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CHAPTER I

Introduction

1.1 Historical development and known results

Let P* be the complex projective space of dimension k and let f : P¥ — P* be a
holomorphic map of algebraic degree d > 2. It is well known (see [FS94], [HP94])
that there exists a positive closed (1,1)-current T, the Green current, such that for
every smooth (1,1)-form « in the cohomology class of the Fubini-Study form w, the
sequence of smooth (1,1)-forms d~"(f™)*« converges to T in the sense of currents.
A natural question to ask is if such behavior also occurs when we replace smooth
forms by currents. More precisely, if S is a positive closed (1,1)-current of mass 1,

when does the convergence
(1.1) a"(f") s —1T1y

hold? This last convergence is what we refer to as equidistribution. The answer:
Not always. Assume for example that there exists a totally invariant irreducible
hypersurface X C P* ie. f~%(X) = X for some s € N (which for simplicity we take

to be s = 1); then its current of integration [X| satisfies f*[X] = d[X] giving us that
d="(f")" 1 X] = [X] = Ty

since the current 7, has no mass on any algebraic subsets of P* (in particular, it

cannot be the current of integration of an algebraic variety. See [Sib99] for more



details). Therefore, it seems that the appearance of totally invariant algebraic sets
restricts the possibility of having equidistribution. A very important feature of holo-
morphic maps is that the collection of all totally invariant algebraic subsets of P* is
finite (see [FS94], [DS08]).

In dimension k = 1 (i.e. P! is the Riemann sphere and T} is an invariant prob-
ability measure), a famous result by Brolin [Bro65] (for the case of a polynomial
self-maps of C) and by Lyubich [Lju83], Freire-Lopes-Mané [FLM83] (for the case of
rational self-maps of P') states that there exists a collection & of totally invariant
points (also called exceptional points), with cardinality of £y < 2 with the following
property:

Given any probability measure v on P!, d~"(f™)*v converges to T} if and only if
v({p}) = 0 for all {p} € &. In particular, for every z € P! which is not exceptional
1

(1.2 TR 3 6T

as n — +o00, where 0, denotes the Dirac mass at x. The equation (1.2) also shows
that the sequence of preimages of points outside £y accumulate along the Julia set
of f.

The situation for £ = 2 is already highly more involved. Some partial results for
equidistribution in P? for holomorphic (and meromorphic) maps were obtained by
J. E. Fornzess and N. Sibony [FS95], A. Russakovskii. and B. Shiffman [RS97] and
others. C. Favre and M. Jonsson finished the characterization for the two-dimensional
case in [FJ03] (see also [FJO7]) proving the following: There exists a family &; of
totally invariant irreducible algebraic subsets of P?, containing at most 3 lines and
a finite number of points, with the following property: given any positive closed

(1,1)-current S of mass 1, d~"(f™)*S converges to T} if and only if S has no mass on



any element of £f. The elements of £ are attracting in nature and this collection
can be strictly smaller than the collection of all totally invariant irreducible algebraic
subsets of P*.

In higher dimensions the situation is not as well understood, particularly since
we do not have any satisfactory classification of totally invariant algebraic subsets
of P*. The equidistribution problem in higher dimensions was studied already in
[FS95], [RS97] and [Sib99]. In [Gue03] V. Guedj showed that for a given positive

closed (1,1)-current S with Lelong numbers zero everywhere we have

a"(f")*S — 1Ty

as n — 400 (his result also holds for f meromorphic). In [DS08] T.-C. Dinh and
N. Sibony established the following: There exists a finite collection Epg of totally
invariant irreducible algebraic subsets of P* with the following property: given any
positive closed (1,1)-current S of mass 1 whose local potentials are not identically
—oo on any element of Epg, d"(f™)*S converges to T (their result is uniform in S
in certain sense). The collection Epg obtained by Dinh and Sibony is constructed
inductively by studying the induced dynamics on totally invariant sets. Note that

neither Guedj’s result nor Dinh and Sibony’s result imply each other.

1.2 Presentation of results

As we have mentioned already, the main difficulty for proving equidistribution
arises from the lack of a satisfactory classification of totally invariant algebraic subsets
of P*. In order to tackle this, we make an assumption on the singular locus of totally
invariant algebraic subsets which will allow us to develop our methods.

We present our main result



Theorem 1.1 (Main Theorem). Let f : P¥ — P* be a holomorphic map of algebraic
degree d > 2 and assume that all totally invariant algebraic subsets have normaliza-
tions with at worst isolated quotient singularities. Then there exists a finite collection
& of irreducible totally invariant algebraic sets with the following property: given any

positive closed (1,1)-current S of mass 1 with no mass on any element of & we have
a"(f")'S =Ty
as n — 400 in the sense of currents.

The finite family &; coincides with the ones already obtained for k = 1 and k = 2.
It is constructed following the ideas of Favre and Jonsson in [FJ03], but we push the
methods further.

Our assumption on the singularities of the totally invariant algebraic subsets
(namely, to have normalizations with at worst isolated quotient singularities) holds
for k = 3, as it can be derived from the work of J. Wahl [Wah90], N. Nakayama
[Nak99], D.Q. Zhang [Zha00] and C. Favre [Fav10]. From this we obtain as a corol-

lary a sharper equidistribution result in dimension 3

Corollary 1.2. Let f : P2 — P3 be a holomorphic map of degree d > 2. There ewists
a finite collection E; of irreducible totally invariant algebraic sets with the following
property: given any positive closed (1,1)-current S with no mass on any element of

Ey, the sequence d="(f")*S converges to Ty in the sense of currents.

We conjecture that the converse implication is also true: if the sequence d="(f™)*S
converges to Ty then S has no mass on any element of &; this would extend the
results already known in dimensions one and two.

It is important to notice that the families £; and Epg are different and they satisfy



the relation
Er Cépg C {All totally invariant alg subsets of Pk}

where the first and/or the second inclusion can be strict.
Our techniques will also allow us to generalize what has been so far obtained by
Dinh-Sibony and Guedj and provide the sharpest results known by the author for

dimensions k£ > 3 in the holomorphic setting. We extend Dinh-Sibony’s result

Theorem 1.3 (Dinh-Sibony improved). Let f : P* — P* be a holomorphic map of
degree d > 2. There exists a finite collection Epg of totally invariant algebraic subsets
of P* with the following property: given any positive closed (1,1)-current S with no

mass on any element of Eps we have
a"(f")s —1T1y
as n — 400 in the sense of currents.

As opposed to Theorem 1.1, we make no assumptions on the singularities of the
totally invariant algebraic subsets. The collection Epg is the same one constructed
by Dinh and Sibony in [DS08] (see also [Din09] for a different construction) and our
improvement is based on approximating the current S by currents that satisfy the
conditions imposed by Dinh and Sibony in their theorem.

As an immediate consequence of the theorem above, we can extend Guedj’s result

Corollary 1.4 (Guedj improved). Let f : P¥ — P* be a holomorphic map of degree
d > 2. There exist a totally invariant proper algebraic subset E C P* with the
following property: given any positive closed (1,1)-current S such that v(S,z) = 0
for all x € E we have

a"(f")*Ss =Ty



as n — 400 in the sense of currents, where v(S,x) denotes the Lelong number of S

at x.

The proof of this corollary follows by taking E as the union of the elements of
Eps (which is algebraic). The tools introduced here will allow us to present an
independent proof of the result above.

In order to verify equidistribution, we will use a characterization due to V. Gued]j
(see [Gue03], Theorem 1.4) which states that it is enough to test the asymptotic
behavior of Lelong numbers. More precisely, he proved the equivalence
(1.3) d""(f")S - Ty = suﬁﬁ v (d"(f") S, z) — 0.

ze

Our approach uses a mixture of analytic tools in order to control the asymptotic
behavior of Lelong numbers and verify Guedj’s condition (1.3). This work can be
found in [Parll].

In order to do this, we use a technique due to J. P. Demailly of approximation
of currents by currents with analytic singularities. As a consequence, we are able
to reduce the general problem for positive closed (1,1)-currents to the case of the
currents of integration of a suitable hypersurface. Applying Dinh-Sibony’s result to
this hypersurface allows us to obtain Theorem I.3.

For the proof of Theorem 1.1, we proceed as in [FJ03] and study the Lelong
numbers of d="[Cn], where Cs» denotes the critical set of f”. We prove that the

(totally invariant) set

E = U ﬂ {z € P*| ord,(Csn) > 0d"}

6>0neN

is algebraic. In order to do this, we prove a refined version of certain self-intersection

inequalities & la Demailly (Theorem IIL5, proved in [Parl0]), used in [DS08§].



We then proceed inductively on the irreducible components X C F. The main
problem that arises, is that X might be too singular, hence, making sense of the
critical set of f|x is hard. Our assumptions on the singular locus of X will let us get

around this problem.



CHAPTER II

Background

2.1 Currents

In this section we introduce the main results concerning positive closed currents
and Lelong numbers. The basic reference for this section will be the book [Dem09],

chapter III unless otherwise stated.

2.1.1 Lelong numbers

The main tool we have in order to 'measure’ the size of the singular locus of a
current are the Lelong numbers. Let X be a compact Kahler manifold with Kéhler
form w and let S be a positive closed (p, p)-current on X. By definition, the (k, k)-
form

og =S AW

is a finite positive measure on X. We refer to this measure as the trace measure of
S.
If z € X and B(z,r) is an Euclidean ball with center = and radius r > 0, then

the function
os (B(z,7))

ri—v(S, z,r) = p—



is increasing in 7 > 0. We define the Lelong number v(S,z) of S at = as the limit

v(S,z) = lim v(S,z,r).

r—0+
This limit always exists and v(S, ) does not depend on neither the chosen local
chart nor w. The quantity defined above can be seen as a generalization of the
multiplicity mult,(Z) of a variety Z at x. More precisely, if Z is an irreducible

analytic subvariety of X, then
v([Z],x) = mult,(2),

where [Z] denotes the current of integration along Z.

A very important feature of Lelong numbers is the upper semicontinuity in both
variables, which can be obtained from its definition. But the upper semicontinuity
of v(S, ) is remarkably stronger since it is not only true in the standard topology
but also in the Zariski topology: For every positive closed (p, p)-current S and every

¢ > 0 we denote by E.(S) the Lelong upper level set
E.(S) ={x e X |v(S,z) > c}.

A fundamental theorem proved by Siu [Siu74] states that E.(S) is always an analytic
subset of X, hence v(S,-) is Zariski upper semicontinuous.

Note that by Siu’s theorem, given any irreducible analytic subset V' of X, the
quantity

v(S,V) :=minv(S,z)

zeV

is equal to (S, x) for = generic, i.e. for z outside a proper analytic subset of V. We
define the Lelong number of S along V' as v(S, V).
As a consequence of Siu’s theorem, it is possible to prove the following decom-

position formula: If S is a positive closed (p,p)-current, then there is a unique
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decomposition of S as a (possibly infinite) weakly convergent series

j>1

where [A;] is the current of integration over an irreducible analytic variety A; C X of
codimension p, A; > 0 the generic Lelong numbers of S along A; and R is a positive
closed current such that for every ¢ > 0, the level set E.(R) has dimension strictly
less than dim(X) — p.

This formula (known as Siu’s decomposition theorem) states that the singular
locus of a positive closed current can be decomposed into a union of analytic subsets

plus a residual part with small size.

2.1.2 Extension and intersection of currents

We state here some known results on positive closed currents that we will need in
this thesis.

A subset P C X is said to be complete pluripolar if for every x € P there exist
an open neighborhood U 3 x and a plurisubharmonic function u not identically —oco
such that

PNU={z€U|u(z) =—o0}.
In particular all analytic subsets of X are closed complete pluripolar sets.

Theorem II.1 (El Mir). Let P C X be a closed complete pluripolar subset and let S
be a positive closed current on X \ P with bounded mass on a neighborhood of every

point of P. Then, the trivial extension by zero of S on X is a positive closed current.

It is well known that for any irreducible analytic subset A C X, the current of
integration [A,e| has finite mass in a neighborhood of every point of Agy,,, hence
the current of integration [A], meaning its extension by zero through Agp,, is a well

defined positive closed current on X.
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We finally discuss intersection of currents. Given an open set 0 C C*, a plurisub-
harmonic function ¢ and a positive closed current S in €2, we would like to have a

notion of intersection %8&0 A S on ). More precisely, we would like to define

—_18590 NS = 2—_165(905).

2m s
The equation above does not always make sense but it is well defined as long as the
sizes of the singular sets involved are not too big; note in particular that it is well
defined if ¢ is locally integrable with respect to the trace measure of S. We proceed
to introduce a more general result concerning intersection of currents.
Let Si,...,95, be positive closed (1,1)-currents with local potentials ¢, ..., @,

respectively. We denote by L(p;) the unbounded locus of ¢;, namely, the set
L(p;) :=={z € X | ¢, is not bounded near z}.

Theorem I1.2. Let © be a positive, closed (k — p,k — p)-current. Assume that for
any choice of indices jy < -+ < jm in{1,...,q} the set
L(pj,) N -+ N L(g;,,,) N Supp(©)

has (2p — 2m + 1)-Hausdorff measure zero. Then the wedge product Sy A--- NS, N O
1s well defined. Moreover, the product is weakly continuous with respect to monotone

decreasing sequences of plurisubharmonic functions.

We end this subsection with a useful comparison of Lelong numbers of products
of currents: If S is a positive closed (1,1)-current and Sy is a positive closed (p, p)-
current such that the product Sy A Sy (which is given locally by the local potentials

of S1) is well defined, then
(2.1) v(S1 A Sy, x) > v(Sy, z)v(Ss, )

for every x € X.
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2.1.3 Currents on singular projective varieties

We will need to deal with positive closed currents defined on singular varieties.
If X is a projective variety and ¢ : X < PV an embedding, we will say that w is a
Fubini-Study form on X if w = t*wpn~|x, where wpn is the Fubini-Study form on PV.

Note that w is a positive smooth differential form on Xe,.

Definition I1.3. If X is a (possibly singular) projective irreducible variety and S is
a positive closed (p, p)-current defined on X, we will say that S has bounded mass

around X g, if there exist an open neighborhood U of X, such that
/ S A wtm=P < 4o,
UNXreg

In a complex manifold, for any given two hermitian forms w and w’ there is always
a positive constant A such that A7'w < ' < Aw, in particular it is easy to see that

above definition does not depend of the embedding of X.

2.2 Holomorphic Dynamics on the Projective Space

Throughout this thesis f : P¥ — P* will denote a holomorphic map of degree
d > 2, i.e. the map f is given by a (k + 1)-tuple of homogeneous polynomials of
degree d > 2 in k + 1 variables, having (0, ...,0) € Ck*! as the only common root.

2.2.1 The Green current

Denoting by w the Fubini-Study metric on P* and using that the De Rham co-
holomogy group H3g(P*;R) is generated by {w}, we see that there exists a smooth

function u : P¥ — R such that
d7 ffw = w + dd°u,
where dd°® = %65. In particular, for every n € N we observe that

d"(f")'w = w + dduy,
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where u, := Y. d'u o f is a sequence of smooth functions on P*. Since u is
bounded, it follows that the series defining u,, converges uniformly to a (continuous)
function gy on P*. Hence, the sequence of smooth forms w + dd‘u,, converges in the

sense of currents to the positive closed (1,1)-current
Tf =w+ ddcgf.

The current T} is called the Green current associated to f and it plays a central
role for the understanding of the dynamics given by the map f. It is invariant (i.e.
[*Ty = dTY), it has Lelong numbers zero everywhere and its support equals the Julia
set of f ([FS94], [HP94]).

As we stated at the introduction, given a positive closed (1,1)-current S we can
verify equidistribution (i.e. d="(f")*S converges to Tt in the sense of currents) if the
sequence sup,ps ¥ (d"(f")*S, x) converges to 0 [Gue03]. We will show that there is
a link between equidistribution and the appearence of certain exceptional sets.

It will be convenient to replace iterates f° by f, for this we need the following

Lemma I1.4. Let S be a positive closed (1,1)-current of mass 1. Then the following

are equivalent
(i) d"(f")"S = Ty;
(it) d="*(f"*)*S — Ty for some s > 1.
Note that (i) = (ii) follows immediately and that (ii) implies
d(f")S = d (f1) Ty

forsomel € {0,1,...,s—1}. The f-invariance of T} finally implies that d~ (fl)* Ty =

Ty.
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2.2.2 Totally invariant algebraic sets

A subset X C P* is said to be totally invariant if f~5(X) C X for some s >
1. If X C P* is an irreducible algebraic totally invariant set, then it follows that
f7°(X) = X. Moreover, if X is a totally invariant algebraic set of codimension p in

P* then the holomorphic map
g=Flx: X=X

has topological degree d* and (f*)*[X] = d*P[X], where [X] denotes the current of
integration of X. For a detailed discussion on the properties of holomorphic (and
meromorphic) dynamics on projective spaces we refer the reader to [Sib99].

A crucial property of totally invariant algebraic subsets of P* is the following

(non-trivial) well known fact

Theorem I1.5. The collection of all proper totally invariant algebraic subsets of P*

18 finite.

A proof of Theorem II.5 can be found in [DSO08] (see also [FS94] for the case
k = 2). For the more general situation g : X — X where g is a regular map
and X is a projective variety, the same conclusion can be derived from the work of

Dinh-Sibony in [DS08], giving us the more useful result

Theorem 11.6. Let g : X — X be a regular self-map of a projective variety X.

Then, the collection of all proper totally invariant subsets of X 1is finite.

2.3 Characterization of equidistribution

As we mentioned earlier in the introduction, we can test equidistribution looking

at the asymptotic behavior of Lelong numbers. More concretely
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Theorem I1.7. Let S be a positive closed (1,1)-current of mass 1 on P*. The

following are equivalent
(i) d7"(f")*S — Ty weakly;
(11) supyepr v(d"(f")*S, ) — 0.

Proof. (i) = (ii)
This implication follows from the usc of the map (S,z) — v(S,z) and the fact
that v(T},z) = 0 for all x € P*. Assume that there exists a sequence {z,} C P* and

a constant A > 0 such that
v (d(f") S, z,) > A

for all n € N. Up to passing to a subsequence, there exists a point z € P* such that

T, — T, hence

0 <A <limsupv (d"(f")S,z,) < v(Tf,z) =0

n—+oo
which is a contradiction.
(iz) = (i)
Before starting the proof of this implication we recall two results by Kiselman

[Kis00] and Guedj [Gue04] respectively.

Theorem I1.8 (Kiselman). Let U C C? be an open set, K a compact subset of U, and
u a plurisubharmonic function on U. For any real number o < 2 (suppeK y(u,p))fl,

there exist a constant C, such that for any t > 0, the estimate
Vol({K N{u < —t}) < C, exp(—at)

holds.
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Theorem I1.9 (Guedj). There exist a positive constant C' independent of n > 0 and

any ball B C P* such that

Vol(f7(B)) > exp (—VOEB)d”) |

for every n > 0.

Since S is a positive closed (1,1)-current of mass 1 we can write S as S = w+ddu

where w is the Fubini-Study form on P*. It follows that for every n > 0,
d7"(f")'S = d™"(f")'w +d"dd" (uo f1),
where d"(f")*w — T} in the sense of currents. We will proceed by contradiction. If

d="(f™)*S -» T, we have that d~"dd"(uo f™) -» 0 which is equivalent to d~"(uo f) -

0in L1

loc*

Therefore, by Hartog’s Lemma [Hér90, Theorem 1.6.13] we can find a ball

B C P*, a subsequence n; — oo and a positive constant o such that
fM(B) C{u < —ad"}.

Since

sup v(d"uo f* p) — 0,
peEPk

for every € > 0 there exist N > 0 such that sup,cpe v(uo f",p) < 2/e for n > N.

Using Theorem IL.8, in our case K = P* and u the potential of S we get that
Vol ({u < —ad"}) < C.exp(—ead™).

On the other hand, if f"(B) C {u < —ad™}, from Theorem I1.9 we deduce that

C
_ nj | < —ead™
exp ( ol )d ) < Ceexp(—ead™),

which is a contradiction since € > 0 is very small and independent of B, n;, C' and

Q.



CHAPTER III

Intersection Inequality

3.1 Approximation of currents

In this section we will discuss the approximation of (1,1)-currents by currents
with analytic singularities. The entire section is based on the work of J. P. Demailly
(particularly [Dem93|, [Dem92]). However, we add some details of the proof of
Theorems II1.2 and III.4 since these techniques are crucial for this work and the
author believes that they are not very well known.

The main ingredients of the approximation are the mean value inequality and the

Ohsawa-Takegoshi L?-extension theorem

Theorem III.1 (Ohsawa-Takegoshi’s L2-Extension Theorem). Let X be a projective
manifold. Then there is a positive line bundle A — X over X with smooth hermitian
metric hy and a constant C' > 0 such that for every line bundle L — X provided
with a singular hermitian metric hy, and for every x € X such that hy(x) # 0, there

exist a section o of L + A such that

ol ona < Clo()].

The original version of Theorem III.1 can be found in [OT87]. The more general

form used here can be found in [Man93].

17
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3.1.1 Approximation by divisors

Let X be a projective manifold and let .S be a positive closed current representing
the first Chern class ¢;(L) of a hermitian line bundle L — X. More precisely, we can

endow L — X with a singular hermitian metric iy and curvature form ©(hy) where

S€cy(L)={O(h)}.

Now, let A — X be an ample line bundle with smooth hermitian metric hy = e=%4.

Its positive curvature form w := %85@0 4 endows X with a Kahler metric. We
can fix a smooth hermitian metric h on L, hence we can write hy = he ?¥ and

S=0(h) = @(h)—i—%@égp. We endow mL+ A with the (singular) metric ¥ ®h 4

and we define the (finite dimensional) Hilbert space H,, C HY(X; Ox(mL + A)) as
Hy = {0 € H(X;O0x(mL + A)) | ||lo]|, < 400}
where the norm || - ||2, is given by

o2, = / hE™ @ ha(o)dV,.
X
We present the following theorem which can be found in [Dem93] (see also [Bou02]).

Theorem II1.2. Let X, S, L — X, ¢ and A — X be as before. Let {om,j}jy:"i be
an orthonormal basis of H,, and define
1 il
o) = 5o (Z R (o, <a:>>) .
Then there exist positive constants C7 and Cy independent of m such that, for

every x € X we have:

Cl 02
) — — < p,(r) < su 2)+ —+Cl(x,7),
pla) = — < pm(2) ZEB(I;W)@() —+Cla,r)

where C(z,7) tends to 0 as r — 0.
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Proof of Theorem III.2. First we cover X by finitely many small open balls {B}
giving local trivializations for both line bundles A and L. On L, A|lp ~ B x C C

C* x C we pick smooth metrics 1, 14 for L and A respectively, i.e. for all (z,v) €
B xC

hl,v) = [o[2e™0),  ha(a,v) = [of2e24),

hence if o € H,, is a section supported on B we have that
RE™ ha(o(z)) = ‘U(m)ﬁe—zmw(az)fwf,(@.

Since o : B — C is holomorphic, by the mean value inequality for all x € B and

r < dist(z, 0B) we have

k!
2 < Zdv
) < e [, ItV (),

implying

(3.1) R @ ha(o(z)) < %G_Qmw(z)_wf‘(@/ lo(2)]?dV () <
r B(z,r)

C misu — X su — x m
< T s ey oAb () /B B B @ ha(o(2))dV ().

Denote by c(z,7) 1= supg, ) ¥ — ¥(z), ca(z,7) 1= supp(,,) ¥a — Ya(r) and note

that
| hmehaenave) < ( sw e o],
B(a;,r) B(CL’,T‘)
therefore
®m C mc(z,r)+ca(z,r) 2m 2
(3.2) he™ @ ha(o(x)) < e A sup e | |||,
B(z,r)

We can write ¢, as

e2mem@ — sup W™ @ hy(o(x));
=
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therefore taking log of (3.2) and the supremum over ||o||,, = 1 we obtain

C
(3.3) 2mey,(z) <log <TTI€) + me(z,r) + calz,r) + 2m sup p =
B(z,r)

1 C’
=¢wd@f§wp@+0@w%+—bgcz),
B(z,r) m r

where C" > 0 and C(z,r) — 0 as r — 0.

For the other inequality we use Ohsawa-Takegoshi’s L? Extension Theorem: Let
r € X such that hp(z) # 0. Since h;, = he ?¢ we can find a section o € H,, such
that

lo]l7, < C?lo(@)]* = C*h®™ @ ha(o(x))e >,

for some C' > 0. Using (again) that

e2mem(z) _ sup A" ® ha(o(z)),

lollm=1
we take log of the inequality and the supremum over ||o||,, = 1 obtaining

Cl

< —.

p(a) < pm() + —
This concludes the proof. O

The theorem above can be reformulated as

Theorem II1.3. Let X be a projective complex manifold and let S be a positive
closed (1,1)-current in the cohomology class of a line bundle. Then there exist a

sequence of closed (1,1)-currents S, in the cohomology class of S such that
(i) Sm > —%w;
(i) The sequence S,, converges weakly to S;

(11i) For every x € X the Lelong numbers at x satisfy

v(S,x) — ¢ < v(Sp,x) <v(S,x),

m



21

for some C' > 0. In particular, the Lelong numbers v(Sy,, x) converge uniformly

tov(S,x).

Proof. Let L — X be a positive hermitian line bundle with singular hermitian metric
hy, such that S € {©(hr)}. We can take a smooth metric h on L such that hj can

be written as h;, = he ?¥ and therefore we can define

Sy = O(h) —VQ;laagom,

with ¢, as in the theorem above.

For any = € X, pick a trivialization 2 of L and A around z. On 2, we have that
PO @ (o) () = [o()|2e2mee)2ea(e)

giving us

Therefore

Vo 08, + O(h) 4 O(hs) > 0
27 TN N——

(. J/
Y w

Sm

giving us (i). It is routine to check that the sequence S,, converges to S = ©(h) +
%3&0 for (ii) and part (iii) follows immediately. ]

3.1.2 Attenuation of Lelong numbers

We finish this section with a refined version of the theorem of the subsection above
which will allow us to approximate positive closed currents by currents with analytic
singularities and attenuated Lelong numbers. We state the main theorem of this

section proved in [Dem93].
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Theorem I11.4. Let X be a projective manifold and let S be a positive closed (1,1)-
current representing the class ¢i(L) of some hermitian line bundle L — X. Fiz a
sufficiently positive line bundle G over X such that TX ® G is nef. Then for every

¢ > 0 there exist a sequence of closed (1,1)-currents S, converging weakly to S over

X such that

L Sc,m Z

—%w — cu, where u is the curvature form of G and;
e max (v(5,z) — ¢ — dim(X)/m,0) < v(Sem, ) < max (v(S,z) —¢,0).

The proof of the above theorem in a more general case, namely X is a compact
Kahler manifold and S is any almost positive closed (1,1)-current can be found in
[Dem92]; the proof involves a very technical gluing procedure which is beyond the
scope of what we want to present here. For the case X projective and S the curvature
current of a positive line bundle, the proof is simpler and can be obtained in a more

direct way; we present the proof given in [Dem93] with some details added.

Proof. As in Theorem II1.2 it is possible to construct sections o,, ; € H*(X; mL+ A),

1 <5 < N, such that

dim X 1
2 <2 min ordg (o ;) < v(S, ).
m m j=1,,Nm

We consider the [-jet sections J lam’j with values in the vector bundle J'O x(mL+

A). We have the exact sequence
0— S'T*X @ Ox(mL+ A) = J'Ox(mL 4+ A) — J"7'Ox(mL + A) — 0.
Dualizing the above sequence we obtain the short exact sequence

0 — (J7'Ox(mL + A)* = (J'Ox(mL 4+ A))* = (S'T*X @ Ox(mL + A))* — 0
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which can be rewritten as
0— (J7'Ox(mL 4+ A))* — (J'Ox(mL + A)* — S'TX ® Ox(—mL — A) — 0.

Twisting this exact sequence with Ox(mL + 2A + IG) we obtain that

(3.4) 0— (J7'Ox(mL + A)* @ Ox(mL +2A+1G) —

— (J'Ox(mL + A))* @ Ox(mL + 24 +1G) — S'TX ® Ox (IG + A) — 0

is exact. By hypothesis, the vector bundle TX ® G is nef and therefore S{(TX ®

Ox(Q)) = S'TX @ Ox(IG) is nef for all symmetric powers of order [, hence

S'TX ® Ox(IG + A) = (S'TX ® Ox(IG)) ® Ox(A)
- / \W_/

nef ample

is ample. Since hte extremes of the exact sequence (3.4) are ample, we use induction

on [ > 1 to conclude that the middle term
(J'Ox(mL + A))* @ Ox(mL + 2A +1G)

is also ample.

By definition of amplitude of vector bundles there exist ¢ > 1 such that
S9(J'Ox(mL + A))" ® Ox(gmL + 2gA + qIG)

is generated by holomorphic sections g, ;. Using this together with the pairing of

(J'Ox(mL + A))* and J'\Ox(mL + A) we obtain sections
ST o ;) gmi € H(X; Ox(qmL + 2qA + ¢lG))
which in a trivialization give us the metric

1 2 l
it = 08 218 | = T4 = v
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Note that 14 and ¥ are smooth; therefore we have

1 1
V(oma, ) = Emin ord,(J! o, ;) = — (min ordy (om,;) — l) .

j m \ J
This gives us the inequality

[+ dim(X)
m

max <y<5, z) — ,0) < (P, o) < max (V(S, z) — % o) .

Finally, for every ¢ > 0 and every m > 0 it is possible to find [ > 0 such that

c <l/m < c+1/m, hence

)

= 2
—aa(pc,m 2 —— W — Cu,
m m

where .., 1= ¢, for this choice of m, [, and w and u are the curvature forms of A
and G respectively.

Now, for any smooth metric h on L, the sequence of currents

J_1
Sem = O(h) + T@agoc,m,

converges weakly to S and satisfies the desired properties. O]

3.2 The intersection theorem

let X be a (possibly singular) projective variety and let S be a positive closed
(1,1)-current on X, with bounded mass near X, (see Definition I1.3) and Y C X
an irreducible algebraic subset of codimension [ in X. We want to study the locus
inside Y where the Lelong numbers of S are larger than the generic Lelong number
of S along Y. For every ¢ > 0 we denote by E.(S) the Lelong upper level sets of S

defined as the analytic subset

E.(9) :={r € Xieg | ¥(S, ) > ¢}
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and by EY(S) = E.(S) NY the Lelong upper level sets of S at Y. Let

0< b1 < B2 < Baim(x)—141

be the jumping numbers of EY (S), i.e. for every c €]8,, B,+1] the algebraic set EY (9)
has codimension p in Y with at least one component of codimension exactly p. Let
{Zp,}r>1 be the countable collection of irreducible components of .5, 5 . ] EY(9)
of codimension exactly p in Y and denote by v, , the generic Lelong number of S at
Z,,. Note that  := v(S,Y) the generic Lelong number of S along Y corresponds

to f1. Then we obtain the main result of this section

Theorem III.5. With the same notation as above, there exist a positive constant

C, depending only on the geometry of X and Y, such that

>0y [

r>1 Zp,r

forallp=1,...,dim(X) — [+ 1, where w is the Fubini-Study metric of X.

wk—l—p < C/ S /\wdim(X)—l7
Xreg

We have proved this result in [Par10].

3.2.1 Examples

We provide a few examples showing the value of our result.

Example II1.6. Let’s start with the trivial case where X =Y is a projective curve.

In this case, the current S is a positive finite measure on X, giving us

/XS > ZV(S,:L‘) = ZVL’"‘

zeX r>1

So Theorem II1.5 follows immediately.

Example II1.7. If X is a projective manifold (i.e. smooth) and Y = X, hence [ = 0,

B =0 and EY(S) = E.(S), then the inequality of Theorem IIL.5 can be written as
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In [Dem92] Theorem 7.1, J.P. Demailly proved that under the same assumptions
as above, we have that there is a positive constant C’ > 0 such that

Z(Vpﬂ‘_ﬁl)'”(yp,r_ﬂp)/ w? < Cla

r>1 Zp.r

where $; < ... < i1 are the jumping numbers of S. Observing that

Vp,rzl/p,r_ﬁj v]:va

Theorem II1.5 shows that

S0 = 60) -+ = ) |

r>1 Zp,

sy [ wec

r>1 Zp.r

implying Demailly’s result.
In the same setting, it is also interesting to observe the two extreme cases p = 1

and p = k:

a) The case p = 1 follows immediately from Siu’s decomposition theorem, since

S=Y NA]+R

Jj=1

with R > 0 and {Z;,}, C {4,};, therefore

S Z Z Vl,r[Zl,r]

r>1

and the result follows after integrating this inequality with [ - A w*~t,

b) The case p = k is especially interesting when E.(S) is countable for all ¢ > 0. A
remarkable result proved in Corollary 6.4 of [Dem92] is that if E.(S) countable
then the class {S} is nef. Moreover, Demailly gave the more refined inequality

Soko+ [ sh< [1s)

r>1

where S, is the absolutely continuous part in the Lebesgue decomposition of

the coeflicients of S.
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Example III.8. Let X be the projective plane P2, let Y C P? be an irreducible
curve and let S be the current of integration defined by S := (deg(D)) '[D] (hence
|S]| = 1), where D # Y is another irreducible curve. It is not hard to see from
the proof of our theorem (see Subsection 3.2.2) that the constant C' > 0 satisfies

C' = deg(Y) and that

S [ o= #Y D) (den(D)

Therefore Theorem II1.5 is nothing but Bézout’s theorem for these two curves.

Example III1.9. If X is a projective manifold (i.e. smooth) and ¥ C X an irre-
ducible smooth hypersurface, hence [ = 1, then using Siu’s decomposition theorem it
is easy to see that the closed (1,1)-current S — S[Y] is positive. Assume that S— 3[Y]
admits local potentials not identically —oco along Y. Then we can restrict S — S[Y]

to Y and the statement is reduced to Example II1.7.

It is important to remark that it is not always possible to restrict positive close
currents. Part of the idea in the proof of Theorem III.5 is to restrict an approximation

of the current.

Remark 111.10. If Y C X has codimension [ > 1 in X, then it is not even possible to
subtract [Y] from S since the dimensions do not match. Therefore there is no direct
method for studying the Lelong numbers of S inside Y, so our theorem proves to be

useful in the general case.
3.2.2 Proof of the intersection inequality
We will divide the proof of Theorem III.5 into three steps. In the first step we

will assume that our projective variety X is smooth and that the cohomology class

of S is nef. We can then find suitable smooth representatives of {S} which, together
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with the sequence obtained in Theorem III.4, will allow us to approximate S by
a sequence of currents S.,, of bounded potentials and therefore we will be able to
intersect such sequence with the current of integration [Y]; this procedure will be
the key for obtaining our result in this setting. In the second step, we still assume
X smooth but {S} not necessarily nef; using that H''(X;R) is finite dimensional
and the upper semicontinuity of Lelong numbers, we will replace S by a current S
with nef class {S} but the same Lelong numbers as S everywhere; then we apply our
result in Step 1 to S implying the same conclusion to S. Finally, in Step 3 we prove
the general case when X is a projective variety, not necessarily smooth, by taking a
resolution of singularities of X, and applying Step 2 to the strict transform of S, Y
and Z,,.

We recall the notions of numerically effective (nef), pseudoeffective (psef) and
Kdhler cones (for details see [Laz04], also [Bou02]). The space of classes of real

(1,1)-forms H“'(X;R) is defined as
Y (X;R) == Hy'(X;C) N H*(X;R) = {a € Hy'(X;C) |a=a},

where Hé’l(X; C) is the Dolbeault (1,1)-cohomology of X.
The Kdihler cone K(X), the Psef cone P(X) and the Nef cone N'(X) are defined

as

K(X):={a € H"'(X;R) | a can be represented by a Kiihler form},

P(X) :={a € H"'(X;R) | a can be represented by

a positive closed (1,1)-current},
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and

N(X) :={a € H"(X;R) | if for every € > 0, a can be represented by a

smooth form «, such that o > —ew}

respectively. Note that if X is Kéhler (or projective) the set (X)) is not empty.

It follows from the definitions above that
D #£KX)CNX)CP(X) and K(X)=Int(N(X)).

We prove now our Main Theorem:

Step 1: Assume X to be a (smooth) complex projective manifold and the class
{S} to be nef. For this case, we will actually prove a slightly more general result,
where we will be able to ’kill Lelong numbers’ locally. More precisely, given any
subset = of Y and p = 1,...,dim(X) — [ + 1, we denote the jumping numbers

b, = b,(S,Z) of EY(S) with respect to = as
b, == inf{c > 0 | codim,(EY (S);Y) > p, V € Z}.

In our situation, the subset = will be a Zariski dense subset of Y with a prescribed
geometrical condition, namely, = will be the complement of all irreducible compo-
nents of EY (S) of codimension strictly less than p. Following Demailly we prove the

following lemma

Lemma IIL.11. Let = be any subset of Y and 0 < by < by < ... < bgim(x)—14+1 the
Jumping numbers of EY (S) with respect to =. Fix a positive line bundle with smooth
curvature u as in Theorem II1.4 and assume that the class {S} is nef. Then for
everyp=1,...,dim(X) — [+ 1 there exists a positive closed (I+p,l+ p)-current ©,,

m X with support on'Y such that

(35) {6} ={V}-({S}+bifu}) - ({S} +by{u}) € HFPHP(X;R),
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(3.6) Op = Z(Vp,r —b) e W = 0p)[Zps]-

r>1
Proof. Let ¢ > by and let a € {S} be a smooth real (1,1)-form. Take the sequence
of currents S, = o + %85%7”1 as in Theorem III.4 where ¢, ,, is singular along
E.(S) and S, > —2w — cu. Since we are assuming {S} to be nef, for every m € N
we can pick «,, € {S} smooth such that a,, > —%w and we can write «,, as

Oy, = O+ %851&,” with 1, smooth. Set

Pem,L = max{(pc,ma ¢m - L},

for L > 0and S¢ 1 := a+§85%7m,,~4. Observe that by adding the local potentials
of w and cu to the the max between ¢.,, and 1, — L we easily conclude that the

closed current S, ,, r, satisfies
2
Sem, +—w +cu > 0.
m
The family of potentials {¢c 1} is bounded everywhere, therefore

2
O1remr = [Y] A (Sc,m,L + —w+ cu)
m

is a well defined positive closed (I + 1,1 + 1)-current on X with support on Y by

Theorem I1.2. By extracting a weak limit we define

61,c,m = lim 61,c7m7L
L—+4o00

on X. Since the potentials ¢, ; decrease monotonically to ¢, as L — +oo we
have that

2
Orem =[Y]A (Sc,m + —w+ cu)
m

in a neighborhood of =, since for every point z € = we can find a neighborhood U

of = such that the unbounded locus of [Y] and S.,, has codimension > [+ 1 in U
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(or real dimension < 2dim(X) — 2 — 2) hence by Theorem II1.2 the current O ., is
well defined in a neighborhood of Z, and {O1 .} = {Y} - ({S} + 2{w} + c{u}) for

every m > 1 and every ¢ > b; and for every x € X,
V(01 em, ) > ord, (Y)v(Sem, x) > ord,(Y)(max{v (S, z) — ¢ — dim(X)/m,0}).

Note also that the total mass of the family {©; .,,} is uniformly bounded. We

extract (modulo a subsequence) a limit

©;:=1lim lim ©
1 b M o0 l,c,m)

which satisfies {1} = {Y'}- ({S}+0b1{u}) and by the upper semicontinuity of Lelong

numbers we obtain
I/(@l,ﬂf) > (Vl,r_bl)a V.CCEZLT VTZ 1.
By Siu’s decomposition theorem, ©; can be written as

O1=7 N[Vi]+ Ry,

j>1

where for every j > 1, V; is an irreducible variety of codimension [ + 1 in X, A; is
the generic Lelong number of ©; along V; and R; is a positive closed current with
upper level sets FE.(R;) of codimension strictly bigger than [ + 1 for all ¢ > 0. This
in particular implies that for all » > 1 we have that Z; , =V}, for some j, and for a

generically chosen z € Z;, we obtain

Aj, =v(0O1,1) > (1, — b)) = 601 > Z(Vu —b1)[Z1,].

r>1

Now we proceed by induction on 2 < p < dim(X) — [ 4+ 1. We assume we have
constructed ©,_; with the desired properties and in the exact same way as before,

for ¢ > b, we define the positive closed (I + p,l + p)-current

2
@p,c,m,L = @pﬂ A (Sc,m,L + —w+ cu) ,
m
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which is well defined everywhere. The current

© = lim ©
b,c,m L—+o00 p7C7TI’L7L

satisfies
® Opem = [Y]A (Seyn + 2w + cu) in a neighborhood of Z,
e {Opcmt ={Y}  ({S}+ 2{w} + c{u}) for every m > 1 and every ¢ > b, and,
® V(O cm,x) > v(0,_1,r)max{(v(S,z) — c— dim(X)/m),0} for every z € X.

We extract a weak limit (modulo a subsequence)

0,:=1 li O
p cg&) m}rfoo p.cms

which (by the same arguments as above) satisfies the desired properties.

O

Step 2: Now assume that X is a complex projective manifold and let w be any

Kéhler form on X. However, the class {S} is not necessarily nef.

Let
(3.7) Pri={aePX)| o] =1} c H"(X;R)
be a slice of the pseudoeffective cone of X, where || - || is any norm on the finite

dimensional real vector space H''(X;R). Since P; is compact and Int(N(X)) =
K(X) # 0 we can pick Ay = Ag({w}) > 0 such that A{w} 4+ « is nef for every
A > Ay and every a € P;. Note also that the set of of positive closed currents
S with a fixed cohomology class is also (weakly) compact. Moreover, by the upper
semicontinuity in both variables of the Lelong numbers is easy to see that there exists

a constant 7 = 7(X) such that v(S,z) < 7 for every x € X and every positive closed

(1,1)-current S so that {S} € P;.
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Now, fixing A > A, we define the positive closed (1,1)-current S =S+ Aw. It

satisfies:
o {S} e N(X),

° V(S*, x) = v(S,x) for every x € X (in particular, the Lelong upper level sets
EY(S) and EY(S) coincide, giving us the same decomposition in terms of jump-

ing numbers).
Taking 8 = v(S,Y) = v(S5,Y) and defining the set

—_
—

=, = C (Uesp(Irreducible components of E) (S) of codimension < p)),

we obtain that the jumping numbers with respect to =, satisfy

If {Z,,},>1 are the irreducible components of EY (S) = EY(S) for ¢ €]8,, Bps1]
of codimension exactly p in Y and v,, the generic Lelong numbers, we apply the
previous lemma to S , hence we obtain a positive closed (I + p,l + p)-current ©, on

X with support on Y such that

{0} =V} ({5} +bufu}) - ({5} +bp{u}) =

={V} - ({5} + A{w} +0u{u})--- ({S} + A{w} + bp{u})

and

Z(Vp,r = B)P[Zp;s] < Oy

r>1
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We apply [ - A wimE)==P to the inequality, giving us

Z(Vm — g)p/ wdim(X)—l—P < / @p A wdim(X)—l_p _
Z X

r>1 P

= / [YTA (S + Aw + byu) A+ A (S + Aw + byu) A wtmE =P <
X

< / [YIA((1+ Aw + u)? AwdimE=t=r —. ¢
b

Step 3: We now prove the theorem in the general case.
Let 7 : X — X be a resolution of singularities. Since Y and Z,, are not contained
in Xging, we can define Y and Zw the strict transforms of Y and Z,,, respectively.

Let S be the positive closed (1,1)-current defined by

Si=7m"F on N (Xyeg).

By assumption, S has locally bounded mass around m~(Xy,) hence by Theorem
I1.1 the extension by zero of S is a positive closed (1,1)-current on X. On the
other hand, since 7 : W_I(Xreg) — Xieg 1s a biholomorphism we can conclude that
v(S,Z,,) = v, and v(S,Y) = B.

We know by Step 2 that if @ is the Fubini-Study metric on X we can find a

positive constant C' depending only on X, Y and @ such that

C > Z(me . ﬁ)p/ (Ddim(X)flfp.

r>1 Zp,r
We prove the following lemma
Lemma I11.12. Let A be an ample line bundle defined on X and & the Fubini-Study
metric on X. Then, there exist § > 0 depending only on & and A such that for every
irreducible algebraic set Z C X not contained in Xgyg of dimension q and strict

transform Z the following holds

/@Q > 5(A- Z)

Z
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where (A?- Z) denotes the intersection number [, c1(A)7.

Proof of Lemma. First observe that

-2 = [a@r= [ a@r= [ =@ - [@a@)

Z z
Since @ is positive, we can find € > small enough such that the class of {a} :=

{&} — er*c1(A) is numerically effective (even ample) on X. Then

/z@q - /Z(”*Cl(fl) +a) =

_ /Z (ew*cl(A))q—i—%_O <C@]> /Z (en*cr(A)) A aft™ >

where § := e™(X) This proves the lemma. O]

Now picking & on X and § > 0 as above, and taking A = Ox(1) the theorem
follows since
C'=C0"2> (v, — B / D= (v — B / WPt
r>1 Zp,r r>1 Zp,r

This completes the proof of the Theorem.



CHAPTER IV

Orders of vanishing and the Jacobian cocycle

4.1 Orders of vanishing

In this section we discuss orders of vanishing on algebraic varieties, where a major
difficulty will be to deal with the singular locus. The standard references [Kol97] and
[KM98] (see also [CKMS88]) contain a details discussion of all the concepts discussed
in this section.

Let X be an irreducible projective normal variety of dimension k, and assume X
to be Q-factorial, i.e. every Weil divisor is Q-Cartier. If 7 : Y — X is a birational
morphism, we say that £ C Y is a divisor over X if E is a smooth prime divisor in
Y. We say that E lies over a point x € X if n(E) = {z}.

If ¢ is a rational function on X and E a divisor over X, we write ordg(¢) for the
order of vanishing of ¢ om along the divisor F. Similarly, if D is a Weil divisor on X,
we set ordg(D) := + ordg (7*(mD)) where m € N is chosen so that mD is Cartier.
As usual, we denote by Kx the canonical divisor class of X.

Above, we may assume that 7 : Y — X is a log-resolution of X, i.e. the exceptional
locus Exc(m) of m has simple normal crossing. In this case, there exists a unique
divisor Ky,x on Y supported on Exc(r), the relative canonical divisor, which is in

the divisor class of Ky — 7" Kx. If both X and Y are smooth, then Ky, y is nothing

36
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but the effective divisor defined by the Jacobian Jac(m) of .

Given a prime divisor F over X, we define the log-discrepancy ag of E by
(41) ap = OI‘dE (Ky/X) + 1.

We say that X is kit (short for Kawamata log-terminal) if ag > 0 for every prime
divisor F over X.

Let us give a simple example: Let 7 : Y — X be the blow-up of X at a smooth
point 0 € X. We can choose local coordinates (z1, ..., z)) so that our map 7 can be
written as

m(x, ..., xk) = (T122, . . ., Tp_1Tk, Tp),
giving us that Jac(m) = 2§ ~!. Hence, if E = 771(0) is the exceptional prime divisor

above 0, we have that
(4.2) ag = ordg (Jac(m)) + 1 = k.

Recall that if x € X and ¢ € Ox,, the order of vanishing ord,(¢) of ¢ at x is
defined to be

ord,(¢) :==max{s € N| ¢ € m’}

where m, denotes the maximal ideal of the local ring Ox . If = is smooth and E is
an exceptional divisor of a single blowup (at z), then ord,(¢) and ordg(¢) coincide.
However, when = € X is singular, ord, may not be a valuation.

The following well known lemma (which can be found in [Tou72] p.178 Lemma

1.3) will play an important role in this thesis. We write down the proof:

Lemma IV.1. Let E be a prime divisor over X above a smooth point v € X. Then
ordg(D) < agord,(D)

for every divisor D C X.



38

Proof. The problem is local, hence we assume (X, x) = (C*,0). Let ¢ be the germ of
a holomorphic function at 0 € CF and let c(¢) be the complex singularity exponent
of ¢, i.e.

c(¢) :==sup {c>0]|p| > € L'(C*,0)}.
It follows from a theorem of Skoda that ﬁ < ordy(¢) (see also [DKO01]), hence for

every ¢ < Ord(l)(¢) we have that |¢|7% € L}(C*,0).

Let 7 : Y — C* be alog-resolution over C* above 0 and E C 7~1(0) an exceptional

prime divisor. For every open subset U C C* containing 0 we have that

/ ¢ o 7| 72| Jac(7)|2dV = / |p|72°dV < +o0

= 1(U) U

by change of variables, where dV is the standard volume form in C¥. Therefore
| o w|7%| Jac(7)|? € L' along F implying that

—2cordg(¢) + 2(ap — 1) > =2 = ordg(¢) < a?E.

Taking the limit ¢ * m we obtain that

ordg(¢) < agordy(e).
[

Let g : X — X be a surjective regular map. Then there exists a unique Weil
divisor C, on X, the critical divisor, whose restriction to X,eg N g~ (X eq) €quals the

Cartier divisor

{ZL‘ € Xreg N g_l(Xreg) | Jac(g) = 0} .

Since X is Q-factorial, C, is Q-Cartier. It belongs to the divisor class of ¢*Kx — Kx.

We need
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Lemma IV.2. Let m:Y — X be a log-resolution and let E C'Y be a prime divisor.
Then, there exists a log-resolution 7' : Y — X and a prime divisor E' C Y' such

/!

that the meromorphic lifting g : Y --» Y’ satisfies g(E) = E'.

Proof. To any rank 1 valuation v : C(X) \ {0} — R of the function field C(X) we

can associate two basic invariants: the value group

Iy ={v(¢)| ¢ € C(X)\{0}} CR

and the residue field
K(v) :={v > 0}/{v > 0}.
A valuation v is of the form r ordg where » > 0 and E is a divisor over X if and
only if I'), = rZ and K(v) has trascendence degree dim(X) — 1 over C (see [Vaq00,

Proposition 10.1]).

In our situation, set v := ordg and v/ := g,v. Then
r,cr,=2

hence I',, = rZ for some r € N.

Furthermore, since g is a finite map, K(v) is a finite extension of K(+'), therefore
both K(v) and K(2') have the same trascendence degree over C, i.e. dim(X) — 1.
From the above description we have that v/ = r ordg for some prime divisor £’ over

X. [l

As a consequence of Lemma IV.2, we know we can choose z” € FE generic, such
that g is holomorphic at 2", the critical set C; of g is smooth at 2" and g(C;) smooth
at y' = g(z”). Picking local coordinates (z, zx) and (w, wy) around z” and ¥’ in such

way that ' = {z; = 0} and E' = {w; = 0}, we see that

(wvwk) = g(za Z/f) = (Z7Z£)
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In particular, we notice that

(4.3) ordg(Cy) =r—1
and
(4.4) g«ordg = rordg .

Proposition IV.3. With the same notation as above, the following identity holds
rag = ag + OI‘dE<Cg).

Proof. Let us first assume X to be smooth and fix w a meromorphic k-form on X,
i.e. w can be writen as

w(z) = h(z)dzy A - -+ N dag,

where x = (z1,...,x;) is some local chart and h a meromorphic function on X.

From the commutative diagram

(4.5) EcY-2-Yy' S F
Fi O iﬂ'/
X X

we obtain (in local coordinates) that

™g'w = 7mg"(h(x)dxy A Adxy)
(4.6) = 7*(hog(x)Jac(g)(x)dzy A --- Adxy)
= hogomn(y)Jac(g) om(y) Jac(m)dy; A --- A dyy.
On the other hand
g m*w = g™ (h(x)dxy A - A dxy)
(4.7) = g (hon'(y) Jac(x)dy, A --- A dyy)

= hon'og(y)Jac(x’) o gly) Jac(g)(y)dys A - A dys.
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Using the identity 7*¢* = g*n’* from (4.5) in (4.6) and (4.7), we obtain the

following identity of (Cartier) divisors
(48) 7T*Cg + KY/X = Q*Kyl/x + Cg.
This in particular implies that

Ol"dE(Cg) + OI‘dE(Ky/X) = g* OI‘dE(Ky//X) —|—Ol"dE(C§)
N———— ———— N——

ap—1 ap—1 r—1

J/

~
r(agr—1)

by (4.3) and (4.4), giving us that rap = ap + ordg(C,).

If X is not smooth, we pick a meromorphic k-form w on X,e,. Note that div(w)
extends uniquely as a Weil divisor on X and our assumption on X, namely, X is Q-
factorial, allows us to obtain the identity (4.8) in the singular case. The computation

then follows identically as in the smooth case. O

4.1.1 Comparison of orders of vanishing

By definition, € X is an isolated quotient singularity if there exists a finite

group G, C GL(k,C) acting freely on C*\ {0} such that
(X,7) = (CF0)/G,.

From now on, we will assume that our variety X has at worst isolated quotient
singularities. This in particular implies that X is Q-factorial and with klt singularities

(see [KM98], Prop. 5.15 and Prop. 5.20).

Lemma IV.4. For every y € X there exists a constant Cy > 1 such that
ord, ¢ < ordy¢o o < Cyordy ¢

for every holomorphic germ ¢ € Ox,,. If y is smooth, we can pick C, = 1.
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Proof. Let ¢ € Ox, and denote by t := ord, ¢. We then have that

t t+1
pem, and ¢¢m ",

hence

gpooeom, and ¢op¢ o'mit.

We can pick C'= C(y) € N such that for every I € N it follows that

mi© C g*mé C mb,

hence
pogemy and poog¢mitC
ordy(¢) < ordg(¢ o o) < (ord,(¢) +1)C < 2C ord,(¢).
Take C = 2C and the inequalities follow. O

If g: X — X is a holomorphic map with y = g(x) and
0: (C5,0) > (X,p) and ¢ : (T,0) = (X,2)

are the quotient maps of y and x respectively, the map go ¢’ : (C*,0) — (X,y) can
be lifted to a continuous (hence holomorphic) map ¢ : (C*,0) — (C*,0) such that

the following diagram commutes

(4.9) (CF,0) —L~ (C*,0)

(X, 7) ——~ (X,9)

In particular, we have that C; = 0*C,.

We state the main result of this section
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Theorem IV.5. There exists a positive constant Cx > 1 independent of g such that

the following inequality holds
ord, ¢ o g < Cx (k + ord, Cy) ordy(y) ¢

for every ¢ € Ox, and every x € X.

Proof. Step 1: Assume z, y = g(x) € X both smooth.

Let 7 : Y — X be the blow-up of X at z and F = 7~ !(z) the exceptional divisor.
By Lemma IV.2 we can find a birational morphism 7’ : Y/ — X and a divisor £’ C Y’
such that the lift g : Y --» Y’ of g satisfies g(F) = E’ and g, ordg = r ordgs for some

r € N. Since m(E) = x we must have 7'(E") = y. Hence, for every ¢ € Ox, we have

ord,(¢ o g) = ordg(¢ o g) = rordp (¢) < rag ord,(¢)

where the last inequality follows from Proposition IV.1.

By Proposition IV.3 we have that
rag = ag + ordg(C,),
where ap = k by (4.2). Therefore
(4.10) 01, (60 g) < (k + 01d, (C,)) ordl (6).

Step 2: The general case follows using diagram (4.9). Let ¢ € Ox,,. For the left

inequality of Theorem IV.5 we have that

ord, (¢ o g) <ordg(pogo ) =ordy(pooog).

Inequality (4.10) implies that

ord(¢ 0 g0 g) < (k + ordg(Jac(g))) ordoe(¢ © o)
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and by Lemma IV.4 we have that

ordo(¢ 0 0) < €y ordy(y)(¢)
for some C, > 1. Note that
ordg(Jac(g)) = ordy C; = ordy(0™C,) < C’ ord, C,

for some C! > 1. Taking Cx := max,cx{C,C~.} we obtain the desired inequality. [
4.2 The Jacobian cocycle

In this section we proceed to define one of our key tools, the Jacobian cocycle. For
an extensive discussion on (analytic) cocycles we refer the reader to [Fav00], [Fav99]
and [Din09].

4.2.1 Definition and properties of the Jacobian cocycle

Let X be an irreducible normal projective variety with at worst isolated quotient
singularities and let ¢ : X — X be a surjective holomorphic self-map. Then X is
Q-factorial and klt (see Section 4.1). For every n € N we denote by uX the Zariski

usc function

X 32 ) (7) := Cx(dim(X) + ord, Cyn)

on X, with C'x > 1 as in Theorem IV.5. If Z C X is an irreducible algebraic subset,

we denote by uX (Z) the generic value of uX on Z given by
¥ (Z) 2= mip (¥ ()} = COx (dm(X) + ord(Cr)
It is easy to see that the identity
(4.11) Cyntm = Cygn + (9" )*Cym

follows on a suitable Zariski open subset of X for every n, m € N. Since X is

Q-factorial, the identity extends to all of X as Q-Cartier divisors.
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Proposition IV.6. The following is true for the family (,uff)neN
(1) (Comparison) Let D be a divisor in X. Then for every x € X,

ord, ((¢")*D) < py, (x) ordgn(a) (D),
(11) (Submultiplicativity) for every n, m € N and for every x € X the following

inequality holds
Hivgm (%) < iy (@)1, (9" (2)) -

Proof. Part (i) follows immediately from Theorem IV.5.

For proving (ii), observe that from (4.11) we obtain
(@) = Cx(dim(X) + ord, (Cpevn)) =
— O (dim(X) + ord,y (Cpe) + ordy((g7) Cye)).
By Theorem IV.5 we have that
ord,((9")"Cym) < Cx (dim(X) + ord, (Cgn)) ordgn 4y (Com)

implying that

o) < (Cxl@m(X) + s €)1 €e) ) <

By the submultiplicativity property, it is easy to see that the function
1
Xoawpl(r):= lim (u) (2)"

n—-4o0o

is well defined (i.e. the limit always exist for every x € X). It satisfies

0 g = pi.
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4.2.2 Jacobian cocycles and totally invariant sets

Let f :P* — P* be a holomorphic map of algebraic degree d > 2 and let X C P*
be an irreducible algebraic set such that f~!(X) = X. Define g := f|x : X — X
and take § : X — X to be the lift of ¢ to the normalization 7 : X — X. The

commutative diagram

g
o

|
s
e

where ¢ : X — P* denotes the inclusion map, gives us the following commutative

diagram of groups and homomorphisms

7~ H2(Pr7) =L e z) = 7

(m)*i J/(LTF)*

H*(X:7Z) H*(X:7Z)

~k

where + : X — P* In particular, if w is the Fubini-Study metric on P* then {w}

generates H2(P*,Z) and f*{w} = d{w}, therefore
gr{wt =g H{wl =7 el =d - {w)

giving us a §*-invariant class {w } := {(v7)*w} in H*>(X;Z).The class {w} represents
the first Chern class of the ample line bundle O(1) in P*, which induces an ample

line bundle O (1) := (17)*O(1) on X with

971 (0x(1)) = g{wz } = dfwi}.

The ample classes on X form a strict open convex cone which is invariant by g* in

the finite dimensional vector space H?(X;R) (for details see [GH94], [Laz04]). Using
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that there exists an invariant ample class on X, namely {wg} with (7*)"{wz} =
d"{wg} for all n € N, it is possible to conclude that [|(§*)"|| < d™ for every n € N.
Moreover, if we assume X to have at worst isolated quotient singularities then we

obtain

Lemma IV.7. In the same setting as above, there exists a positive constant A inde-

pendent of x € X and n € N such that
iy () < Ad"

Proof. Note that

n—1

Con = > (3')°C

1=0

(see equation (4.11)).

Denote by A" := sup, ¢ ord,(C;). Then we have that

n—1

- dar—1
ord, (Czn) < A’ Z d=A

d—1

dar—1
— u (2) < Cx (dim(X)+A’d_1> <

dim (X 1—d™m
< Cx ( mcllfl ) + A’ T ) d" < (dim(X) + A'(d — 1)~ ")d"™

Theorem IV.8. The g-totally invariant set

Eg = {xEX | ,ufo(x) :d} = U ﬂ {[EEX | ord, (Csn) zédn}

6>0neN

18 algebraic.

The proof relies on the fact that the family of totally invariant algebraic subsets of
X is finite (see Section 2). The key idea is to prove that every irreducible component

of E'¢ is totally invariant for some iterate of g, therefore E'¢ has only finitely many
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components. In order to do this we use a uniform bound from [Par10] for the orders

of vanishing of d~[C;n].

Proof. We argue by contradiction: Let Z C E; be an irreducible component; define
Sy = dN[Csv] for N large (N will be made explicit later). By definition there

exists 0 > 0 independent of N such that
ord,(Sy) > 9, VzeZ.

For every 0 < r < N, by the chain rule Cjv = Cgrin—r = Cy4r + (§")*Cyn—r (se€

equation (4.11)) we obtain that for every z € g7"(Z)
Ol"dr CgN Z Ol"dx ((gr)*c‘ngr) 2 ordgr(z) Cngr Z 5dN_r

implying

ord,(Sy) > dd™", Vzeg " (2).

Let Y be the minimal irreducible algebraic set containing Z which is totally in-
variant by ¢° for some s > 1. For simplicity we assume s = 1. If Z # Y, then Z has
positive codimension p > 0 in Y and since Y ¢ E; we can find C > 0 and A < d

such that ordy (Czn) < CA™ for all n > 1. Then it follows that

A N
ordz(SN) S C (3) <1

for every x € Y. Denote by (8 the generic Lelong number of Sy along Y. Thus
0<B< O\,

Since Z is not totally invariant, following the ideas of Dinh-Sibony (see [DS08],
Lemma 6.10) we know there exists a constant § > 0 (independent of ) and algebraic

sets Z, C f7"(Z) of degrees d,. satisfying

d. >0d? Vr>1.
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Define Zj) :== Zy and Z| := Z, \ (ZyU---U Z,_4) for r > 0; note that for r # s,
Z! and Z! have no common irreducible components. Denote by d!. the degree of Z.
It is clear by the construction that dj + ...+ d,. > d, and that the generic Lelong
numbers v, of Sy at Z/ satisfy v, > dd".

By Theorem IIL.5, we know that there exists a positive constant A ; independent
of r > 1 and N such that

(4.12) S (v, — B, < Ay

r=0

We now fix M < N (which can be made very large) such that

Bd" < =5, ¥r=0,... M.

N | —

We observe that

M

(4.13) ) (v — B)d, > Z (6d™" — B)Pd. >
r=0
(e
r=0

- <g>p [do(1 = d™7) + (dy + d)(d ™" —d ™) + ..

+(d)+ ..+ dyy ) (@M =My d M
Notice that for every r =0,..., M — 1 we have
_ _ I
A" — d (r+1)p > §d P

Plugging this into (4.13) we obtain that
M L /5N M
: —B)Pd. >~ | = P, >
a1 Y-sr 2 (3) Lava

%( ) Zd Tpedrp—g(é) (M +1),
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where § > 0 and # > 0 are independent of M and N. Therefore, using equation

(4.12) in the inequality (4.14) we obtain

’ (g)p(M+1) < Aq

which produces a contradiction if we take N and M sufficiently large. O]

Corollary IV.9. The algebraic set Ex :=m(Eg) C X is totally invariant:
9 '(Ex) = Ex.

Proof of Corollary IV.9. We prove that every component of Ex is totally invariant.

Let Z C Ex be an irreducible component and write
NZ2)=2ZUZ,

where Z C Eg and 7(Z) = Z. Then there exists [ > 1 such that §7(Z) = Z, this

in particular implies that

Write g~ 4(Z) = ZUW.

If W # () we have that ¢'(W) = Z. On the other hand,
N VN TN Iy
g (2)=97(207) =205 (Z)

and
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Since the map g := f|x : X — X is open, it is easy to see that
(4.15) gla= (W) =7~ g(W))
for every W C X. In particular, by identity (4.15) we have that

FEt W) =a(dW) =n(2) =207
implying
Z'=d(ZYuzuZ = ZcCZ

contradicting our hypothesis. Hence W = () and therefore ¢=!(Z) = Z. H
4.2.3 The exceptional family &;

Definition IV.10. We define the exceptional family £; of f as the finite collection

of irreducible subsets X C P* such that
(i) Pk ¢ Er;

(ii) X € & \ {P*} if and only if there exist X’ € & such that X is an irreducible
component of Ex,. In this case we will say that X is an immediate successor of

X'

The exceptional family & of f is a partially ordered set, where X <Y if there exist
a sequence of elements X = X; C --- C X, =Y in & such that X; is an immediate

successor of X;,q foralle=1,...,r — 1.

Note that by definition, we have that
h=<X <P VX €&

We will say that X € & is an exceptional leaf if () is the immediate succesor of
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4.2.4 Asymptotic behavior

We finish this section giving a uniform estimate of the orders of vanishing outside

the totally invariant algebraic subset E; C X.
Theorem IV.11. There exist constants C > 0 and 0 < p < d such that

V0

sup 1 () < Cp

for all n € N.

Corollary IV.12. Given any hypersurface H in X, it follows that

sup d "ord, ((¢")"H) — 0

r¢Ex

as n — +o0.

Proof Corollary IV.12. Note that for every x € X we have

ord, ((9")"H) < max ord, ((§")"(7"H))

yer—1(z)

implying

sup ord, ((¢")*H) <  sup  ord, ((§")"(n*H)) < sup ord, ((§")" (7" H)).
z¢Ex ygr—H(r(Ex) yEbx

By Proposition 1V.6 (ii), it follows that

sup ord, ((5")"(x*H)) < sup 1X(9) ordgny H
y¢E ¢ y¢E ¢

which combined with Theorem IV.11 gives us

_ P\™
sup d "ord, ((¢")"H) < C (=
sup (g H)<C (%)

for some C' > 0 and p < d. Taking n — +o0o we obtain the desired convergence to

7ero. OJ
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Proof Theorem 1V.11. Let Xo,h . 7X0,m0 be the irreducible components of the crit-
ical set Cy not contained in E;. For every ¢ = 1,...,mg we can pick x¢,; € X(),i such

that there exist C; > 0 and \; < d satisfying

_max. {pX(2)} < CLAY, Vn>1.
For N > 1 large, define the algebraic set
X, ={reX| pﬁ(:}:) > OV
We clearly have the proper inclusion of algebraic sets

X, CCov,

- g

where the codimension of )~(1 in Czv is > 1 at every point = € f(l \ E.
If X, C Eg, forn>> N and z € X\ Eg, denoting n =tN +1,1€ {0,...,N —1}
we have

i () = iy () < i (@3 (@) < (@) [T (a9 @),
Since X \ Fy is totally invariant
x ¢ By = 57" (2) ¢ Ey,
hence 37N (z) ¢ X, implying that
1 (z) < (dim(X) + AN (dm(X) + AN < 20 AL,
Now we can find A > 0 and \; < p < d (independent of = and n) such that

201N < At Y > 1,

and the theorem follows.
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Now assume Xl ¢ Eg;. Let XLI, o ,XLml be the irreducible components of
X, that are not contained in Eg. As before, for every ¢ = 1,...,my; we can pick

T1; € Xl,i and CQ > Cl, A1 < Ay < d such that

~max {,uf(x)} < oAy, Vn>1

i=1,....m1

Define the algebraic set
X, ={reX| uﬁ(x) > O\ },

which has codimension > 2 in C; at every point x € XQ\EX. Again, if X, C E4 the
theorem follows picking some A > 0 and Ay < p < d, so we can assume Xy ¢ F -

Inductively we construct a strictly decreasing sequence of algebraic sets

Xj={z e X | pun(x) > C;ANY,

for j = 1,...,dim(X), where \; < Ag < --- <)\dim()~() <d,0<(C; <(Cy <--- <

C

dim

(%) and the codimension of X; in C; is > j at every point z € X, \ Eg. Thus,
there exists 1 < jo < dim(X) such that X;, C Ey (since Xdim(f() \ Ex = 0), implying

that there exist A > (), and \;, < p < d so that
,uf(x) < 20;;“1)\?0_1_1 < Ap", Vn>1,

for every x € X, \ Ex as before. This concludes the proof. O



CHAPTER V

Equidistribution

5.1 Reduction of the problem

We will need a version of Theorem II1.3, (iii) which is preserved by the dynamical

system f : P¥ — P* where f is holomorphic of degree d > 2. We prove:

Proposition V.1. For every x € P* and for every n, m € N we have

0 < u((f")'S, 2) — v((f") S 2) < (h+ 1)L

m
Proof. 1t suffices to prove this for n = 1. The left inequality uses Ohsawa-Takegoshi
extension theorem following the exact same argument as in Theorem II1.2. We prove
then the right inequality.

Let 7 : Y — P* be the blowup of P¥ at # € P¥ and E = 7~ !(z) the exceptional
divisor above x, hence

v(S,z) =v(S, E).
By Lemma IV.2 we can find an exceptional divisor E’ over f(x) € P* such that

frordg = rordg for some r € N. We therefore obtain
v(f*S,z) =v(f*S,E) =rv(S,E")
implying that
(5.1) 0<v(f*S,z) —v(f*Sm,z)=r (S, E) —v(Sm, E')).

95
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We need the following strengthening of Theorem IT1.3 (iii)

Lemma V.2. Let 7 : Y — P* be a modification of P* at x € P* and let E C 7~ 1(z)

be an exceptional divisor. Then, with S and S,, as before, we have

0< (S, E) — v(Sp, E) < %E

for every m € N, where ag denotes the log-discrepancy of E.

The result given by Lemma V.2 can be found in [BFJ08|, p.486. We sketch a

proof of this

Proof. Pick coordinates (x1,...,z;) around a general point of E C Y and write
E = {2z, = 0} (locally) around this point.

If S=w+dd°p, then
(5.2) pom <v(S,E)log ||+ O(1).
Given a local section ¢ at z € P* of some element of #,,, we have that

/ lo|?e™™ < +o0
U
in a neighborhood U of x. Therefore
(5.3) / |o o w227 | Jac(7)|? < +oo.
= 1(U)

By the definition of ag (see Section 3) we obtain that
(5.4) | Jac(m)[? ~ fa oY
around F, and in a general point of £ we have

(55) ’0 o 7_(_‘2 ~ |I1|2ordE(g).
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Putting (5.2), (5.3), (5.4) and (5.5) together we obtain that
/ |:L,1|2ordE(U)—2mV(S,E)+2(aE—1) < 400
m1(U)
which implies (by Fubini’s theorem)
(5.6) ordg(c) —mv(S,E)+ag >0

for all o € H,,. Dividing equation (5.6) by m and taking the maximum over

{o1,...,0n,, } an orthonormal basis of H,,, we finally obtain

m

m&mEy_ma£»+%§>o

which concludes the proof. O

Now, using Lemma V.2 into equation (5.1) we obtain that

r(US, E) — Sy, B)) < 12

m

and by Proposition IV.3 we obtain that

' 1
r (S, E') — Sy, B)) < rag. k + ord,(Jac(f)) < (k4 1)d
m m m
where ag is the log-discrepancy of E’, since ord,(Jac(f)) < (k+1)(d —1). ]

The following result is an immediate consequence of Proposition V.1
Corollary V.3. Let X C P* be an irreducible variety. Then,
v(S,X)=0<v(S,, X)=0
for m > 1. Moreover,

lim sup v (d"(f")"S,z) =0« lim supv (d"(f")*Sm,z) =0

n—-+o0o Pk n—-+0o Pk

form > 1.
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We would like to refine our approximation and replace S, by a current of inte-
gration on a hypersurface. Observe that for every finite collection of holomorphic
germs 071, ...,0n € Ogr g, we can find a (Zariski) generic 6 = (6;) € CV such that, if
we set 0y 1= Zf\il 0,0; then

ordg(op) = Z:r{nnN ordg(a;).
In particular, fixing an orthonormal basis {0}, ;} of #H,, as before and given 6, =

(Om,j) € CNm_ we denote by ©m,¢ the function

N
1 m
(5.7) P* > 2+ pe(z) == py. log (h®(m“) (Z Om,jam,j> (x)) .

J=1

(Note the difference with ¢, defined in Theorem III.2). It follows immediately that
V(Pmo, ) > v(pm,x), VO CN" VaeP

On the other hand, for each € P¥ we can find a Zariski open set V, C CN» such

that
(5.8) V(Omo, ) = V(pm,T) = '_mir}v ord, (0 i), V0, € Vi.

We prove the following

Lemma V.4. Let £ be a finite family of irreducible subsets of P*. Then, there exists

a Zariski open subset U,, C CN™ such that
ordy (pme) = ordx(pm) VX €E

forall9 € U.

Proof. For all 7 = 1,...,N,, and all X € & there exists a Zariski open subset

Ux,; C P* such that

ordx(o;) = mi}I{lOI‘dZ(O'j) =ord,(0;) Ve XNUx,.
zE
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Then it follows that for every x in the Zariski open subset Ug := (\xce ; Ux,; C P*

we have

ord,(o;) =ordx(c;) VeeUsnNX,j=1,...,Np.
Fixing x € Ug, we now pick V, C CV as in (V.4) and the conclusion follows. [

Using the same notation as above, we define the closed (1,1)-current
Sm,g =w + ddcgomﬁ
on P*. Tt also satisfies Sim.o > —%w and we note that

1 1
Smo + —w = —[Hp)]
m m

where [H,,| is the current of integration over the hypersurface given by

Nm
Hm = div (Z 9m7j0m7j> .
j=1

Carrying out the same argument given in Proposition V.1, we have proved the fol-

lowing crucial result

Theorem V.5. Let £ be any finite collection of irreducible algebraic varieties, let
f:P* — P* be a holomorphic map of degree d > 2, and let S be a positive closed
(1,1)-current on P*. Then, for every m > 1, there exists a hypersurface H,, C Pk
with

ordx(Hy,) <v(S,X) VX eg,

and

v (d"(f")"S,2) < d " ord, ((f7)" Hy) + %

for all x € P*.
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As an immediate consequence, if S is a positive closed (1,1)-current and

sup d "ord, ((f")*Hy) — 0

zcPk

for every m > 1, we obtain the equidistribution of S towards the Green current

associated to f.

5.2 Proofs of results

In this section we prove our main results. Recall that if X € &, then there exists
s > 1 (minimal) such that f~*(X) = X. By Lemma I1.4 we can assume without loss

of generality that s = 1.

5.2.1 Proof of Theorems I.1 and 1.3

By Theorem V.5, given any positive closed (1,1)-current and any finite family & of

irreducible varieties, we can find a sequence of hypersurfaces H,, with the properties
ordx(H,) <v(S,X) VX €€,

and

59) 0 v (7 5,2) < 4 ord, () Ha) + B

for all x € P*. In particular, if the generic Lelong number v(S, X) of S along X is
zero for all X € &, we have that ordx (H,,) = 0 for all X € £ and all m € N.

We recall from the introduction, Guedj’s characterization of equidistribution:

(5.10) d"(f")'S =Ty < lim supd "ord, ((f")"Hn) = 0.

n—=+00 ;cpk
Proof of Theorem 1.3. Let Epg be the collection of irreducible components of the
totally invariant algebraic set constructed by Dinh-Sibony (see the introduction).

By [DS08], Theorem 7.1 we have

ordy(H,,) =0 foral X € &pg=d "(f")"Hyn — T}
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which, by the right implication in (5.10), gives us

lim sup d "ord, ((f")*Hy,) =0

n—-+00 zcPk

which implies

k+1
lim sup sup v (d’”(f")*S, :c) < e
m

n—+o0o gelPk o

for all m € N by the inequality (5.9). Letting m — 400 we get

lim sup v (d"(f")*S,z) =0

n—-+00o zEPk

and by the left implication in (5.10), we conclude that
a"(f")s — Ty.
O

To prove Theorem I.1, we use the same arguments as above and reduce the prob-
lem to the case of S the current of integration over some hypersurface H C P*. Here,

the family & is the exceptional family defined in Section 4.3.

Proof of Theorem I.1. Let H C P* be a hypersurface such that ordx (H) = 0 for all
X € &, where &; is the exceptional family. Observe that ordy(H) = 0 implies that
H|x is a well defined Cartier divisor in X.

Let X € & and define g := f|x : X — X then
(5.11) d"ord, ((f")*H) <d "ord,((¢")"H|x) VzxeX.

Let 7 : X — X be the normalization of X. By assumption, X has at worst isolated
quotient singularities, hence it is Q-factorial and klt (see Section 4.1). Moreover,
there exists a regular map § : X — X such that the diagram

X
X

g
_—

o

-
3

S

R

g
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commutes. Note that for every y € X and every germ ¢ € O% x(x) if follows that

ord.(,(¢) < ord,(¢ o ). This, in particular implies that

orde(y) ((9")" H|x) < ordy(7*(9")"H|x) = ord,((9")" (7" H|x))

giving us

supd " ord,((¢")"H|x) < supd " ord,((§")" (7" H|x)).

rzeX yeX

By Theorem IV.5 we have that
a7 ord, (3)" (" H|x)) < d~"4X (y) ovd ) (" H] )

where ,unX is the submultiplicative cocycle defined by

iy (y) = Cx (dim(X) - ordy(C@)) (see Section 4).

We know from Theorem IV.11 that there exist constants C' > 0 and 0 < p < d

such that

sup p (y) < Cp"
y¢E;

for all n € N, where E'¢ is the totally invariant algebraic set
EX:{IEX|M§O(ZL‘):d}.

Recalling that the algebraic set Ex := m(Ey) is totally invariant by g (Corollary

IV.9), we hence obtain

(5.12) supd "ord,((f")*H) < sup d "ord,((f"*)*H)+ sup d "ord,((f")*H) <

reX :EQEX r€FEx

< sup d "ord,((g")" (7" H|x)) + sup d "ord,((f")"H) <
I¢E5( rze€FEx

<C (g)n + sup d "ord,((f") H).

r€FEx
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We now proceed by induction on the partially ordered set &: If X is a leaf (i.e.

Ex = () we obtain that

supv(d"(f")*H,z) < C"(p/d)" — 0

rzeX

as n — +o00. In general, for X € £ assume that for every X’ < X we have that

sup v(d " (f")"H,z) — 0

reX'’
as n — +oo.

Since every irreducible component X’ of Ex satisfies X' < X, we get

sup d " ord,((f")*H) — 0

el x
as n — 400, implying
supv(d™"(f")'H,z) < ' </—))n + sup d " ord,((f")*H) — 0
rzeX d z€Ex
by inequalities (5.11) and (5.12). The desired conclusion then follows. O

5.2.2 Proof of Corollary 1.2

If f:P? — P3is a holomorphic map of degree d > 2 and X C P? is an irre-
ducible surface such that f~!(X) = X, Corollary B would follow immediately if the
normalization of every such X has at worst (isolated) quotient singularities. Let
g =[flx: X—=>X, 7 X — X its normalization and § : X — X its holomorphic
lift.

By [Fav10, Theorem B] or [Wah90]) for every z € X, we have
(i) If (X, z) is klt, then (X, §(z)) is klt;
(i) if x € Cj, then (X, x) is klt;

(iii) if 2 ¢ Cj, then (X, ) is not klt (the singularity is log-canonical instead).
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The case (iii) can be divided in two cases: Either (X,z) is a cusp or not. If
(X, z) is not a cusp, Proposition 2.1 in [Fav10] implies that we can find a proper
modification 7 : X — X such that X has only kit singularities and § lifts to X as
a holomorphic map. The case (X, ) a cusp can be ruled out by Theorem 1.4 in
[Nak99]. This finishes the argument of Corollary B.

In the same setting as above, in [Zha00] D.Q. Zhang found a concrete classification
for X C P3. More precisely, Zhang states that either deg(X) =1 (i.e. X is a plane)

or X is a cubic given by one of the following four defining equations
(i) X3X5+ Xo X7 + X3;
(IV) XOXlXQ + Xng + X%
The surfaces given by (i) and (ii) are both normal with klt singularities. The
singular locus of the varieties given by (iii) and (iv) is a single line which is totally
invariant and their normalizations correspond to the smooth surface given by the

one-point blowup of P2.

5.2.3 Proof of Corollary 1.4

We provide a direct argument for this, not relying on the results given by Dinh-
Sibony in [DS08].
As before, we define the Jacobian cocycle
pn () ==k + ord, (Jac(f"))

as described in Section 4.2. The totally invariant set

E = U ﬂ {z € P"| po(x) > 6d"}

6>0neN
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is algebraic by Theorem IV.8 and we know from Theorem IV.11 that there exist

positive constants C' and p < d such that

(5.13) sup pn(x) < Cp", VneN.
TEPF\E

Now the conclusion follows since

sup »(d~"(f")"S,x) < sup v(d™"(f")"S, x) +supv(d"(f")"S, x)

z€Pk z€PF\E z€E

J

-—
-0
and

sup p(d™"(f)S,) < sup d () <O (£) 0

z€PF\E z€PF\E

by Theorem IV.5 and inequality (5.13).

5.3 Equidistribution in lower dimensions

We end this work providing simpler new proofs for the already known cases of

dimensions 1 and 2.
5.3.1 Dimension 1
We observe that in dimension one, positive closed (1,1)-currents with mass 1

correspond to probability measures. We use our techniques to the provide a new

proof of the famous Brolin, Lyubich, Lopes-Freire-Mané equidistribution theorem.

Theorem V.6 (Brolin, Lyubich, Lopes-Freire-Maiié). Let f : P! — P! be a rational
map of degree d > 2, then there exist a finite collection of totally invariant points
Er, with cardinality at most 2 such that: for every probability measure n on P, the

following are equivalent

(i) n(&f) = 0;

(i) d="(f")*n — T as n — +o0.
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Proof. Let & be the collection of totally invariant points given by Definition IV.10.
If #&; > 2, since f71(E) = &y, we can lift every iterate f* : P'\ & — P\ & to

the (hyperbolic) uniformization

2]
P\ & —=PI\ &
giving us that the family {f™ : P\ & — D}, ey is normal by Montel’s theorem,
implying that the family {f"},en is normal on P'. In particular, we can find a
(uniformly) convergent subsequence f™ — f where f is a rational self-map of P*.
This contradicts the fact that the degrees d™ of f™ on P! grow to +oo. Hence
#Er < 2.

Observe that given z € P!, the Lelong number of 1 at x is nothing but the
point-mass n({z}). Then, the implication (i)=-(ii) follows immediately by Theorem
I.1.

For the converse implication (ii)=-(i), assume that there exists zy € &; with

n({zo}) = ¢ > 0. In particular, n > ¢, where d,, denotes the Dirac mass at x.

Hence (f™)*n > c¢d"d,, giving us
Sup d"(f")n({=z}) = Sup d7"(f") 0 ({x}) = ¢ > 0.
z€PL z€P!

Therefore sup,cpr d="(f")*n({x}) -+ 0, hence d~"(f")*n({x}) » T}.

5.3.2 Dimension 2

The provide here a proof for the dimension 2 case.

Theorem V.7 (Fornass-Sibony, Favre-Jonson). Let f : P? — P? be a rational map

of degree d > 2, then there exists a collection of irreducible totally invariant algebraic
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sets Ef, with with at most 3 lines and finitely many points such that: for every positive

closed (1,1)-current S on P? with mass 1, the following are equivalent
(i) The current S has no mass on every element of E;;
(i) d"(f")*S — Ty as n — +oo.

Proof. We again take & to be the finite family of irreducible totally invariant al-
gebraic subsets of P? given in Definition IV.10. As it was proved by Fornzess and
Sibony in [FS94], any irreducible totally invariant curve must be a line and there are
at most 3 of them. Implication (i)=-(ii) follows then by Theorem I.1.

For the converse implication (ii)=-(i), let X € & with f~'(X) = X, and assume
that the (generic) Lelong number v(S, X) of S at X satisfies (S, X) = ¢ > 0.

If X is a line, by Siu’s theorem we have that S — ¢[X] is a positive closed (1,1)-

current, hence
d7"(f") (S = c[X]) 2 0= d™"(f")"S = cd™"(f")"[X] = c[X]

implying that d="(f")*S - T¥.

On the other hand, if X is a point, it is not hard to see that
(5.14) v (d(f")S, X) > d e, (X)v(S, (X)) = cd " en(X),

where ¢,(X) denotes the order of vanishing of f™ at the point X. It is easy to see
that

en(e) = lim_ (e, ()"

exists for every x € P2. Moreover, Favre and Jonsson proved in [FJ07, Theorem A]
that there exists a uniform constant & > 0 such that ¢,(z) > dcy(2)™ for all x € P?

and in [FJ03, Proposition 3.12] that c.(X) = d. Using this in equation (5.14), we
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obtain that

v (" (f)*S, X) > 5 > 0

implying that sup,p2 v (d="(f")*S, X) - 0 hence d~"(f™)*S - T. This concludes

the proof in dimension 2.
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