthetic sample sizes are created to be larger than the 
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observed sample sizes, and are approximately equivalent to 20% of the total number of 

households located in each PUMA based on the 2000 decennial census counts. This 

yielded a total synthetic sample size of 3,963,715 households and 10,192,987 persons in 

the Northeast region.  

Design-based estimates of regression parameters were obtained by fitting normal 

linear models within each PUMA and synthetic values were drawn from the Gaussian 

posterior predictive distribution. To ensure the stability of the design-based regression 

estimates, a minimum PUMA sample size rule of 15 ∙ H was applied within each PUMA. 

If a PUMA did not meet this sample size threshold, then nearby PUMAs were pooled 

together until the criterion was met. 

After the household variables were synthesized, the synthetic household data sets 

were converted to person-level data sets and the person-level variables were synthesized 

unconditional to the household-level variables. Taylor series linearization (Binder, 1993) 

was used to adjust the variances of the design-based regression estimates for the 

additional homogeneity due to persons clustered within households. Finally, to reduce the 

ordering effect induced by synthesizing the variables in a prescribed order, we repeat the 

entire synthetic data process 4 additional times, each time conditioning on the full set of 

synthetic variables generated from the previous implementations. 

 Both the parametric and nonparametric synthetic data generation procedures 

presented in Sections 3.1.3 and 3.2.1, respectively, are evaluated in this analysis. Both 

procedures may be applied to variables that have undergone a normalizing transformation 

or not. We apply both synthetic data procedures to transformed and nontransformed 

versions of the same variables to evaluate the analytic validity of the method under 
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different transformation scenarios. The log transformation is applied to the household- 

and person-level sampling weights and a cube root transformation is applied to the 

electricity cost and household income variables. All of these variables are right-skewed. 

The approximate bimodal variable age is left untransformed. All transformed variables 

are back-transformed in the evaluation. That is, all synthetic and observed distributions 

and estimates shown below are presented in actual units. All estimates are based on 

unweighted data. 

 

Table 3.0 List of ACS Variables Used in Synthetic Data Application. Variables 

Shown in the Order of Synthesis. 

Variable Type Range  Shape 

Household variables 

  Sampling weight 
  Electricity bill/mo. 
  Income 

 
continuous 
continuous 
continuous 

 
1 - 516 
1 - 600 
0 – 2,158,100 

  
right-skewed 
right-skewed 
right-skewed 

Person variables 

  Sampling weight 
  Age 

 
continuous 
continuous 

 
1 - 814 
0 - 95 

  
right-skewed 
bimodal 

 

4.1  Validity of Univariate Estimates 

 Figures 3.1 and 3.2 show back-to-back histograms of the overall synthetic and 

actual distributions of the transformed and non-transformed variables, respectively, for 

each synthetic data method. The actual distributions are shown in red and the synthetic 

distribution in blue. The parametric and nonparametric results are shown in panels A and 

B, respectively. All variables are presented on the untransformed scale. The synthetic 

data generated from both the parametric and nonparametric methods resemble the actual 

data reasonably well for the right-skewed distributions. Both methods preserve the bulk 

of the distributions. However, the nonparametric synthetic data tends to reflect the 

distributions more precisely than the parametrically-generated data. For example, the 
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parametric data tends to smooth over the transition between the distributional mode and 

skewed portion of the distributions, whereas the shape of the nonparametrically-

generated data is more closely aligned with the actual shape and arc of the distribution.  

   

Figure 3.1. Back-to-Back Histograms of Actual (Red) and Synthetic (Blue) 

Distributions for Transformed ACS Household-Level Variables in the Northeast 

Region. 

 

 

However, the bimodal variable distribution, age, is not reflected very well by either 

method. The lone bimodal variable, age (depicted on the bottom of the figures), is not 

reflected very well by either synthetic data method, as both methods fail to replicate the 

upward concavity of the distribution. However, the nonparametric data distribution still 



103 
 

seems to reflect other portions of the distribution more precisely than the parametric data. 

Based on the histograms, it does not seem to matter whether a transformation was used 

prior to synthesis. We will examine this matter more closely when evaluating the validity 

of the synthetic data estimates. 

Figure 3.2. Back-to-Back Histograms of Actual (Red) and Synthetic (Blue) 

Distributions for Nontransformed ACS Household-Level Variables in the Northeast 

Region. 

 

 

 Although the quality of the synthetic variable distributions look relatively 

promising, data users are most interested in the validity of estimates obtained from the 

synthetic data. Tables 3.1 and 3.2 contain overall averages of PUMA means (column 2), 

obtained from 405 PUMAs in the Northeast region, for the transformed and 
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nontransformed variables, respectively. The means are computed for the list of variables 

in Table 3.0 as well as for three binary variables corresponding to the 50th, 75th, and 90th 

percentiles of the household income distribution. The average standard deviation and 

standard error, and intercept and slope of the regression of the actual point estimates on 

the synthetic point estimates are shown in columns 3-5, respectively. (Intercept values 

close to 0 and slope values close to 1 indicate strong correspondence between the 

synthetic and actual means.) The state- and region-level summary measures of means and 

standard errors are shown in Tables 3.3-3.4 and 3.5-3.6, respectively. 

 For the eight parametric-transformed estimands shown in upper panel of Table 

3.1, six of them yield an average synthetic PUMA mean that lies within one average 

standard error from the actual average PUMA mean. The two discordant estimands 

correspond to the proportions of household incomes greater than the 75th and 90th 

percentiles; both estimates tend to be overestimated in the synthetic data, on average. For 

the parametric-nontransformed estimands shown in the lower panel of Table 3.1, five out 

of the eight synthetic estimands lie within one average standard error from the actual 

average PUMA mean; the discordant estimands consist of all three income proportions. 

Some of the nonparametric synthetic point estimates tend to be   closer to the actual point 

estimates than do the parametric estimates (e.g., Avg. Household Income; Parametric: 

81671 vs. Nonparametric: 81169 vs. Actual: 80588), but this is not always true as 

indicated by the lack of strong correspondence for all of the nonparametric income 

proportion estimates.  

Another way to assess the analytic validity of the synthetic data is to compare its 

standard deviations with the actual data. If the validity of the synthetic data is high then 
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the standard deviations obtained from the synthetic data should equal (or approximately 

equal) to the standard deviations obtained from the actual data. In many cases, the 

nonparametric synthetic data yield an average standard deviation that is much closer to 

the actual standard deviation. This is particularly true for the household income variable, 

which yields average standard deviations of 66250, 76337, and 75075 for the parametric, 

nonparametric, and actual PUMA estimates, respectively. The same pattern, though, 

more striking, is observed for the bimodal age variable as the nonparametric average 

standard deviation is equivalent to the corresponding actual standard deviation  (Avg. 

SD; Parametric: 33.17 vs. Nonparametric: 22.76 vs. Actual: 22.76).  

Table 3.1 Summary Measures of Actual and Synthetic PUMA Means for 

Transformed Variables. 
 Avg. 

Mean 

Avg. Standard 

Deviation 

Avg. Standard 

Error of Mean 

Regression of 

Actual Means on 

Synthetic Means 

 Actual Synthetic Actual Synthetic Actual Synthetic Intercept Slope 

Parametric - 

Transformed 
Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile,% 
  Income > 75th pctile,% 
  Income > 90th pctile,%    

 
 
 

33.71 
125.08 

80588.3 
 

35.37 
39.44 

 
50.00 
25.72 
10.12 

 
 
 

33.46 
126.75 

81671.4 
 

35.73 
39.00 

 
50.62 
27.60 
12.13 

 
 
 

20.03 
85.39 

75075.7 
 

21.53 
22.76 

 
47.69 
40.80 
27.15 

 
 
 

17.71 
83.22 

66250.8 
 

21.16 
33.17 

 
47.71 
41.65 
28.93 

 
 
 

0.55 
2.32 

2020.9 
 

0.37 
0.39 

 
1.29 
1.10 
0.73 

 
 
 

0.47 
2.27 

1811.9 
 

0.62 
0.55 

 
1.05 
0.88 
0.57 

 
 
 

0.15 
2.35 

2616.0 
 

0.47 
10.90 

 
-0.01 
-0.00 
0.00 

 
 
 

1.00 
0.97 
0.96 

 
0.98 
0.73 

 
1.00 
0.95 
0.82 

Nonparametric - 

Transformed 

Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile,% 
  Income > 75th pctile,% 
  Income > 90th pctile,%    

 
 
 

33.71 
125.08 

80588.3 
 

35.37 
39.44 

 
50.00 
25.72 
10.12 

 
 
 

34.10 
124.81 

81169.5 
 

35.62 
38.99 

 
52.07 
27.09 
11.15 

 
 
 

20.03 
85.39 

75075.7 
 

21.53 
22.76 

 
47.69 
40.80 
27.15 

 
 
 

20.21 
87.57 

76337.2 
 

20.91 
22.76 

 
47.46 
40.92 
27.74 

 
 
 

0.55 
2.32 

2020.9 
 

0.37 
0.39 

 
1.29 
1.10 
0.73 

 
 
 

0.59 
2.43 

2112.1 
 

0.66 
0.50 

 
1.13 
1.01 
0.71 

 
 
 

0.13 
1.89 

2385.0 
 

-0.34 
11.10 

 
0.00 
0.02 
0.01 

 
 
 

0.99 
0.99 
0.96 

 
1.00 
0.73 

 
0.96 
0.89 
0.83 

 

For nontransformed variables (Table 3.2), the superiority of the nonparametric 

method is more evident. Under the parametric synthetic method, only two of the average 
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PUMA means lies within one average standard error of the actual average PUMA mean. 

In contrast, the nonparametric synthetic method yields five estimates which fall within a 

single standard error of their corresponding actual estimate, on average. Furthermore, the 

nonparametric approach yields income proportion estimates that are more valid than the 

corresponding parametric method. For example, the average PUMA proportions of 

income values greater than the 50th, 75th, and 90th percentiles for the parametric data are  

0.57, 0.35, and 0.15, respectively, whereas the corresponding nonparametric proportions 

are 0.53, 0.27, and 0.11.  

By comparing Tables 3.1-3.2, it is evident that the nonparametric method 

produces small area estimates that are comparable regardless of whether a pre-synthesis 

transformation is applied to the variables. Hence, the nonparametric method does not 

require a transformation to obtain basic descriptive estimates from the variables 

considered here. This is a strength of the method as it avoids the need to select a 

transformation which can be an imperfect and time consuming task for imputers, 

especially when a large number of variables are being synthesized.  

In summary, these summary measures suggest that the analytic validity of the 

nonparametric method is high for univariate small area estimates, and in some cases, 

outperforms the parametric approach for transformed variables. The same pattern is 

observed for higher-levels of geography, including state- and region-level estimates 

shown in Tables 3.3-3.4 and 3.5-3.6, respectively. 
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Table 3.2 Summary Measures of Actual and Synthetic PUMA Means for Non-

Transformed Variables. 
 Avg. 

Mean 

Avg. Standard 

Deviation 

Avg. Standard 

Error of Mean 

Regression of 

Actual Means on 

Synthetic Means 

 Actual Synthetic Actual Synthetic Actual Synthetic Intercept Slope 

Parametric - Raw 

Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile,% 
  Income > 75th pctile,% 
  Income > 90th pctile,%    

 
 

33.71 
125.08 

80588.3 
 

35.37 
39.44 

 
50.00 
25.72 
10.12 

 
 

36.15 
126.58 

81604.4 
 

38.51 
38.77 

 
57.59 
35.33 
15.39 

 
 

20.03 
85.39 

75075.7 
 

21.53 
22.76 

 
47.69 
40.80 
27.15 

 
 

17.94 
85.70 

75403.1 
 

20.21 
33.15 

 
48.01 
44.35 
29.81 

 
 

0.55 
2.32 

2020.9 
 

0.37 
0.39 

 
1.29 
1.10 
0.73 

 
 

0.45 
2.37 

2136.0 
 

0.57 
0.55 

 
1.07 
0.98 
0.59 

 
 

-3.95 
1.91 

2723.0 
 

-3.33 
10.13 

 
-0.22 
-0.03 
0.01 

 
 

1.04 
0.97 
0.95 

 
1.01 
0.76 

 
1.25 
0.81 
0.58 

Nonparametric - Raw 

Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile,% 
  Income > 75th pctile,%     
  Income > 90th pctile,%    

 
 

33.71 
125.1 

80588.3 
 

35.37 
39.44 

 
50.00 
25.72 
10.12 

 
 

33.76 
126.73 

82102.9 
 

35.54 
38.99 

 
53.13 
27.61 
11.21 

 
 

20.03 
85.39 

75075.7 
 

21.53 
22.76 

 
47.69 
40.80 
27.15 

 
 

20.02 
85.65 

75365.9 
 

21.15 
22.70 

 
47.33 
41.00 
27.58 

 
 

0.55 
2.32 

2020.9 
 

0.37 
0.39 

 
1.29 
1.10 
0.73 

 
 

0.55 
2.32 

2023.8 
 

0.69 
0.48 

 
1.11 
1.02 
0.69 

 
 

-0.04 
1.72 

2943.0 
 

-0.50 
10.95 

 
0.00 
0.02 
0.01 

 
 

1.00 
0.97 
0.95 

 
1.01 
0.73 

 
0.94 
0.86 
0.79 
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Table 3.3 Summary Measures of Actual and Synthetic State Means  

for Transformed Variables. 
 Avg. 

Mean 

Avg. Standard 

Error of Mean 

 Actual Synthetic Actual Synthetic 

Parametric - 

Transformed 

Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)   

 
 
 

33.45 
117.34 

78316.75 
 

34.70 
40.03 

 
49.77 
24.50 
9.16 

 
 
 

33.12 
118.25 

78921.56 
 

34.95 
39.89 

 
50.02 
26.41 
10.94 

 
 
 

0.14 
0.44 

431.89 
 

0.09 
0.09 

 
0.73 
0.25 
0.16 

 
 
 

0.13 
0.43 

373.61 
 

0.16 
0.12 

 
0.75 
0.20 
0.13 

Nonparametric - 

Transformed 
Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)   

 
 
 

33.45 
117.34 

78316.75 
 

34.70 
40.03 

 
49.77 
24.50 
9.16 

 
 
 

33.77 
116.48 

78242.80 
 

34.90 
39.89 

 
51.15 
25.64 
10.19 

 
 
 

0.14 
0.44 

431.89 
 

0.09 
0.09 

 
0.30 
0.25 
0.16 

 
 
 

0.17 
0.40 

421.00 
 

0.18 
0.11 

 
0.22 
0.20 
0.15 
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Table 3.4 Summary Measures of Actual and Synthetic State Means for Non-

Transformed Variables. 
 Avg. 

Mean 

Avg. Standard 

Error of Mean 

 Actual Synthetic Actual Synthetic 

Parametric - Raw 

Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)   

 
 

33.45 
117.34 

78316.60 
 

34.70 
40.03 

 
49.77 
24.50 
9.16 

 
 

36.50 
118.02 

78676.6 
 

38.45 
39.54 

 
57.43 
34.24 
13.52 

 
 

0.14 
0.44 

431.89 
 

0.09 
0.09 

 
0.30 
0.25 
0.16 

 
 

0.12 
0.48 

415.61 
 

0.16 
0.12 

 
0.22 
0.20 
0.12 

Nonparametric - Raw 

Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)   

 
 

33.45 
117.34 

78316.75 
 

34.70 
40.03 

 
49.77 
24.50 
9.16 

 
 

33.43 
118.08 

79160.17 
 

34.81 
39.83 

 
52.36 
25.90 
9.97 

 
 

0.14 
0.44 

431.89 
 

0.09 
0.09 

 
0.30 
0.25 
0.16 

 
 

0.15 
0.46 

374.71 
 

0.19 
0.10 

 
0.22 
0.22 
0.14 
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Table 3.5 Summary Measures of Actual and Synthetic Region Means for 

Transformed Variables. 
 Avg. 

Mean 

Avg. Standard 

Error of Mean 

 Actual Synthetic Actual Synthetic 

Parametric - 

Transformed 

Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)   

 
 
 

32.05 
124.80 

80670.94 
 

33.42 
39.69 

 
50.00 
25.47 
10.00 

 
 
 

33.48 
125.58 

81544.00 
 

35.80 
38.99 

 
50.31 
27.35 
12.05 

 
 
 

0.03 
0.12 

113.32 
 

0.02 
0.02 

 
0.07 
0.06 
0.04 

 
 
 

0.03 
0.09 

92.83 
 

0.04 
0.03 

 
0.05 
0.05 
0.03 

Nonparametric - 

Transformed 

Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)   

 
 
 

32.05 
124.80 

80670.94 
 

33.42 
39.69 

 
50.00 
25.47 
10.00 

 
 
 

34.12 
123.66 

81059.38 
 

35.68 
38.98 

 
51.71 
26.81 
11.10 

 
 
 

0.03 
0.12 

113.32 
 

0.02 
0.02 

 
0.07 
0.06 
0.04 

 
 
 

0.03 
0.12 

85.04 
 

0.03 
0.02 

 
0.02 
0.03 
0.03 
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Table 3.6 Summary Measures of Actual and Synthetic Region Means for Non-

Transformed Variables. 
 Avg. 

Mean 

Avg. Standard 

Error of Mean 

 Actual Synthetic Actual Synthetic 

Parametric - Raw 

Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)   

 
 

32.05 
124.80 

80670.94 
 

33.42 
39.69 

 
50.00 
25.47 
10.00 

 
 

36.24 
125.45 

81531.97 
 

38.55 
38.76 

 
57.37 
35.06 
15.27 

 
 

0.03 
0.12 

113.32 
 

0.02 
0.02 

 
0.07 
0.06 
0.04 

 
 

0.02 
0.13 

132.85 
 

0.04 
0.02 

 
0.06 
0.05 
0.04 

Nonparametric - Raw 

Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)   

 
 

32.05 
124.80 

80670.94 
 

33.42 
39.69 

 
50.00 
25.47 
10.00 

 
 

33.80 
125.60 

82038.81 
 

35.61 
38.98 

 
52.77 
27.33 
11.20 

 
 

0.03 
0.12 

113.32 
 

0.02 
0.02 

 
0.07 
0.06 
0.04 

 
 

0.03 
0.11 

89.76 
 

0.04 
0.01 

 
0.05 
0.04 
0.04 

 

The variability in the synthetic means/percentages of across PUMAs is shown via 

scatter plots in Figures 3.3 and 3.4 for transformed and nontransformed variables, 

respectively. Panels A and B correspond to estimates obtained from the parametric and 

nonparametric synthetic data generation models, respectively. The transformed variable 

estimates in Figures 3.3a and 3.3b lie closely along the 45 degree line, which suggests 

strong correspondence between the synthetic and actual PUMA estimates for both the 

parametric and nonparametric synthetic data generation methods. Mean estimates of age 

yield the greatest amount of dispersion around the 45-degree line. PUMAs with the 

highest average ages tend to be overestimated in the synthetic data. This is not surprising 
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due to the bimodal nature of the age distribution which is poorly reflected with both 

synthetic data methods.  

 

Figure 3.3 Scatter Plot of Synthetic (y-axis) and Actual (x-acis) PUMA Means for 

Transformed Variables 

 

 

The scatter plots for estimates obtained from the nontransformed variables 

(Figures 3.4a and 3.4b) yield larger differences between parametric and nonparametric 

methods. For example, the parametric plots for the household- and person-level sampling 

weight variables yield a noticeable amount of dispersion about the 45-degree line as well 

as overestimation compared to the actual estimates. The same plots in the nonparametric 

panel show point estimates that are tightly clustered about the 45-degree line with no 
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indication of bias. In general, when the nonparametric approach is applied to the raw 

variables it produces synthetic point estimates that are just as close (if not closer) to the 

actual point estimates, than are the parametrically-based point estimates. 

 

Figure 3.4 Scatter Plot of Synthetic (y-axis) and Actual (x-acis) PUMA Means for 

Nontransformed Variables 

 

 

Scatter plots of synthetic and actual standard deviations of PUMA means are 

shown in Figures 3.5 and 3.6. Ideally, each scatter plot point should fall directly on the 

45-degree line if the synthetic data accurately reflects the variability in the actual data. In 

nearly all cases, the nonparametric method yields standard deviations that are more 

closely aligned about the 45-degree line relative to the parametric method. The results are 
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quite striking in some cases. For example, the standard deviations of age tend to be 

overestimated in the parametric-based synthetic data, but are markedly improved in the 

nonparametric-based synthetic data; the points are still widely dispersed but they are no 

longer overestimated and are centered about the 45-degree line. The parametric approach 

produces a significant amount of additional variation in the tail-end of the synthetic age 

distribution. The smoothing effect creates additional variation around the mean and 

causes the standard deviations to be larger than the actual standard deviations. In contrast, 

the tail-end of the nonparametric synthetic data distribution is more closely aligned with 

the actual distribution, and produces less of a smoothing effect. This results in synthetic 

standard deviations that correspond better with the actual standard deviations under the 

nonparmametric approach, than under the parametric approach. 

In addition, the standard deviations for the household sampling weight tend to be 

widely dispersed and systematically underestimated in the parametric-based synthetic 

data. The dispersion and underestimation appears to be largely corrected under the 

nonparametric synthesization. However, there is still slight overestimation for the largest 

standard deviations under the nonparametric-transformed framework. This 

overestimation is fully corrected under the nonparametric-nontransformed framework, 

which suggests that the imputation procedures fail to preserve the tail-end of the 

transformed distribution. This result is consistent with findings from earlier research that 

has found problems with using imputation to adjust for item missing data for transformed 

totals in skewed populations (Rubin, 1983).  
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Figure 3.5 Scatter Plot of Standard Deviations of Synthetic (y-axis) and Actual (x-

axis) PUMA Means for Transformed Variables. 

 

 Because we adopt a fully-synthetic design and do not incorporate any auxiliary 

information into the imputation models, we would expect the standard errors of the 

synthetic PUMA estimates to be larger than the actual standard errors, on average. 

Figures 3.7 and 3.8 show scatter plots of the synthetic and actual standard errors of the 

means for the transformed and nontransformed variables, respectively. As expected, the 

synthetic data standard errors tend to be larger, on average, than the actual standard errors 

for these simple mean estimates. There does not appear to be any striking differences 
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between the parametric and nonparametric or the transformed and nontransformed 

approaches. Each approach tends to reveal similar patterns in the scatter plots. 

 

Figure 3.6 Scatter Plot of Standard Deviations of Synthetic (y-axis) and Actual (x-

axis) PUMA Means for Nontransformed Variables. 
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Figure 3.7 Scatter Plot of Standard Errors of Synthetic (y-axis) and Actual (x-axis) 

PUMA Means for Transformed Variables. 
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Figure 3.8 Scatter Plot of Standard Errors of Synthetic (y-axis) and Actual (x-axis) 

PUMA Means for Nontransformed Variables. 

 

Next we turn our attention to recoded variable estimates, particularly percentile 

estimates. Such estimates are important to data users who may have interest in analyzing 

cases that lie within a certain portion of a distribution, including those that lie near the tail 

ends. Obtaining valid percentile estimates from synthetic data can be tricky, especially if 

the imputation model fails to adequately replicate the full range of the distribution.  

Figures 3.9 and 3.10 show scatter plots of PUMA percentages of recoded 

household incomes greater than the 50th, 75th, and 90th percentiles for transformed and 

nontransformed household income variables, respectively. For the transformed variables, 
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the synthetic 50th percentile estimates correspond well with the actual percentile estimates 

as indicated by the tightly clustered points that lie about the 45-degree line. For the most 

part, the 75th percentile estimates also lie about the equilibrium line, but the synthetic 

estimates tend to be overestimated as the PUMA proportions increase. For the 90th 

percentile estimates, there is significant departure between the actual estimates and 

synthetic estimates; the amount of overestimation of the synthetic estimates tends to be a 

positively correlated with the PUMA proportions. The analytic validity of the point 

estimates in the nonparametric-based synthetic data is equally poor. The same pattern is 

generally true for the nontransformed variables (Figure 3.10); however, the parametric 

data estimates are much worse than the nonparametric estimates. In general, the results 

suggest that the analytic validity of the percentiles estimates obtained from both the 

parametric and nonparametric methods tends to decrease as the percentile estimates 

become more extreme.  
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Figure 3.9 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) PUMA Percentages 

for Transformed Household Income Percentiles (50
th

, 75
th

, and 90
th

). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



121 
 

Figure 3.10 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) PUMA Percentages 

for Nontransformed Household Income Percentiles (50
th

, 75
th

, and 90
th

). 

 

 

4.2 Validity of Multivariate Estimates 

The next set of analyses assesses the analytic validity of synthetic multivariate 

estimates obtained from multiple regression models. Figures 3.11 and 3.12 show scatter 

plots of PUMA-level regression coefficients (and their standard errors) for very basic 

household- and person-level regression models fit within each PUMA, for transformed 

and untransformed variables, respectively. The dependent variable for the household-

level regression model is household income (or log household income in the transformed 

model). For the bivariate person-level regression model the dependent variable is 

sampling weight (or log sampling weight in the transformed model). Two household-
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level models are fit: 1) main effects and; 2) main effects plus squared term for electricity 

costs. We acknowledge that these models may not be substantively appealing to analysts, 

but we use them strictly for the purpose of evaluating the analytic validity of the synthetic 

data methods.    

For the transformed household-level main effects model (Figure 3.11; top 3 

plots), the analytic validity of the estimated regression coefficients is higher for the 

parametrically-generated synthetic data than for the nonparametrically-generated data. 

For the nonparametric data, the regression coefficients are either severely underestimated 

for the smaller estimates or severely overestimated for the larger estimates. Where the 

nonparametric data seems to excel, however, is for the age predictor in the bivariate 

person-level regression model. For the nonparametric age coefficient scatter plot (Figure 

3.11b; bottom-right plot), the synthetic data points are centered about the 45-degree line, 

in contrast to the parametric scatter plot (Figure 3.11a; bottom-right plot) which indicates 

that the synthetic age coefficients are severely overestimated relative to the actual 

coefficients. Recall that age is bimodal and was not transformed. In general, it appears 

that the nonparametric approach is only an improvement over the parametric approach in 

regression models when a predictor has a bimodal, or other non-normal shape.  
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Figure 3.11 Scatter Plots of Synthetic (y-axis) and Actual (x-axis) PUMA Regression 

Coefficients for Transformed Household- (top 3 plots) and Person-Level (bottom 2 

plots) Main Effects. 
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This generalization seems to hold true in the case of completely untransformed 

data as well. The scatter plots shown in Figure 3.12 indicate stronger correspondence 

between the actual and synthetic PUMA coefficient estimates under the nonparametric 

data approach, than under the parametric data approach. In fact, all of the nonparametric 

regression coefficients yield very high analytic validity. This result lends strong support 

to the nonparametric method in conjunction with untransformed variables, as it is the 

only combination that produces high analytic validity for all regression coefficients. 

 

Figure 3.12 Scatter Plots of Synthetic (y-axis) and Actual (x-axis) PUMA Regression 

Coefficients for Nontransformed Household- (top 3 plots) and Person-Level (bottom 

2 plots) Main Effects. 
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We now consider the effect of including a squared term in the synthetic regression 

model when the same term was omitted from the imputation model. In this scenario, the 

imputer’s model is not in agreement or is “uncongenial” with the analyst’s model of 

interest (Meng, 1994). Such disagreement should lead to attenuation of the squared 

variable term. We added a squared term for electricity cost to the household-level 

regression model. Scatter plots of actual and synthetic PUMA regression coefficients for 

main effects (left 3 plots) and the squared term (right-most plot) are shown in Figures 

3.13 and 3.14 for transformed and nontransformed variables, respectively. Under both 

parametric and nonparametric approaches, the synthetic coefficient estimates for 

electricity squared are virtually zero, which is an expected result based on Meng’s theory 

of congeniality. Hence it is worth emphasizing that the proposed nonparametric synthetic 

data method does not improve the analytic validity of higher-order terms that are omitted 

from the imputation model. In addition, the coefficient estimate for the main effect of 

electricity is essentially constant in the synthetic data for the transformed model. 

However, for the untransformed models (Figure 3.14), the validity of the synthetic 

electricity main effect term is much improved under either the parametric or 

nonparametric approaches; both approaches produce very similar synthetic coefficients. 

Thus it appears, that both the parametric and nonparametric data approaches, when 

applied to untransformed regression models, do a better job of defaulting to the main 

effects model when a higher-order term is included in the analyst’s model, but not 

included in the imputer’s model. 
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Figure 3.13 Scatter Plots of Synthetic (y-axis) and Actual (x-axis) PUMA Regression 

Coefficients for Transformed Household-Level Main Effects and Squared Term. 
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Figure 3.14 Scatter Plots of Synthetic (y-axis) and Actual (x-axis) PUMA Regression 

Coefficients for Nontransformed Household-Level Main Effects and Squared Term. 

 

4.3 Propensity Score Balance 

 Another indicator of the quality of the synthetic data is to assess the covariate 

balance between the synthetic and actual data. This is most easily performed using 

propensity scores (Rubin and Rosenbaum, 1983). Propensity scores are commonly used 

to identify imbalances in two or more groups (e.g., treatment and control groups) based 

on the distribution of a set of observed covariates. Biases caused by covariate imbalances 

may be adjusted by performing a weighted analysis with weights inversely proportional 

to the propensity scores (Ekholm and Laaksonen, 1991). 



128 
 

 To assess the covariate balance between the synthetic and actual data sets, the 

actual data and a randomly selected synthetic data set are stacked vertically. Then an 

actual data indicator variable is regressed against all synthetic and actual variables using 

a logical regression model. The fitted model is used to obtain estimates of the propensity 

of a record belonging to the actual data. The propensity scores are then sorted and 

grouped into deciles and the proportions of synthetic and actual records are compared. If 

the synthetic and actual covariates are fully balanced, then the proportion of synthetic 

versus actual data should be approximately equal for each decile group. A chi-squared 

test with 9 degrees of freedom (if deciles are used) can be performed to assess the 

equivalence of the actual data proportions across the groups. 

 We use the propensity score balance method to assess the similarity of the 

synthetic and actual data in each PUMA for the parametric and nonparametric synthetic 

data generation methods. Table 3.7 shows summary statistics of the estimated 

probabilities of belonging to the actual data in each PUMA obtained from the household-

level and person-level propensity models as well as test statistics for each 

parametric/nonparametric and transformed/nontransformed combination. The overall 

mean of estimated propensity scores was 0.13, which reflects the true proportion of actual 

data in each PUMA and the oversampling of synthetic data. Within each PUMA, the 

propensity scores were sorted and grouped into deciles and a chi-square statistic was 

computed. Small chi-square values indicate that the synthetic and actual data sets are 

balanced or statistically independent from each other, based on the set of covariates, 

while large values indicate poor covariate balance between the two data sets.  
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For the household-level data, the lowest mean chi-square values are observed for 

the nonparametric-nontransformed combination, followed by the parametric-transformed, 

nonparametric-transformed, and parametric-untransformed combination. For the person-

level data, the lowest mean chi-square values are observed for the nonparametric-

transformed combination, followed by the nonparametric-untransformed, parametric-

transformed, and parametric-nontransformed. We interpret these results as supportive of 

the nonparametric method as it tends to produce synthetic data with a greater covariate 

balance relative to the parametric data method.  

Table 3.7 Estimated Propensities of Belonging to the Actual Household-Level Data  

PUMAs Households Persons 

Parametric-

Transformed 
Mean Min Max Mean Min Max 

Estimated 
probabilities Ĥ 

0.13 0.08 0.19 0.13 0.10 0.16 

h� statistic 63.06 31.14 207.95 455.27 250.57 862.92 

P-value 0.03 0.00 0.16 0.00 0.00 0.00 

Nonparametric-

Transformed 
      

Estimated 
probabilities Ĥ 

0.13 0.04 0.25 0.13 0.10 0.17 

h� statistic 97.14 66.02 247.75 139.81 65.39 480.01 

P-value 0.00 0.00 0.02 0.002 0.00 0.01 

Parametric-

Raw 
      

Estimated 
probabilities Ĥ 

0.13 0.05 0.21 0.13 0.04 0.19 

h� statistic 228.82 134.94 417.72 1175.01 810.07 1633.95 

P-value 0.00 0.00 0.01 0.00 0.00 0.00 

Nonparametric-

Raw 
      

Estimated 
probabilities Ĥ 

0.13 0.08 0.20 0.13 0.10 0.17 

h� statistic 59.68 33.97 203.93 155.01 79.35 489.81 

P-value 0.03 0.00 0.13 0.002 0.00 0.02 
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5 ACS-Based Simulation 

 This section evaluates the repeated sampling properties for small area inferences 

drawn from the synthetic data based on a simulation study. In this simulation, the 2005-

2007 ACS data is treated as a population from which subsamples are drawn. 500 

stratified random subsamples are drawn from each PUMA with replacement. Each 

subsample accounts for approximately 30% of the total sample in each PUMA. Each 

ACS subsample is used as the basis for constructing a synthetic population from which 

100 synthetic samples are drawn. A total of 50,000 synthetic data sets are generated.  

 Two types of inferences can be obtained from the synthetic data sets: conditional 

and unconditional. Conditional synthetic inferences are obtained from synthetic samples 

that are based on a single observed sample drawn from the population. This is the 

situation most commonly encountered in practice, where a survey is carried out on a 

single population-based sample and the synthetic data is generated conditional on that 

sample. Unconditional inferences are obtained from synthetic samples that are based on 

multiple, or repeated, population-based samples. Obtaining unconditional inferences is 

not feasible in practice but is possible in the simulation study considered here.  

 To obtain conditional inferences, 500 sets of 10 synthetic samples are randomly 

selected (with replacement) from each of the 100 synthetic samples generated conditional 

on each of the 500 ACS subsamples. For each set of 10 synthetic samples, a synthetic 

estimate and associated confidence interval is obtained for each variable in each PUMA 

using the combining rule equations [1] and [2] in Section 2.2. To obtain unconditional 

inferences, 100 sets of 10 synthetic samples are randomly selected with replacement 
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across each of the 100 ACS subsamples and estimates are again obtained using the 

relevant combining rules. 

We use two evaluative measures to assess the validity of the synthetic data 

estimates. The first one is confidence interval coverage (CIC). For conditional inference, 

CIC is defined as the proportion of times that the synthetic data confidence interval, 

computed at the 0.05 level,bijU?,!"#, k	jU?,!"#c contains the actual estimate 4UlAV: 
�mnm � o�4UlAV ∈ 	 bijU?,!"#, k	jU?,!"#c� 

where o�∙� is an indicator function. �mnm � 1 if ijU?,!"# q 4UlAV q k	jU?,!"# and �r � 0 

otherwise. 

For unconditional inference, the only difference is that the CIC is calculated as the 

proportion of times that the synthetic data confidence interval contains the “true” 

population value �F*F, i.e., ijU?,!"# q �F*F q k	jU?,!"#.  

The second evaluative measure is referred to as the confidence interval overlap 

(CIO; Karr et al., 2006). CIO is defined as the average relative overlap between the 

synthetic and actual data confidence intervals.  For every estimate the average overlap is 

calculated by, 

�mns � �� tuvwxy�zvwxyu{|}�z{|} � uvwxy�zvwxyu~���z~�� � , 

where klAV and ilAV denote the upper and the lower bound of the confidence interval for 

the actual estimate 4UlAV,  k!"# and i!"# denote the upper and the lower bound of the 

confidence interval for the synthetic data estimate 	U�, and k*��� and i*��� denote the 

upper and lower bound of the overlap of the confidence intervals from the original and 

from the synthetic data for the estimate of interest. �mns can take on any value between 0 

and 1. A value of 0 means that there is no overlap between the two intervals and a value 
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of 1 means the synthetic interval completely covers the actual interval. Calculating the 

confidence interval overlap is only possible for conditional, not unconditional, inferences. 

This measure yields a more accurate assessment of data utility in the sense that it 

accounts for the significance level of the estimate. That is, estimates with low 

significance might still have a high confidence interval overlap and therefore a high data 

utility even if their point estimates differ considerably from each other.  

 

5.1  Confidence Interval Coverage   

 Tables 3.8 and 3.9 show the average confidence interval coverage (CIC) and 

confidence interval overlap (CIO) across all PUMAs for each household-level estimated 

mean computed at the PUMA- and State-level, respectively. For the transformation-based 

synthetic data estimates, the CIC is relatively high for basic (non-recoded) estimates 

ranging from 0.85-0.95 for the parametric data, and 0.88-0.99 for the nonparametric data;  

the corresponding range of CIC values for the recoded income variables is 0.52-0.89 and 

0.77-0.84, respectively. The same general trend is observed for the conditional CIO 

values, which closely resemble the CIC values. Regarding the unconditional inferences, 

the CIC values tend to be slightly higher than the corresponding values obtained from the 

conditional inferences for both the parametric and nonparametric results. In summary, the 

nonparametric synthetic data generation procedure produces univariate small area 

estimates with similar, and sometimes better, coverage properties as the parametric 

approach. The same general pattern holds true for the state-level confidence interval 

results shown in Table 3.9.  
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 For the nontransformed-based synthetic data estimates, the confidence interval 

coverage is generally poor for both the parametric- and nonparametric-based approaches. 

One exception is the mean estimate of the household sampling weight, which yields 

mediocre coverage properties under the parametric approach (Conditional; CIC: 0.62, 

CIO: 0.51; Unconditional; CIC: 0.80), but exhibits a significant improvement under the 

nonparametric approach (Conditional; CIC: 0.99, CIO: 0.97; Unconditional; CIC: 0.99). 

This result suggests that the nonparametric approach has good coverage properties, 

especially when applied to nontransformed variables. However, the coverage properties 

for other variables are not as impressive. In fact, both the parametric and nonparametric 

approaches yield CIC and CIO values that are unimpressively low, ranging from 0.09-

0.17 for conditional CIC values, 0.46-0.58 for conditional CIO values, and 0.08-0.19 for 

unconditional CIC values. There is no indication that the nonparametric approach 

outperforms the parametric approach for these untransformed variable estimates; both 

yield quite similar results. It is unclear why the coverage properties are quite good for the 

sampling weight estimate, but poor for all other household-level estimates. 
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Table 3.8 Simulation-Based Confidence Interval Results for Household-Level 

PUMA Means Based on Parametric/Nonparametric and 

Transformed/Nontransformed Data.  

 Conditional  
Inference 

Unconditional 
 Inference 

Parametric-Transformed CIC CIO CIC CIC (Actual) 

HH sampling weight  
Electricity cost/mo. 
HH income 
Income > 50th pctile 
Income > 75th pctile 
Income > 90th pctile 

0.95 
0.86 
0.90 
0.89 
0.71 
0.52 

0.98 
0.87 
0.91 
0.92 
0.72 
0.61 

0.98 
0.90 
0.94 
0.94 
0.80 
0.62 

0.98 
0.98 
0.98 
0.98 
0.98 
0.97 

Nonparametric-Transformed     

HH sampling weight  
Electricity cost/mo. 
HH income 
Income > 50th pctile 
Income > 75th pctile 
Income > 90th pctile 

0.99 
0.88 
0.93 
0.77 
0.78 
0.84 

0.97 
0.88 
0.91 
0.78 
0.78 
0.80 

0.99 
0.92 
0.96 
0.81 
0.85 
0.90 

0.98 
0.98 
0.98 
0.98 
0.98 
0.97 

Parametric-Raw     

HH sampling weight  
Electricity cost/mo. 
HH income 
Income > 50th pctile 
Income > 75th pctile 
Income > 90th pctile 

0.62 
0.11 
0.17 
0.16 
0.10 
0.08 

0.51 
0.58 
0.51 
0.50 
0.29 
0.24 

0.80 
0.10 
0.19 
0.18 
0.11 
0.08 

0.98 
0.98 
0.98 
0.98 
0.98 
0.97 

Nonparametric-Raw     

HH sampling weight  
Electricity cost/mo. 
HH income 
Income > 50th pctile 
Income > 75th pctile 
Income > 90th pctile 

0.99 
0.12 
0.17 
0.09 
0.15 
0.13 

0.97 
0.58 
0.50 
0.55 
0.53 
0.46 

0.99 
0.15 
0.14 
0.10 
0.18 
0.15 

0.98 
0.98 
0.98 
0.98 
0.98 
0.97 
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Table 3.9 Simulation-Based Confidence Interval Results for Household-Level State 

Means Based on Parametric/Nonparametric and Transformed/Nontransformed 

Data. 

 Conditional Inference Unconditional Inference 

Parametric-Transformed CIC CIO CIC CIC (Actual) 

HH sampling weight  
Electricity cost/mo. 
HH income 
Income > 50th pctile 
Income > 75th pctile 
Income > 90th pctile 

0.64 
0.13 
0.33 
0.67 
0.29 
0.38 

0.99 
0.59 
0.75 
0.85 
0.30 
0.47 

0.74 
0.24 
0.48 
0.67 
0.35 
0.49 

0.99 
0.98 
0.99 
0.99 
0.99 
0.98 

Nonparametric-Transformed     

HH sampling weight  
Electricity cost/mo. 
HH income 
Income > 50th pctile 
Income > 75th pctile 
Income > 90th pctile 

0.89 
0.16 
0.40 
0.38 
0.41 
0.44 

0.89 
0.61 
0.72 
0.50 
0.48 
0.44 

0.92 
0.28 
0.52 
0.37 
0.42 
0.47 

0.99 
0.98 
0.99 
0.99 
0.99 
0.98 

Parametric-Raw     

HH sampling weight  
Electricity cost/mo. 
HH income 
Income > 50th pctile 
Income > 75th pctile 
Income > 90th pctile 

0.00 
0.00 
0.00 
0.36 
0.00 
0.00 

0.00 
0.50 
0.50 
0.37 
0.00 
0.00 

0.00 
0.00 
0.00 
0.40 
0.00 
0.00 

0.99 
0.98 
0.99 
0.99 
0.99 
0.98 

Nonparametric-Raw     

HH sampling weight  
Electricity cost/mo. 
HH income 
Income > 50th pctile 
Income > 75th pctile 
Income > 90th pctile 

0.98 
0.00 
0.00 
0.00 
0.00 
0.00 

0.89 
0.50 
0.50 
0.50 
0.50 
0.50 

0.99 
0.00 
0.00 
0.00 
0.00 
0.00 

0.99 
0.98 
0.99 
0.99 
0.99 
0.98 

 
 
 

6  Application: Restricted ACS County-Level Data  

In addition to the public-use microdata, restricted ACS microdata for years 2005-

2009 were obtained from the Michigan Census Research Data Center and used to 

demonstrate the proposed synthetic data method. The restricted data contain identifiers 

for all counties in the United States. We restrict the data to the Northeast region which 
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contains 217 counties, in contrast to the public-use microdata which contains 405 public-

use microdata areas (PUMAs). Although 3 years of microdata were used in the public-use 

application, we use the restricted 5-year data set to facilitate the disclosure review and 

allow the publication of estimates for all counties. The same variables shown in Table 2.0 

were synthesized in this application. The synthetic data estimates are based on � � 10 

imputations.  

Tables 3.10 and 3.11 show summary measures of actual and synthetic county 

means for transformed and non-transformed variables, respectively. In general, the 

synthetic means correspond relatively closely to the actual estimates, on average, with the 

parametric-transformed, nonparametric-transformed, and nonparametric-raw 

combinations all yielding very similar results. As in the public-use application, the actual 

and synthetic point estimates correspond relatively closely when applied to actual 

counties. This finding should give confidence to the synthetic data methodology, as the 

method is practically useful when applied to actual small areas, such as counties, as 

opposed to combined counties or PUMAs.  
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Table 3.10  Summary Measures of Actual and Synthetic County Means for 

Transformed Variables. 
 Avg. 

Mean 

Avg. Standard 

Error of Mean 

 Actual Synthetic Actual Synthetic 

Parametric - 

Transformed 

Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)   

 
 
 

9.99 
118.89 

67983.89 
 

10.27 
40.89 

 
44.65 
19.34 
6.78 

 
 
 

9.96 
118.28 

67145.59 
 

10.43 
41.48 

 
44.55 
21.02 
8.08 

 
 
 

0.11 
1.25 

1067.29 
 

0.08 
0.25 

 
0.80 
0.59 
0.35 

 
 
 

0.10 
1.04 

747.62 
 

0.13 
0.28 

 
0.65 
0.43 
0.24 

Nonparametric - 

Transformed 
Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)   

 
 
 

9.99 
118.89 

67983.89 
 

10.27 
40.89 

 
44.65 
19.34 
6.78 

 
 
 

10.09 
117.15 

67203.91 
 

10.36 
41.48 

 
45.63 
19.93 
7.15 

 
 
 
0.11 
1.25 
1067.29 
 
0.08 
0.25 
 
0.80 
0.59 
0.35 

 
 
 

0.12 
1.26 

1056.91 
 

0.14 
0.23 

 
0.64 
0.49 
0.32 
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Table 3.11  Summary Measures of Actual and Synthetic County Means for Non-

Transformed Variables. 
 Avg. 

Mean 

Avg. Standard 

Error of Mean 

 Actual Synthetic Actual Synthetic 

Parametric - Raw 

Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)   

 
 

9.99 
118.89 

67983.89 
 

10.27 
40.89 

 
44.65 
19.34 
6.78 

 
 

11.52 
118.09 

67334.78 
 

12.09 
41.08 

 
52.66 
29.32 
11.45 

 
 

0.11 
1.25 

1067.28 
 

0.08 
0.25 

 
0.80 
0.59 
0.35 

 
 

0.08 
1.26 

1138.35 
 

0.11 
0.29 

 
0.72 
0.55 
0.29 

Nonparametric - Raw 

Household variables   

  Sampling weight 
  Electricity bill/mo. 
  Income   
Person variables   

  Sampling weight 
  Age 
Recodes 

  Income > 50th pctile (%) 
  Income > 75th pctile (%) 
  Income > 90th pctile (%)   

 
 

9.99 
118.89 

67983.89 
 

10.27 
40.89 

 
44.65 
19.34 
6.78 

 
 

10.04 
118.36 

67802.42 
 

10.40 
41.49 

 
46.31 
20.18 
7.21 

 
 

0.11 
1.25 

1067.29 
 

0.08 
0.25 

 
0.79 
0.59 
0.35 

 
 

0.12 
1.17 

1127.80 
 

0.15 
0.21 

 
0.72 
0.56 
0.34 

 

7  Conclusions  

 In this chapter, we proposed and evaluated a continuous nonparametric simulation 

procedure for generating synthetic data for small geographic areas. The procedure is 

based on a hierarchical model which is appropriate for producing small area estimates, 

and can be easily implemented in large-scale applications. The method produces 

relatively high analytic validity for both simple univariate and multivariate estimates 

obtained from skewed and bimodal distributions. The analytic validity achieved by the 

nonparametric method is typically equivalent, or better, than the standard parametric 

method. The greatest improvements in analytic validity tend to be achieved when the 

nonparametic method is applied to non-normal and nontransformed variables (although 
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the method can produce valid estimates for transformed data as well). This is a useful 

property of the method from a practical perspective as it does not require the imputer to 

transform the data in advance of the synthesization, which can be a time-consuming and 

rather subjective process.  

 Other practical advantages of the method include its versatility in terms of 

handling both skewed and bimodal distributions. Although the nonparametric procedure 

did not completely replicate the bimodal shape or upward concavity of the age 

distribution in the evaluation, it still seemed to produce more valid small area estimates, 

particularly for estimates of regression coefficients, than the parametric approach. In 

addition, the method yields relatively good analytic validity for estimating percentiles 

from recoded continuous variables. Although the method is intended for continuous 

variables, switching between the nonparametric and alternative parametric approaches for 

non-continuous variables (e.g., categorical) is possible and can be easily implemented in 

practical applications.  

 Some limitations of the method should also be noted. Although we refer to the 

method as a nonparametric one, the method itself is not completely nonparametric. The 

linear regression estimates obtained in Stage 1 still assume that the usual regression 

assumptions (e.g., normality of the error distribution) hold. In addition, the hierarchical 

Bayesian model assumes that the random effects are distributed as multivariate normal, 

which is an assumption we did not verify. A fully nonparametric data generation 

approach may have yielded greater analytic validity than the semi-parametric approach 

we considered here. Another limitation relates to the mixed repeated sampling properties 

of the method. In the simulation study, the nonparametric data generation method yielded 
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good confidence interval coverage when applied to the transformed data; however, when 

applied to the nontransformed data the results were decidedly mixed, which may indicate 

an underlying problem with the method in repeated applications.  

 There are several possible extensions to this research. First, the proposed method 

could potentially be expanded into a fully nonparametric procedure by modeling the 

conditional densities (Stage 1) and random effects using nonparametric procedures. The 

method may also be combined with other nonparametric approaches (e.g., CART) to 

synthesize other types of variables (e.g., categorical) in a completely nonparametric 

synthetic framework. In addition, the method may be extended to handle item missing 

data prior to synthesization. This approach has been considered in single-level 

applications (Reiter, 2004), but never in a multilevel context when small area estimates 

are needed. 

 In conclusion, the proposed nonparametric synthetic data generation approach 

shows promise in the small area applications considered here. The method is easily 

implemented and can potentially be used in large-scale applications to produce public-use 

microdata for small geographic areas that are normally restricted to research data centers. 

The method addresses an important concern expressed by data users who are skeptical 

that the non-standard distributions and relationships in actual data files will be maintained 

and preserved in synthetic data files. As the demand for public-use microdata for small 

areas continues to grow, the synthetic data framework seems to be a promising option for 

releasing geographically-relevant data to users that are otherwise unable to obtain the 

data they need to pursue their research.  
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Appendix 1  EM Algorithm for Estimating Bayesian Hyperparameters 

The EM algorithm is used to estimate the unknown population parameters OFand 

ΣFfrom the following setup, 

OQA!,F	~	�R'�OA!,F, RSA!,F� 
OA!,F	~	�R'�OFY!, ΣF� 

where H � �1,2,… , -� is used to index the set of parameters associated with the HVW 

synthetic variable of interest and the HVW regression model from which the direct 

estimates OQA! and RSA! were obtained in Step 1.  

 The E step consists of solving the following expectations,  

OA!,F∗ � ��OA!,F� � _�V�A!,F�� � ΣF������V�A!,F�� OQA! � ΣF��OFY!�` 
_OA!,F�OA!,F��`∗ � �bOA!,FOA!,F� c � �V�A!,F�� � ΣF����� � OA!,F∗ �OA!,F∗ �� 

Once these expectations are computed they are then incorporated into the 

maximization (M-step) of the unknown hyperparameters OF and	ΣSF using the following 

equations, 

OQF � O�!,F∗ Y!�Y!Y!���� , where O�!∗ � �∑ OA!∗m~A�� � C!� , and 

ΣSF � �����OA!,F∗ � OQFY!��OA!,F∗ � OQFY!��m~
A�� � C!��

!�� � E�  

 After convergence the maximum likelihood estimates are incorporated into the 

posterior distribution of OA!,F shown in equation [5]. 
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Chapter 4 

Synthetic Data for Small Area Estimation in a Complex Sample Survey 

1  Introduction 

High quality survey data are often collected and used to monitor the health and 

well-being of populations. Such data are needed to establish baseline outcomes and 

monitor the progress of goals and objectives towards improving the health of the 

population. A prominent example of this strategy is the Healthy People initiative started 

in 2000 by the Department of Health and Human Services. The Healthy People initiative, 

started in 1990 by the Department of Human and Health Services, is a prominent 

example of using survey and other data sources to monitor and assess progress towards 

achieving hundreds of priority health objectives in the United States (USDHHS, 2010). 

Many key indicators for these objectives are obtained from leading public health 

surveillance systems, including vital statistics and population-based surveys, such as the 

National Health Interview Survey (NHIS) and the National Health and Nutrition 

Examination Survey (NHANES), among others, which produce important national- and 

state-level statistics of interest to policy-makers and health professionals. 

A limitation of these surveys is that they are not intended for the production of 

sub-state and other small area estimates. Small area estimates are of particular interest to 

county administrators and city planners, who may be interested in developing their own 

health initiatives in their local areas. Such estimates could also be used to inform the 

allocation of resources to support healthcare delivery systems and interventions at the 
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local level. In addition, small areas, such as counties, or cities, may be used as test beds 

for innovative health programs that, if successful, could be implemented more broadly. 

Having cost-effective data monitoring systems in place to monitor and assess the 

effectiveness of these small area interventions would be invaluable, especially if existing 

and means-tested survey data could be used for the assessment. 

Existing health survey data sources, such as NHIS and NHANES, have 

limitations that prevent them from being utilized for production of small area estimates 

and dissemination of small area microdata. First, neither survey was designed to produce 

reliable small area estimates. Only national estimates can be obtained from NHANES, 

while NHIS can produce national-, regional-, and state-level estimates. Finer levels of 

geographical identification are only accessible via Research Data Centers (RDCs). 

Second, the NHANES and NHIS surveys have complex sample designs, and most small 

areas of interest (e.g., counties, cities) contain no sampled cases. Hence, even if small 

area identifiers could be obtained for all small areas, there’s no guarantee that any 

sampled cases will be available for analysis. Third, the sensitive nature of the survey 

content poses confidentiality concerns. In the context of small geographic areas, the 

possibility of reidentifying respondents in the survey data is non-trivial. Respondents 

living within sparse areas are susceptible to disclosure if they self-report unique and other 

identifying information during the survey interview. This is an important issue in the 

context of complex sample surveys, as an intruder would only need to know whether a 

particular area (or PSU) was sampled (and possibly a few unique personal characteristics) 

in order to narrow their search and successfully identify a respondent’s record and survey 

responses.  
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1.1 Synthetic Data for Small Geographic Areas Based on Complex Sample 

Survey Data  

 

The purpose of this chapter is to propose and evaluate an approach that 

overcomes many of the limitations associated with using population-based, complex 

sample surveys to disseminate microdata and produce estimates for small geographic 

areas. The basic idea is to generate synthetic data for sampled and non-sampled small 

areas. Synthetic data, originally proposed by Rubin (1993), replaces the observed data 

values with multiply-imputed, or synthetic, values. The conceptual idea behind the 

method is to treat the unobserved portion of the population as missing data to be 

multiply-imputed using a predictive model fitted using the observed data. A random 

sample of arbitrary size is then drawn from each synthetic population and released as 

public-use microdata. Valid inferences are obtained by analyzing each synthetic data set 

independently and combining the point estimates and their standard errors using standard 

combining rules (Raghunathan, Reiter, and Rubin, 2003). 

The synthetic data framework offers many potential advantages in terms of 

disseminating microdata for small geographic areas and protecting data confidentiality 

based on complex sample survey data. Although the majority of synthetic data 

applications focus on replacing the observed values with synthetic values (Rodriguez, 

2007; Abowd, Stinson, and Benedetto, 2006; Kinney and Reiter, 2008), it is also possible 

to generate and disseminate synthetic data for the unobserved cases in non-sampled areas 

based on an imputation model fitted using the observed cases. In addition, the imputation 

model can account for complex sample design features, which is the safest course of 

action in the specification of imputation models from a design-based perspective (Reiter, 

Raghunathan, and Kinney, 2006).  
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The synthetic data framework also offers several data protection benefits. For 

example, because the observed values are replaced with synthetic, yet plausible, values 

no actual data are released. The majority of synthetic data research has focused on 

synthesizing only a subset of survey variables that pose greater-than-average disclosure 

risks (Little, 1993; Kennickell, 1997; Liu and Little, 2002; Reiter, 2003, 2005). A more 

extreme approach is to synthesize all variables and release only synthetic data to the 

public. The former approach tends to yield greater analytic validity than the latter, but the 

latter tends to achieve greater data protection (Drechsler, Bender, and Raessler, 2008). 

We focus on the latter “fully synthetic” data approach as we believe it offers the greatest 

level of confidentiality protection for small area applications. A further benefit of the 

fully synthetic data approach is that it can easily be extended to handle non-sampled areas 

and cases. Generating synthetic data for non-sampled areas/units offers further data 

protection as it masks the sampled areas and makes it difficult for an intruder to 

distinguish between sampled and non-sampled areas. It also allows data users to study 

characteristics of small areas that were never sampled in the survey; hence, the utility of 

the survey data is potentially enhanced. 

 

1.2  Organization of Chapter 

 This chapter proposes an extension of Rubin’s synthetic data method for the 

purpose of generating fully-synthetic microdata sets for small geographic areas based on 

complex sample survey data. A hierarchical Bayesian model is proposed that accounts for 

multiple levels of geography and “borrows strength” across related areas using auxiliary 

information known for small and large geographical areas. A sequential multivariate 
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regression procedure is used to approximate the joint distribution of the observed data, 

which is used to simulate synthetic values from the posterior predictive distribution 

(Raghunathan et al., 2001). The method is demonstrated on restricted data from the 

National Health Interview Survey (NHIS), an ongoing complex sample survey used to 

monitor trends in illness and disability and to track progress toward achieving national 

health objectives. The method is adapted to explicitly account for the stratification and 

clustering employed in the NHIS. Synthetic data is generated for several commonly used 

variables and their analytic validity is assessed by comparing inferences obtained from 

the synthetic data with those obtained from the actual data. The disclosure risk properties 

of the synthetic data are not addressed and we leave this to future work. Limitations of 

the model and possible extensions are discussed in the final section. 

 

2  Review of Fully Synthetic Data 

2.1  Creation of Fully Synthetic Data Sets 

 The general framework for creating and analyzing fully synthetic data sets is 

described in Raghunathan, Reiter, and Rubin (2003) and Reiter (2004). Suppose a sample 

of size   is drawn from a finite population Ω � ��, �� of size ', with � � ��(; ) �
1,2, … ,'� representing design, geographical, or other auxiliary information available for 

all ' units in the population, and � � ��(; ) � 1,2, … , '� representing the survey 

variables of interest. It is assumed that there is no confidentiality concern over releasing 

information about � and synthesis of these auxiliary variables is not needed, but the 

method can be extended to synthesize these variables if necessary. Let �*+! �
��(; ) � 1,2, … ,  � be the observed portion of � corresponding to sampled units and 
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�#*+! � ��(; ) �  � 1,  � 2, … , '� be the unobserved portion of � corresponding to the 

nonsampled units. The observed data set is , � ��, �*+!�. For simplicity, I assume there 

are no item missing data in the observed survey data set, but methods exist for handling 

this situation (Reiter, 2004). 

 Fully synthetic data sets are constructed in two steps. First, � synthetic 

populations -�
� � .��, ��
��; 
 � 1,2, … ,�/ are generated by taking independent draws 

from the Bayesian posterior predictive distribution of 0��#*+!|�, �*+!� conditional on the 

observed data ,. Alternatively, one can generate synthetic values of � for all ' units to 

ensure that no observed values of � are released. The number of synthetic populations � 

is determined based on the desired accuracy for synthetic data inferences and the risk of 

disclosing confidential information. A modest number of fully synthetic data sets (e.g., 5, 

10, or 20) are usually sufficient to ensure valid inferences (Raghunathan et al., 2003). In 

the second step, a random sample of size  !"# is drawn from each of the 
 � 1,2, … ,� 

synthetic data populations, ,�
� � 23( , 4(�
�, ) � 1,2, … ,  !"#5. The corresponding � 

synthetic samples ,!"# � �,�
�; 
 � 1,2, … ,�� comprise the public-use data sets, which 

are released to, and analyzed by, data users. In practice, the first step of generating 

complete synthetic populations is unnecessary and we only need to generate values of � 

for units in the synthetic samples. The complete synthetic population setup is useful for 

theoretical development of combining rules. 

 

2.2  Obtaining Inferences from Fully Synthetic Data Sets 

 From the publicly-released synthetic data sets, data users can make inferences 

about a scalar population quantity � � ���, ��, such as the population mean of � or the 
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population regression coefficients of � on �.  Suppose the analyst is interested in 

obtaining a point estimate 	 and an associated measure of uncertainty � of � from a set 

of synthetic samples ,!"# drawn from the synthetic populations -!"# � �-�
�; 
 �
1,2, … ,�� under simple random sampling. The values of 	 and � computed on the M 

synthetic data sets are denoted by �	�
�, ��
�, 
 � 1,2, … ,��. 
Consistent with the theory of multiple imputation for item missing data (Rubin, 

1987; Little and Rubin, 2002), combining inferences about � � ���, �� from a set of 

synthetic samples ,!"# is achieved by approximating the posterior distribution of � 

conditional on ,!"#. The suggested approach, outlined by Raghunathan, Reiter, and 

Rubin (2003), is to treat �	�
�, ��
�; 
 � 1,2, … ,�� as sufficient summaries of the 

synthetic data sets ,!"# and approximate the posterior density 0��|,!"#� using a normal 

distribution with the posterior mean � computed as the average of the estimates, 

 	�� ��	�
��

�� /� 

(1) 

 

and the approximate posterior variance is computed as, 

 �� � �1 ������� � �6 (2) 

where �̅� � ∑ ��
��
�� /� is the overall mean of the estimated variances across all 

synthetic data sets (“within variance”) and �� � ∑ �	�
� � 	����/�� � 1��
��  is the 

variance of 	�
� across all synthetic data sets (“between variance”).  

Under certain regulatory conditions specified in Raghunathan, Reiter, and Rubin 

(2003), 	�� is an unbiased estimator of � and �� � �6 is an unbiased estimator of the 

variance of �. The 
�� �� adjusts for using only a finite number of synthetic data sets. It 
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should be noted that the subtraction of the within imputation variance in �� is due to the 

additional step of sampling the units that comprise the synthetic samples from each 

multiply-imputed synthetic population. Because of this additional sampling step, the 

between imputation variance already reflects the within imputation variability, which is 

not the case in the usual multiple imputation framework.  

When  ,  !"#, and � are large, inferences for scalar � can be based on normal 

distributions. For moderate �, inferences can be based on t-distributions with degrees of 

freedom 8� � �� � 1��1 � 96����, where 96 � �1 ������6/�̅�, so that a �1 � :�% 

interval for � is 	�� < =>?�:/2�@�� as described in Raghunathan and Rubin (2000). 

Extensions for multivariate � are described in Reiter and Raghunathan (2007) and Reiter 

(2005). 

 A limitation of the variance estimator �� is that it can produce negative variance 

estimates. Negative values of �� can generally be avoided by increasing � or  !"#. 

Numerical routines can be used to calculate the integrals involved in the construction of 

��, yielding more precise variance estimates (Raghunathan, Reiter, and Rubin, 2003). A 

simpler variance approximation that is always positive is given in Reiter (2002). 

 

3 Extension to Small Geographic Areas Based on Complex Sample Survey 

Data 

 

I adopt a hierarchical Bayesian model to generate synthetic data for small 

geographic areas based on complex sample survey data. Hierarchical models have been 

used in several applications of small area estimation (Fay and Herriot, 1979; Malec et al., 

1997). See Rao (2003) for a comprehensive review of design-based, empirical Bayes, and 

fully Bayesian approaches for small area estimation. Hierarchical models have also been 
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used for multiple imputation of missing data in multilevel data structures (Yucel, 2008; 

Reiter, Raghunathan, and Kinney, 2006).  

My approach involves three stages. In the first stage, the joint density of the 

variables to be synthesized is approximated by fitting sequential regression models based 

on the observed data within each small area. In the second stage, the sampling 

distribution of the unknown regression parameters estimated in stage 1 is approximated 

and the between-area variation is modeled using auxiliary information. In the final stage, 

the unknown regression parameters are simulated for both sampled and non-sampled 

areas and used to draw synthetic microdata values from the posterior predictive 

distribution. 

 

3.1  Stage 1: Approximation of Joint Density via Sequential Regression 

 For descriptive purposes, I introduce the following notation. I define “small 

areas” as primary sampling units (PSUs) (or counties), nested within strata (or states), 

which could also be nested within even larger areas (e.g., regions). In specific terms, 

suppose that a sample of size   is drawn from a finite population of size '. Let  A! and 

'A! denote the respective sample and population sizes for sampled PSU B � �1,2, … , C!� 
nested within stratum D � �1,2, … , E�. Let �A! � ��(A!,F; ) � 1,2, … ,  A!; 	H � 1,2, … , -� 

represent the  A! I - matrix of survey variables collected from each survey respondent 

located in PSU B and stratum D. Let �A! � ��(A!,J; ) � 1,2, … ,  A!,  A! � 1,… ,'A!; 	K �
1,2, . . , M� represent the 'A! I M matrix of auxiliary or administrative variables known for 

every population member in a particular PSU and stratum. Although I consider synthesis 
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of the survey variables �A! only, it is straightforward to synthesize the auxiliary variables 

�A! as well. 

A desirable property of synthetic data is that the multivariate relationships among 

the observed variables are maintained in the synthetic data, i.e., the joint distribution of 

variables given the auxiliary information 0��A!,�, �A!,�, … , �A!,N|�A!,J� is preserved. 

Specifying and simulating from the joint conditional distribution can be difficult for 

complex data structures involving large numbers of variables representing a variety of 

distributional forms. Alternatively, one can approximate the joint density as a product of 

conditional densities (Raghunathan et al., 2001). That is, the joint density 

0��A!,�, �A!,�, … , �A!,N|�A!,J� can be factored into the following conditional densities: 

0��A!,�|�A!,J�, 0��A!,�|�A!,�, �A!,J�,…,0��A!,N|�A!,�, … , �A!,N��, �A!,J�. In practice, a 

sequence of generalized linear models are fit based on the observed PSU-level data where 

the variable to be synthesized comprises the outcome variable that is regressed on any 

auxiliary variables or previously fitted variables, e.g.,  �(A!,� � ��(A!�OA!,� � P(A!, 
�(A!,� � ��(A!, �(A!,��OA!,� � P(A! ,…,	�(A!,N � ��(A!, �(A!,�, �(A!,�, … , �(A!,N��	�OA!,N � P(A!. 
The choice of model (e.g., Gaussian, binomial) is dependent on the type of variable to be 

synthesized (e.g., continuous, binary). It is assumed that any complex survey design 

features are incorporated into the generalized linear models and that each variable has 

been appropriately transformed to satisfy modeling assumptions. After fitting each 

conditional density, the vector of regression parameter estimates OQA!,F, the corresponding 

covariance matrix RSA!,F, and the residual variance TUA!,F�  are extracted from each of the - 

regression models and incorporated into the hierarchical model described below. 

H � �1,2, … , -� is used to index the set of parameters associated with the HVW synthetic 
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variable of interest and the HVW regression model from which the direct estimates are 

obtained.  

 

3.2  Stage 2: Sampling Distribution and Between-Area Model 

In the second stage, the joint sampling distribution of the design-based county-

level regression estimates OQA!,F (obtained from each conditional model fitted in Stage 1) 

is approximated by a multivariate normal distribution, 

 OQA!,F	~	�R'�OA!,F, RSA!,F� (3) 

where OA!,F is the �M � H� I 1 matrix of unknown regression parameters and RSA!,F is the 

corresponding �M � H� I �M � H� estimated covariance matrix obtained from Stage 1. The 

unknown PSU-level regression parameters OA!,F are assumed to follow a multivariate 

normal distribution,  

 OA!,F	~	�R'�O!,FYA!, Σ!,F� (4) 

where YA,! � �Y!,[; \ � 1,2, … , ]� is a ] I 1 matrix of PSU-level covariates, O!,F is a 

�M � H� I ] matrix of unknown regression parameters, and Σ!,F is a �M � H� I �M � H� 
covariance matrix. PSU-level covariates are incorporated into the hierarchical model in 

order to “borrow strength” from related small areas. Prior distributions may be assigned 

to the unknown parameters O!,F and Σ!,F, but for computational simplicity I assume that 

O!,F and Σ!,F are fixed at their respective maximum likelihood estimates (MLE), a 

common assumption in hierarchical models for small area estimation (Fay and Herriot, 

1979; Datta, Fay, and Ghosh, 1991; Rao, 1999). Details for obtaining the maximum 

likelihood estimates using the expectation-maximization (EM) algorithm (Dempster, 

Laird, and Rubin, 1977) are provided in Appendix 1.  
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The estimated state-level parameters OQ!,F (obtained from the maximum likelihood 

estimation step) are expressed as a Á�M � H� I ]Â I 1 vector and approximated by a 

multivariate normal distribution, 

 OQ!,F	~	�R'�O!,F, RS!,F� (5) 

where O!,F is a Á�M � H� I ]Â I 1 vector of unknown parameters and RSA!,F is the 

corresponding Á�M � H� I ]Â I Á�M � H� I ]Â estimated covariance matrix obtained from 

the Kronecker product of oÃ ⊗Σ!,F.The unknown stratum-level regression parameters 

O!,F are assumed to follow a multivariate normal distribution,  

 O!,F	~	�R'�OFY!, ΩF� (6) 

where Y! � �Y!,[; = � 1,2, … , �� is a � I 1 matrix of stratum-level covariates, OF is a 

Á�M � H� I ]Â I �  matrix of unknown parameters, and ΣF is a Á�M � H� I ]Â I
Á�M � H� I ]Â  covariance matrix. Again, we assume that the hyperparameters (in this 

case, OFand ΣF) are fixed at their maximum likelihood estimates by the EM algorithm. 

The details of the EM algorithm implementation can be found in Appendix 2.  

Based on standard theory of the normal hierarchical model (Lindley and Smith, 

1972), the unknown regression parameters OA!,F and O!,F can be drawn from the 

following posterior distributions,  

 ÔA!,F	~	�R' _�RSA!,F�� � ΣS!,F������RSA!,F��OQA!,F � ΣS!,F��OQ!,FYA!�, �RSA!,F�� � ΣS!,F�����` (7) 

 
 

 Ô!,F	~	�R' _�RS!,F�� � Ω�F������RS!,F��OQ!,F � Ω�F��OQFY!�, �RS!,F�� � Ω�F�����` (8) 
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where ÔA!,F and ÔA!,F are simulated vectors of values for the unknown parameters OA!,F 

and O!,F, respectively.  

 For the nonsampled PSUs it is not possible to fit sequential regression models and 

obtain direct estimates of the regression parameters in Stage 1. We therefore must rely on 

a purely model-based approach to obtain values of ÔA!,F and Ô!,F for the nonsampled 

areas. Specifically, for this purpose we use the model equations [4] and [6] from above, 

which are repeated below for convenience,  

 OA!,F	~	�R'�O!,FYA!, Σ!,F� (4) 

 O!,F	~	�R'�OFY!, ΩF� (6) 

It should be noted that the PSU- and stratum-level auxiliary variables, denoted by 

YA! and Y!, respectively, must be known for all nonsampled areas. The implementation 

steps are described as follows, 

1. Draw a Á�M � H� I ]Â I 1vector of values Ô!,F	 from a multivariate normal 

distribution with location parameter OFY! and scale parameter ΩF, where OF and 

ΩF are replaced with their maximum likelihood estimates OQFand Ω�F, respectively, 

which were already obtained from the second EM implementation for all sampled 

cases. 

2. Vectorize the drawn values of Ô!,F to obtain a �M � H� I ] matrix, i.e., ��B�Ô!,F�.  
3. Draw a �M � H� I 1 vector of values ÔA!,F from a multivariate normal distribution 

with location parameter O!,FYA! and scale parameter Σ!,F , where O!,F and Σ!,F are 

replaced with their maximum likelihood estimates OQ!,F and ΣS!,F, respectively, 
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which were already obtained from the first EM implementation for all sampled 

cases within stratum D. 

4. Once ÔA!,F has been drawn for the sampled and non-sampled small areas, the 

actual synthetic values can be simulated from the posterior predictive distribution 

(Stage 3) using the instructions described in the next section. 

  

3.3  Stage 3: Simulating from the Posterior Predictive Distribution 

The ultimate objective is to generate synthetic populations for each sampled and 

non-sampled small area using an appropriate posterior predictive distribution. Simulating 

a synthetic variable �̂A! � ��̂
A!,F; 
 � 1,2, … ,'A!; H � 1,2, … , -� for observed (or 

unobserved) variable �A! for synthetic population unit 
 � �1,2, … ,'A!� is achieved by 

drawing, in sequential fashion, from the posterior predictive distributions 

0��̂A!,�|�A!, ÔA!,��, 0��̂A!,�|�̂A!,�, �A!, ÔA!,��, …, 0��̂A!,N|�̂A!,�, �̂A!,�, … , �̂A!,N��, �A!, ÔA!,��. 
For example, if the first variable to be synthesized �A!,� is normally distributed then �̂A!,� 

can be drawn from a normal distribution with location and scale parameters �A!ÔA!,� and 

TA!,��  , respectively, where TA!,��  may be drawn from an appropriate posterior predictive 

distribution 0�TaA!,�� |�A!,�, �A!, TA!,�� 	�, or fixed at the maximum likelihood estimate TUA!,��  

(obtainable from Stage 1). Generating a second (normally distributed) synthetic variable 

�̂A!,� from the posterior predictive distribution 0��̂A!,�|�̂A!,�, �A!, ÔA!,�� is achieved by 

drawing �̂A!,� from 'b��A!, �̂A!,��ÔA!,�, TA!,�� 	c, and so on up to 

�̂A!,N~'b��A!, �̂A!,�, �̂A!,�, … , �̂A!,N���ÔA!,N , TA!,N� 	c. Alternatively, if the variable under 

synthesis �A!,F is binary, then �̂A!,F is drawn from a binomial distribution 
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d) b1, Ĥ.��A!, �̂A!,�, �̂A!,�, … , �̂A!,F���ÔA!,N/c, where Ĥ.��A!, �̂A!,�, �̂A!,�, … , �̂A!,F���ÔA!,N/ is 

the predicted probability computed from the inverse-logit of 

.��A!, �̂A!,�, �̂A!,�, … , �̂A!,F���ÔA!,N/. For polytomous variables, the same procedure is used 

to obtain posterior probabilities for each categorical response, which are used to generate 

the synthetic values from a multinomial distribution. The iterative simulation process 

continues until all synthetic variables ��̂A!,�, �̂A!,�, … , �̂A!,N� are generated. The procedure 

is repeated M times to create multiple populations of synthetic variables 

2�̂A!,��
� , �̂A!,��
� , … , �̂A!,N�
� ; 
 � 1,2, … ,�5. In addition, the entire cycle may be repeated several 

times to minimize ordering effects (Raghunathan et al., 2001). 

The complete synthetic populations may be disseminated to data users, or a 

simple random sample of arbitrary size may be drawn from each population and released. 

Stratified random sampling may be used if different sampling fractions are to be applied 

within small areas. Inferences for a variety of estimands can be obtained using the 

combining rules in Section 2.2. 

 

4  Application: National Health Interview Survey (Restricted Microdata) 

In this section, I demonstrate and evaluate the above procedure on a subset of 

restricted-use microdata from the 2003-2005 National Health Interview Survey (NHIS). 

The NHIS is an ongoing, cross-sectional national survey and is the principal source of 

information on the health of the civilian non-institutionalized population of the United 

States. NHIS provides annual estimates on a variety of topics, including health status and 

disability, healthcare access and utilization, and illness and disease. The survey data are 
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used to evaluate various Federal health programs and to track progress toward achieving 

national health objectives.  

The NHIS employs a complex sample design en route to interviewing a sample of 

civilian non-institutionalized persons living in the United States. The sample consists of a 

multistage area probability design consisting of 358 PSUs sampled each year (during the 

2003-2005 period) drawn from approximately 1,900 geographically defined PSUs that 

cover the 50 states and the District of Columbia. A PSU consists of a county, small group 

of contiguous counties, or a metropolitan statistical area. The NHIS sample is drawn from 

each state and the District of Columbia. Obtaining state-level estimates with acceptable 

precision for each state is not possible using the annual NHIS files. The National Center 

for Health Statistics recommends that users combine multiple years of data in order to 

produce state-level estimates.  

The NHIS is a face-to-face survey that collects data on several units of the 

household, including the household itself, all persons living in the household, families, a 

sampled adult, and a sampled child. For this application we restrict the data to sampled 

adults ages 18 and older. A total of 93,606 sampled adults (age 18 and older) completed 

interviews between the years 2003-2005 (2003: n=30,852; 2004: n=31,326; 2005: 

n=31,428). Full details of the NHIS methodology can be found elsewhere (Pleis, 2010). 

For this application, we define the smallest areas of interest as PSUs (for the 

sampled areas) and counties (for the nonsampled areas). (The use of counties instead of 

PSU’s for the nonsampled areas was necessary as the population frame of PSUs was not 

available to us.) Because the NHIS sample design consists of state-level stratification, we 

use state-level identifiers to complete the nested hierarchy. The state-level covariates 
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include: number of metropolitan areas, number of micropolitan areas, region, and 

population. No county-level covariates were used in this application. The selected 

variables for this application (listed in Table 4.0) include two continuous variables: body 

mass index and age; and five binary variables: smoking status, moderate activity, sex, 

ever receiving a hypertension diagnosis, and self-reported health status. These variables 

were selected based on their common usage in analyses of NCHS data and their 

recommended use for this project by statisticians from the National Center for Health 

Statistics.  

For continuous variables, design-based estimates of regression parameters (Stage 

1) were obtained by fitting normal linear models within each PSU and synthetic values 

were drawn from the Gaussian posterior predictive distribution. For binary variables, 

logistic regression models were used to obtain the design-based parameter estimates and 

synthetic values were drawn from the binomial posterior predictive distribution. All 

regression models in Stage 1 accounted for the sampling weights via pseudo-maximum 

likelihood estimation using the R survey package. To ensure the stability of the design-

based regression estimates, a minimum sample size rule of 15 times the number of 

predictors in the model (i.e., 15 ∙ H) was applied within each PSU. If a PSU did not meet 

this threshold, then a Mahalanobis distance metric was used to pool “statistically similar” 

PSUs together, based on the variables listed in Table 4.0, until the sample size threshold 

was met. 

� � 10 fully synthetic data sets are generated for each sampled and non-sampled 

“small area” (i.e., PSU and county, respectively). For each small area a synthetic sample 

of 500 cases is generated.  To help reduce the ordering effect induced by synthesizing the 
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variables in a prescribed order, we repeat the entire synthetic data process 4 additional 

times, each time conditioning on the full set of synthetic variables generated from each 

previous implementation. All estimates based on the observed data are weighted.  

Table 4.0. List of NHIS Variables Used in Synthetic Data Application. Variables 

Shown in the Order of Synthesis. 

Variable Type Range/Categories Transformation 

  Body mass index (BMI) 
  Age 
  Smoker 
  Moderate activity 
  Sex  
  Hypertension diagnosis   
  Self-reported health status 
   

continuous 
continuous 
binary 
binary 
binary 
binary 
binary 
 

9.15 
18 - 84 
recoded; yes,no 
recoded: yes,no 
male,female 
yes,no 
recoded; fair/poor, 
excellent/very good/good 

log 
-- 
-- 
-- 
-- 
-- 
-- 

 

4.1  Validity of Univariate Estimates 

 Figures 4.1-4.3 contain back-to-back histograms depicting the overall 

distributions of each NHIS variable variable. The actual distribution is shown in red and 

the synthetic distribution in blue. All variables are presented on the untransformed scale. 

Figure 4.1 shows the full synthetic data for sampled and non-sampled areas, Figure 4.2 

shows the synthetic data for the sampled areas only, and Figure 4.3 shows the synthetic 

data for only the non-sampled areas. A few general remarks can be made about these 

figures. First, the synthetic distributions for the sampled and non-sampled areas reflect 

the shape of the actual distributions reasonably well in for most variables. Second, the 

rarer characteristics (hypertension, fair/poor health rating) tend to be slightly 

overestimated in the synthetic data. This could be due to the fact that “statistically 

similar” PSUs were combined during the direct estimation stage (Stage 1) to yield more 

precise estimates, which may lead to overestimation of the characteristic relative to the 

actual PSU of interest. Third, the synthetic distributions for the non-sampled areas appear 
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to be slightly more variable for the continuous distributions compared to the distributions 

for the sampled areas. This makes sense as the synthetic data for the non-sampled areas 

were generated from a purely model-based perspective with no actual data from these 

areas to inform their synthesization. And fourth, the overall shape of the combined 

synthetic data distribution (sampled plus nonsampled; Figure 4.1) resembles the synthetic 

distribution for the sampled areas (Figure 4.2) fairly well. This is a reassuring result as it 

means that the combined synthetic data file, if released to the public, could be used in lieu 

of the synthetic data for the sampled areas only to produce valid distributional properties. 

It also suggests that the sampled and non-sampled synthetic data are indistinguishable for 

the most part, which suggests that an intruder could have additional difficulty in 

determining which cases are associated with the sampled areas. 
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Figure 4.1. Back-to-Back Histograms of Actual (Red) and Combined Synthetic 

(Blue) Distributions for NHIS Variables. 
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Figure 4.2. Back-to-Back Histograms of Actual (Red) and Sampled Synthetic (Blue) 

Distributions for NHIS Variables. 
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Figure 4.3. Back-to-Back Histograms of Actual (Red) and Nonsampled Synthetic 

(Blue) Distributions for NHIS Variables. 
 

 

 

Table 4.1 provides summary measures of actual- and synthetic- means obtained at 

the PSU-level (or county-level). Columns 2-4 show the average PSU/county mean 

obtained from the actual data, synthetic (sampled areas), and synthetic (nonsampled 

areas), respectively. Columns 5-7 show the corresponding average standard errors for the 

PSU/county means obtained from the synthetic and actual data. The last two columns 

contain the intercept and slope values obtained from regressing the actual PSU/county 

means against the corresponding synthetic means. Intercept values close to 0 and slope 

values close to 1 indicate strong correspondence between the synthetic and actual means. 
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Table 4.2 contains the same summary measures computed for the stratum-level estimates.  

The results are generally positive. For the most part the summary measures of the 

synthetic estimates correspond well to those of the actual estimates, on average. The 

nonsampled synthetic standard errors are quite large. In all cases, the average standard 

errors of the synthetic estimates are larger than the corresponding actual estimates, as 

expected. The average standard errors for the non-sampled area estimates tends to be 

about 5-6 times as large as the actual data standard errors, whereas the average standard 

errors for the sampled area estimates are only slightly larger than the corresponding 

actual standard errors.  

Table 4.1 Average PSU/County Means Obtained from Synthetic and Actual NHIS 

(2003-2005) Data. Actual estimates are weighted. 

 Avg. Means of PSU/County Means Avg. Standard Errors of  

PSU/County Means  

Regression of Actual 

and Synthetic PSU 

Means 

 Actual Synthetic 

(sampled 

areas) 

Synthetic 

(nonsampled 

areas) 

Actual Synthetic 

(sampled 

areas) 

Synthetic 

(nonsampled 

areas) 

Intercept Slope 

BMI 27.29 27.25 27.41 0.45 0.73 1.45 -4.21 1.16 

Age 46.60 47.45 47.84 1.35 1.15 4.27 -20.99 1.43 

Smoker 46.13 46.43 47.11 3.84 3.65 12.05 -0.07 1.14 

Moderate  

activity 

51.54 51.72 51.75 3.62 3.82 21.04 -0.03 1.06 

Sex: Male 45.94 45.89 46.24 3.87 3.71 9.72 -0.06 1.14 

Hypertension  

diagnosis 

28.22 27.94 29.86 3.45 3.74 10.58 -0.04 1.16 

“Fair or Poor”  

health  

13.95 13.14 15.13 2.58 2.16 8.84 0.00 1.04 

 
 
 
 
 
 
 
 
 
 
 



165 
 

  

Table 4.2 Average Stratum/State Means Obtained from Aggregate Synthetic and 

Actual NHIS (2003-2005) Data. Actual estimates are weighted. 

 Avg.  Means of Strata Means Avg. Standard Errors of Strata Means  

 Actual Synthetic 

(sampled 

areas) 

Synthetic 

(nonsampled  

areas) 

Actual Synthetic 

(sampled areas) 

Synthetic 

(nonsampled  

areas) 

BMI 27.06 27.23 27.27 0.21 0.18 0.96 

Age 45.98 47.40 48.49 0.84 0.50 2.85 

Smoker 45.04 46.74 50.36 1.85 1.81 8.39 

Moderate  

activity 

53.30 52.12 52.11 3.98 1.57 16.90 

Sex: Male 46.21 45.88 46.47 1.06 1.70 6.56 

Hypertension 

 diagnosis 

26.32 27.64 30.50 1.54 1.74 6.90 

“Fair or Poor”  

health  

12.48 12.89 15.72 1.18 1.04 6.50 

 

 

The variability in the synthetic estimates across sampled PSUs is depicted via the 

scatter plot in Figure 4.4. The synthetic means (y-axis) are contrasted against the actual 

means (x-axis) for all sampled PSUs. Ideally, each point will lie exactly on the 45-degree 

line if the synthetic and actual estimates correspond perfectly. In general, most of the 

points lie about the 45-degree line indicating good correspondence between the synthetic 

and actual small area estimates. For example, the estimates of the proportion of moderate 

activity tend to be tightly clustered around the 45-degree line, indicating strong 

correspondence between the synthetic and actual data. However, some estimates tend to 

depart from the equalizing line. In particular, the synthetic data tends to overestimate age 

in PSUs where the average age is low relative to other PSUs. This could be due to the 

fact that age was simulated from a normal distribution, even though the distribution tends 

to be slightly right-skewed. A transformation or alternative simulation approach might 

yield stronger better results. Given the fully-synthetic nature of this application, we 
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would expect the standard errors of the synthetic PSU means to be larger than the actual 

standard errors. Figure 4.5 shows scatter plots of the synthetic and actual standard errors 

for each variable of interest. As expected, the synthetic data yield larger standard errors 

of the means, on average.  

 

Figure 4.4 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) PSU Means for 

NHIS Variables 
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Figure 4.5 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) Standard Errors of 

PSU Means for NHIS Variables. 

 

4.2  Cross-Validation Study of Non-Sampled Small Area Estimates 

 Because no observed data exists for the non-sampled areas, it is not possible to 

directly assess the validity of the small area estimates obtained from these areas. To 

overcome this limitation we perform a cross-validation study by randomly removing a 
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sampled area from the observed data and treating it as if it were a non-sampled area 

during the synthetic data generation process. We randomly selected 63 sampled PSUs for 

this cross-validation study. Each of the selected PSUs was dropped from the observed 

data one at a time and all three stages of the synthetic data generation process were 

performed to obtain synthetic data for the dropped (or “unsampled”) area.   

 Figure 4.6 contains scatter plots of estimates for all 63 cross-validated PSUs. The 

synthetic estimates are displayed on the y-axis and actual estimates on the x-axis. The 

synthetic point estimates tend to lie about the 45-degree line. This is a reassuring finding. 

About half of the estimates lie above and below the line, indicating lack of bias for 

synthetic non-sampled area estimates. However, the precision of the estimates is rather 

small. The points are dispersed widely indicating large variability in the synthetic 

estimates. Figure 4.7 shows scatter plots of the standard errors of the PSU means. The 

fact that nearly all of the points lie above the 45-degree line reaffirms that the synthetic 

estimates contain a large amount of variability. Given that the synthetic data for these 

areas was generated strictly from a model-based perspective, it is not surprising that the 

estimates exhibit a significant amount of variability. 
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Figure 4.6 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) PSU Means for 

Cross-Validation Study 
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Figure 4.7 Scatter Plot of Synthetic (y-axis) and Actual (x-axis) Standard Errors of 

PSU Means for Cross-Validation Study 

 

 

4.3  Validity of Multivariate Estimates 

The next set of analyses assesses the analytic validity of synthetic multivariate 

estimates obtained from two multiple regression models. Tables 4.3 and 4.4  show 

coefficient estimates (and their standard errors) for two regression models (linear and 

logistic) fit at the PSU/county- and strata-level, respectively. The dependent variable for 

the linear model is log(BMI) and for the logistic model is hypertension diagnosis.  

The results are reassuring. The synthetic coefficient estimates (for both sampled 

and nonsampled areas) are quite similar and correspond well with the actual estimates, on 
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average.  All synthetic estimates lie within one of their respective standard errors from 

the corresponding actual estimate, on average. This pattern holds true for both PSU- and 

stratum-level coefficient estimates. The standard errors of the sampled synthetic point 

estimates are comparable to the corresponding actual standard errors. The nonsampled 

synthetic standard errors tend to be between 2-4 times larger than the actual standard 

errors. 

 

Table 4.3 PSU-Level Linear and Logistic Regression Coefficients and Standard 

Errors Obtained from Actual and Synthetic Data Sets. 

 

 Avg. Regression Coefficients Avg. Standard Errors  

of Regression Coefficients  

Linear regression of 

BMI (log) on 

  Intercept 

  Age 

  Smoker 

  Moderate activity 

  Male 

  Hypertension 

  Fair/poor health 

Actual 

 

3.26 

0.10 

-0.00 

-0.01 

-0.01 

0.04 

0.05 

Synthetic 

(sampled areas) 

3.27 

0.11 

-0.00 

-0.02 

-0.01 

0.03 

0.06 

Synthetic  

(nonsampled areas) 

3.28 

0.11 

-0.00 

-0.02 

-0.00 

0.02 

0.06 

Actual 

 

0.05 

0.04 

0.00 

0.03 

0.03 

0.03 

0.05 

Synthetic  

(sampled areas) 

0.06 

0.04 

0.00 

0.03 

0.04 

0.03 

0.04 

Synthetic 

(nonsampled areas) 

0.18 

0.10 

0.00 

0.09 

0.11 

0.10 

0.13 

 Avg. Regression Coefficients  

(Odds Ratios) 

Avg. Standard Errors  

of Regression Coefficients  

Logistic regression 

of Hypertension on 

  Intercept 

  BMI 

  Age 

  Smoker 

  Moderate activity 

  Male 

  Fair/poor health 

Actual 

 

-14.77 

3.12 

0.07 

0.05 

-0.03 

0.04 

0.91 

Synthetic 

(sampled areas) 

-14.71 

3.10 

0.07 

0.08 

-0.06 

0.10 

0.86 

Synthetic 

(nonsampled areas) 

-14.99 

3.26 

0.07 

0.20 

-0.22 

0.06 

0.75 

Actual 

 

3.99 

1.13 

0.14 

0.44 

0.46 

0.43 

0.60 

Synthetic 

(sampled areas) 

4.01 

1.13 

0.15 

0.43 

0.48 

0.46 

0.48 

Synthetic 

(nonsampled areas) 

12.27 

3.49 

0.06 

1.42 

1.96 

1.73 

1.67 
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Table 4.4 Strata-Level Linear and Logistic Regression Coefficients and Standard 

Errors Obtained from Actual and Synthetic Data Sets. 
 Avg. Regression Coefficients Avg. Standard Errors  

of Regression Coefficients  

Linear regression 

of BMI (log) on 

  Intercept 

  Age 

  Smoker 

  Moderate activity 

  Male 

  Hypertension 

  Fair/poor health 

Actual 

 

3.24 

0.11 

-0.00 

-0.01 

-0.01 

0.04 

0.05 

Synthetic 

(sampled areas) 

3.26 

0.11 

-0.00 

-0.02 

-0.01 

0.04 

0.06 

Synthetic 

(nonsampled areas) 

3.28 

0.11 

-0.00 

-0.02 

-0.01 

0.04 

0.06 

Actual 

 

0.02 

0.01 

0.00 

0.01 

0.01 

0.01 

0.02 

Synthetic  

(sampled areas) 

0.04 

0.02 

0.00 

0.02 

0.02 

0.02 

0.03 

Synthetic 

(nonsampled areas) 

0.13 

0.08 

0.00 

0.07 

0.08 

0.07 

0.09 

 Avg. Regression Coefficients  

(Odds Ratios) 

Avg. Standard Errors  

of Regression Coefficients  

Logistic regression 

of Hypertension on 

  Intercept 

  BMI 

  Age 

  Smoker 

  Moderate activity 

  Male 

  Fair/poor health  

Actual 

 

-14.18 

2.99 

0.06 

0.10 

-0.01 

-0.02 

0.91 

Synthetic 

(sampled areas) 

-13.71 

2.89 

0.06 

0.11 

-0.04 

0.07 

0.84 

Synthetic 

(nonsampled areas) 

-10.90 

2.34 

0.05 

0.13 

-0.06 

0.01 

0.74 

Actual 

 

1.00 

0.28 

0.00 

0.10 

0.11 

0.11 

0.14 

Synthetic  

(sampled areas) 

2.27 

0.65 

0.01 

0.25 

0.28 

0.28 

0.30 

Synthetic 

(nonsampled areas) 

6.32 

1.75 

0.02 

0.57 

0.69 

0.80 

0.64 

 

 

 

4.4  Propensity Score Balance 

 Another indicator of the quality of the synthetic data is to assess the covariate 

balance between the synthetic and actual data. This is most easily performed using 

propensity scores (Rubin and Rosenbaum, 1983). Propensity scores are commonly used 

to identify imbalances in in two or more groups (e.g., treatment and control groups) based 

on the distribution of a set of observed covariates. Biases caused by covariate imbalances 

may be adjusted by performing a weighted analysis with weights inversely proportional 

to the propensity scores (Ekholm and Laaksonen, 1991). 

To assess the covariate balance between the synthetic and actual data sets, a 

randomly selected (sampled) synthetic data set and the actual data are stacked vertically. 

Then an actual data indicator variable is regressed against all synthetic and actual 
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variables using a logistic regression model. The fitted model is used to obtain estimates 

of the propensity of a record belonging to the actual data. The propensity scores are then 

sorted and classified into deciles and the proportions of synthetic and actual records are 

compared. If the synthetic and actual covariates are fully balanced, then the proportion of 

synthetic versus actual data should be the same for each decile group. A chi-squared test 

with 9 degrees of freedom (if deciles are used) can be performed to assess the 

equivalence of the actual data proportions across the groups.  

We use the propensity score balance method to assess the similarity of the 

synthetic and actual data in each PSU. Table 4.5 shows summary statistics of the 

estimated probabilities of belonging to the actual data in each PSU, as well as associated 

test statistics. The overall mean estimated propensity score was 0.30, which reflects the 

true proportion of actual data in each PSU. Within each PSU, the propensity scores were 

sorted and grouped into deciles and a chi-square statistic was computed. Small chi-square 

values indicate that the synthetic and actual data sets are balanced or statistically 

independent from each other, based on the set of covariates, while large values indicate 

poor covariate balance between the two data sets. The mean chi-square p-value was 0.23. 

The average p-value is not statistically significant. This suggests that the synthetic data is 

statistically balanced with the actual data based on the selected covariates. This is another 

reassuring finding, indicating strong correspondence of the distributional properties 

between both the synthetic and actual data sources. 
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Table 4.5 Estimated Propensities of Belonging to the Observed Data  

 Mean Min Max 

Estimated probabilities Ĥ 0.30 0.18 0.48 h� statistic  14.80 7.92 42.90 

P-value 0.23 0.01 0.57 

 

5  NHIS-Based Simulation 

This section evaluates the repeated sampling properties for small area inferences 

drawn from the synthetic data based on a simulation application. In this simulation, the 

2003-2005 NHIS data is treated as a population from which subsamples are drawn. 500 

stratified random subsamples are drawn from each PSU with replacement. Each 

subsample accounts for approximately 30% of the total sample in each PSU. Each NHIS 

subsample is used as the basis for constructing a synthetic population from which 100 

synthetic samples are drawn. A total of 50,000 synthetic data sets are generated. 

Two types of inferences can be obtained from the synthetic data: conditional and 

unconditional. Conditional synthetic inferences are obtained from synthetic samples that 

are based on a single observed sample drawn from the population. This is the situation 

most commonly encountered in practice, where a survey is carried out on a single 

population-based sample and the synthetic data is generated conditional on that sample. 

Unconditional inferences are obtained from synthetic samples that are based on multiple, 

or repeated, population-based samples. Obtaining unconditional inferences is not feasible 

in practice but is possible in the simulation study considered here.  

To obtain conditional inferences, 500 sets of 10 synthetic samples are randomly 

selected (with replacement) from each of the 100 synthetic samples generated conditional 

on each of the 500 NHIS subsamples. For each set of 10 synthetic samples, a synthetic 

estimate and associated confidence interval is obtained for each variable in each PSU 
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using the combining rule equations [1] and [2] in Section 2.2. To obtain unconditional 

inferences, 100 sets of 10 synthetic samples are randomly selected with replacement 

across each of the 100 NHIS subsamples and estimates are obtained again using the 

relevant combining rules. 

We use two evaluative measures to assess the validity of the synthetic data 

estimates. The first one is confidence interval coverage (CIC). For conditional inference, 

CIC is defined as the proportion of times that the synthetic data confidence interval 

bijU?,!"#, k	jU?,!"#c contains the actual estimate 4UlAV: 
�mnm � o�4UlAV ∈ 	 bijU?,!"#, k	jU?,!"#c� 

where o�∙� is an indicator function. �mnm � 1 if ijU?,!"# q 4UlAV q k	jU?,!"# and �r � 0 

otherwise. 

For unconditional inference, the only difference is that the CIC is calculated as the 

proportion of times that the synthetic data confidence interval contains the “true” 

population value �F*F, i.e., ijU?,!"# q �F*F q k	jU?,!"#.  

The second evaluative measure is referred to as the confidence interval overlap 

(CIO; Karr et al., 2006). CIO is defined as the average relative overlap between the 

synthetic and actual data confidence intervals.  For every estimate the average overlap is 

calculated by, 

�mns � �� tuvwxy�zvwxyu{|}�z{|} � uvwxy�zvwxyu~���z~�� � , 

where klAV and ilAV denote the upper and the lower bound of the confidence interval for 

the actual estimate 4UlAV,  k!"# and i!"# denote the upper and the lower bound of the 

confidence interval for the synthetic data estimate 	U�, and k*��� and i*��� denote the 

upper and lower bound of the overlap of the confidence intervals from the original and 
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from the synthetic data for the estimate of interest. �mns can take on any value between 0 

and 1. A value of 0 means that there is no overlap between the two intervals and a value 

of 1 means the synthetic interval completely covers the actual interval. Calculating the 

confidence interval overlap is only possible for conditional, not unconditional, inferences. 

This measure yields a more accurate assessment of data utility in the sense that it 

accounts for the significance level of the estimate. That is, estimates with low 

significance might still have a high confidence interval overlap and therefore a high data 

utility even if their point estimates differ considerably from each other.  

 

5.1  Validity of Univariate Estimates  

Tables 4.6 and 4.7 show the average confidence interval coverage (CIC) and 

confidence interval overlap (CIO) for means obtained from sampled PSUs and strata, 

respectively. The conditional CIC is quite high for the PSU-level estimates ranging from 

0.91-0.99. The stratum-level conditional CIC values are high and range from 0.94-0.99. 

All of the unconditional CIC values correspond closely to their true CIC values. All of 

these results indicate that the repeated sampling properties of the synthetic data method 

perform well when applied to the sampled PSU and stratum areas.  
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Table 4.6 Simulation-Based Confidence Interval Results for Sampled PSU-Level 

Means.  

Sampled PSUs Conditional Inference Unconditional Inference 

 CIC CIO CIC CIC (Actual) 

  BMI 
  Age 
  Smoker 
  Moderate activity 
  Male 
  Hypertension 
  Fair/poor health status 

0.99 
0.91 
0.99 
0.99 
0.99 
0.99 
0.99 

0.99 
0.92 
0.98 
0.99 
0.98 
0.97 
0.92 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

0.97 
0.98 
0.98 
0.98 
0.98 
0.97 
0.97 

 

 

Table 4.7 Simulation-Based Confidence Interval Results for Sampled Stratum-Level 

Means. 

Sampled Strata Conditional Inference Unconditional Inference 

 CIC CIO CIC CIC (Actual) 

  BMI 
  Age 
  Smoker 
  Moderate activity 
  Male 
  Hypertension 
  Fair/poor health status 

0.99 
0.96 
0.99 
0.99 
0.99 
0.98 
0.94 

0.95 
0.88 
0.94 
0.94 
0.95 
0.92 
0.88 

0.98 
0.96 
0.97 
0.96 
0.98 
0.97 
0.95 

0.98 
0.98 
0.99 
0.98 
0.98 
0.98 
0.98 

 

Tables 4.8 and 4.9 show the average confidence interval coverage (CIC) and 

confidence interval overlap (CIO) for means obtained from the nonsampled counties and 

strata, respectively. For the nonsampled counties, all CIC and CIO values equal 0.99 and 

correspond perfectly with the actual CIC values (also equal to 0.99). These results 

suggest that the estimated means for the nonsampled counties tend to be valid from a 

repeated sampling perspective. With regard to the nonsampled stratum-level estimates, 

the CIC and CIO values are high, but not quite as high as the county-level values. The 

range of conditional CIC values is 0.89-0.99, with the lowest value corresponding to the 

“fair or poor” health status variable. However, in general, the confidence interval 

coverage and overlap is good for both sampled and nonsampled areas. 
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Table 4.8 Simulation-Based Confidence Interval Results for Nonsampled County-

Level Means. 

Nonsampled Counties Conditional Inference Unconditional Inference 

 CIC CIO CIC CIC (Actual) 

  BMI 
  Age 
  Smoker 
  Moderate activity 
  Male 
  Hypertension 
  Fair/poor health status 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

 

 

Table 4.9 Simulation-Based Confidence Interval Results for Nonsampled Stratum-

Level Means. 

Nonsampled Strata Conditional Inference Unconditional Inference 

 CIC CIO CIC CIC (Actual) 

  BMI 
  Age 
  Smoker 
  Moderate activity 
  Male 
  Hypertension 
  Fair/poor health status 

0.97 
0.98 
0.98 
0.98 
0.99 
0.94 
0.89 

0.97 
0.97 
0.97 
0.97 
0.99 
0.92 
0.88 

0.98 
0.99 
0.99 
0.99 
0.99 
0.99 
0.90 

0.99 
0.99 
0.99 
0.99 
0.96 
0.99 
0.99 

 

 

5.2  Validity of Multivariate Estimates  

Multivariate simulation results are shown in Tables 4.10 and 4.11 for sampled and 

nonsampled areas, respectively. This table shows average CIC and CIO values for 

regression coefficient estimates obtained within each PSU (or county) and stratum. For 

the sampled PSUs and strata (Table 4.10), the conditional CIC and CIO values are high 

and range from 0.98-0.99 and 0.94-0.99, respectively, indicating good analytic validity 

for these multivariate estimands with PSUs and strata. The unconditional CIC values 



179 
 

equal 0.99, which either meets or exceeds the true CIC values obtained from the actual 

data. For the nonsampled counties and strata, the confidence interval coverage and 

overlap is similarly high for all coefficient estimates, ranging from 0.98-0.99. The 

simulation evidence suggests that the synthetic data method produces estimates that are 

valid from a repeated sampling perspective. 

 

Table 4.10 Simulation-Based Confidence Interval Results for Sampled PSU- and 

Stratum-Level Regression Coefficients  

Sampled; PSUs Conditional Inference Unconditional Inference 

Covariates CIC CIO CIC CIC (Actual) 

Regression of 
BMI(log) on 
  Intercept 
  Age 
  Smoker 
  Moderate activity 
  Male 
  Hypertension 
  Fair/poor health 

 
 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

 
 

0.98 
0.98 
0.98 
0.98 
0.98 
0.99 
0.94 

 
 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

 
 

0.97 
0.97 
0.98 
0.97 
0.98 
0.98 
0.96 

Sampled; Strata Conditional Inference Unconditional Inference 

Covariates CIC CIO CIC CIC (Actual) 

Regression of 
Hypertension on 
  Intercept 
  BMI 
  Age 
  Smoker 
  Moderate activity 
  Male 
  Fair/poor health 

 
 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.98 

 
 

0.99 
0.98 
0.98 
0.99 
0.98 
0.99 
0.95 

 
 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

 
 

0.97 
0.97 
0.97 
0.98 
0.98 
0.98 
0.97 
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Table 4.11 Simulation-Based Confidence Interval Results for Nonsampled County- 

and Stratum-Level Regression Coefficients  

Nonsampled; Counties Conditional Inference Unconditional Inference 

Covariates CIC CIO CIC CIC (Actual) 

Regression of BMI(log) 
on 
  Intercept 
  Age 
  Smoker 
  Moderate activity 
  Male 
  Hypertension 
  Fair/poor health 

 
 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

 
 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.98 

 
 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

 
 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

Nonsampled; Strata Conditional Inference Unconditional Inference 

Covariates CIC CIO CIC CIC (Actual) 

Regression of 
Hypertension on 
  Intercept 
  BMI 
  Age 
  Smoker 
  Moderate activity 
  Male 
  Fair/poor health 

 
 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

 
 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

 
 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

 
 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

 
  

6  Conclusions  

 In this chapter, I demonstrated a synthetic data methodology that produces 

microdata for small geographic areas. The method accounts for the complex sample 

design by incorporating the clustering and stratification identifiers into a Bayesian 

hierarchical model. The sampling weights are incorporated into the model at the design 

stage (Stage 1). We evaluated the method using restricted county-level data from the 

National Health Interview Survey. Based on analytic and simulation studies, the analytic 

validity of the synthetic small area estimates (univariate and multivariate) is high due to 

their strong correspondence with the actual estimates. Aggregating the PSU-level 

microdata to the stratum-level also yields similarly high validity for large-area estimates. 
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 An intriguing feature of the method is the ability to use the model to generate 

synthetic data for nonsampled small areas (e.g., PSUs, counties). This feature increases 

the utility of the survey data, as it allows data users (e.g., students, community planners, 

local organizations) to generate estimates for small areas that may be more relevant to 

them. It also provides a bit of confidentiality protection as an intruder may have difficulty 

determining which small areas in the combined synthetic data set were part of the actual 

sampled. Based on cross-validation and simulation studies, the nonsampled area 

estimates are valid and comparable to the actual estimates; however, they do tend to 

possess a large amount of variability because the nonsampled area synthetic data is 

generated from a completely model-based procedure. 

 This study has limitations that should be mentioned. This study demonstrated the 

method on a basic set of continuous and binary variables. Other variable types, such as 

count, multinomial, and semi-continuous should also be considered as they form the basis 

for many important variables that are collected in survey data. Another limitation is that 

the method is based on a fully-parametric framework. Thus, any variable that does not 

follow a standard distribution (e.g., skewed, bimodal) must be transformed, or else the 

synthetic method must be modified to handle these non-standard variable types. This 

limitation was evident for the age variable, which was slightly right-skewed, and resulted 

in PSU-level age estimates that were slightly overestimated.  

 The validity of the synthetic data estimates could potentially be improved by 

adding small area-level covariates to the hierarchical imputation model. In preliminary 

runs, it was decided not to incorporate PSU/county-level covariates into the model due to 

the lack of covariate balance between sampled and nonsampled areas based on the set of 
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chosen covariates. Three county-level covariates were tested, including poverty rate, 

median household income, and population size. The distributions among sampled and 

nonsampled areas were quite similar, but median household income and population size 

exhibited distributional differences between sampled and nonsampled areas. When the 

latter two variables were incorporated into the hierarchical model, the resulting synthetic 

data estimates conflicted substantially between sampled and nonsampled areas. The 

sampled estimates were similar to the actual estimates, but the nonsampled estimates 

showed serious departures from the actual and synthetic estimates for sampled areas. 

Given that the nonsampled estimates are based on synthetic data that are generated from a 

purely model-driven framework, we concluded that the nonsampled estimates were 

highly sensitive to the choice of county-level covariates and could conflict with the 

sampled estimates if there is little overlap in the county-level covariates between sampled 

and nonsampled areas. Therefore, a broader choice of area-level covariates and careful 

examination of distributional differences among those covariates would be wise if 

implementing this method in practice. 

 In addition to nonparametric methods and complex variable types, future research 

may consider how to extend the proposed method to handle additional levels of 

geography. Prospective data users may be interested in analyzing data for sub-county 

areas (cities/towns, districts, neighborhoods). The hierarchical Bayesian framework 

allows for several levels of geography to be incorporated into the model, but with each 

new level brings additional computational complexity. A nice feature about the model 

considered here is that the method is easily implemented and does not require complex 
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MCMC routines. Incorporating additional levels of geography may be beneficial from a 

data utility perspective, but might also reduce the simplicity of the method.   

 Despite the potential for future improvements, the method is promising and could 

easily be adopted by large-scale survey projects, including the National Health Interview 

Survey, to release more geographically-relevant data to the public. Such efforts could 

potentially help meet the growing demand for microdata in small geographic areas. 
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Appendix 1  EM Algorithm for Estimating Stratum-Level Bayesian 

Hyperparameters 

 

The EM algorithm is used to estimate the unknown population parameters O!,Fand 

Σ!,Ffrom the following setup, 

OQA!,F	~	�R'�OA!,F, RSA!,F� 
OA!,F	~	�R'�O!,FYA!, Σ!,F� 

where H � �1,2,… , -� is used to index the set of parameters associated with the HVW 

synthetic variable of interest and the HVW regression model from which the direct 

estimates OQA! and RSA! were obtained in Step 1.  

 The E step consists of solving the following expectations,  

OA!,F∗ � ��OA!,F� � _�V�A!,F�� � Σ!,F������V�A!,F�� OQA!,F � Σ!,F��O!,FYA!�` 
_OA!,F�OA!,F��`∗ � �bOA!,FOA!,F� c � �V�A!,F�� � Σ!,F����� � OA!,F∗ �OA!,F∗ �� 

Once these expectations are computed they are then incorporated into the 

maximization (M-step) of the unknown hyperparameters O!,F and	ΣS!,F using the following 

equations, 

OQ!,F � b∑ �OA!,F∗ YA!�m~A�� cb∑ �YA!YA!� �m~A�� c�� , and 

ΣS!,F � �����OA!,F∗ � OQ!,FYA!��OA!,F∗ � OQ!,FYA!��m~
A�� � C!��

!�� � 
 After convergence the maximum likelihood estimates are incorporated into the 

posterior distribution of OA!,F shown in equation [7]. 
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Appendix 2  EM Algorithm for Estimating Overall Bayesian Hyperparameters 

The EM algorithm is used to estimate the unknown population parameters OFand 

ΩFfrom the following setup, 

OQ!,F	~	�R'�O!,F, RS!,F� 
O!,F	~	�R'�OFY!, ΩF� 

where H � �1,2,… , -� is used to index the set of parameters associated with the HVW 

synthetic variable of interest and the HVW regression model from which the 

hyperparameter estimates OQ! and RS! were obtained via the EM algorithm.  

 The E step consists of solving the following expectations,  

O!,F∗ � ��O!,F� � _�V�!,F�� � ΩF������V�!,F��OQ!,F � ΩF��OFY!�` 
_O!,F�O!,F��`∗ � �bO!,FO!,F� c � �V�!,F�� � ΩF����� � O!,F∗ �O!,F∗ �� 

Once these expectations are computed they are then incorporated into the 

maximization (M-step) of the unknown hyperparameters OF and	Ω�F using the following 

equations, 

OQF � O!,F∗ Y!�Y!Y!���� , and 

Ω�F � �����O!,F∗ � OQFY!��O!,F∗ � OQFY!��m~
A�� � E��

!�� � 
 After convergence the maximum likelihood estimates are incorporated into the 

posterior distribution of O!,F shown in equation [8]. 
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Chapter 5 

Conclusions and Discussion 

1 Summary of Dissertation 

1.1 Chapter Overview 

 Statistical agencies are constantly participating in a push-and-pull match between 

their respondents whose confidentiality they are sworn to protect and from consumers of 

their data who are demanding greater access to more detailed geographical information in 

public-use data sets. Agencies attempt to increase the utility of their data by providing 

data users with options related to accessing restricted geographical information (e.g., 

RDC), but many of these options are too restrictive for some users and therefore may 

reduce the utility of the collected data. At a time when survey budgets are either stagnant 

or in decline, it is critically important that agencies demonstrate the usefulness and and 

promote the utility of their data in order to maintain or increase their funding levels.  

 This dissertation addresses the data confidentiality and data utility dilemma by 

utilizing the synthetic data framework and extending it for the purpose of producing 

generating public-use microdata sets for small geographic areas. Under this framework, it 

is possible to release fully-synthetic datasets for each small area of interest. The released 

synthetic data contain no observed values and therefore data confidentiality is preserved. 

From a data utility perspective, valid small area inferences can be obtained for a variety 

of descriptive and analytic statistics, meeting the needs of the majority of data users. 

Although the proposed synthetic data framework may not eliminate the need for research 
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data centers, it offers potential data users a less burdensome option for beginning their 

analysis.  

 In this dissertation, I develop three separate methods of generating synthetic data 

specifically for small area estimation. Each method is designed to handle specific 

practical issues that may facilitate the use and acceptance of synthetic data in the public 

domain. Chapter 2 develops a parametric framework for generating synthetic data for 

small geographic areas. The method uses a hierarchical Bayesian model to account for 

the multi-level structure of the data. The procedure may be considered a hierarchical 

extension to the sequential regression multiple imputation framework proposed by 

Raghunathan et al., (2001). The method is easily implemented and can handle a variety of 

variable types and parametric distributions. The method was evaluated using public-use 

and restricted data obtained from the American Community Survey. For both data 

sources, the small area (i.e., PUMA, county) estimates obtained from the generated 

synthetic data yielded high analytic validity for basic univariate and multivariate 

estimands. This finding is reassuring to statistical agencies and potential data users, and 

lends support to the external validity of the method.  

 Chapter 3 extends the basic framework proposed in Chapter 2 by implementing a 

nonparametric simulation procedure for continuous variables. Specifically, the procedure 

replaces the parametric simulation procedure described in Chapter 2 by generating 

synthetic values that are a function of the predicted values (based on the hierarchical 

model) and deviations of predicted and actual values computed within each small area. 

An approximate Bayesian Bootstrap procedure is used to draw the deviations used in the 

simulation procedure. Evaluation results indicate that the nonparametric simulation 
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method can produce more valid small area estimates than the parametric synthetic data 

approach for univariate and multivariate statistics obtained from right-skewed and 

bimodal distributions. Moreover, the nonparametric extension does not require any 

attempt to transform the data to normality prior to synthesis. In fact, in many cases the 

nonparametric method yields more valid estimates when applied to nontransformed 

variables, than when applied to transformed variables.  

 The third study, discussed in Chapter 4, extends the framework of Chapter 2 to 

handle complex sample designs. Specifically, the hierarchical model explicitly accounts 

for clustering and stratification. Auxiliary information collected at the PSU- and stratum-

levels can be incorporated into the model to “borrow strength” across related areas and 

increase precision. A nice feature of the method is that it can produce synthetic data for 

nonsampled small areas, greatly increasing the utility of the synthetic data. A pleasant 

byproduct of this feature is that it assists in masking the sampled areas; thus, making it 

potentially more difficult for an intruder to distinguish between sampled and nonsampled 

areas in the synthetic data. A successful practical implementation of this method was 

applied on the National Health Interview Survey, a large complex ongoing cross-

sectional survey. Valid inferences and high confidence interval coverage were obtained 

for several descriptive and analytic statistics, for both sampled and nonsampled small 

areas. Although the nonsampled synthetic data yielded less precise estimates than those 

obtained from the sampled synthetic data, the nonsampled estimates are still valid and 

unbiased as demonstrated in a cross-validation study.  
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1.2 Future Research 

 There are several extensions to the methods developed in this dissertation that one 

could pursue. For example, we did not quantify the disclosure risk associated with the 

synthetic data generation methods. Rather the main focus of our evaluations was on the 

analytic validity of the resulting estimates. Because we adopted a fully-synthetic 

framework, we argue that the resulting synthetic data can no longer be interpreted as 

having originated from a given individual, which leads to no grounds for evaluating the 

risk of being re-identified. Quantifying disclosure risks in fully-synthetic data is a topic 

that has been virtually untouched in the literature, and seems worthwhile for future work. 

 Although we only considered fully-synthetic applications, the method can easily 

be extended to partially-synthetic applications, where only a small subset of variables (or 

records) are synthesized. This appears to be the most common use of synthetic data in 

real-world applications (Rodriguez, 2007; Abowd et al., 2006). However, these 

applications have only considered single-level data sources where obtaining small area 

inferences was not the primary focus.  

 Another extension to the hierarchical synthetic data generation approach 

considered here is a two-stage approach that handles both item missing data and full 

synthesization in a systematic fashion. Reiter (2004) developed a similar procedure in a 

non-small area context for partially synthetic data applications. Developing an extended 

approach specifically for small geographic areas in a fully-synthetic data context is 

feasible. 

 As we learned in the evaluation studies presented in this dissertation, the standard 

errors of the synthetic small area estimates tend to be larger than the corresponding 



190 
 

standard errors obtained from the actual data. From a data user’s perspective this is an 

undesirable characteristic as the less precise data may decrease the signal to noise ratio 

and hide systematic effects that may exist in the observed data set. The goal of the 

imputer should therefore be to generate synthetic data that is highly efficient and precise. 

Incorporating strong area-level auxiliary information into the imputation model is one 

approach to this end. This could be achieved by incorporating administrative data, census 

data, or survey data into the imputation model. For example, small area estimates 

produced by Federal statistical programs (e.g., SAIPE) could potentially be incorporated 

as area-level covariates in the imputation model to improve the efficiency of the synthetic 

small area estimates. Incorporating such information into the synthesis model offers 

additional protection against model failure. Model failure can also be improved by 

considering other modeling approaches that specifically address bimodal distributions, or 

skewness, more effectively than the models used here. Adapting mixture models to the 

imputation process may yield improvements for these types of distributions. 

 The proposed methods may also be extended to handle more complex 

distributional forms, including multinomial, poisson, and semi-continuous variables. 

These variables are highly prevalent in practice. Although we applied the methods to 

polytomous and count variables, we simply used a series of logistic regressions and 

Gaussian distributions, respectively, to handle these variable types. Extending the 

hierarchical synthetic data method to explicitly handle Poisson and multinomial 

distributions is an area for future work. 

 Lastly, it is possible to extend the hierarchical Bayesian model to incorporate 

additional levels of geography. In this project, we only considered PSUs, PUMAs, 
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Counties, States, and Strata. Prospective data users may be interested in analyzing data 

for sub-county areas (cities/towns, districts, neighborhoods). The hierarchical Bayesian 

framework allows for several levels of geography to be incorporated into the model, but 

with each new level brings additional computational complexity. A nice feature of the 

model considered here is that the method is easily implemented and does not require 

complex MCMC routines. Incorporating additional levels of geography may be beneficial 

from a data utility perspective, but might also reduce the simplicity of the method.   
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