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CHAPTER I

Introduction

1.1 Historical development and known results

Let Pk be the complex projective space of dimension k and let f : Pk → Pk be a

holomorphic map of algebraic degree d ≥ 2. It is well known (see [FS94], [HP94])

that there exists a positive closed (1,1)-current Tf , the Green current, such that for

every smooth (1,1)-form α in the cohomology class of the Fubini-Study form ω, the

sequence of smooth (1,1)-forms d−n(fn)∗α converges to Tf in the sense of currents.

A natural question to ask is if such behavior also occurs when we replace smooth

forms by currents. More precisely, if S is a positive closed (1,1)-current of mass 1,

when does the convergence

(1.1) d−n(fn)∗S → Tf

hold? This last convergence is what we refer to as equidistribution. The answer:

Not always. Assume for example that there exists a totally invariant irreducible

hypersurface X ⊂ Pk, i.e. f−s(X) = X for some s ∈ N (which for simplicity we take

to be s = 1); then its current of integration [X] satisfies f ∗[X] = d[X] giving us that

d−n(fn)∗[X] = [X] 9 Tf

since the current Tf has no mass on any algebraic subsets of Pk (in particular, it

cannot be the current of integration of an algebraic variety. See [Sib99] for more

1
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details). Therefore, it seems that the appearance of totally invariant algebraic sets

restricts the possibility of having equidistribution. A very important feature of holo-

morphic maps is that the collection of all totally invariant algebraic subsets of Pk is

finite (see [FS94], [DS08]).

In dimension k = 1 (i.e. P1 is the Riemann sphere and Tf is an invariant prob-

ability measure), a famous result by Brolin [Bro65] (for the case of a polynomial

self-maps of C) and by Lyubich [Lju83], Freire-Lopes-Mañé [FLM83] (for the case of

rational self-maps of P1) states that there exists a collection Ef of totally invariant

points (also called exceptional points), with cardinality of Ef ≤ 2 with the following

property:

Given any probability measure ν on P1, d−n(fn)∗ν converges to Tf if and only if

ν({p}) = 0 for all {p} ∈ Ef . In particular, for every x ∈ P1 which is not exceptional

(1.2) d−n(fn)∗δx =
1

dn

∑
fn(y)=x

δy → Tf

as n → +∞, where δx denotes the Dirac mass at x. The equation (1.2) also shows

that the sequence of preimages of points outside Ef accumulate along the Julia set

of f .

The situation for k = 2 is already highly more involved. Some partial results for

equidistribution in P2 for holomorphic (and meromorphic) maps were obtained by

J. E. Fornæss and N. Sibony [FS95], A. Russakovskii. and B. Shiffman [RS97] and

others. C. Favre and M. Jonsson finished the characterization for the two-dimensional

case in [FJ03] (see also [FJ07]) proving the following: There exists a family Ef of

totally invariant irreducible algebraic subsets of P2, containing at most 3 lines and

a finite number of points, with the following property: given any positive closed

(1,1)-current S of mass 1, d−n(fn)∗S converges to Tf if and only if S has no mass on



3

any element of Ef . The elements of Ef are attracting in nature and this collection

can be strictly smaller than the collection of all totally invariant irreducible algebraic

subsets of Pk.

In higher dimensions the situation is not as well understood, particularly since

we do not have any satisfactory classification of totally invariant algebraic subsets

of Pk. The equidistribution problem in higher dimensions was studied already in

[FS95], [RS97] and [Sib99]. In [Gue03] V. Guedj showed that for a given positive

closed (1,1)-current S with Lelong numbers zero everywhere we have

d−n(fn)∗S → Tf

as n → +∞ (his result also holds for f meromorphic). In [DS08] T.-C. Dinh and

N. Sibony established the following: There exists a finite collection EDS of totally

invariant irreducible algebraic subsets of Pk with the following property: given any

positive closed (1,1)-current S of mass 1 whose local potentials are not identically

−∞ on any element of EDS, d−n(fn)∗S converges to Tf (their result is uniform in S

in certain sense). The collection EDS obtained by Dinh and Sibony is constructed

inductively by studying the induced dynamics on totally invariant sets. Note that

neither Guedj’s result nor Dinh and Sibony’s result imply each other.

1.2 Presentation of results

As we have mentioned already, the main difficulty for proving equidistribution

arises from the lack of a satisfactory classification of totally invariant algebraic subsets

of Pk. In order to tackle this, we make an assumption on the singular locus of totally

invariant algebraic subsets which will allow us to develop our methods.

We present our main result
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Theorem I.1 (Main Theorem). Let f : Pk → Pk be a holomorphic map of algebraic

degree d ≥ 2 and assume that all totally invariant algebraic subsets have normaliza-

tions with at worst isolated quotient singularities. Then there exists a finite collection

Ef of irreducible totally invariant algebraic sets with the following property: given any

positive closed (1,1)-current S of mass 1 with no mass on any element of Ef we have

d−n(fn)∗S → Tf

as n→ +∞ in the sense of currents.

The finite family Ef coincides with the ones already obtained for k = 1 and k = 2.

It is constructed following the ideas of Favre and Jonsson in [FJ03], but we push the

methods further.

Our assumption on the singularities of the totally invariant algebraic subsets

(namely, to have normalizations with at worst isolated quotient singularities) holds

for k = 3, as it can be derived from the work of J. Wahl [Wah90], N. Nakayama

[Nak99], D.Q. Zhang [Zha00] and C. Favre [Fav10]. From this we obtain as a corol-

lary a sharper equidistribution result in dimension 3

Corollary I.2. Let f : P3 → P3 be a holomorphic map of degree d ≥ 2. There exists

a finite collection Ef of irreducible totally invariant algebraic sets with the following

property: given any positive closed (1,1)-current S with no mass on any element of

Ef , the sequence d−n(fn)∗S converges to Tf in the sense of currents.

We conjecture that the converse implication is also true: if the sequence d−n(fn)∗S

converges to Tf then S has no mass on any element of Ef ; this would extend the

results already known in dimensions one and two.

It is important to notice that the families Ef and EDS are different and they satisfy
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the relation

Ef ⊂ EDS ⊂
{

All totally invariant alg subsets of Pk
}

where the first and/or the second inclusion can be strict.

Our techniques will also allow us to generalize what has been so far obtained by

Dinh-Sibony and Guedj and provide the sharpest results known by the author for

dimensions k ≥ 3 in the holomorphic setting. We extend Dinh-Sibony’s result

Theorem I.3 (Dinh-Sibony improved). Let f : Pk → Pk be a holomorphic map of

degree d ≥ 2. There exists a finite collection EDS of totally invariant algebraic subsets

of Pk with the following property: given any positive closed (1,1)-current S with no

mass on any element of EDS we have

d−n(fn)∗S → Tf

as n→ +∞ in the sense of currents.

As opposed to Theorem I.1, we make no assumptions on the singularities of the

totally invariant algebraic subsets. The collection EDS is the same one constructed

by Dinh and Sibony in [DS08] (see also [Din09] for a different construction) and our

improvement is based on approximating the current S by currents that satisfy the

conditions imposed by Dinh and Sibony in their theorem.

As an immediate consequence of the theorem above, we can extend Guedj’s result

Corollary I.4 (Guedj improved). Let f : Pk → Pk be a holomorphic map of degree

d ≥ 2. There exist a totally invariant proper algebraic subset E ⊂ Pk with the

following property: given any positive closed (1,1)-current S such that ν(S, x) = 0

for all x ∈ E we have

d−n(fn)∗S → Tf
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as n→ +∞ in the sense of currents, where ν(S, x) denotes the Lelong number of S

at x.

The proof of this corollary follows by taking E as the union of the elements of

EDS (which is algebraic). The tools introduced here will allow us to present an

independent proof of the result above.

In order to verify equidistribution, we will use a characterization due to V. Guedj

(see [Gue03], Theorem 1.4) which states that it is enough to test the asymptotic

behavior of Lelong numbers. More precisely, he proved the equivalence

(1.3) d−n(fn)∗S → Tf ⇐⇒ sup
x∈Pk

ν
(
d−n(fn)∗S, x

)
→ 0.

Our approach uses a mixture of analytic tools in order to control the asymptotic

behavior of Lelong numbers and verify Guedj’s condition (1.3). This work can be

found in [Par11].

In order to do this, we use a technique due to J. P. Demailly of approximation

of currents by currents with analytic singularities. As a consequence, we are able

to reduce the general problem for positive closed (1,1)-currents to the case of the

currents of integration of a suitable hypersurface. Applying Dinh-Sibony’s result to

this hypersurface allows us to obtain Theorem I.3.

For the proof of Theorem I.1, we proceed as in [FJ03] and study the Lelong

numbers of d−n[Cfn ], where Cfn denotes the critical set of fn. We prove that the

(totally invariant) set

E :=
⋃
δ>0

⋂
n∈N

{
x ∈ Pk | ordx(Cfn) ≥ δdn

}
is algebraic. In order to do this, we prove a refined version of certain self-intersection

inequalities à la Demailly (Theorem III.5, proved in [Par10]), used in [DS08].
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We then proceed inductively on the irreducible components X ⊂ E. The main

problem that arises, is that X might be too singular, hence, making sense of the

critical set of f |X is hard. Our assumptions on the singular locus of X will let us get

around this problem.



CHAPTER II

Background

2.1 Currents

In this section we introduce the main results concerning positive closed currents

and Lelong numbers. The basic reference for this section will be the book [Dem09],

chapter III unless otherwise stated.

2.1.1 Lelong numbers

The main tool we have in order to ’measure’ the size of the singular locus of a

current are the Lelong numbers. Let X be a compact Kähler manifold with Kähler

form ω and let S be a positive closed (p, p)-current on X. By definition, the (k, k)-

form

σS := S ∧ ωk−p

is a finite positive measure on X. We refer to this measure as the trace measure of

S.

If x ∈ X and B(x, r) is an Euclidean ball with center x and radius r > 0, then

the function

r 7→ ν(S, x, r) :=
σS (B(x, r))

πpr2p

8
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is increasing in r > 0. We define the Lelong number ν(S, x) of S at x as the limit

ν(S, x) := lim
r→0+

ν(S, x, r).

This limit always exists and ν(S, x) does not depend on neither the chosen local

chart nor ω. The quantity defined above can be seen as a generalization of the

multiplicity multx(Z) of a variety Z at x. More precisely, if Z is an irreducible

analytic subvariety of X, then

ν([Z], x) = multx(Z),

where [Z] denotes the current of integration along Z.

A very important feature of Lelong numbers is the upper semicontinuity in both

variables, which can be obtained from its definition. But the upper semicontinuity

of ν(S, ·) is remarkably stronger since it is not only true in the standard topology

but also in the Zariski topology: For every positive closed (p, p)-current S and every

c > 0 we denote by Ec(S) the Lelong upper level set

Ec(S) := {x ∈ X | ν(S, x) ≥ c}.

A fundamental theorem proved by Siu [Siu74] states that Ec(S) is always an analytic

subset of X, hence ν(S, ·) is Zariski upper semicontinuous.

Note that by Siu’s theorem, given any irreducible analytic subset V of X, the

quantity

ν(S, V ) := min
x∈V

ν(S, x)

is equal to ν(S, x) for x generic, i.e. for x outside a proper analytic subset of V . We

define the Lelong number of S along V as ν(S, V ).

As a consequence of Siu’s theorem, it is possible to prove the following decom-

position formula: If S is a positive closed (p, p)-current, then there is a unique
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decomposition of S as a (possibly infinite) weakly convergent series

S =
∑
j≥1

λj[Aj] +R

where [Aj] is the current of integration over an irreducible analytic variety Aj ⊂ X of

codimension p, λj > 0 the generic Lelong numbers of S along Aj and R is a positive

closed current such that for every c > 0, the level set Ec(R) has dimension strictly

less than dim(X)− p.

This formula (known as Siu’s decomposition theorem) states that the singular

locus of a positive closed current can be decomposed into a union of analytic subsets

plus a residual part with small size.

2.1.2 Extension and intersection of currents

We state here some known results on positive closed currents that we will need in

this thesis.

A subset P ⊂ X is said to be complete pluripolar if for every x ∈ P there exist

an open neighborhood U 3 x and a plurisubharmonic function u not identically −∞

such that

P ∩ U = {z ∈ U | u(z) = −∞}.

In particular all analytic subsets of X are closed complete pluripolar sets.

Theorem II.1 (El Mir). Let P ⊂ X be a closed complete pluripolar subset and let S

be a positive closed current on X \ P with bounded mass on a neighborhood of every

point of P . Then, the trivial extension by zero of S on X is a positive closed current.

It is well known that for any irreducible analytic subset A ⊂ X, the current of

integration [Areg] has finite mass in a neighborhood of every point of Asing, hence

the current of integration [A], meaning its extension by zero through Asing, is a well

defined positive closed current on X.
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We finally discuss intersection of currents. Given an open set Ω ⊂ Ck, a plurisub-

harmonic function ϕ and a positive closed current S in Ω, we would like to have a

notion of intersection
√
−1

2π
∂∂̄ϕ ∧ S on Ω. More precisely, we would like to define

√
−1

2π
∂∂̄ϕ ∧ S :=

√
−1

2π
∂∂̄(ϕS).

The equation above does not always make sense but it is well defined as long as the

sizes of the singular sets involved are not too big; note in particular that it is well

defined if ϕ is locally integrable with respect to the trace measure of S. We proceed

to introduce a more general result concerning intersection of currents.

Let S1, . . . , Sq be positive closed (1,1)-currents with local potentials ϕ1, . . . , ϕq

respectively. We denote by L(ϕj) the unbounded locus of ϕj, namely, the set

L(ϕj) := {x ∈ X | ϕj is not bounded near x}.

Theorem II.2. Let Θ be a positive, closed (k − p, k − p)-current. Assume that for

any choice of indices j1 < · · · < jm in {1, . . . , q} the set

L(ϕj1) ∩ · · · ∩ L(ϕjm,) ∩ Supp(Θ)

has (2p− 2m+ 1)-Hausdorff measure zero. Then the wedge product S1 ∧ · · · ∧Sq ∧Θ

is well defined. Moreover, the product is weakly continuous with respect to monotone

decreasing sequences of plurisubharmonic functions.

We end this subsection with a useful comparison of Lelong numbers of products

of currents: If S1 is a positive closed (1,1)-current and S2 is a positive closed (p, p)-

current such that the product S1 ∧ S2 (which is given locally by the local potentials

of S1) is well defined, then

(2.1) ν(S1 ∧ S2, x) ≥ ν(S1, x)ν(S2, x)

for every x ∈ X.
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2.1.3 Currents on singular projective varieties

We will need to deal with positive closed currents defined on singular varieties.

If X is a projective variety and ι : X ↪→ PN an embedding, we will say that ω is a

Fubini-Study form on X if ω = ι∗ωPN |X , where ωPN is the Fubini-Study form on PN .

Note that ω is a positive smooth differential form on Xreg.

Definition II.3. If X is a (possibly singular) projective irreducible variety and S is

a positive closed (p, p)-current defined on Xreg, we will say that S has bounded mass

around Xsing if there exist an open neighborhood U of Xsing such that∫
U∩Xreg

S ∧ ωdim(X)−p < +∞.

In a complex manifold, for any given two hermitian forms ω and ω′ there is always

a positive constant A such that A−1ω ≤ ω′ ≤ Aω, in particular it is easy to see that

above definition does not depend of the embedding of X.

2.2 Holomorphic Dynamics on the Projective Space

Throughout this thesis f : Pk → Pk will denote a holomorphic map of degree

d ≥ 2, i.e. the map f is given by a (k + 1)-tuple of homogeneous polynomials of

degree d ≥ 2 in k + 1 variables, having (0, . . . , 0) ∈ Ck+1 as the only common root.

2.2.1 The Green current

Denoting by ω the Fubini-Study metric on Pk and using that the De Rham co-

holomogy group H2
DR(Pk;R) is generated by {ω}, we see that there exists a smooth

function u : Pk → R such that

d−1f ∗ω = ω + ddcu,

where ddc =
√
−1

2π
∂∂̄. In particular, for every n ∈ N we observe that

d−n(fn)∗ω = ω + ddcun,
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where un :=
∑n−1

i=0 d
−iu ◦ f i is a sequence of smooth functions on Pk. Since u is

bounded, it follows that the series defining un converges uniformly to a (continuous)

function gf on Pk. Hence, the sequence of smooth forms ω + ddcun converges in the

sense of currents to the positive closed (1,1)-current

Tf := ω + ddcgf .

The current Tf is called the Green current associated to f and it plays a central

role for the understanding of the dynamics given by the map f . It is invariant (i.e.

f ∗Tf = dTf ), it has Lelong numbers zero everywhere and its support equals the Julia

set of f ([FS94], [HP94]).

As we stated at the introduction, given a positive closed (1,1)-current S we can

verify equidistribution (i.e. d−n(fn)∗S converges to Tf in the sense of currents) if the

sequence supx∈Pk ν (d−n(fn)∗S, x) converges to 0 [Gue03]. We will show that there is

a link between equidistribution and the appearence of certain exceptional sets.

It will be convenient to replace iterates f s by f , for this we need the following

Lemma II.4. Let S be a positive closed (1,1)-current of mass 1. Then the following

are equivalent

(i) d−n(fn)∗S → Tf ;

(ii) d−ns(fns)∗S → Tf for some s ≥ 1.

Note that (i) ⇒ (ii) follows immediately and that (ii) implies

d−n(fn)∗S → d−l
(
f l
)∗
Tf

for some l ∈ {0, 1, . . . , s−1}. The f -invariance of Tf finally implies that d−l
(
f l
)∗
Tf =

Tf .



14

2.2.2 Totally invariant algebraic sets

A subset X ⊂ Pk is said to be totally invariant if f−s(X) ⊂ X for some s ≥

1. If X ⊂ Pk is an irreducible algebraic totally invariant set, then it follows that

f−s(X) = X. Moreover, if X is a totally invariant algebraic set of codimension p in

Pk then the holomorphic map

g := f s|X : X → X

has topological degree dsp and (f s)∗[X] = dsp[X], where [X] denotes the current of

integration of X. For a detailed discussion on the properties of holomorphic (and

meromorphic) dynamics on projective spaces we refer the reader to [Sib99].

A crucial property of totally invariant algebraic subsets of Pk is the following

(non-trivial) well known fact

Theorem II.5. The collection of all proper totally invariant algebraic subsets of Pk

is finite.

A proof of Theorem II.5 can be found in [DS08] (see also [FS94] for the case

k = 2). For the more general situation g : X → X where g is a regular map

and X is a projective variety, the same conclusion can be derived from the work of

Dinh-Sibony in [DS08], giving us the more useful result

Theorem II.6. Let g : X → X be a regular self-map of a projective variety X.

Then, the collection of all proper totally invariant subsets of X is finite.

2.3 Characterization of equidistribution

As we mentioned earlier in the introduction, we can test equidistribution looking

at the asymptotic behavior of Lelong numbers. More concretely
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Theorem II.7. Let S be a positive closed (1,1)-current of mass 1 on Pk. The

following are equivalent

(i) d−n(fn)∗S → Tf weakly;

(ii) supx∈Pk ν(d−n(fn)∗S, x)→ 0.

Proof. (i)⇒ (ii)

This implication follows from the usc of the map (S, x) 7→ ν(S, x) and the fact

that ν(Tf , x) = 0 for all x ∈ Pk. Assume that there exists a sequence {xn} ⊂ Pk and

a constant A > 0 such that

ν
(
d−n(fn)∗S, xn

)
≥ A

for all n ∈ N. Up to passing to a subsequence, there exists a point x̄ ∈ Pk such that

xn → x̄, hence

0 < A ≤ lim sup
n→+∞

ν
(
d−n(fn)∗S, xn

)
≤ ν(Tf , x̄) = 0

which is a contradiction.

(ii)⇒ (i)

Before starting the proof of this implication we recall two results by Kiselman

[Kis00] and Guedj [Gue04] respectively.

Theorem II.8 (Kiselman). Let U ⊂ C2 be an open set, K a compact subset of U , and

u a plurisubharmonic function on U . For any real number α < 2
(
supp∈K ν(u, p)

)−1
,

there exist a constant Cα such that for any t ≥ 0, the estimate

Vol({K ∩ {u ≤ −t}) ≤ Cα exp(−αt)

holds.
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Theorem II.9 (Guedj). There exist a positive constant C independent of n ≥ 0 and

any ball B ⊂ Pk such that

Vol(fn(B)) ≥ exp

(
− C

Vol(B)
dn
)
,

for every n ≥ 0.

Since S is a positive closed (1,1)-current of mass 1 we can write S as S = ω+ddcu

where ω is the Fubini-Study form on Pk. It follows that for every n ≥ 0,

d−n(fn)∗S = d−n(fn)∗ω + d−nddc(u ◦ fn),

where d−n(fn)∗ω → Tf in the sense of currents. We will proceed by contradiction. If

d−n(fn)∗S 9 T , we have that d−nddc(u◦fn) 9 0 which is equivalent to d−n(u◦fn) 9

0 in L1
loc. Therefore, by Hartog’s Lemma [Hör90, Theorem 1.6.13] we can find a ball

B ⊂ Pk, a subsequence nj →∞ and a positive constant α such that

fnj(B) ⊂ {u < −αdnj}.

Since

sup
p∈Pk

ν(d−nu ◦ fn, p)→ 0,

for every ε > 0 there exist N > 0 such that supp∈Pk ν(u ◦ fn, p) < 2/ε for n ≥ N .

Using Theorem II.8, in our case K = Pk and u the potential of S we get that

Vol ({u < −αdn}) ≤ Cε exp(−εαdn).

On the other hand, if fnj(B) ⊂ {u < −αdnj}, from Theorem II.9 we deduce that

exp

(
− C

Vol(B)
dnj

)
≤ Cε exp(−εαdnj),

which is a contradiction since ε > 0 is very small and independent of B, nj, C and

α.



CHAPTER III

Intersection Inequality

3.1 Approximation of currents

In this section we will discuss the approximation of (1,1)-currents by currents

with analytic singularities. The entire section is based on the work of J. P. Demailly

(particularly [Dem93], [Dem92]). However, we add some details of the proof of

Theorems III.2 and III.4 since these techniques are crucial for this work and the

author believes that they are not very well known.

The main ingredients of the approximation are the mean value inequality and the

Ohsawa-Takegoshi L2-extension theorem

Theorem III.1 (Ohsawa-Takegoshi’s L2-Extension Theorem). Let X be a projective

manifold. Then there is a positive line bundle A→ X over X with smooth hermitian

metric hA and a constant C > 0 such that for every line bundle L → X provided

with a singular hermitian metric hL and for every x ∈ X such that hL(x) 6= 0, there

exist a section σ of L+ A such that

‖σ‖hL⊗hA ≤ C|σ(x)|.

The original version of Theorem III.1 can be found in [OT87]. The more general

form used here can be found in [Man93].

17
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3.1.1 Approximation by divisors

Let X be a projective manifold and let S be a positive closed current representing

the first Chern class c1(L) of a hermitian line bundle L→ X. More precisely, we can

endow L→ X with a singular hermitian metric hL and curvature form Θ(hL) where

S ∈ c1(L) = {Θ(hL)} .

Now, let A→ X be an ample line bundle with smooth hermitian metric hA = e−ϕA .

Its positive curvature form ω :=
√
−1

2π
∂∂̄ϕA endows X with a Kähler metric. We

can fix a smooth hermitian metric h on L, hence we can write hL = he−2ϕ and

S = Θ(hL) = Θ(h)+
√
−1

2π
∂∂̄ϕ. We endow mL+A with the (singular) metric h⊗mL ⊗hA

and we define the (finite dimensional) Hilbert space Hm ⊂ H0(X;OX(mL+ A)) as

Hm :=
{
σ ∈ H0(X;OX(mL+ A)) | ‖σ‖2

m < +∞
}

where the norm ‖ · ‖2
m is given by

‖σ‖2
m :=

∫
X

h⊗mL ⊗ hA(σ)dVω.

We present the following theorem which can be found in [Dem93] (see also [Bou02]).

Theorem III.2. Let X, S, L → X, ϕ and A → X be as before. Let {σm,j}Nm
j=1 be

an orthonormal basis of Hm and define

ϕm(x) :=
1

2m
log

(
Nm∑
j=1

h⊗m ⊗ hA(σm,j(x))

)
.

Then there exist positive constants C1 and C2 independent of m such that, for

every x ∈ X we have:

ϕ(x)− C1

m
≤ ϕm(x) ≤ sup

z∈B(x,r)

ϕ(z) +
C2

m
+ C(x, r),

where C(x, r) tends to 0 as r → 0.
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Proof of Theorem III.2. First we cover X by finitely many small open balls {B}

giving local trivializations for both line bundles A and L. On L, A|B ' B × C ⊂

Ck × C we pick smooth metrics ψ, ψA for L and A respectively, i.e. for all (x, v) ∈

B × C

h(x, v) = |v|2e−2ψ(x), hA(x, v) = |v|2e−2ψA(x),

hence if σ ∈ Hm is a section supported on B we have that

h⊗m ⊗ hA(σ(x)) = |σ(x)|2e−2mψ(x)−2ψA(x).

Since σ : B → C is holomorphic, by the mean value inequality for all x ∈ B and

r < dist(x, ∂B) we have

|σ(x)|2 ≤ k!

πkr2k

∫
B(x,r)

|σ(z)|2dV (z),

implying

(3.1) h⊗m ⊗ hA(σ(x)) ≤ C

r2k
e−2mψ(x)−2ψA(x)

∫
B(x,r)

|σ(z)|2dV (z) ≤

≤ C

r2k
e2m[supB(x,r) ψ−ψ(x)]+2[supB(x,r) ψA−ψA(x)]

∫
B(x,r)

h⊗m ⊗ hA(σ(z))dV (z).

Denote by c(x, r) := supB(x,r) ψ − ψ(x), cA(x, r) := supB(x,r) ψA − ψA(x) and note

that ∫
B(x,r)

h⊗m ⊗ hA(σ(z))dV (z) ≤

(
sup
B(x,r)

e2mϕ

)
‖σ‖2

m,

therefore

(3.2) h⊗m ⊗ hA(σ(x)) ≤ C

r2k
emc(x,r)+cA(x,r)

(
sup
B(x,r)

e2mϕ

)
‖σ‖2

m.

We can write ϕm as

e2mϕm(x) = sup
‖σ‖=1

h⊗m ⊗ hA(σ(x));
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therefore taking log of (3.2) and the supremum over ‖σ‖m = 1 we obtain

(3.3) 2mϕm(x) ≤ log

(
C

r2k

)
+mc(x, r) + cA(x, r) + 2m sup

B(x,r)

ϕ =⇒

=⇒ ϕm(x) ≤ sup
B(x,r)

ϕ+ C(x, r) +
1

m
log

(
C ′

rk

)
,

where C ′ > 0 and C(x, r)→ 0 as r → 0.

For the other inequality we use Ohsawa-Takegoshi’s L2 Extension Theorem: Let

x ∈ X such that hL(x) 6= 0. Since hL = he−2ϕ we can find a section σ ∈ Hm such

that

‖σ‖2
m ≤ C2|σ(x)|2 = C2h⊗m ⊗ hA(σ(x))e−2mϕ(x),

for some C > 0. Using (again) that

e2mϕm(x) = sup
‖σ‖m=1

h⊗m ⊗ hA(σ(x)),

we take log of the inequality and the supremum over ‖σ‖m = 1 obtaining

ϕ(x) ≤ ϕm(x) +
C ′

m
.

This concludes the proof.

The theorem above can be reformulated as

Theorem III.3. Let X be a projective complex manifold and let S be a positive

closed (1,1)-current in the cohomology class of a line bundle. Then there exist a

sequence of closed (1,1)-currents Sm in the cohomology class of S such that

(i) Sm ≥ − 1
m
ω;

(ii) The sequence Sm converges weakly to S;

(iii) For every x ∈ X the Lelong numbers at x satisfy

ν(S, x)− C

m
≤ ν(Sm, x) ≤ ν(S, x),
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for some C > 0. In particular, the Lelong numbers ν(Sm, x) converge uniformly

to ν(S, x).

Proof. Let L→ X be a positive hermitian line bundle with singular hermitian metric

hL such that S ∈ {Θ(hL)}. We can take a smooth metric h on L such that hL can

be written as hL = he−2ϕ and therefore we can define

Sm := Θ(h) +

√
−1

2π
∂∂̄ϕm,

with ϕm as in the theorem above.

For any x ∈ X, pick a trivialization Ω of L and A around x. On Ω, we have that

h⊗m ⊗ hA(σ)(x) = |σ(x)|2e−2mϕ(x)−2ϕA(x)

giving us

ϕm(x) =
1

2m
log

(
Nm∑
j=1

|σm,j(x)|2
)
− ϕ(x)− 1

m
ϕA(x).

Therefore

√
−1

2π
∂∂̄ϕm + Θ(h)︸ ︷︷ ︸

Sm

+
1

m
Θ(hA)︸ ︷︷ ︸

ω

≥ 0

giving us (i). It is routine to check that the sequence Sm converges to S = Θ(h) +
√
−1

2π
∂∂̄ϕ for (ii) and part (iii) follows immediately.

3.1.2 Attenuation of Lelong numbers

We finish this section with a refined version of the theorem of the subsection above

which will allow us to approximate positive closed currents by currents with analytic

singularities and attenuated Lelong numbers. We state the main theorem of this

section proved in [Dem93].
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Theorem III.4. Let X be a projective manifold and let S be a positive closed (1,1)-

current representing the class c1(L) of some hermitian line bundle L → X. Fix a

sufficiently positive line bundle G over X such that TX ⊗G is nef. Then for every

c > 0 there exist a sequence of closed (1,1)-currents Sc,m converging weakly to S over

X such that

• Sc,m ≥ − 2
m
ω − cu, where u is the curvature form of G and;

• max (ν(S, x)− c− dim(X)/m, 0) ≤ ν(Sc,m, x) ≤ max (ν(S, x)− c, 0) .

The proof of the above theorem in a more general case, namely X is a compact

Kähler manifold and S is any almost positive closed (1,1)-current can be found in

[Dem92]; the proof involves a very technical gluing procedure which is beyond the

scope of what we want to present here. For the case X projective and S the curvature

current of a positive line bundle, the proof is simpler and can be obtained in a more

direct way; we present the proof given in [Dem93] with some details added.

Proof. As in Theorem III.2 it is possible to construct sections σm,j ∈ H0(X;mL+A),

1 ≤ j ≤ Nm such that

ν(S, x)− dimX

m
≤ 1

m
min

j=1,...,Nm

ordx(σm,j) ≤ ν(S, x).

We consider the l-jet sections J lσm,j with values in the vector bundle J lOX(mL+

A). We have the exact sequence

0→ SlT ∗X ⊗OX(mL+ A)→ J lOX(mL+ A)→ J l−1OX(mL+ A)→ 0.

Dualizing the above sequence we obtain the short exact sequence

0→ (J l−1OX(mL+ A))∗ → (J lOX(mL+ A))∗ → (SlT ∗X ⊗OX(mL+ A))∗ → 0
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which can be rewritten as

0→ (J l−1OX(mL+ A))∗ → (J lOX(mL+ A))∗ → SlTX ⊗OX(−mL− A)→ 0.

Twisting this exact sequence with OX(mL+ 2A+ lG) we obtain that

(3.4) 0→ (J l−1OX(mL+ A))∗ ⊗OX(mL+ 2A+ lG)→

→ (J lOX(mL+ A))∗ ⊗OX(mL+ 2A+ lG)→ SlTX ⊗OX(lG+ A)→ 0

is exact. By hypothesis, the vector bundle TX ⊗ G is nef and therefore Sl(TX ⊗

OX(G)) = SlTX ⊗OX(lG) is nef for all symmetric powers of order l, hence

SlTX ⊗OX(lG+ A) =
(
SlTX ⊗OX(lG)

)︸ ︷︷ ︸
nef

⊗OX(A)︸ ︷︷ ︸
ample

is ample. Since hte extremes of the exact sequence (3.4) are ample, we use induction

on l ≥ 1 to conclude that the middle term

(J lOX(mL+ A))∗ ⊗OX(mL+ 2A+ lG)

is also ample.

By definition of amplitude of vector bundles there exist q ≥ 1 such that

Sq
(
J lOX(mL+ A)

)∗ ⊗OX(qmL+ 2qA+ qlG)

is generated by holomorphic sections gm,i. Using this together with the pairing of

(J lOX(mL+ A))∗ and J lOX(mL+ A) we obtain sections

Sq(J lσm,j)gm,i ∈ H0(X;OX(qmL+ 2qA+ qlG))

which in a trivialization give us the metric

ϕm,l :=
1

qm
log
∑
i,j

|Sq(J lσm,j)gm,i| −
2

m
ψA −

l

m
ψG.
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Note that ψA and ψG are smooth; therefore we have

ν(ϕm,l, x) =
1

m
min
j

ordx(J
lσm,j) =

1

m

(
min
j

ordx(σm,j)− l
)
.

This gives us the inequality

max

(
ν(S, x)− l + dim(X)

m
, 0

)
≤ ν(ϕm,l, x) ≤ max

(
ν(S, x)− l

m
, 0

)
.

Finally, for every c > 0 and every m � 0 it is possible to find l > 0 such that

c < l/m < c+ 1/m, hence

√
−1

π
∂∂̄ϕc,m ≥ −

2

m
ω − cu,

where ϕc,m := ϕm,l for this choice of m, l, and ω and u are the curvature forms of A

and G respectively.

Now, for any smooth metric h on L, the sequence of currents

Sc,m := Θ(h) +

√
−1

π
∂∂̄ϕc,m,

converges weakly to S and satisfies the desired properties.

3.2 The intersection theorem

let X be a (possibly singular) projective variety and let S be a positive closed

(1,1)-current on Xreg with bounded mass near Xsing (see Definition II.3) and Y ⊂ X

an irreducible algebraic subset of codimension l in X. We want to study the locus

inside Y where the Lelong numbers of S are larger than the generic Lelong number

of S along Y . For every c > 0 we denote by Ec(S) the Lelong upper level sets of S

defined as the analytic subset

Ec(S) := {x ∈ Xreg | ν(S, x) ≥ c}
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and by EY
c (S) = Ec(S) ∩ Y the Lelong upper level sets of S at Y . Let

0 ≤ β1 ≤ β2 . . . ≤ βdim(X)−l+1

be the jumping numbers of EY
c (S), i.e. for every c ∈]βp, βp+1] the algebraic set EY

c (S)

has codimension p in Y with at least one component of codimension exactly p. Let

{Zp,r}r≥1 be the countable collection of irreducible components of
⋃
c∈]βp,βp+1] E

Y
c (S)

of codimension exactly p in Y and denote by νp,r the generic Lelong number of S at

Zp,r. Note that β := ν(S, Y ) the generic Lelong number of S along Y corresponds

to β1. Then we obtain the main result of this section

Theorem III.5. With the same notation as above, there exist a positive constant

C, depending only on the geometry of X and Y , such that∑
r≥1

(νp,r − β)p
∫
Zp,r

ωk−l−p ≤ C

∫
Xreg

S ∧ ωdim(X)−1,

for all p = 1, . . . , dim(X)− l + 1, where ω is the Fubini-Study metric of X.

We have proved this result in [Par10].

3.2.1 Examples

We provide a few examples showing the value of our result.

Example III.6. Let’s start with the trivial case where X = Y is a projective curve.

In this case, the current S is a positive finite measure on X, giving us∫
X

S ≥
∑
x∈X

ν(S, x) =
∑
r≥1

ν1,r.

So Theorem III.5 follows immediately.

Example III.7. If X is a projective manifold (i.e. smooth) and Y = X, hence l = 0,

β = 0 and EY
c (S) = Ec(S), then the inequality of Theorem III.5 can be written as∑

r≥1

νpp,r

∫
Zp,r

ωp ≤ C.
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In [Dem92] Theorem 7.1, J.P. Demailly proved that under the same assumptions

as above, we have that there is a positive constant C ′ > 0 such that

∑
r≥1

(νp,r − β1) · · · (νp,r − βp)
∫
Zp,r

ωp ≤ C ′,

where β1 ≤ . . . ≤ βk+1 are the jumping numbers of S. Observing that

νp,r ≥ νp,r − βj ∀ j = 1, . . . , p

Theorem III.5 shows that

∑
r≥1

(νp,r − β1) · · · (νp,r − βp)
∫
Zp,r

ωp ≤
∑
r≥1

νpp,r

∫
Zp,r

ωp ≤ C

implying Demailly’s result.

In the same setting, it is also interesting to observe the two extreme cases p = 1

and p = k:

a) The case p = 1 follows immediately from Siu’s decomposition theorem, since

S =
∑
j≥1

λj[Aj] +R

with R ≥ 0 and {Z1,r}r ⊂ {Aj}j, therefore

S ≥
∑
r≥1

ν1,r[Z1,r]

and the result follows after integrating this inequality with
∫
· ∧ ωk−1.

b) The case p = k is especially interesting when Ec(S) is countable for all c > 0. A

remarkable result proved in Corollary 6.4 of [Dem92] is that if Ec(S) countable

then the class {S} is nef. Moreover, Demailly gave the more refined inequality

∑
r≥1

νkk,r +

∫
X

Skac ≤
∫
X

{S}k,

where Sac is the absolutely continuous part in the Lebesgue decomposition of

the coefficients of S.
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Example III.8. Let X be the projective plane P2, let Y ⊂ P2 be an irreducible

curve and let S be the current of integration defined by S := (deg(D))−1[D] (hence

‖S‖ = 1), where D 6= Y is another irreducible curve. It is not hard to see from

the proof of our theorem (see Subsection 3.2.2) that the constant C > 0 satisfies

C = deg(Y ) and that

∑
r≥1

ν1,r

∫
Z1,r

ω = #(Y ∩D) · (deg(D))−1.

Therefore Theorem III.5 is nothing but Bézout’s theorem for these two curves.

Example III.9. If X is a projective manifold (i.e. smooth) and Y ⊂ X an irre-

ducible smooth hypersurface, hence l = 1, then using Siu’s decomposition theorem it

is easy to see that the closed (1,1)-current S−β[Y ] is positive. Assume that S−β[Y ]

admits local potentials not identically −∞ along Y . Then we can restrict S − β[Y ]

to Y and the statement is reduced to Example III.7.

It is important to remark that it is not always possible to restrict positive close

currents. Part of the idea in the proof of Theorem III.5 is to restrict an approximation

of the current.

Remark III.10. If Y ⊂ X has codimension l > 1 in X, then it is not even possible to

subtract [Y ] from S since the dimensions do not match. Therefore there is no direct

method for studying the Lelong numbers of S inside Y , so our theorem proves to be

useful in the general case.

3.2.2 Proof of the intersection inequality

We will divide the proof of Theorem III.5 into three steps. In the first step we

will assume that our projective variety X is smooth and that the cohomology class

of S is nef. We can then find suitable smooth representatives of {S} which, together
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with the sequence obtained in Theorem III.4, will allow us to approximate S by

a sequence of currents Sc,m of bounded potentials and therefore we will be able to

intersect such sequence with the current of integration [Y ]; this procedure will be

the key for obtaining our result in this setting. In the second step, we still assume

X smooth but {S} not necessarily nef; using that H1,1(X;R) is finite dimensional

and the upper semicontinuity of Lelong numbers, we will replace S by a current Ŝ

with nef class {Ŝ} but the same Lelong numbers as S everywhere; then we apply our

result in Step 1 to Ŝ implying the same conclusion to S. Finally, in Step 3 we prove

the general case when X is a projective variety, not necessarily smooth, by taking a

resolution of singularities of X, and applying Step 2 to the strict transform of S, Y

and Zp,r.

We recall the notions of numerically effective (nef), pseudoeffective (psef) and

Kähler cones (for details see [Laz04], also [Bou02]). The space of classes of real

(1,1)-forms H1,1(X;R) is defined as

H1,1(X;R) := H1,1

∂̄
(X;C) ∩H2(X;R) =

{
α ∈ H1,1

∂̄
(X;C) | ᾱ = α

}
,

where H1,1

∂̄
(X;C) is the Dolbeault (1,1)-cohomology of X.

The Kähler cone K(X), the Psef cone P(X) and the Nef cone N (X) are defined

as

K(X) := {α ∈ H1,1(X;R) | α can be represented by a Kähler form},

P(X) := {α ∈ H1,1(X;R) | α can be represented by

a positive closed (1,1)-current},
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and

N (X) := {α ∈ H1,1(X;R) | if for every ε > 0, α can be represented by a

smooth form αε such that αε ≥ −εω}

respectively. Note that if X is Kähler (or projective) the set K(X) is not empty.

It follows from the definitions above that

∅ 6= K(X) ⊂ N (X) ⊂ P(X) and K(X) = Int(N (X)).

We prove now our Main Theorem:

Step 1: Assume X to be a (smooth) complex projective manifold and the class

{S} to be nef. For this case, we will actually prove a slightly more general result,

where we will be able to ’kill Lelong numbers’ locally. More precisely, given any

subset Ξ of Y and p = 1, . . . , dim(X) − l + 1, we denote the jumping numbers

bp = bp(S,Ξ) of EY
c (S) with respect to Ξ as

bp := inf{c > 0 | codimx(E
Y
c (S);Y ) ≥ p, ∀x ∈ Ξ}.

In our situation, the subset Ξ will be a Zariski dense subset of Y with a prescribed

geometrical condition, namely, Ξ will be the complement of all irreducible compo-

nents of EY
c (S) of codimension strictly less than p. Following Demailly we prove the

following lemma

Lemma III.11. Let Ξ be any subset of Y and 0 ≤ b1 ≤ b2 ≤ . . . ≤ bdim(X)−l+1 the

jumping numbers of EY
c (S) with respect to Ξ. Fix a positive line bundle with smooth

curvature u as in Theorem III.4 and assume that the class {S} is nef. Then for

every p = 1, . . . , dim(X)− l+ 1 there exists a positive closed (l+ p, l+ p)-current Θp

in X with support on Y such that

(3.5) {Θp} = {Y } · ({S}+ b1{u}) · · · ({S}+ bp{u}) ∈ H l+p,l+p(X;R),
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(3.6) Θp ≥
∑
r≥1

(νp,r − b1) · · · (νp,r − bp)[Zp,r].

Proof. Let c > b1 and let α ∈ {S} be a smooth real (1,1)-form. Take the sequence

of currents Sc,m = α +
√
−1

2π
∂∂̄ϕc,m as in Theorem III.4 where ϕc,m is singular along

Ec(S) and Sc,m ≥ − 2
m
ω− cu. Since we are assuming {S} to be nef, for every m ∈ N

we can pick αm ∈ {S} smooth such that αm ≥ − 2
m
ω and we can write αm as

αm = α +
√
−1

2π
∂∂̄ψm with ψm smooth. Set

ϕc,m,L := max{ϕc,m, ψm − L},

for L� 0 and Sc,m,L := α+
√
−1

2π
∂∂̄ϕc,m,L. Observe that by adding the local potentials

of ω and cu to the the max between ϕc,m and ψm − L we easily conclude that the

closed current Sc,m,L satisfies

Sc,m,L +
2

m
ω + cu ≥ 0.

The family of potentials {ϕc,m,L} is bounded everywhere, therefore

Θ1,c,m,L := [Y ] ∧
(
Sc,m,L +

2

m
ω + cu

)
is a well defined positive closed (l + 1, l + 1)-current on X with support on Y by

Theorem II.2. By extracting a weak limit we define

Θ1,c,m := lim
L→+∞

Θ1,c,m,L

on X. Since the potentials ϕc,m,L decrease monotonically to ϕc,m as L → +∞ we

have that

Θ1,c,m = [Y ] ∧
(
Sc,m +

2

m
ω + cu

)
in a neighborhood of Ξ, since for every point x ∈ Ξ we can find a neighborhood U

of x such that the unbounded locus of [Y ] and Sc,m has codimension ≥ l + 1 in U
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(or real dimension ≤ 2 dim(X)− 2l− 2) hence by Theorem II.2 the current Θ1,c,m is

well defined in a neighborhood of Ξ, and {Θ1,c,m} = {Y } ·
(
{S}+ 2

m
{ω}+ c{u}

)
for

every m ≥ 1 and every c > b1 and for every x ∈ X,

ν(Θ1,c,m, x) ≥ ordx(Y )ν(Sc,m, x) ≥ ordx(Y )(max{ν(S, x)− c− dim(X)/m, 0}).

Note also that the total mass of the family {Θ1,c,m} is uniformly bounded. We

extract (modulo a subsequence) a limit

Θ1 := lim
c↘b1

lim
m↗+∞

Θ1,c,m,

which satisfies {Θ1} = {Y }·({S}+b1{u}) and by the upper semicontinuity of Lelong

numbers we obtain

ν(Θ1, x) ≥ (ν1,r − b1), ∀x ∈ Z1,r ∀ r ≥ 1.

By Siu’s decomposition theorem, Θ1 can be written as

Θ1 =
∑
j≥1

λj[Vj] +R1,

where for every j ≥ 1, Vj is an irreducible variety of codimension l + 1 in X, λj is

the generic Lelong number of Θ1 along Vj and R1 is a positive closed current with

upper level sets Ec(R1) of codimension strictly bigger than l + 1 for all c > 0. This

in particular implies that for all r ≥ 1 we have that Z1,r = Vjr for some jr and for a

generically chosen x ∈ Z1,r we obtain

λjr = ν(Θ1, x) ≥ (ν1,r − b1) =⇒ Θ1 ≥
∑
r≥1

(ν1,r − b1)[Z1,r].

Now we proceed by induction on 2 ≤ p ≤ dim(X) − l + 1. We assume we have

constructed Θp−1 with the desired properties and in the exact same way as before,

for c > bp we define the positive closed (l + p, l + p)-current

Θp,c,m,L := Θp−1 ∧
(
Sc,m,L +

2

m
ω + cu

)
,
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which is well defined everywhere. The current

Θp,c,m := lim
L→+∞

Θp,c,m,L

satisfies

• Θp,c,m = [Y ] ∧
(
Sc,m + 2

m
ω + cu

)
in a neighborhood of Ξ,

• {Θp,c,m} = {Y } ·
(
{S}+ 2

m
{ω}+ c{u}

)
for every m ≥ 1 and every c > bp and,

• ν(Θp,c,m, x) ≥ ν(Θp−1, x) max{(ν(S, x)− c− dim(X)/m), 0} for every x ∈ X.

We extract a weak limit (modulo a subsequence)

Θp := lim
c↘bp

lim
m↗+∞

Θp,c,m,

which (by the same arguments as above) satisfies the desired properties.

Step 2: Now assume that X is a complex projective manifold and let ω be any

Kähler form on X. However, the class {S} is not necessarily nef.

Let

(3.7) P1 := {α ∈ P(X) | ‖α‖ = 1} ⊂ H1,1(X;R)

be a slice of the pseudoeffective cone of X, where ‖ · ‖ is any norm on the finite

dimensional real vector space H1,1(X;R). Since P1 is compact and Int(N (X)) =

K(X) 6= ∅ we can pick A0 = A0({ω}) > 0 such that A{ω} + α is nef for every

A ≥ A0 and every α ∈ P1. Note also that the set of of positive closed currents

S with a fixed cohomology class is also (weakly) compact. Moreover, by the upper

semicontinuity in both variables of the Lelong numbers is easy to see that there exists

a constant τ = τ(X) such that ν(S, x) ≤ τ for every x ∈ X and every positive closed

(1,1)-current S so that {S} ∈ P1.
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Now, fixing A ≥ A0 we define the positive closed (1,1)-current Ŝ := S + Aω. It

satisfies:

• {Ŝ} ∈ N (X),

• ν(Ŝ, x) = ν(S, x) for every x ∈ X (in particular, the Lelong upper level sets

EY
c (Ŝ) and EY

c (S) coincide, giving us the same decomposition in terms of jump-

ing numbers).

Taking β = ν(S, Y ) = ν(Ŝ, Y ) and defining the set

Ξp := {
(
∪c>β(Irreducible components of EY

c (S) of codimension < p)
)
,

we obtain that the jumping numbers with respect to Ξp satisfy

b1(S,Ξp) = . . . = bp(S,Ξp) = β.

If {Zp,r}r≥1 are the irreducible components of EY
c (Ŝ) = EY

c (S) for c ∈]βp, βp+1]

of codimension exactly p in Y and νp,r the generic Lelong numbers, we apply the

previous lemma to Ŝ, hence we obtain a positive closed (l + p, l + p)-current Θp on

X with support on Y such that

{Θp} = {Y } · ({Ŝ}+ b1{u}) · · · ({Ŝ}+ bp{u}) =

= {Y } · ({S}+ A{ω}+ b1{u}) · · · ({S}+ A{ω}+ bp{u})

and ∑
r≥1

(νp,r − β)p[Zp,r] ≤ Θp.
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We apply
∫
X
· ∧ ωdim(X)−l−p to the inequality, giving us

∑
r≥1

(νp,r − β)p
∫
Zp,r

ωdim(X)−l−p ≤
∫
X

Θp ∧ ωdim(X)−l−p =

=

∫
X

[Y ] ∧ (S + Aω + b1u) ∧ · · · ∧ (S + Aω + bpu) ∧ ωdim(X)−l−p ≤

≤
∫
X

[Y ] ∧ ((1 + A)ω + τu)p ∧ ωdim(X)−l−p =: C.

Step 3: We now prove the theorem in the general case.

Let π : X̃ → X be a resolution of singularities. Since Y and Zp,r are not contained

in Xsing, we can define Ỹ and Z̃p,r the strict transforms of Y and Zp,r, respectively.

Let S̃ be the positive closed (1,1)-current defined by

S̃ := π∗S on π−1(Xreg).

By assumption, S̃ has locally bounded mass around π−1(Xsing) hence by Theorem

II.1 the extension by zero of S̃ is a positive closed (1,1)-current on X̃. On the

other hand, since π : π−1(Xreg) → Xreg is a biholomorphism we can conclude that

ν(S̃, Z̃p,r) = νp,r and ν(S̃, Ỹ ) = β.

We know by Step 2 that if ω̃ is the Fubini-Study metric on X̃ we can find a

positive constant C depending only on X̃, Ỹ and ω̃ such that

C ≥
∑
r≥1

(νp,r − β)p
∫
Z̃p,r

ω̃dim(X)−l−p.

We prove the following lemma

Lemma III.12. Let A be an ample line bundle defined on X and ω̃ the Fubini-Study

metric on X̃. Then, there exist δ > 0 depending only on ω̃ and A such that for every

irreducible algebraic set Z ⊂ X not contained in Xsing of dimension q and strict

transform Z̃ the following holds ∫
Z̃

ω̃q ≥ δ(Aq · Z)
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where (Aq · Z) denotes the intersection number
∫
Z
c1(A)q.

Proof of Lemma. First observe that

(Aq · Z) =

∫
Z

c1(A)q =

∫
π∗Z̃

c1(A)q =

∫
Z̃

π∗(c1(A)q) =

∫
Z̃

(π∗c1(A))q.

Since ω̃ is positive, we can find ε > small enough such that the class of {α} :=

{ω̃} − επ∗c1(A) is numerically effective (even ample) on X̃. Then

∫
Z̃

ω̃q =

∫
Z̃

(επ∗c1(A) + α)q =

=

∫
Z̃

(επ∗c1(A))q +

q−1∑
i=0

(
q

i

)∫
Z̃

(επ∗c1(A))i ∧ αq−i ≥

≥ εq
∫
Z̃

(π∗c1(A))q ≥ δ(Aq · Z),

where δ := εdim(X). This proves the lemma.

Now picking ω̃ on X̃ and δ > 0 as above, and taking A = OX(1) the theorem

follows since

C ′ := Cδ−1 ≥
∑
r≥1

(νp,r − β)pδ−1

∫
Z̃p,r

ω̃p+l ≥
∑
r≥1

(νp,r − β)p
∫
Zp,r

ωp+l.

This completes the proof of the Theorem.



CHAPTER IV

Orders of vanishing and the Jacobian cocycle

4.1 Orders of vanishing

In this section we discuss orders of vanishing on algebraic varieties, where a major

difficulty will be to deal with the singular locus. The standard references [Kol97] and

[KM98] (see also [CKM88]) contain a details discussion of all the concepts discussed

in this section.

Let X be an irreducible projective normal variety of dimension k, and assume X

to be Q-factorial, i.e. every Weil divisor is Q-Cartier. If π : Y → X is a birational

morphism, we say that E ⊂ Y is a divisor over X if E is a smooth prime divisor in

Y . We say that E lies over a point x ∈ X if π(E) = {x}.

If φ is a rational function on X and E a divisor over X, we write ordE(φ) for the

order of vanishing of φ◦π along the divisor E. Similarly, if D is a Weil divisor on X,

we set ordE(D) := 1
m

ordE (π∗(mD)) where m ∈ N is chosen so that mD is Cartier.

As usual, we denote by KX the canonical divisor class of X.

Above, we may assume that π : Y → X is a log-resolution ofX, i.e. the exceptional

locus Exc(π) of π has simple normal crossing. In this case, there exists a unique

divisor KY/X on Y supported on Exc(π), the relative canonical divisor, which is in

the divisor class of KY − π∗KX . If both X and Y are smooth, then KY/X is nothing

36
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but the effective divisor defined by the Jacobian Jac(π) of π.

Given a prime divisor E over X, we define the log-discrepancy aE of E by

(4.1) aE := ordE
(
KY/X

)
+ 1.

We say that X is klt (short for Kawamata log-terminal) if aE > 0 for every prime

divisor E over X.

Let us give a simple example: Let π : Y → X be the blow-up of X at a smooth

point 0 ∈ X. We can choose local coordinates (x1, . . . , xk) so that our map π can be

written as

π(x1, . . . , xk) = (x1x2, . . . , xk−1xk, xk),

giving us that Jac(π) = xk−1
k . Hence, if E = π−1(0) is the exceptional prime divisor

above 0, we have that

(4.2) aE = ordE (Jac(π)) + 1 = k.

Recall that if x ∈ X and φ ∈ OX,x, the order of vanishing ordx(φ) of φ at x is

defined to be

ordx(φ) := max {s ∈ N | φ ∈ ms
x}

where mx denotes the maximal ideal of the local ring OX,x. If x is smooth and E is

an exceptional divisor of a single blowup (at x), then ordx(φ) and ordE(φ) coincide.

However, when x ∈ X is singular, ordx may not be a valuation.

The following well known lemma (which can be found in [Tou72] p.178 Lemma

1.3) will play an important role in this thesis. We write down the proof:

Lemma IV.1. Let E be a prime divisor over X above a smooth point x ∈ X. Then

ordE(D) ≤ aE ordx(D)

for every divisor D ⊂ X.
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Proof. The problem is local, hence we assume (X, x) ≡ (Ck, 0). Let φ be the germ of

a holomorphic function at 0 ∈ Ck and let c(φ) be the complex singularity exponent

of φ, i.e.

c(φ) := sup
{
c > 0 | |φ|−2c ∈ L1(Ck, 0)

}
.

It follows from a theorem of Skoda that 1
c(φ)
≤ ord0(φ) (see also [DK01]), hence for

every c < 1
ord0(φ)

we have that |φ|−2c ∈ L1(Ck, 0).

Let π : Y → Ck be a log-resolution over Ck above 0 and E ⊂ π−1(0) an exceptional

prime divisor. For every open subset U ⊂ Ck containing 0 we have that∫
π−1(U)

|φ ◦ π|−2c| Jac(π)|2dV =

∫
U

|φ|−2cdV < +∞

by change of variables, where dV is the standard volume form in Ck. Therefore

|φ ◦ π|−2c| Jac(π)|2 ∈ L1 along E implying that

−2c ordE(φ) + 2(aE − 1) > −2⇒ ordE(φ) <
aE
c
.

Taking the limit c↗ 1
ord0(φ)

we obtain that

ordE(φ) ≤ aE ord0(φ).

Let g : X → X be a surjective regular map. Then there exists a unique Weil

divisor Cg on X, the critical divisor, whose restriction to Xreg ∩ g−1(Xreg) equals the

Cartier divisor {
x ∈ Xreg ∩ g−1(Xreg) | Jac(g) = 0

}
.

Since X is Q-factorial, Cg is Q-Cartier. It belongs to the divisor class of g∗KX−KX .

We need
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Lemma IV.2. Let π : Y → X be a log-resolution and let E ⊂ Y be a prime divisor.

Then, there exists a log-resolution π′ : Y ′ → X and a prime divisor E ′ ⊂ Y ′ such

that the meromorphic lifting ḡ : Y 99K Y ′ satisfies ḡ(E) = E ′.

Proof. To any rank 1 valuation ν : C(X) \ {0} → R of the function field C(X) we

can associate two basic invariants: the value group

Γν := {ν(φ) | φ ∈ C(X) \ {0}} ⊂ R

and the residue field

K(ν) := {ν ≥ 0}/{ν > 0}.

A valuation ν is of the form r ordE where r > 0 and E is a divisor over X if and

only if Γν = rZ and K(ν) has trascendence degree dim(X) − 1 over C (see [Vaq00,

Proposition 10.1]).

In our situation, set ν := ordE and ν ′ := g∗ν. Then

Γν′ ⊂ Γν = Z

hence Γν′ = rZ for some r ∈ N.

Furthermore, since g is a finite map, K(ν) is a finite extension of K(ν ′), therefore

both K(ν) and K(ν ′) have the same trascendence degree over C, i.e. dim(X) − 1.

From the above description we have that ν ′ = r ordE′ for some prime divisor E ′ over

X.

As a consequence of Lemma IV.2, we know we can choose x′′ ∈ E generic, such

that ḡ is holomorphic at x′′, the critical set Cḡ of ḡ is smooth at x′′ and ḡ(Cḡ) smooth

at y′ = ḡ(x′′). Picking local coordinates (z, zk) and (w,wk) around x′′ and y′ in such

way that E = {zk = 0} and E ′ = {wk = 0}, we see that

(w,wk) = ḡ(z, zk) = (z, zrk).
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In particular, we notice that

(4.3) ordE(Cḡ) = r − 1

and

(4.4) g∗ ordE = r ordE′ .

Proposition IV.3. With the same notation as above, the following identity holds

raE′ = aE + ordE(Cg).

Proof. Let us first assume X to be smooth and fix ω a meromorphic k-form on X,

i.e. ω can be writen as

ω(x) = h(x)dx1 ∧ · · · ∧ dxk,

where x = (x1, . . . , xk) is some local chart and h a meromorphic function on X.

From the commutative diagram

(4.5) E ⊂ Y

�π
��

ḡ // Y ′ ⊃ E ′

π′

��
X g

// X

we obtain (in local coordinates) that

(4.6)

π∗g∗ω = π∗g∗(h(x)dx1 ∧ · · · ∧ dxk)

= π∗(h ◦ g(x) Jac(g)(x)dx1 ∧ · · · ∧ dxk)

= h ◦ g ◦ π(y) Jac(g) ◦ π(y) Jac(π)dy1 ∧ · · · ∧ dyk.

On the other hand

(4.7)

ḡ∗π′∗ω = ḡ∗π′∗(h(x)dx1 ∧ · · · ∧ dxk)

= ḡ∗(h ◦ π′(y) Jac(π′)dy1 ∧ · · · ∧ dyk)

= h ◦ π′ ◦ ḡ(y) Jac(π′) ◦ ḡ(y) Jac(ḡ)(y)dy1 ∧ · · · ∧ dyk.
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Using the identity π∗g∗ = ḡ∗π′∗ from (4.5) in (4.6) and (4.7), we obtain the

following identity of (Cartier) divisors

(4.8) π∗Cg +KY/X = ḡ∗KY ′/X + Cḡ.

This in particular implies that

ordE(Cg) + ordE(KY/X)︸ ︷︷ ︸
aE−1

= ḡ∗ ordE(KY ′/X)︸ ︷︷ ︸
aE′−1︸ ︷︷ ︸

r(aE′−1)

+ ordE(Cḡ)︸ ︷︷ ︸
r−1

by (4.3) and (4.4), giving us that raE′ = aE + ordE(Cg).

If X is not smooth, we pick a meromorphic k-form ω on Xreg. Note that div(ω)

extends uniquely as a Weil divisor on X and our assumption on X, namely, X is Q-

factorial, allows us to obtain the identity (4.8) in the singular case. The computation

then follows identically as in the smooth case.

4.1.1 Comparison of orders of vanishing

By definition, x ∈ X is an isolated quotient singularity if there exists a finite

group Gx ⊂ GL(k,C) acting freely on Ck \ {0} such that

(X, x) ∼= (Ck, 0)/Gx.

From now on, we will assume that our variety X has at worst isolated quotient

singularities. This in particular implies thatX is Q-factorial and with klt singularities

(see [KM98], Prop. 5.15 and Prop. 5.20).

Lemma IV.4. For every y ∈ X there exists a constant Cy ≥ 1 such that

ordy φ ≤ ord0 φ ◦ % ≤ Cy ordy φ

for every holomorphic germ φ ∈ OX,y. If y is smooth, we can pick Cy = 1.
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Proof. Let φ ∈ OX,y and denote by t := ordy φ. We then have that

φ ∈ mt
y and φ /∈ mt+1

y ,

hence

φ ◦ % ∈ %∗mt
y and φ ◦ % /∈ %∗mt+1

y .

We can pick C = C(y) ∈ N such that for every l ∈ N it follows that

mlC
0 ⊂ %∗ml

y ⊂ ml
0,

hence

φ ◦ % ∈ mt
0 and φ ◦ % /∈ m

(t+1)C
0

ordy(φ) ≤ ord0(φ ◦ %) ≤ (ordy(φ) + 1)C ≤ 2C ordy(φ).

Take Cy = 2C and the inequalities follow.

If g : X → X is a holomorphic map with y = g(x) and

% : (Ck, 0)→ (X, y) and %′ : (Ck, 0)→ (X, x)

are the quotient maps of y and x respectively, the map g ◦ %′ : (Ck, 0)→ (X, y) can

be lifted to a continuous (hence holomorphic) map ĝ : (Ck, 0) → (Ck, 0) such that

the following diagram commutes

(4.9) (Ck, 0)

%′

��

ĝ // (Ck, 0)

%

��
(X, x) g

// (X, y)

In particular, we have that Cĝ = %∗Cg.

We state the main result of this section
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Theorem IV.5. There exists a positive constant CX ≥ 1 independent of g such that

the following inequality holds

ordx φ ◦ g ≤ CX (k + ordx Cg) ordg(x) φ

for every φ ∈ OX,x and every x ∈ X.

Proof. Step 1: Assume x, y = g(x) ∈ X both smooth.

Let π : Y → X be the blow-up of X at x and E = π−1(x) the exceptional divisor.

By Lemma IV.2 we can find a birational morphism π′ : Y ′ → X and a divisor E ′ ⊂ Y ′

such that the lift ḡ : Y 99K Y ′ of g satisfies ḡ(E) = E ′ and g∗ ordE = r ordE′ for some

r ∈ N. Since π(E) = x we must have π′(E ′) = y. Hence, for every φ ∈ OX,y we have

ordx(φ ◦ g) = ordE(φ ◦ g) = r ordE′(φ) ≤ raE′ ordy(φ)

where the last inequality follows from Proposition IV.1.

By Proposition IV.3 we have that

raE′ = aE + ordE(Cg),

where aE = k by (4.2). Therefore

(4.10) ordx(φ ◦ g) ≤ (k + ordx(Cg)) ordy(φ).

Step 2: The general case follows using diagram (4.9). Let φ ∈ OX,y. For the left

inequality of Theorem IV.5 we have that

ordx(φ ◦ g) ≤ ord0(φ ◦ g ◦ %′) = ord0(φ ◦ % ◦ ĝ).

Inequality (4.10) implies that

ord0(φ ◦ % ◦ ĝ) ≤ (k + ord0(Jac(ĝ))) ord0(φ ◦ %)



44

and by Lemma IV.4 we have that

ord0(φ ◦ %) ≤ Cx ordg(x)(φ)

for some Cx ≥ 1. Note that

ord0(Jac(ĝ)) = ord0 Cĝ = ord0(%′∗Cg) ≤ C ′x ordx Cg

for some C ′x ≥ 1. Taking CX := maxx∈X{CxC ′x} we obtain the desired inequality.

4.2 The Jacobian cocycle

In this section we proceed to define one of our key tools, the Jacobian cocycle. For

an extensive discussion on (analytic) cocycles we refer the reader to [Fav00], [Fav99]

and [Din09].

4.2.1 Definition and properties of the Jacobian cocycle

Let X be an irreducible normal projective variety with at worst isolated quotient

singularities and let g : X → X be a surjective holomorphic self-map. Then X is

Q-factorial and klt (see Section 4.1). For every n ∈ N we denote by µXn the Zariski

usc function

X 3 x 7→ µXn (x) := CX(dim(X) + ordx Cgn)

on X, with CX ≥ 1 as in Theorem IV.5. If Z ⊂ X is an irreducible algebraic subset,

we denote by µXn (Z) the generic value of µXn on Z given by

µXn (Z) := min
x∈Z

{
µXn (x)

}
= CX (dim(X) + ordZ(Cgn)) .

It is easy to see that the identity

(4.11) Cgn+m = Cgn + (gn)∗Cgm

follows on a suitable Zariski open subset of X for every n, m ∈ N. Since X is

Q-factorial, the identity extends to all of X as Q-Cartier divisors.
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Proposition IV.6. The following is true for the family
(
µXn
)
n∈N

(i) (Comparison) Let D be a divisor in X. Then for every x ∈ X,

ordx ((gn)∗D) ≤ µXn (x) ordgn(x)(D),

(ii) (Submultiplicativity) for every n, m ∈ N and for every x ∈ X the following

inequality holds

µXn+m(x) ≤ µXn (x)µXm (gn(x)) .

Proof. Part (i) follows immediately from Theorem IV.5.

For proving (ii), observe that from (4.11) we obtain

µXn+m(x) = CX(dim(X) + ordx(Cgn+m)) =

= CX(dim(X) + ordx(Cgn) + ordx((g
n)∗Cgm)).

By Theorem IV.5 we have that

ordx((g
n)∗Cgm) ≤ CX (dim(X) + ordx(Cgn)) ordgn(x)(Cgm)

implying that

µXn+m(x) ≤ (CX(dim(X) + ordx(Cgn)))

(
1

CX
+ ordgn(x)(Cgm)

)
≤

≤ µXn (x)µXm(gn(x)).

By the submultiplicativity property, it is easy to see that the function

X 3 x 7→ µX∞(x) := lim
n→+∞

(
µXn (x)

) 1
n

is well defined (i.e. the limit always exist for every x ∈ X). It satisfies

µX∞ ◦ g = µX∞.
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4.2.2 Jacobian cocycles and totally invariant sets

Let f : Pk → Pk be a holomorphic map of algebraic degree d ≥ 2 and let X ⊂ Pk

be an irreducible algebraic set such that f−1(X) = X. Define g := f |X : X → X

and take g̃ : X̃ → X̃ to be the lift of g to the normalization π : X̃ → X. The

commutative diagram

X̃
g̃ //

π
��

X̃

π
��

X g
//

ι
��

X

ι
��

Pk
f
// Pk

where ι : X → Pk denotes the inclusion map, gives us the following commutative

diagram of groups and homomorphisms

Z ∼= H2(Pk;Z)
f∗= d·//

(ιπ)∗

��

H2(Pk;Z) ∼= Z

(ιπ)∗

��

H2(X̃;Z)
g̃∗

// H2(X̃;Z)

where ι : X ↪→ Pk In particular, if ω is the Fubini-Study metric on Pk then {ω}

generates H2(Pk,Z) and f ∗{ω} = d{ω}, therefore

g̃∗π∗ι∗{ω} = π∗g∗ι∗{ω} = π∗ι∗f ∗{ω} = d · π∗ι∗{ω}

giving us a g̃∗-invariant class {ωX̃} := {(ιπ)∗ω} in H2(X̃;Z).The class {ω} represents

the first Chern class of the ample line bundle O(1) in Pk, which induces an ample

line bundle OX̃(1) := (ιπ)∗O(1) on X̃ with

g̃∗c1 (OX̃(1)) = g̃∗{ωX̃} = d{ωX̃}.

The ample classes on X̃ form a strict open convex cone which is invariant by g̃∗ in

the finite dimensional vector space H2(X̃;R) (for details see [GH94], [Laz04]). Using
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that there exists an invariant ample class on X̃, namely {ωX̃} with (g̃∗)n{ωX̃} =

dn{ωX̃} for all n ∈ N, it is possible to conclude that ‖(g̃∗)n‖ . dn for every n ∈ N.

Moreover, if we assume X̃ to have at worst isolated quotient singularities then we

obtain

Lemma IV.7. In the same setting as above, there exists a positive constant A inde-

pendent of x ∈ X̃ and n ∈ N such that

µX̃n (x) ≤ Adn.

Proof. Note that

Cg̃n =
n−1∑
i=0

(g̃i)∗Cg̃

(see equation (4.11)).

Denote by A′ := supx∈X̃ ordx(Cg̃). Then we have that

ordx(Cg̃n) ≤ A′
n−1∑
i=0

di = A′
dn − 1

d− 1
=⇒

=⇒ µXn (x) ≤ CX

(
dim(X) + A′

dn − 1

d− 1

)
≤

≤ CX

(
dim(X)

dn
+ A′

1− d−n

d− 1

)
dn ≤ (dim(X) + A′(d− 1)−1︸ ︷︷ ︸

A

)dn.

Theorem IV.8. The g̃-totally invariant set

EX̃ :=
{
x ∈ X̃ | µX̃∞(x) = d

}
=
⋃
δ>0

⋂
n∈N

{
x ∈ X̃ | ordx (Cg̃n) ≥ δdn

}
is algebraic.

The proof relies on the fact that the family of totally invariant algebraic subsets of

X̃ is finite (see Section 2). The key idea is to prove that every irreducible component

of EX̃ is totally invariant for some iterate of g, therefore EX̃ has only finitely many
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components. In order to do this we use a uniform bound from [Par10] for the orders

of vanishing of d−N [Cg̃N ].

Proof. We argue by contradiction: Let Z ⊂ EX̃ be an irreducible component; define

SN := d−N [Cg̃N ] for N large (N will be made explicit later). By definition there

exists δ > 0 independent of N such that

ordx(SN) ≥ δ, ∀x ∈ Z.

For every 0 ≤ r < N , by the chain rule Cg̃N = Cg̃r+N−r = Cg̃r + (g̃r)∗Cg̃N−r (see

equation (4.11)) we obtain that for every x ∈ g̃−r(Z)

ordx Cg̃N ≥ ordx
(
(g̃r)∗Cg̃N−r

)
≥ ordg̃r(x) Cg̃N−r ≥ δdN−r

implying

ordx(SN) ≥ δd−r, ∀x ∈ g̃−r(Z).

Let Y be the minimal irreducible algebraic set containing Z which is totally in-

variant by g̃s for some s ≥ 1. For simplicity we assume s = 1. If Z 6= Y , then Z has

positive codimension p > 0 in Y and since Y 6⊂ EX̃ we can find C > 0 and λ < d

such that ordY (Cg̃n) ≤ Cλn for all n ≥ 1. Then it follows that

ordx(SN) ≤ C

(
λ

d

)N
� 1

for every x ∈ Y . Denote by β the generic Lelong number of SN along Y . Thus

0 ≤ β ≤ C(λ/d)N .

Since Z is not totally invariant, following the ideas of Dinh-Sibony (see [DS08],

Lemma 6.10) we know there exists a constant θ > 0 (independent of r) and algebraic

sets Zr ⊂ f−r(Z) of degrees dr satisfying

dr ≥ θdrp ∀ r ≥ 1.
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Define Z ′0 := Z0 and Z ′r := Zr \ (Z0 ∪ · · · ∪ Zr−1) for r > 0; note that for r 6= s,

Z ′r and Z ′s have no common irreducible components. Denote by d′r the degree of Z ′r.

It is clear by the construction that d′0 + . . . + d′r ≥ dr and that the generic Lelong

numbers νr of SN at Z ′r satisfy νr ≥ δd−r.

By Theorem III.5, we know that there exists a positive constant AX̃ independent

of r ≥ 1 and N such that

(4.12)
M∑
r=0

(νr − β)pd′r ≤ AX̃ .

We now fix M < N (which can be made very large) such that

βdr ≤ 1

2
δ, ∀ r = 0, . . . ,M.

We observe that

(4.13)
M∑
r=0

(νr − β)pd′r ≥
M∑
r=0

(δd−r − β)pd′r ≥

≥
(
δ

2

)p M∑
r=0

d−rpd′r =

=

(
δ

2

)p
[d′0(1− d−p) + (d′0 + d′1)(d−p − d−2p) + . . .

. . .+ (d′0 + . . .+ d′M−1)(d−(M−1)p − d−Mp) + dMd
−Mp].

Notice that for every r = 0, . . . ,M − 1 we have

d−rp − d−(r+1)p ≥ 1

2
d−rp.

Plugging this into (4.13) we obtain that

(4.14)
M∑
r=0

(νr − β)pd′r ≥
1

2

(
δ

2

)p M∑
r=0

d−rpdr ≥

≥ 1

2

(
δ

2

)p M∑
r=0

d−rpθdrp =
θ

2

(
δ

2

)p
(M + 1),
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where δ > 0 and θ > 0 are independent of M and N . Therefore, using equation

(4.12) in the inequality (4.14) we obtain

θ

2

(
δ

2

)p
(M + 1) ≤ AX̃

which produces a contradiction if we take N and M sufficiently large.

Corollary IV.9. The algebraic set EX := π (EX̃) ⊂ X is totally invariant:

g−1(EX) = EX .

Proof of Corollary IV.9. We prove that every component of EX is totally invariant.

Let Z ⊂ EX be an irreducible component and write

π−1(Z) = Z̃ ∪ Z̃ ′,

where Z̃ ⊂ EX̃ and π(Z̃) = Z. Then there exists l ≥ 1 such that g̃−l(Z̃) = Z̃, this

in particular implies that

gl(Z) = gl(π(Z̃)) = π(g̃l(Z̃)) = π(Z̃) = Z =⇒ Z ⊂ g−l(Z).

Write g−l(Z) = Z ∪W .

If W 6= ∅ we have that gl(W ) = Z. On the other hand,

g̃−lπ−1(Z) = g̃−l(Z̃ ∪ Z̃ ′) = Z̃ ∪ g̃−l(Z̃ ′)

and

g̃−lπ−1(Z) = π−1g−l(Z) = π−1(Z ∪W ) = Z̃ ∪ Z̃ ′ ∪ π−1(W ).

Putting this together we obtain that

g̃−l(Z̃ ′) = Z̃ ′ ∪ π−1(W )⇒ Z̃ ′ = g̃l(g̃−l(Z̃ ′)) = g̃l(Z̃ ′) ∪ g̃l(π−1(W )).
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Since the map g := f |X : X → X is open, it is easy to see that

(4.15) g̃(π−1(W )) = π−1(g(W ))

for every W ⊂ X. In particular, by identity (4.15) we have that

g̃l(π−1(W )) = π−1(gl(W )) = π−1(Z) = Z̃ ∪ Z̃ ′

implying

Z̃ ′ = g̃l(Z̃ ′) ∪ Z̃ ∪ Z̃ ′ =⇒ Z̃ ⊂ Z̃ ′

contradicting our hypothesis. Hence W = ∅ and therefore g−l(Z) = Z.

4.2.3 The exceptional family Ef

Definition IV.10. We define the exceptional family Ef of f as the finite collection

of irreducible subsets X ⊆ Pk such that

(i) Pk ∈ Ef ;

(ii) X ∈ Ef \ {Pk} if and only if there exist X ′ ∈ Ef such that X is an irreducible

component of EX′ . In this case we will say that X is an immediate successor of

X ′.

The exceptional family Ef of f is a partially ordered set, where X � Y if there exist

a sequence of elements X = X1 ( · · · ( Xr = Y in Ef such that Xi is an immediate

successor of Xi+1 for all i = 1, . . . , r − 1.

Note that by definition, we have that

∅ � X � Pk ∀X ∈ Ef .

We will say that X ∈ Ef is an exceptional leaf if ∅ is the immediate succesor of

X (i.e. EX = ∅).
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4.2.4 Asymptotic behavior

We finish this section giving a uniform estimate of the orders of vanishing outside

the totally invariant algebraic subset EX̃ ⊂ X̃.

Theorem IV.11. There exist constants C > 0 and 0 ≤ ρ < d such that

sup
x/∈EX̃

µX̃n (x) ≤ Cρn

for all n ∈ N.

Corollary IV.12. Given any hypersurface H in X, it follows that

sup
x/∈EX

d−n ordx ((gn)∗H)→ 0

as n→ +∞.

Proof Corollary IV.12. Note that for every x ∈ X we have

ordx ((gn)∗H) ≤ max
y∈π−1(x)

ordy ((g̃n)∗(π∗H))

implying

sup
x/∈EX

ordx ((gn)∗H) ≤ sup
y/∈π−1(π(EX̃)

ordy ((g̃n)∗(π∗H)) ≤ sup
y/∈EX̃

ordy ((g̃n)∗(π∗H)) .

By Proposition IV.6 (ii), it follows that

sup
y/∈EX̃

ordy ((g̃n)∗(π∗H)) ≤ sup
y/∈EX̃

µX̃n (y) ordg̃n(y)H

which combined with Theorem IV.11 gives us

sup
x/∈EX

d−n ordx ((gn)∗H) ≤ C
(ρ
d

)n
for some C > 0 and ρ < d. Taking n → +∞ we obtain the desired convergence to

zero.
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Proof Theorem IV.11. Let X̃0,1, . . . , X̃0,m0 be the irreducible components of the crit-

ical set Cg̃ not contained in EX̃ . For every i = 1, . . . ,m0 we can pick x0,i ∈ X̃0,i such

that there exist C1 > 0 and λ1 < d satisfying

max
i=1,...,m0

{µX̃n (x)} < C1λ
n
1 , ∀n ≥ 1.

For N > 1 large, define the algebraic set

X̃1 := {x ∈ X̃ | µX̃N(x) ≥ C1λ
N
1 }.

We clearly have the proper inclusion of algebraic sets

X̃1 ( Cg̃N ,

where the codimension of X̃1 in Cg̃N is ≥ 1 at every point x ∈ X̃1 \ EX̃ .

If X̃1 ⊂ EX̃ , for n� N and x ∈ X̃ \EX̃ , denoting n = tN + l, l ∈ {0, . . . , N − 1}

we have

µX̃n (x) = µX̃tN+l(x) ≤ µX̃l (x)µX̃tN(g̃l(x)) ≤ µX̃N(x)
t−1∏
j=0

µX̃N(g̃l+jN(x)).

Since X̃ \ EX̃ is totally invariant

x /∈ EX̃ =⇒ g̃l+jN(x) /∈ EX̃ ,

hence g̃l+jN(x) /∈ X̃1 implying that

µX̃n (x) ≤ (dim(X̃) + C1λ
N
1 )(dim(X̃) + C1λ

N
1 )t ≤ 2Ct+1

1 λn−l−1
1 .

Now we can find A > 0 and λ1 < ρ < d (independent of x and n) such that

2Ct+1
1 λn−l−1

1 ≤ Aρn, ∀n ≥ 1,

and the theorem follows.
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Now assume X̃1 6⊂ EX̃ . Let X̃1,1, . . . , X̃1,m1 be the irreducible components of

X̃1 that are not contained in EX̃ . As before, for every i = 1, . . . ,m1 we can pick

x1,i ∈ X1,i and C2 ≥ C1, λ1 < λ2 < d such that

max
i=1,...,m1

{µX̃n (x)} < C2λ
n
2 , ∀n ≥ 1.

Define the algebraic set

X̃2 := {x ∈ X̃ | µX̃N(x) ≥ C2λ
N
2 },

which has codimension ≥ 2 in Cg̃ at every point x ∈ X̃2 \EX̃ . Again, if X̃2 ⊂ EX̃ the

theorem follows picking some A > 0 and λ2 < ρ < d, so we can assume X̃2 6⊂ EX̃ .

Inductively we construct a strictly decreasing sequence of algebraic sets

X̃j := {x ∈ X̃ | µX̃N(x) ≥ Cjλ
N
j },

for j = 1, . . . , dim(X̃), where λ1 < λ2 < · · · < λdim(X̃) < d, 0 < C1 ≤ C2 ≤ · · · ≤

Cdim(X̃) and the codimension of X̃j in Cg̃ is ≥ j at every point x ∈ X̃j \ EX̃ . Thus,

there exists 1 ≤ j0 ≤ dim(X̃) such that X̃j0 ⊂ EX̃ (since X̃dim(X̃)\EX̃ = ∅), implying

that there exist A ≥ Cj0 and λj0 < ρ < d so that

µX̃n (x) ≤ 2Ct+1
j0

λn−l−1
j0

≤ Aρn, ∀n ≥ 1,

for every x ∈ X̃j0 \ EX̃ as before. This concludes the proof.



CHAPTER V

Equidistribution

5.1 Reduction of the problem

We will need a version of Theorem III.3, (iii) which is preserved by the dynamical

system f : Pk → Pk, where f is holomorphic of degree d ≥ 2. We prove:

Proposition V.1. For every x ∈ Pk and for every n, m ∈ N we have

0 ≤ ν((fn)∗S, x)− ν((fn)∗Sm, x) ≤ (k + 1)
dn

m
.

Proof. It suffices to prove this for n = 1. The left inequality uses Ohsawa-Takegoshi

extension theorem following the exact same argument as in Theorem III.2. We prove

then the right inequality.

Let π : Y → Pk be the blowup of Pk at x ∈ Pk and E = π−1(x) the exceptional

divisor above x, hence

ν(S, x) = ν(S,E).

By Lemma IV.2 we can find an exceptional divisor E ′ over f(x) ∈ Pk such that

f∗ ordE = r ordE′ for some r ∈ N. We therefore obtain

ν(f ∗S, x) = ν(f ∗S,E) = rν(S,E ′)

implying that

(5.1) 0 ≤ ν(f ∗S, x)− ν(f ∗Sm, x) = r (ν(S,E ′)− ν(Sm, E
′)) .

55
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We need the following strengthening of Theorem III.3 (iii)

Lemma V.2. Let π : Y → Pk be a modification of Pk at x ∈ Pk and let E ⊂ π−1(x)

be an exceptional divisor. Then, with S and Sm as before, we have

0 ≤ ν(S,E)− ν(Sm, E) <
aE
m

for every m ∈ N, where aE denotes the log-discrepancy of E.

The result given by Lemma V.2 can be found in [BFJ08], p.486. We sketch a

proof of this

Proof. Pick coordinates (x1, . . . , xk) around a general point of E ⊂ Y and write

E = {x1 = 0} (locally) around this point.

If S = ω + ddcϕ, then

(5.2) ϕ ◦ π ≤ ν(S,E) log |x1|+O(1).

Given a local section σ at x ∈ Pk of some element of Hm, we have that∫
U

|σ|2e−2mϕ < +∞

in a neighborhood U of x. Therefore

(5.3)

∫
π−1(U)

|σ ◦ π|2e−2mϕ◦π| Jac(π)|2 < +∞.

By the definition of aE (see Section 3) we obtain that

(5.4) | Jac(π)|2 ∼ |x1|2(aE−1)

around E, and in a general point of E we have

(5.5) |σ ◦ π|2 ∼ |x1|2 ordE(σ).
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Putting (5.2), (5.3), (5.4) and (5.5) together we obtain that∫
π−1(U)

|x1|2 ordE(σ)−2mν(S,E)+2(aE−1) < +∞

which implies (by Fubini’s theorem)

(5.6) ordE(σ)−mν(S,E) + aE > 0

for all σ ∈ Hm. Dividing equation (5.6) by m and taking the maximum over

{σ1, . . . , σNm} an orthonormal basis of Hm, we finally obtain

ν(Sm, E)− ν(S,E) +
aE
m

> 0

which concludes the proof.

Now, using Lemma V.2 into equation (5.1) we obtain that

r (ν(S,E ′)− ν(Sm, E
′)) ≤ raE′

m

and by Proposition IV.3 we obtain that

r (ν(S,E ′)− ν(Sm, E
′)) ≤ raE′

m
=
k + ordx(Jac(f))

m
≤ (k + 1)d

m

where aE′ is the log-discrepancy of E ′, since ordx(Jac(f)) ≤ (k + 1)(d− 1).

The following result is an immediate consequence of Proposition V.1

Corollary V.3. Let X ⊂ Pk be an irreducible variety. Then,

ν(S,X) = 0⇔ ν(Sm, X) = 0

for m� 1. Moreover,

lim
n→+∞

sup
x∈Pk

ν
(
d−n(fn)∗S, x

)
= 0⇔ lim

n→+∞
sup
x∈Pk

ν
(
d−n(fn)∗Sm, x

)
= 0

for m� 1.
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We would like to refine our approximation and replace Sm by a current of inte-

gration on a hypersurface. Observe that for every finite collection of holomorphic

germs σ1, . . . , σN ∈ OCk,0, we can find a (Zariski) generic θ = (θi) ∈ CN such that, if

we set σθ :=
∑N

i=1 θiσi then

ord0(σθ) = min
i=1,...,N

ord0(σi).

In particular, fixing an orthonormal basis {σm,j} of Hm as before and given θm =

(θm,j) ∈ CNm , we denote by ϕm,θ the function

(5.7) Pk 3 x 7→ ϕm,θ(x) :=
1

2m
log

(
h⊗(m+1)

(
Nm∑
j=1

θm,jσm,j

)
(x)

)
.

(Note the difference with ϕm defined in Theorem III.2). It follows immediately that

ν(ϕm,θ, x) ≥ ν(ϕm, x), ∀ θ ∈ CNm , ∀x ∈ Pk.

On the other hand, for each x ∈ Pk we can find a Zariski open set Vx ⊂ CNm such

that

(5.8) ν(ϕm,θ, x) = ν(ϕm, x) = min
j=1,...,Nm

ordx(σm,j), ∀ θm ∈ Vx.

We prove the following

Lemma V.4. Let E be a finite family of irreducible subsets of Pk. Then, there exists

a Zariski open subset Um ⊂ CNm such that

ordX(ϕm,θ) = ordX(ϕm) ∀X ∈ E

for all θ ∈ U .

Proof. For all j = 1, . . . , Nm and all X ∈ E there exists a Zariski open subset

UX,j ⊂ Pk such that

ordX(σj) = min
z∈X

ordz(σj) = ordx(σj) ∀x ∈ X ∩ UX,j.
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Then it follows that for every x in the Zariski open subset UE :=
⋂
X∈E, j UX,j ⊂ Pk

we have

ordx(σj) = ordX(σj) ∀x ∈ UE ∩X, j = 1, . . . , Nm.

Fixing x ∈ UE , we now pick Vx ⊂ CNm as in (V.4) and the conclusion follows.

Using the same notation as above, we define the closed (1,1)-current

Sm,θ := ω + ddcϕm,θ

on Pk. It also satisfies Sm,θ ≥ − 1
m
ω and we note that

Sm,θ +
1

m
ω =

1

m
[Hm]

where [Hm] is the current of integration over the hypersurface given by

Hm = div

(
Nm∑
j=1

θm,jσm,j

)
.

Carrying out the same argument given in Proposition V.1, we have proved the fol-

lowing crucial result

Theorem V.5. Let E be any finite collection of irreducible algebraic varieties, let

f : Pk → Pk be a holomorphic map of degree d ≥ 2, and let S be a positive closed

(1,1)-current on Pk. Then, for every m ≥ 1, there exists a hypersurface Hm ⊂ Pk

with

ordX(Hm) ≤ ν(S,X) ∀X ∈ E ,

and

ν
(
d−n(fn)∗S, x

)
≤ d−n ordx ((fn)∗Hm) +

k + 1

m

for all x ∈ Pk.
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As an immediate consequence, if S is a positive closed (1,1)-current and

sup
x∈Pk

d−n ordx ((fn)∗Hm)→ 0

for every m ≥ 1, we obtain the equidistribution of S towards the Green current

associated to f .

5.2 Proofs of results

In this section we prove our main results. Recall that if X ∈ Ef then there exists

s ≥ 1 (minimal) such that f−s(X) = X. By Lemma II.4 we can assume without loss

of generality that s = 1.

5.2.1 Proof of Theorems I.1 and I.3

By Theorem V.5, given any positive closed (1,1)-current and any finite family E of

irreducible varieties, we can find a sequence of hypersurfaces Hm with the properties

ordX(Hm) ≤ ν(S,X) ∀X ∈ E ,

and

(5.9) 0 ≤ ν
(
d−n(fn)∗S, x

)
≤ d−n ordx ((fn)∗Hm) +

k + 1

m

for all x ∈ Pk. In particular, if the generic Lelong number ν(S,X) of S along X is

zero for all X ∈ E , we have that ordX(Hm) = 0 for all X ∈ E and all m ∈ N.

We recall from the introduction, Guedj’s characterization of equidistribution:

(5.10) d−n(fn)∗S → Tf ⇐⇒ lim
n→+∞

sup
x∈Pk

d−n ordx ((fn)∗Hm) = 0.

Proof of Theorem I.3. Let EDS be the collection of irreducible components of the

totally invariant algebraic set constructed by Dinh-Sibony (see the introduction).

By [DS08], Theorem 7.1 we have

ordX(Hm) = 0 for all X ∈ EDS ⇒ d−n(fn)∗Hm → Tf
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which, by the right implication in (5.10), gives us

lim
n→+∞

sup
x∈Pk

d−n ordx ((fn)∗Hm) = 0

which implies

lim sup
n→+∞

sup
x∈Pk

ν
(
d−n(fn)∗S, x

)
≤ k + 1

m

for all m ∈ N by the inequality (5.9). Letting m→ +∞ we get

lim
n→+∞

sup
x∈Pk

ν
(
d−n(fn)∗S, x

)
= 0

and by the left implication in (5.10), we conclude that

d−n(fn)∗S → Tf .

To prove Theorem I.1, we use the same arguments as above and reduce the prob-

lem to the case of S the current of integration over some hypersurface H ⊂ Pk. Here,

the family Ef is the exceptional family defined in Section 4.3.

Proof of Theorem I.1. Let H ⊂ Pk be a hypersurface such that ordX(H) = 0 for all

X ∈ Ef , where Ef is the exceptional family. Observe that ordX(H) = 0 implies that

H|X is a well defined Cartier divisor in X.

Let X ∈ Ef and define g := f |X : X → X; then

(5.11) d−n ordx((f
n)∗H) ≤ d−n ordx((g

n)∗H|X) ∀x ∈ X.

Let π : X̃ → X be the normalization ofX. By assumption, X̃ has at worst isolated

quotient singularities, hence it is Q-factorial and klt (see Section 4.1). Moreover,

there exists a regular map g̃ : X̃ → X̃ such that the diagram

X̃
g̃ //

π
��

X̃

π
��

X g
// X
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commutes. Note that for every y ∈ X̃ and every germ φ ∈ OX̃,π(x) if follows that

ordπ(y)(φ) ≤ ordy(φ ◦ π). This, in particular implies that

ordπ(y)((g
n)∗H|X) ≤ ordy(π

∗(gn)∗H|X) = ordy((g̃
n)∗(π∗H|X))

giving us

sup
x∈X

d−n ordx((g
n)∗H|X) ≤ sup

y∈X̃
d−n ordy((g̃

n)∗(π∗H|X)).

By Theorem IV.5 we have that

d−n ordy((g̃
n)∗(π∗H|X)) ≤ d−nµX̃n (y) ordg̃n(y)(π

∗H|X)

where µX̃n is the submultiplicative cocycle defined by

µX̃n (y) = CX̃

(
dim(X̃) + ordy(Cg̃n)

)
(see Section 4).

We know from Theorem IV.11 that there exist constants C > 0 and 0 ≤ ρ < d

such that

sup
y/∈EX̃

µX̃n (y) ≤ Cρn

for all n ∈ N, where EX̃ is the totally invariant algebraic set

EX̃ =
{
x ∈ X̃ | µX̃∞(x) = d

}
.

Recalling that the algebraic set EX := π(EX̃) is totally invariant by g (Corollary

IV.9), we hence obtain

(5.12) sup
x∈X

d−n ordx((f
n)∗H) ≤ sup

x/∈EX

d−n ordx((f
n)∗H) + sup

x∈EX

d−n ordx((f
n)∗H) ≤

≤ sup
x/∈EX̃

d−n ordy((g̃
n)∗(π∗H|X)) + sup

x∈EX

d−n ordx((f
n)∗H) ≤

≤ C
(ρ
d

)n
+ sup

x∈EX

d−n ordx((f
n)∗H).
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We now proceed by induction on the partially ordered set Ef : If X is a leaf (i.e.

EX = ∅) we obtain that

sup
x∈X

ν(d−n(fn)∗H, x) ≤ C ′′(ρ/d)n → 0

as n→ +∞. In general, for X ∈ Ef assume that for every X ′ � X we have that

sup
x∈X′

ν(d−n(fn)∗H, x)→ 0

as n→ +∞.

Since every irreducible component X ′ of EX satisfies X ′ � X, we get

sup
x∈EX

d−n ordx((f
n)∗H)→ 0

as n→ +∞, implying

sup
x∈X

ν(d−n(fn)∗H, x) ≤ C ′
(ρ
d

)n
+ sup

x∈EX

d−n ordx((f
n)∗H)→ 0

by inequalities (5.11) and (5.12). The desired conclusion then follows.

5.2.2 Proof of Corollary I.2

If f : P3 → P3 is a holomorphic map of degree d ≥ 2 and X ⊂ P3 is an irre-

ducible surface such that f−1(X) = X, Corollary B would follow immediately if the

normalization of every such X has at worst (isolated) quotient singularities. Let

g := f |X : X → X, π : X̃ → X its normalization and g̃ : X̃ → X̃ its holomorphic

lift.

By [Fav10, Theorem B] or [Wah90]) for every x ∈ X̃, we have

(i) If (X̃, x) is klt, then (X̃, g̃(x)) is klt;

(ii) if x ∈ Cg̃, then (X̃, x) is klt;

(iii) if x /∈ Cg̃, then (X̃, x) is not klt (the singularity is log-canonical instead).
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The case (iii) can be divided in two cases: Either (X̃, x) is a cusp or not. If

(X̃, x) is not a cusp, Proposition 2.1 in [Fav10] implies that we can find a proper

modification π̄ : X̄ → X̃ such that X̄ has only klt singularities and g̃ lifts to X̄ as

a holomorphic map. The case (X̃, x) a cusp can be ruled out by Theorem 1.4 in

[Nak99]. This finishes the argument of Corollary B.

In the same setting as above, in [Zha00] D.Q. Zhang found a concrete classification

for X ⊂ P3. More precisely, Zhang states that either deg(X) = 1 (i.e. X is a plane)

or X is a cubic given by one of the following four defining equations

(i) X3
3 +X0X1X2;

(ii) X2
0X3 +X0X

2
1 +X3

2 ;

(iii) X2
0X2 +X2

1X3;

(iv) X0X1X2 +X2
0X3 +X3

1 .

The surfaces given by (i) and (ii) are both normal with klt singularities. The

singular locus of the varieties given by (iii) and (iv) is a single line which is totally

invariant and their normalizations correspond to the smooth surface given by the

one-point blowup of P2.

5.2.3 Proof of Corollary I.4

We provide a direct argument for this, not relying on the results given by Dinh-

Sibony in [DS08].

As before, we define the Jacobian cocycle

µn(x) := k + ordx(Jac(fn))

as described in Section 4.2. The totally invariant set

E :=
⋃
δ>0

⋂
n∈N

{
x ∈ Pk | µn(x) ≥ δdn

}
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is algebraic by Theorem IV.8 and we know from Theorem IV.11 that there exist

positive constants C and ρ < d such that

(5.13) sup
x∈Pk\E

µn(x) ≤ Cρn, ∀n ∈ N.

Now the conclusion follows since

sup
x∈Pk

ν(d−n(fn)∗S, x) ≤ sup
x∈Pk\E

ν(d−n(fn)∗S, x) + sup
x∈E

ν(d−n(fn)∗S, x)︸ ︷︷ ︸
= 0

and

sup
x∈Pk\E

ν(d−n(fn)∗S, x) ≤ sup
x∈Pk\E

d−nµn(x) ≤ C
(ρ
d

)n
→ 0

by Theorem IV.5 and inequality (5.13).

5.3 Equidistribution in lower dimensions

We end this work providing simpler new proofs for the already known cases of

dimensions 1 and 2.

5.3.1 Dimension 1

We observe that in dimension one, positive closed (1,1)-currents with mass 1

correspond to probability measures. We use our techniques to the provide a new

proof of the famous Brolin, Lyubich, Lopes-Freire-Mañé equidistribution theorem.

Theorem V.6 (Brolin, Lyubich, Lopes-Freire-Mañé). Let f : P1 → P1 be a rational

map of degree d ≥ 2, then there exist a finite collection of totally invariant points

Ef , with cardinality at most 2 such that: for every probability measure η on P1, the

following are equivalent

(i) η(Ef ) = 0;

(ii) d−n(fn)∗η → Tf as n→ +∞.
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Proof. Let Ef be the collection of totally invariant points given by Definition IV.10.

If #Ef > 2, since f−1(Ef ) = Ef , we can lift every iterate fn : P1 \ Ef → P1 \ Ef to

the (hyperbolic) uniformization

D

��
P1 \ Ef

f̄n
99

fn
// P1 \ Ef

giving us that the family {f̄n : P1 \ Ef → D}n∈N is normal by Montel’s theorem,

implying that the family {fn}n∈N is normal on P1. In particular, we can find a

(uniformly) convergent subsequence fnk → f̂ where f̂ is a rational self-map of P1.

This contradicts the fact that the degrees dnk of fnk on P1 grow to +∞. Hence

#Ef ≤ 2.

Observe that given x ∈ P1, the Lelong number of η at x is nothing but the

point-mass η({x}). Then, the implication (i)⇒(ii) follows immediately by Theorem

I.1.

For the converse implication (ii)⇒(i), assume that there exists x0 ∈ Ef with

η({x0}) = c > 0. In particular, η ≥ cδx0 where δx0 denotes the Dirac mass at x0.

Hence (fn)∗η ≥ cdnδx0 giving us

sup
x∈P1

d−n(fn)∗η({x}) ≥ sup
x∈P1

d−n(fn)∗δx0({x}) = c > 0.

Therefore supx∈P1 d−n(fn)∗η({x}) 9 0, hence d−n(fn)∗η({x}) 9 Tf .

5.3.2 Dimension 2

The provide here a proof for the dimension 2 case.

Theorem V.7 (Fornæss-Sibony, Favre-Jonson). Let f : P2 → P2 be a rational map

of degree d ≥ 2, then there exists a collection of irreducible totally invariant algebraic
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sets Ef , with with at most 3 lines and finitely many points such that: for every positive

closed (1,1)-current S on P2 with mass 1, the following are equivalent

(i) The current S has no mass on every element of Ef ;

(ii) d−n(fn)∗S → Tf as n→ +∞.

Proof. We again take Ef to be the finite family of irreducible totally invariant al-

gebraic subsets of P2 given in Definition IV.10. As it was proved by Fornæss and

Sibony in [FS94], any irreducible totally invariant curve must be a line and there are

at most 3 of them. Implication (i)⇒(ii) follows then by Theorem I.1.

For the converse implication (ii)⇒(i), let X ∈ Ef with f−1(X) = X, and assume

that the (generic) Lelong number ν(S,X) of S at X satisfies ν(S,X) = c > 0.

If X is a line, by Siu’s theorem we have that S − c[X] is a positive closed (1,1)-

current, hence

d−n(fn)∗ (S − c[X]) ≥ 0⇒ d−n(fn)∗S ≥ cd−n(fn)∗[X] = c[X]

implying that d−n(fn)∗S 9 Tf .

On the other hand, if X is a point, it is not hard to see that

(5.14) ν
(
d−n(fn)∗S,X

)
≥ d−ncn(X)ν(S, fn(X)) = cd−ncn(X),

where cn(X) denotes the order of vanishing of fn at the point X. It is easy to see

that

c∞(x) := lim
n→+∞

(cn(x))1/n

exists for every x ∈ P2. Moreover, Favre and Jonsson proved in [FJ07, Theorem A]

that there exists a uniform constant δ > 0 such that cn(x) ≥ δc∞(x)n for all x ∈ P2

and in [FJ03, Proposition 3.12] that c∞(X) = d. Using this in equation (5.14), we
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obtain that

ν
(
d−n(fn)∗S,X

)
≥ cδ > 0

implying that supx∈P2 ν (d−n(fn)∗S,X) 9 0 hence d−n(fn)∗S 9 Tf . This concludes

the proof in dimension 2.
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