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CHAPTER I  

INTRODUCTION 

 

 

Pancreatic cancer status  

     Pancreatic cancer is among the most aggressive and challenging cancers 

to treat. In US, the number of estimated pancreatic cancer incidence is 43,140, 

and the number of estimated deaths from pancreatic cancer is 36,800 (1). 

Compared to the other cancer types such as Lung & bronchus cancer (estimated 

incidence 222,520 and death 157,300), Prostate cancer (estimated incidence 

217,730 and death 32,050), Breast cancer (estimated incidence 209,060 and 

death 40,230), Colon cancer (estimated incidence 102,900 and death 51,370), 

Skin cancer (estimated incidence 74,010 and death 11,790), and Non-Hodgkin 

lymphoma (estimated incidence 65,540 and death 20,210), although pancreatic 

cancer has relatively low incidence, pancreatic cancer has the highest death rate 

as of 85.3% and is the fourth leading cause of cancer death in the United States 

with five-year survival of less than 5% (1-3).  

Pancreatic cancer was suggested to be resulted from progressive 

accumulation of gene mutations and molecular abnormalities (4, 5). Activation of 
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the oncogene KRAS2, inactivation of the tumor-suppressor genes 

CDKN2A/INK4A, TP53, and DPC4/SMAD4/MADH4, mutation of the caretaker 

gene BRCA2, over-expression of growth factors and their receptors EGFR, TGF-

beta, VEGF and AKT, reactivation of developmental signaling Notch and 

Hedgehog signaling are all indicated in pancreatic cancer development (6-11). 

The treatment regimens for pancreatic cancer have no substantial 

improvement over the past few decades (12). Due to the anatomic location of the 

pancreas and insidious nature of the disease, the diagnosis of pancreatic cancer 

is extremely challenging and patients are often diagnosed in the late stage of 

pancreatic cancer with advanced or metastatic tumors (3, 13). For the early stage 

pancreatic cancer patients, surgery is the only curative therapy. However, only 

15-20% of pancreatic cancer patients are amenable to curative resection while 

80% of patients generally have nonresectable advanced or metastatic late stage 

tumors (14). Furthermore, even in patients with resectable disease, 86% of 

patients had local pancreatic cancer recurrence which resulted in the overall 5-

year survival less than 15% (3, 14).  

For unresectable advanced or metastatic pancreatic cancer patients, the 

treatment options include chemotherapy, radiotherapy, and adjuvant therapy. 

However, late stage pancreatic cancer is highly resistant to conventional 

chemotherapy and radiotherapy (15-17). Less than 20% reproducible response 

rates were observed for various chemotherapeutic agents including 

antimetabolites, alkylating agents, antibiotics, and anthracyclines tested as single 

agent or in combination therapy in clinical trials (11, 18, 19). Whereas, 
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radiotherapy is also challenging due to the fact that the location of pancreas in 

close proximity of adjacent radiosensitive organs (11). Currently, 5-Fluorouracil 

(5FU, an inhibitor of thymidylate synthetase which is essential for synthesis of 

DNA nucleotides) and gemcitabine (nucleoside analogue which replaces cytidine 

during DNA replication) are commonly used in the treatment of pancreatic cancer 

with gemcitabine as the standard therapeutic agent for pancreatic cancer. 

Gemcitabine was demonstrated to improve pancreatic tumor related symptoms 

such as pain, functional impairment, and weight loss, and increase the median 

survival durations 5.65 months (4.1 months for 5-FU) and 1 year survival rate of 

18% (2% for 5-FU) (20). A few gemcitabine based combination therapy were also 

examined. For instance, a phase III clinical trial conducted by Louvet et al. 

demonstrated that combination of gemcitabine with oxaliplatin (platinum 

analogue) was superior to gemcitabine alone with improved response rate (26.8% 

vs 17.3%, respectively), progression-free survival (5.8 vs 3.7 months, 

respectively), clinical benefit (38.2% vs 26.9%, respectively), and median overall 

survival (7.1 vs 9.0 months, respectively) (21). Another phase III randomized 

study showed that combination of gemcitabine and capecitabine (5FU precursor, 

which is converted to 5FU in the liver and tumors) significantly improved 

objective response rate compared to gemcitabine alone (19.1% vs 12.4%, 

respectively) (22). Targeted therapy against oncogenic protein overexpressed in 

pancreatic tumor was also proposed for treatment of pancreatic cancer.  Erlotinib 

(epidermal growth factor receptor (EGFR) inhibitor) was assessed in combination 

with gemcitabine in a double-blind phase III trial, and the combination was shown 
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to have higher 1 year survival rate of 24% compared to 17% for the gemcitabine 

alone (19, 23). By specifically targeting the EGFR expressing advanced 

pancreatic cancer patients, cetuximab (monoclonal antibody targeting EGFR) in 

combination with gemcitabine showed much higher 1 year survival rate of 37% 

compared to gemcitabine monotherapy as of 18% in a phase II clinical trial (24). 

Despite the development of surgical techniques, chemotherapeutic agents 

and therapeutic regimens, pancreatic cancer is still far away from the curable 

disease as dictated by the miserable 5 year survival rate less than 5%. Therefore, 

novel chemotherapeutic agents would still be highly desired.  

Withaferin A and Withania somnifera 

          The importance of the natural products as the source of pharmaceutical 

agents has been recognized from ancient times (25-27). Plants (paclitaxel, 

irinotecan, and etoposide), microorganisms (dactimomycin, doxorubicin, and 

bleomycin) and marine organisms (citarabine) are all sources of natural products 

applied in human medicine (27). About 40% of the newly approved drugs in the 

past years are either natural products or their derivatives and analogues (26, 28); 

specific to anticancer agents, 73% of the newly approved agents during1940s to 

2006 are other than synthetic and 47% are either natural products or their 

derivatives and analogues (29).  

Withania somnifera 

          Withania somnifera (W. somnifera, commonly known as Ashwagandha) is 

an Indian medicinal plant and has a reputation of Indian ginseng owing to its 
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magical benefits on human health. It is a green shrub and belongs to Solanaceae 

family which includes about 90 species such as Physalis, Nicandra, Dunalia, 

Datura, Jaborosa, and Acnistus (30). W. somnifera could be found in the drier 

parts of India, Baluchistan, Pakistan, Afghanistan, Sri Lanka, Congo, South 

Africa, Egypt, Morocco, and Jordan (31, 32). For over 3,000 years, Indian people 

have cultivated and employed its whole plant extract or separate constituents in 

ayurvedic and indigenous medicine (33). It was shown to have anti-inflammatory, 

antitumor, antistress, antioxidant, immunomodulatory, hemopoetic, and 

rejuvenating properties as well as benefiting the endocrine, cardiopulmonary, and 

central nervous systems (34). A variety of formulations of W. somnifera including 

decoctions, infusions, ointments, powder, and syrup were developed and applied 

to treat various physiological disorders including burns, wounds, infections, 

gastrointestinal diseases, infertility, and cutaneous abscesses (35).   

           A variety of biologically active constituents including alkaloids, steroidal 

lactones (also known as withanolides), saponins containing an additional acyl 

group, sitoindosides (withanolides with glucose molecule at carbon 27), 

flavonoids, and tannins were identified, extracted, and isolated from W. 

somnifera by phytochemical examination (34, 36, 37). Up to date, over 130 

withanolides are known and more than 40 withanolides, 12 alkaloids, and several 

sitoindosides were isolated from different parts (leaves, roots and cherries) of W. 

somnifera and their structures were elucidated (32, 38, 39). Withanolides as the 

major constituents were shown to mainly localize in leaves and account for 0.001 

to 0.5% dry weight of the plants depending on the different species (40-42).  
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           Withanolides are a class of C28 – steroidal lactones with an ergostane 

skeleton in which C-22 and C-26 are oxidized to form a six - membered -lactone 

ring (43, 44). Figure 1.1 shows the structural skeleton of withanolides (22-

hydroxyergostan-26-oic acid-26,22-lactone). Naturally occurred modifications of 

the carbocyclic skeleton and the side chain of the withanolides have resulted in 

various novel structural variants which can be classified as withaphysalins, 

physalins, ixocarpalactones, perulactones, and acnistins (45, 46). The 

withanolides are generally polyoxygenated and produced via steroids oxidation. 

The diversity of the structures of the withanolides and their structural variants 

might lead to their various pharmacological activities, as the withanolides are 

demonstrated to have antitumor, antibacterial, anti-inflammatory, antidepressant, 

antioxidant, antiulcer, cytotoxic, quinone reductase induction, antileishmanial, 

antitrypanosomal, immunosuppressive, cognition-enhancing and memory-

improving effects, as well as hypotensive, bradycardic and respiratory-stimulant 

action (33, 46, 47). 

Withaferin A 

           Withaferin A was the first withanolide to be isolated from W. somnifera (45, 

48). Figure 1.2 shows the chemical structure of withaferin A. Withaferin A can be 

described as 4,27-dihydroxy-1-oxo-5,6-epoxywitha-2-24-dienolide. Similar to 

other withanolides, withaferin A is mainly present in leaves and absent in roots, 

stems, seeds and persistent calyx of fruits of W. somnifera and accounts for 1.6% 

of the dry weight (33, 49).  

Pharmacological activities of withaferin A 
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            As a prototype of the withanolides, withaferin A has been extensively 

studied for its pharmacological activities. Anti-inflammatory (35, 50, 51), anti-

tumor (52, 53), anti-angiogenesis (54), radio-sensitizing activity(55-57), 

chemopreventive (58, 59), and immunosuppressive (60) properties of withaferin 

A were demonstrated.  

Anti-inflammatory activity 

           Sabina et al. examined the anti-inflammatory effect of withaferin A on a 

experimental mice model for gouty arthritis monosodium with urate crystal-

induced inflammation (50). After monosodium urate crystal induction, mice paw 

volume, the levels of lysosomal enzymes, lipid peroxidation, and inflammatory 

mediator tumor necrosis factor- (TNF-) were found to be increased 

significantly; whereas, withaferin A treatment (30 mg/kg, i.p.) could reverse 

monosodium urate crystal induced inflammation, which was comparable to the 

effect of a standard non-steroidal anti-inflammatory drug indomethacin.  

           A cellular model of cystic fibrosis inflammation was established by Maitra 

et al. to assess the anti-inflammatory activity of withaferin A (51). The KKLEB 

immortalized cystic fibrosis epithelial cell line bearing cystic fibrosis 

transmembrane conductance regulator (CFTR) gene mutations was incubated 

with filtrates of Pseudomonas aeruginosa (PAF) microbes isolated from a cystic 

fibrosis patient to mimic the inflammation induction in vivo. NFB-responsive 

luciferase reporter construct was established to estimate the anti-inflammatory 

activity of withaferin A as NFB regulates various pro-inflammatory genes. It was 

shown that 3 M withaferin A pretreatment decreased PAF induced luciferase 



8 

 

activity by 70% and decreased PAF induced pro-inflammatory gene IL-8 

secretion by 50%.  

Anti-tumor and radio-sensitizing activities  

         The anti-tumor activity of withaferin A was first reported in 1967 by Shohat 

et al (61). Their studies showed that withaferin A induced mitotic arrest in the 

metaphase of mouse Ehrlich ascites carcinoma cells and induced vacuolization 

of the cytoplasma in vitro, and caused Ehrlich ascites growth reduction and 

disappearance of the tumor in 80% of the mice with Ehrlich ascites implantation 

(62, 63). Sharada et al. confirmed the anti-tumor effect of withaferin A against 

mouse Ehrlich ascites carcinoma cells indicated by the inhibition of the tumor 

growth and increased mice survival of the Ehrlich ascites implanted mice (53). In 

addition, radiosensitizing effect of withaferin A was first demonstrated and an 

optimum dose of 30 mg/kg withaferin A in combination with 7.5 Gy gamma 

radiation for Ehrlich ascites implanted mice was demonstrated (52, 53).  

          Thereafter, the anti-tumor and radio-sensitizing activities of withaferin A 

was examined in various cancer cell lines. Devi et al. showed that withaferin A 

induced dose-dependent cell killing of Chinese hamster V79 cells with IC50 of 16 

M, and pretreatment of 2.1 M withaferin A before irradiation significantly 

enhanced cell killing effect with a sensitizer enhancement ratio (SER) of 1.5 for 

37% survival and 1.4 for 10% survival (64). In addition, Devi et al. evaluated the 

radio-sensitizing effect of withaferin A on B16F1 mouse melanoma cells and 

found that injection of 30-50 mg/kg withaferin A followed by 30 Gy local gamma 

irradiation significantly enhanced the growth inhibition and administration of 
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withaferin A 1 h before irradiation was identified to be the best regimen (55). The 

withaferin A treatment, and irradiation were further employed to combine with 

hyperthermia to test the tumor inhibitory activity against B16F1 mouse melanoma 

and mouse fibrosarcoma grown in C57Bl and Swiss albino mice (56). It was 

shown that withaferin A, 30 mg/kg injected intraperitoneally 1 h before each 

irradiation, with fractionated radiotherapy (5 fractions of 10 Gy for 5 consecutive 

days) synergistically increased complete response (complete regression with no 

regrowth at the primary site during 120 days of observation) of both tumors 

(61.11% for B16F1 melanoma and 76.00% for fbrosarcoma, respectively); 

whereas subsequent hyperthermia further enhanced the effect (68.42% for 

B16F1 melanoma and 90.00% for fbrosarcoma, respectively) (56). Kalthur et al. 

confirmed that withaferin A, hyperthermia and irradiation acted synergistically 

against B16F1 melanoma and withaferin A served as a better radio-sensitizer 

than hyperthermia (65).  

         Srinivasan et al. tested anti-tumor effect of withaferin A against human 

prostate cancer cell lines (66). Interestingly, withaferin A exhibited androgen 

receptor (AR) dependent cell killing against prostate cancer cell lines. It was 

shown that withaferin A had potent anti-proliferative activity against AR negative 

PC-3 and DU145 prostate cancer cells with IC50s of 3.5 and 4.0 M, respectively; 

whereas, withaferin A (up to 8 M) had no significant effect on AR-transfected 

PC-3/AR cells, AR mutant expressing LNCaP or CWR22Rv-2 prostate cancer 

cells, and normal/immortalized prostate epithelial PzHPV-7 cells. In addition, 

neither anti-androgen (flutamide) nor withaferin A caused apoptosis in the 
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CWR22Rv-2 cancer cells, however, combined anti-androgen and withaferin A 

treatment induced significant apoptosis in CWR22Rv-2 cancer cells. The anti-

tumor effect of withaferin A on prostate tumor growth was further confirmed in 

PC-3 xenografts in nude mice (66).  

            Stan et al. demonstrated that withaferin A inhibited proliferation of breast 

cancer cells with IC50s of 1.5M for MCF-7 (estrogen-responsive and p53 wild 

type) cancer cells and 2.0 M for MDA-MB-231 (estrogen-independent and p53 

mutant) cancer cells indicating that withaferin A suppressed survival of human 

breast cancer cells was not dependent on estrogen responsiveness or p53 status 

(67).  

            Malik et al. demonstrated that withaferin A exhibited anti-proliferative 

activity against human promyelocytic leukemia cells HL-60 with IC50 of 2 M (68). 

Oh et al. also showed that withaferin A inhibited human leukemia U937 cells 

growth with IC50 of 1.0 M (69). Mandal et al. also found that withaferin A 

inhibited the growth of leukemic cells of lymphoid origin human T-(MOLT-4, 

Jurkat) and B-(REH)-ALL cell lines, and myeloid origin K-562 leukemic cells with 

IC50s less than 0.5 M, but not the normal lymphocytes peripheral blood 

mononuclear cells (PBMC) (70).  

             Koduru et al. showed that withaferin A inhibited cell survival in three 

human colon cancer cell lines SW-480, SW-620, and HCT-116 with IC50s of 

3.56, 5.0, and 5.33 M, respectively; whereas, withaferin A showed no significant 

effect against normal colon epithelial FHC cells (71).  
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           The anti-proliferative activity of withaferin A was also demonstrated 

against human head and neck squamous cell carcinoma UM-SCC-2, MDA1986, 

JMAR, and JHU011 cell lines with IC50s of 0.5, 0.8, 2.0, and 2.2 M, respectively 

(72).  

Anti-angiogenesis activity   

             Mohan et al. first demonstrated the anti-angiogenesis activity of 

withaferin A (54). Withaferin A was shown to inhibit human umbilical vein 

endothelial cell (HUVEC) sprouting in three-dimensional collagen-I matrix, inhibit 

HUVEC cell proliferation with IC50 of 12 nM, and exert potent anti-angiogenic 

activity in FGF-2 MatrigelTM plug angiogenesis mice model at doses as low as 7 

g/kg/day which were 500-fold lower than the reported doses to exert anti-tumor 

activity in vivo (54).  Withaferin A significantly inhibited neovascularization in 

injury-induced corneal neovascularization mouse model by about 70% (73).      

Chemopreventive activity   

            Manoharan et al. demonstrated chemopreventive role of withaferin A (59). 

It was shown that 7,12-dimethylbenz[a]anthracene (DMBA) induced oral 

carcinogenesis in Syrian golden hamsters, whereas oral administration of 20 

mg/kg withaferin A could completely prevent the tumor induction by DMBA (58, 

59).  

Molecular targets of withaferin A  

            As the various pharmacological effects including immunosuppression, 

anti-inflammatory, anti-angiogenesis, chemoprevention, anti-tumor, and radio-
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sensitizing activity of withaferin A were demonstrated, numerous studies were 

carried out to explore the underlying mechanisms and molecular targets of 

withaferin A for its biological activities.  

          The mechanism of radio-sensitizing activity of withaferin A was proposed 

to be the inhibition of DNA repair by withaferin A (57). To test this theory, Uma 

Devi et al. constructed two DNA repair deficient single gene mutants Rad54-/-, 

Ku-/- and one double gene mutant Ku-/- Rad54-/- DT40 chicken B-lymphocyte cell 

lines. Ku70 plays an important role in non-homologous end-joining (NHEJ) 

mediated DNA double strand breaks repair after irradiation; whereas Rad54 is 

important in homologous recombination (HR) mediated DNA double strand 

breaks repair. Pretreatment with 5 M withaferin A followed by X-rays on the 

wild-type DT40 chicken B-lymphocyte and the three mutant constructs, 

significantly proliferation inhibition of wild-type DT40, Ku-/- , and Ku-/- Rad54-/- 

cells, but not Rad54-/- cells were observed, indicating that withaferin A contributes 

to the radio-sensitizing effect mainly through the inhibition of the homologous 

repair (57).  

            Mandal et al. showed that withaferin A induced leukemic cells apoptosis 

was through activation of p38 mitogen-activated protein kinase signaling cascade 

(70). Withaferin A activated p38MAPK, which triggered the downstream 

apoptosis cascade including activation and phosphorylation the transcription 

factors activating transcription factor 2 (ATF2) and heat shock protein 27 (Hsp27), 

externalization of phosphatidylserine, increase of Bax/Bcl-2 ratio, loss of 

mitochondrial transmembrane potential, cytochrome c release, and caspase 9 
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and 3 activation; whereas knockdown of p38MAPK by siRNA can greatly protect 

leukemic MOLT-4 cells against withaferin A induced apoptosis with reduction of 

apoptosis by 3.72 fold.  

            Sen et al. demonstrated that withaferin A inhibited protein kinase C (PKC) 

activity in leishmanial cells and inhibited growth of L. donovani AG83 

promastigotes (74). Incubation of leishmanial cell extract with different 

concentrations of withaferin A exhibited dose-dependent inhibition of the 

phosphorylation of PKC substrate peptide HCV (1487-1500) indicating the 

inhibition of PKC by withaferin A. Withaferin A also showed inhibition of the 

phosphorylation of the HCV peptide by the purified rat brain PKC (74).  

            As stated earlier, NFB inhibition by withaferin A contributes to its anti-

inflammatory activity (51). In addition, Mohan et al. found that the inhibition of 

NFB by withaferin A at doses correlated with the inhibition of human umbilical 

vein endothelial cell (HUVEC) sprouting in three-dimensional collagen-I matrix 

indicating that NFB inhibition of withaferin A might also contribute to its anti-

angiogenesis activity (54). Withaferin A inhibited TNF-induced NFB activation 

in endothelial cells with IC50 0.5 M, and inhibited the degradation of the 

(lipopolysaccharide) LPS-activated phosphorylated form of IB (54). Kaileh et al. 

further elucidated that withaferin A inhibited TNF-induced activation of IB 

kinaseIKKvia a thioalkylation-sensitive redox mechanism (35). IKKSer-

181 hyperphosphorylation induced by withaferin A led to the inhibition of IKK-
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dependent IBa degradation, which inactivated NFB translocation, NFB/DNA 

binding, and gene transcription (35).  

           Srinivasan et al. demonstrated that withaferin A inhibited prostate cancer 

cell growth through the induction of prostate apoptosis response-4 (Par-4) protein 

expression (66). Withaferin A induced apoptosis was inhibited by inhibition of 

Par-4 either with siRNA knockdown or with dominant-negative Par-4 in prostate 

PC-3 cancer cells. Withaferin A was further show to fail to inhibit NFB activity 

when Par-4 was knockdown (66).  

           Yang et al. demonstrated that withaferin A inhibited the chymotrypsin-like 

activity of proteasome (75). The computational modeling showed that C1 and 

C24 of withaferin A can interact with the proteasomal 5 subunit, which was 

confirmed by the inhibition of the chymotrypsin-like activity of purified rabbit 20S 

proteasome with IC50 4.5 M, and inhibition of the cellular 26S proteasomal 

chymotrypsin-like activity with IC50 20 M. The inhibition of the proteasome was 

further evidenced by the accumulation of ubiquitinated proteins and three 

proteasome target proteins (Bax, p27, and IB) (75).  

            Falsey et al. demonstrated that withaferin A directly bound to adapter 

protein annexin II and stimulated annexin II mediated F-actin aggregation and 

bundling (76). Incubation of fibroblast with withaferin A revealed that the actin 

cytoskeleton was disrupted with formation of F-actin aggregation. Over-

expression of annexin II in HepG2 cells (with little or no endogenous annexin II) 

showed much higher sensitivity of the cells to withaferin treatment in terms of 
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cytoskeletal perturbation, rapid shape change and rounding up, which indicated 

the central role of annexin II in withaferin A induced F-actin aggregation. In 

addition, withaferin A binding to annexin II mediated F-actin aggregation 

contributed to the inhibition of the migration and invasion of cancer cells (76). 

Interestingly, Bargagna-Mohan et al. showed that withaferin A induced F-acting 

aggregation and cellular cytoskeletal disruption could also be mediated by the 

intermediate filament protein vimentin (73). Their data suggested that withaferin 

A directly bound to the cystein residue in the highly conserved -helical coiled 

coil 2B domain of vimetin and induced vimentin filaments to aggregate and 

colocalize with F-actin aggregates.  Withaferin A inhibited neovascularization in a 

mouse model of injury induced corneal neovascularization, whereas, it only 

showed marginal effect against neovascularization in vimentin-null mice 

indicating the anti-angiogenesis activity of withaferin A was mediated by vimentin 

(73). Bargagna-Mohan et al. further argued that the inhibition of the ubiquitin-

proteasome pathway by withaferin A was also mediated by vimentin as 

evidenced by the enhanced polyubiquitinated protein level in vimentin-

transfected MCF-7 cells compared to the wild type MCF-7 or the vector control 

transfected MCF-7 cells (73).  

               Stan et al. showed that withaferin A induced apoptosis in human breast 

cancer cells was regulated by the transcription factor Foxo3a and its 

transcriptional target Bim (67). FOXO3a depletion in MCF-7 cells by FOXO3a-

targeted siRNA decreased withaferin A induced Bim-s isoform protein level and 

partially protected withaferin A induced apoptosis. In addition, Bim-targeted 
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siRNA transfection could also protect breast cancer cells from withaferin A 

induced apoptosis.  

              Oh et al. demonstrated that JNK pathway and Akt signaling played 

important roles in withaferin A induced apoptosis in U937 leukemic cells (69). 

Withaferin A treatment increased the level of phosphorylated JNK level, whereas 

co-treatment withaferin A with JNK inhibitor SP600125 dramatically decreased 

the sub-G1 phase cells (apoptotic cells) compared with withaferin A treatment 

alone. In addition, PI3K inhibitor LY294002 (inhibits Akt phosphorylation) could 

increase withaferin A induced accumulation of sub-G1 phase cells. Furthermore, 

ectopic expression of constitutive active Akt in U937 cells reduced withaferin A 

induced accumulation of sub-G1 phase cells.  

            Malik et al. demonstrated that withaferin A acted as pro-oxidant: induced 

oxidative stress in human leukemia Hl-60 cells which resulted in mitochondrial 

membrane potential (Δmt) loss, cytochrome c release, translocation of Bax to 

mitochondria, and apoptosis inducing factor to cell nuclei as well as activation of 

caspases -9, -3 and PARP cleavage (68). Whereas, antioxidant N-acetyl cysteine 

(NAC) could rescue withaferin A induced oxidative stress and protect cells from 

withaferin A induced cytotoxicity (68). Lee et al. also showed that withaferin A 

induced reactive oxygen species (ROS) generation, up-regulation of C/EBP 

homologous protein (CHOP) and death receptor 5 (DR5) which can be reversed 

by the co-treatment of antioxidants NAC or catalase, and sensitize tumor 

necrosis factor-related apoptosis-inducing ligand (TRAIL) induced apoptosis in 

human renal cancer Caki cells (77). 
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              The pro-survival Notch-1 signaling was also suggested to be inhibited by 

withaferin A (71). Withaferin A treatment decreased Notch-1 and its downstream 

target Hes-1 and Hey-1 expression in colon cancer cells. Withaferin A also down-

regulated Akt, mammalian target of rapamycin (mTOR) signaling components 

(p70-S6K and 4E-BP1) and activated c-Jun-NH2-kinase mediated apoptosis in 

colon cancer cells, whereas Akt and mTOR signaling were regulated by Notch-1.  

            Lee et al. showed that signal transducer and activator of transcription 3 

(STAT3) might be another molecular target of withaferin A (78). Their data 

showed that withaferin A decreased both the constitutive and the interleukin-6 

(IL-6) induced phosphorylated STAT3 protein level and its upstream regulator 

Janus-activated kinase 2 (JAK2) protein level in breast cancer MDA-MB-231 

cells. In addition, although IL-6 stimulated activation of STAT3 did not affect 

withaferin A induced cancer cell apoptosis, it increased cell invasion modestly 

which was inhibited by withaferin A.  

Structural activity relationship of withaferin A and its pharmacological 

activity      

          As various pharmacological activities including anti-tumor, radio-sensitizing, 

anti-angiogenesis, and anti-inflammatory were demonstrated and the underlying 

biochemical mechanisms and potential molecular targets were also elucidated, it 

would be valuable to assess the key structural components in withaferin A which 

contribute to its biological activities.  

          Withaferin A is highly reactive towards proteins as the ketone containing 

unsaturated A-ring (double bond at position C2-3), the epoxide within B ring, and 
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the unsaturated lactone ring were all demonstrated to be involved in Michael 

addition thioalkylation reactions (79-82). Fuska et al. found that the unsatuarated 

A ring was crucial for the cytotoxicity of withaferin A, as the withaferin A 

derivatives with dissociated double bond possessed little cytotoxicity (79). 

Whereas, the C27 hydroxyl group and the ,-unsaturated -lactone ring (double 

bond at C24-25) were not required for the cytotoxicity of withaferin A (79). 

Kuroyanagi et al. demonstrated that the 4-hydroxy-5, 6-epoxy-2-en-1-one 

moiety was crucial for withaferin A’s ability to induce cell differentiation, whereas 

,-unsaturated -lactone ring was not (83). Damu et al. also demonstrated the 

importance of the 5, 6-epoxide group for withanalides’ cytotoxicity (46).          

             Yang et al. showed that the conjugated ketone carbon in the A ring was 

required for the proteasome inhibition (75). The computational electron density 

analysis and in silico docking study showed that the conjugated ketone carbon in 

the A ring could accept nucleophilic attack by the OH group of N-Thr of the 

proteasomal 5 subunit and inhibit the chymotrypsin-like activity. By reducing the 

conjugated ketone carbon in the A ring, the new reduced withaferin A analogue 

showed significant reduction in inhibition of proteasome (30% to 90% inhibition at 

concentration 10 M) (75).  

           In addition, Mohan et al. demonstrated that the C2-C3 unsaturated 

position of the A-ring and C5-C6 epoxide group could contribute to the binding of 

withaferin to vimentin as suggested by the molecular modeling studies; whereas, 

withaferin A derivatives 3-methoxy-dihydrowithaferin A (without C2-C3 double 
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bond) or 3-thiophenoxy-dihydrowithaferin A (without C2-C3 double bond) failed 

to inhibit vimentin (73).  

Heat shock protein 90 (Hsp90) 

          Heat shock protein 90 (Hsp90) is a molecular chaperone found from 

bacteria to human. In eukaryotic cells, it is highly abundant and accounts for 1-2% 

of total cytosolic protein. As a molecular chaperone, more than 200 proteins 

(known as clients) rely on Hsp90 and its associated cochaperone proteins for 

their conversion into active conformation (84). Many of those Hsp90 client 

proteins, including HER-2, EGFR, Akt, Raf-1, Cdk4, mutated p53, etc. are 

constitutively active and involved in transformation and tumorigenesis (85). More 

than 20 cochaperones were identified, including activator of Hsp90 ATPase 1 

(AHA1), prostaglandin E synthase 3 (PTGES3 or p23), STIP1 (p60Hop), cell 

division cycle 37 homologue (Cdc37), FKBP51, FKBP52, and etc.. (84). Those 

cochaperones regulate Hsp90’s ATPase activity and the rate of Hsp90 cycle as 

well as help load the client proteins to Hsp90 (84, 86).  

         Hsp90 primarily exists as homodimer in the cytoplasm. Hsp90 monomer 

can be divided into three major domains: N-terminal domain, middle domain, and 

C-terminal domain. N-terminal domain contains an adenine-nucleotide binding 

pocket and functions as ATPase. The hydrolysis of ATP to ADP is crucial for the 

chaperoning activity of Hsp90 (87). N-terminal domain also participates in 

cochaperone binding such as Cdc37, which helps deliver the kinases client 

proteins to Hsp90 (88, 89).  Middle domain plays a role in regulation of ATPase 

activity by binding to the -phosphate of ATP which are bound in the N-terminal 
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ATP binding pocket and by binding to the cochaperone Aha1 which stimulates 

Hsp90’s ATPase activity (90, 91). Middle domain is also involved in client protein 

binding (87). C-terminal domain is responsible for dimerization and cochaperone 

binding such as immunophilins, Hop and protein phosphatase 5 (PP5) (87). In 

addition, a second ATP binding pocket was implicated in C-terminal domain (92-

94).  

        Hsp90 chaperoning activity is regulated by dimerization, ATP/ADP binding 

and turnover, as well as binding of the various cochaperones (95). Hessling et al. 

applied fluorescence resonance energy transfer (FRRET) to understand the 

kinetics of conformational changes of Hsp90 in response to nucleotides (96). A 

Hsp90 cycle model was proposed: first, an open apo-state of Hsp90 homodimer 

via C-terminus dimerization is assumed and ATP binds to the N-terminal ATP 

binding pocket in each monomer in a fast reaction, subsequently, an I1 

conformation is slowly formed in which a short segment in N-terminal domain 

(known as ATP lid) is released from the contacting N-terminal segment and flaps 

over the binding pocket; then, the N-terminal domains are dimerized in addition 

to the dimerized C-terminal domains through the contacting of the N-terminal 

segment (originally contacting to ATP lid) to the corresponding segment in the 

other monomer (I2 conformation); the contact between N-terminal domain to 

middle domain further twists Hsp90 conformation to a closed state, in which ATP 

is hydrolyzed to ADP and Pi, finally, ADP is released and Hsp90 returns to the 

open state (96). Besides ATP/ADP binding and turnover, cochaperone binding 

could also alter the rate of Hsp90 cycle. Sti1 and Cdc37 could block the Hsp90 
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conformation change in the early stages, and prevent N-terminal dimerization (97, 

98). Whereas, Aha1 could accelerate the Hsp90 cycle leading to I2 conformation 

transition even without ATP binding (96). In addition, p23/Sba1 could stabilize 

Hsp90 at the N-terminally dimerized conformation at the late stage of Hsp90 

chaperone cycle, and thus, decrease the ATP turnover rate of Hsp90 (99, 100).  

        Newly synthesized, conformationally labile client proteins bind to Hsp90 to 

form an intermediate complex with other cochaperones (such as Cdc37, Hop, 

Hsp70, Hsp40, and Hip). Depending on the type of the client proteins, the 

involved cochaperones could be difference. For instance, Cdc37 is specifically 

responsible for the loading of the kinase client protein. Dynamic association of 

the client proteins in this intermediate complex prevents the client proteins from 

aggregation, assists in intracellular trafficking and membrane translocation, and 

maintains the client proteins at metastable state from which the client proteins 

can be further activated by specific stimuli (87, 101). For client proteins subjected 

to be activated, multiple rounds of ATP hydrolysis are required to facilitate Hsp90 

chaperoning cycling and drive Hsp90 catalyze the maturation of the client 

proteins (87, 102).  

       Since the introduction of benzoquinone ansamycin geldanamycin as the 

first in line Hsp90 inhibitor in 1994 by Whitesell et al., various types of Hsp90 

inhibitors with structural diversities have been designed and synthesized, 

including geldanamycin (GA, and its derivatives 17-AAG, IPI-504, 17-DMAG), 

radicicol and its derivatives, purine and its derivatives, pyrazoles and isoxazoles, 

sulfanyl analogues, resorcinol-bearing compounds, and 2-aminopyrimidine-
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bearing derivatives (87, 103-107). The above inhibitors all target to the N-

terminal ATP binding pocket, which prevents ATP binding, locks the client 

proteins in the intermediate complex state, interrupts the Hsp90 chaperone cycle, 

and finally leads to the release of the immature client protein from the complex 

which are further subjected to proteasome mediated degradation. Besides 

blocking the N-terminal ATP binding pocket, C-terminal ATP binding pocket 

might also be a viable target for inhibition of Hsp90 as well. Novobiocin and its 

derivatives were synthesized and demonstrated to bind to Hsp90 C-terminal ATP 

binding pocket and induce cancer cell death (92, 108-110). In addition, cisplatin 

was also shown to bind to Hsp90 C-terminal ATP binding pocket, although it’s 

still arguable whether inhibition of Hsp90 by cisplatin contributes to its potent 

anticancer activities as much higher concentration of cisplatin is required to 

inhibit Hsp90 than the pharmacologically active concentration (93, 111). In 

addition to ATP binding blockage of Hsp90, researchers have also identified 

other Hsp90 inhibition mechanisms. For example, the histone deacetylase 

inhibitors (hydroxamic acid analogue, LAQ 824 and LBH589) were shown to 

induce the hyperacetylation of Hsp90, resulting in inhibition of ATP binding and 

attenuation of chaperone activity (112). One of the advantages for Hsp90 

inhibitors as anticancer agents is that inhibition of Hsp90 could lead to 

simultaneous degradation of its client proteins many of which are oncogenic 

proteins. Since those oncogenic proteins could be involved in various pathways 

which are all crucial for tumor development, it reduces the possibility of tumor 

drug resistance development for single therapeutic pathway (95). In addition, 
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Hsp90 inhibitors show high selectivity. Oncogenes in cancer cells are more 

dependent on Hsp90 chaperoning activity. In addition, Hsp90 was demonstrated 

to be highly expressed in various cancerous tissues compared to the non-

cancerous tissue (102, 113-115). Furthermore, Hsp90 in tumor exists in multi-

chaperone complexes with high ATPase activity, whereas hsp90 in normal 

tissues is present in a latent, uncomplexed state (102, 116). Therefore, it’s not 

surprising that the binding affinity of Hsp90 inhibitor 17-AAG to Hsp90 in cancer 

cells is 100-fold higher than that to Hsp90 in normal cells (102). Consequently, 

the antiproliferative activity of Hsp90 in tumor cells is much higher than that in 

normal cells (95).    

     To date, 13 Hsp90 inhibitors have entered clinical trials in different phases 

for different indications (95, 104, 117-122).  For instance, 17-AAG is in phase III 

clinical trial against multiple myeloma, whereas IPI-504 is also in phase III clinical 

trial against gastrointestinal stromal tumor (GIST) (95).  

Heat shock response and heat shock protein 70 (Hsp70) 

        Heat shock response is mediated by the transcriptional regulator heat shock 

factor 1 (Hsf1). Hsf1 transiently binds to Hsp90 in cytosol and its transcriptional 

activity is sequestered by Hsp90 (123). Under stress such as heat, oxidative 

stress and massive mutant protein presence or inhibition of Hsp90 by Hsp90 

inhibitors, Hsf1 is released from Hsp90 complex, hyperphosphorylated, 

homotrimerized and translocated into nucleus to bind to the heat shock elements 

(HSE) in the promoter of hsp70 gene and activate its transcription (123-125). 
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Heat shock response induced by Hsp90 inhibitors was demonstrated to 

contribute to the development of drug resistance to Hsp90 inhibitors (126-130). 

     Researchers have conducted many studies to explore the possibility of 

targeting heat shock response to sensitize cancer cells to Hsp90 inhibitors. For 

example, KNK437 and Quercetin, which inhibited the DNA binding and 

transcriptional activation of Hsf1, were found to sensitize multidrug resistant 

cancer cells against hyperthermal therapy and chemotherapeutic drugs including 

17-AAG (125, 131-133). However, KNK437 and Quercetin exhibit low inhibitory 

efficiency of Hsf1 (at 200 M level and require multiple dosing). In addition, 

knockdown Hsp70 expression by siHsp70 was also shown to enhance the 

anticancer activity of classical Hsp90 inhibitors such as GA, 17-AAG and EC78 

(129, 130).  

     Hsp70 is an ATP-dependent molecular chaperone assisting nascent 

polypeptides folding, assembly and translocation (134). In normal cells, the 

expression of Hsp70 is at basal level; under heat shock response, Hsp70 is 

upregulated and assists in the recovery from stress and promoting cell survival 

(135). Hsp70 also acts as Hsp90 cochaperone (136). Studies have shown that 

Hsp70 exhibits antiapoptotic effects, which is related to heat shock response. 

Hsp70 inhibits the mitochondrial pathway of apoptosis by associating with 

apoptotic protease activating factor 1 (Apaf-1), blocking the assembly of 

functional apoptosomes (137), and suppressing the activity of caspase-3 (126, 

138). In addition, Hsp70 also inhibits caspase-independent death effecter 

apoptosis inducing factor (AIF) by directly binding to AIF, which prevents its 
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translocation into nucleus and induces chromatin condensation and DNA 

fragmentation (126, 139, 140). Hsp70 is constitutively expressed in most cancer 

cells and human cancer tissues from various origins (132, 141, 142). The high 

Hsp70 expression in various human cancers has been demonstrated to 

associate with metastasis, poor prognosis and resistance to radiation therapy or 

chemotherapy (127, 143-148).  

Specific aims 

         Although Hsp90 inhibitors targeting the ATP binding pocket of Hsp90 have 

entered clinical trial, it is still premature to conclude it would work as there’s no 

such inhibitor approved by FDA and entered market yet. We propose another 

mechanism for inhibition of Hsp90 --- targeting the reactive cysteine residues of 

Hsp90 based on the following evidences: Hsp90 is sensitive to cellular redox 

conditions and tend to form disulfide bond under oxidative stress (149, 150); in 

addition, susceptible cysteine residues in C-terminal Hsp90 were revealed and S-

nitrosylation of the cysteine residues of Hsp90 inhibited Hsp90 ATPase activity 

(151, 152); the reactive cysteine residues were also demonstrated to be required 

for the interaction between Hsp90 and molybdate, a metal oxyanion shown to 

stabilize the Hsp90-protein complexes (153, 154).  

          Therefore, we hypothesized that specific targeting Hsp90 C-terminus 

reactive cysteine would lead to decreased Hsp90 chaperoning activity, 

destabilize Hsp90-protein complexes, and result in client protein degradation and 

cancer cell death.  

The specific aims of this study are: 
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1. To investigate the anticancer efficacy of withaferin A in pancreatic cancer 

cells and its mechanism of Hsp90 inhibition. 

2. To investigate the synergistic effect of withaferin A and myricetin in pancreatic 

cancer cells. 

3. To investigate the functional groups in withanolides which are crucial for their 

Hsp90 inhibitory and anticancer effects.  
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Figure 1.1  Withanolide structural skeleton 

 

 

Figure 1.2  Withaferin A chemical structure 
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CHAPTER II 

WITHAFERIN A TARGETS HEAT SHOCK PROTEIN 90 IN PANCREATIC 

CANCER CELLS  

 

 

Abstract 

The purpose of this study is to investigate the efficacy and the mechanism of 

Hsp90 inhibition of withaferin A (WA), a steroidal lactone occurring in Withania 

somnifera, in pancreatic cancer in vitro and in vivo. Withaferin A exhibited potent 

antiproliferative activity against pancreatic cancer cells in vitro (with IC50s of 1.24, 

2.93 and 2.78 M) in pancreatic cancer cell lines Panc-1, MiaPaca2 and BxPc3, 

respectively. Annexin V staining showed that WA induced significant apoptosis in 

Panc-1 cells in a dose dependent manner. Western blotting demonstrated that 

WA inhibited Hsp90 chaperone activity to induce degradation of Hsp90 client 

proteins (Akt, Cdk4 and glucocorticoid receptor), which was reversed by the 

proteasomal inhibitor, MG132. WA-Biotin pull-down assay of Hsp90 using Panc-1 

cancer cell lysates and purified Hsp90 showed that WA-biotin binds to C-

terminus of Hsp90, which was competitively blocked by unlabeled WA. Co-

immunoprecipitation exhibited that WA (10 µM) disrupted Hsp90-Cdc37 
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complexes from 1-24 hour post treatment, while it neither blocked ATP binding to 

Hsp90, nor changed Hsp90-P23 association. WA (3, 6 mg/kg) inhibited tumor 

growth in pancreatic cancer Panc-1 xenografts by 30% and 58%, respectively. 

These data demonstrate that withaferin A binds Hsp90, inhibits Hsp90 chaperone 

activity through an ATP independent mechanism, results in Hsp90 client protein 

degradation, and exhibits in vivo anticancer activity against pancreatic cancer.  

Key words: Withaferin A; Pancreatic cancer; Hsp90; Reactive cysteine; Client 

protein; Cdc37;  

 

 

Introduction 

    Pancreatic cancer is the fourth leading cause of cancer deaths in the 

United States (1, 2) with one- and five-year survival of 23% and 4% (1). The 

mortality rates associated with pancreatic cancer are almost equal to its 

incidence rates. The underlying mechanism of pancreatic tumor formation is 

rather complex. A number of biochemical and genetic abnormalities have been 

reported, which include mutations or overexpression of oncogenes (such as 

KRAS, ERBB2, and AKT) and tumor-suppressor genes (such as P53, BRCA2) 

(3-6). In addition, over-expression of growth factors and their receptors, such as 

TGF-beta, VEGF, and EGFR (6), have also been linked to pancreatic cancer. 

  The treatment regimens for pancreatic cancer have no substantial 

improvement over the past few decades (7). Currently, surgery is the main 



40 

 

therapeutic option since chemotherapy and radiation only achieve minimal 

effects due to rapid progression, late diagnosis, and drug resistance of 

pancreatic cancer (1). Unfortunately, only 15-20% of pancreatic cancer patients 

are amenable to curative resection while 80% of patients generally have 

nonresectable advanced or metastatic tumors (8). Furthermore, even in patients 

with resectable disease, the overall 5-year survival is 15%. Currently, 

gemcitabine is the standard therapeutic drug for treatment of pancreatic cancer. 

However, it only improves the disease symptoms with no significant survival 

benefits. Thus, novel agents for prevention and treatment of pancreatic cancers 

are highly desired.  

        Natural products appear to be promising sources of drugs for cancer 

treatment (9). Withaferin A (WA), a major active constituent purified from the 

Indian medicinal plant Withania somnifera, was shown to have antitumor, 

antiangiogenesis and radiosensitizing activity (10, 11). The anticancer activity of 

Withaferin A has been demonstrated in prostate cancer cells (12, 13), breast 

cancer cells (14), leukemia cells (15), and melanoma cells (16). It was shown 

that WA inhibits nuclear factor-κB (NF-κB) activation (11), induces apoptosis in 

prostate cancer cells through Par-4 induction (12), inhibits IκB kinase activation 

via a thioalkylation-sensitive redox mechanism (17), inhibits the chymotrypsin-like 

activity of proteasome (13), and targets the intermediate filament protein vimentin 

by covalently modifying the cysteine residue (18).  In addition, WA also targets 

annexin II to induce Actin microfilament aggregation (19).  
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    In our preliminary study, we found that withaferin A exhibited Hsp90 

inhibition characteristics in pancreatic cancer cells by decreasing the levels of 

Hsp90 client proteins. Thus we intend to investigate the efficacy of WA and 

Hsp90 inhibition mechanisms in this study.  Hsp90 is a molecular chaperone 

which mediates the folding, assembly, and maturation of many client proteins, 

including HER-2, EGFR, Akt, Raf-1, Cdk4, mutated p53, which are directly 

involved in the malignancy (20). Hsp90 has three distinct domains. The N-

terminal domain has the ATP binding site, the middle domain may interact with 

clients, and the C-terminal domain is responsible for dimerization of Hsp90. An 

additional ATP binding site is also found to be present in the C-terminus. The 

ATP binding sites act as a conformational switch to regulate Hsp90 chaperone 

activity (21). In cancer cells, the newly synthesized oncogenic client proteins bind 

to Hsp90 to form an intermediate complex with other co-chaperones (such as 

Cdc37, Hop, Hsp70, Hsp40, and Hip). Upon ATP binding to Hsp90, client 

proteins and Hsp90 form a mature complex. This mature superchaperone 

complex catalyzes the conformational maturation of client proteins (22). These 

oncogenic client proteins stimulate cancer cell proliferation and survival. Several 

Hsp90 inhibitors, which block the ATP binding sites of Hsp90, have been 

developed and tested in preclinical and clinical models for their anticancer activity 

(23-26). Geldanamycin (GA, and its derivatives 17-AAG, IPI-504, 17-DMAG), 

radicicol and derivatives, purines and derivatives, pyrazoles and isoxazoles, 

sulfanyl analogues, resorcinol-bearing compounds, and 2-aminopyrimidine-

bearing derivatives block the N-terminal ATP binding pocket, whereas novobiocin 
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(and its derivatives) and cisplatin block the C-terminal ATP binding pocket (23, 

27-31). To date, many of these Hsp90 inhibitors have entered preclinical or 

phase I/II clinical studies (24, 25, 32, 33).  

    In this study, we investigate the efficacy and mechanism of withaferin A (WA) 

for Hsp90 inhibition and its use against pancreatic cancer. Our data suggest that 

withaferin A exhibits potent cytotoxicity against pancreatic cancer cells both in 

vitro and in vivo xenograft models. The anticancer activity of WA is partially due 

to its direct binding to Hsp90 C-terminus, and inhibiting Hsp90 chaperone activity, 

inducing Hsp90 client protein degradation through an ATP independent 

mechanism.    

 

Materials and methods 

Cell culture and reagents.   

       Human pancreatic cancer cell lines Panc-1, BxPC3 and MiaPaCa-2 were 

cultured in 10% FBS RPMI-1640 or 10% FBS DMEM at 37ºC and 5% CO2. 

Withaferin A was purchased from Calbiochem, Inc. (San Diego, CA). The 

following antibodies were used for western blot: Akt (Cell Signaling, Beverly, MA), 

Hsp70 and Hop (StressGen, Victoria, BC, Canada), Cdk4, Cdc37 and Hsp90 

(Santa Cruz, Santa Cruz, CA), Actin and p23 (Abcam, Cambridge, MA). 

Monoclonal Hsp90 antibody H9010 for immunoprecipitation was purchased from 

Alexis Biochemicals (San Diego, CA), and purified Hsp90β protein for ATP 

binding assay was a kind gift of Dr. David Toft (Mayo Clinic, Rochester, MN).  
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MTS assay.  

       Pancreatic cancer cells were seeded in 96-well plates at a density of 5000 

cells per well. 24 hours later the cells were treated with increasing concentrations 

of WA as indicated. MTS assay was performed to assess cell viability after 48 h 

incubation. The IC50 value for cytotoxicity was estimated by WinNonlin software 

(Pharsight, Mountain View, CA).  

Apoptosis study.  

       The Annexin V-EGFP Apoptosis Detection Kit was purchased from BioVision 

Research Products (Mountain View, CA) and used as recommended by 

manufacturer. Human pancreatic Panc-1 cells were treated with 1, 5, and 10 µM 

WA for 12 h, and stained with Annexin V-EGFP to analyze the phosphoserine 

inversion. Early apoptotic cells were observed with a fluorescence microscopy.  

Withaferin A-Biotin pull down assay.  

       Withaferin A-Biotin (WA-biotin) was prepared and used in the pull down 

assay as described previously (19). Briefly, 500 µg of Panc-1 pancreatic cancer 

cell whole cell extracts or 5 µg of purified human Hsp90 beta, N-terminus Hsp90 

beta, C-terminus Hsp90 beta and yeast Hsp90 were incubated with immobilized 

WA-Biotin for 2 h at 4 °C in TNEK buffer (5 mM Tris, pH 7.4; NP-40 1%; EDTA 2 

mM; KCl 200 mM) supplemented with protease inhibitors. To perform competition 

assay, the samples were preincubated with 100 M WA for 1 hr before add with 

WA-Biotin. The beads were then washed with TNEK buffer for 3 times, and were 

boiled in loading buffer for 4 min to isolate the bound proteins. Western blot was 
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carried out to analyze the levels of Hsp90 proteins. 

ATP-sepharose binding assay.  

       The assay was performed as previously described (34, 35). Total of 5 μg of 

human hsp90β protein with DMSO, WA or 17-AAG were incubated on ice in 200 

μl incubation buffer consisting of 10 mM Tris-HCl, 50 mM KCl, 5 mM MgCl2, 2 

mM DTT, 20 mM Na2MoO4, 0.01% Nonidet P-40, pH 7.5. After 30 min, 25 μl of 

pre-equilibrated γ-phosphate-linked ATP-Sepharose (Jena Bioscience GmbH, 

Jena, Germany) was added to tubes, which were then incubated at 37 °C for 

another 30 min with frequent mixing to resuspend the resin. Following incubation, 

the sepharose was washed, pelleted and analyzed by SDS-PAGE. 

Coimmunoprecipitation and Western Blotting assay.  

  The general procedure for coimmunoprecipitation was described as follows. 

500 µg of whole cell extracts was incubated with 5 µl H9010 anti-Hsp90 antibody 

or anti-P23 antibody for 1 h at 4oC, rotating. 30 µl protein G agarose (Pierce, 

Rockford, IL) was added to each sample, and incubated for another 2 h at 4oC. 

The beads were washed 3 times with PBS plus protease inhibitors. The beads 

were boiled in loading buffer for 4 min to isolate the bound proteins. Western blot 

was carried out to analyze the levels of coimmunoprecipitated proteins. Western 

blot was performed as previously described (35, 36). Non-reducing SDS-PAGE 

was used to analyze the disulfide-bonded protein as described previously (37). 

Isolation of triton-soluble and triton-insoluble proteins was performed as 

described by Chen et al (37). 
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Real-time PCR assay. 

  RT-PCR is carried out as described previously (36). Briefly, Panc-1 cancer 

cells are treated with 5 M WA for 12 hrs. TRIzol reagents (Invitrogen, Carlsbad, 

CA) are used to extract total cellular RNAs as described in protocol provided by 

manufacturer. Superscript III first strand synthesis kit from Invitrogen is used to 

reverse transcribe the cDNA. Then the real-time PCR is carried out in ABI 

PRISM 7900T real-time PCR system (PerkinElmer, Branchburg, NJ) with SYBR 

Green PCR Master Mix (Applied Biosystems, Foster City, CA). The primers used 

in RT-PCR are as follows: Akt, forward, 5’-TCT ATG GCG CTG AGA TTG TG-3’, 

reverse, 5’-CTT AAT GTG CCC GTC CTT GT-3’; Cdk4, forward, 5’-GAA ACT 

CTG AAG CCG ACC AG-3’, reverse, 5’-GCC CTC TCA GTG TCC AGA AG-3’; 

glucocorticoid receptor (GR), forward, 5’-GAG AGG GGA GAT GTG ATG GA-3’, 

reverse, 5’-GTT TTC ACT TGG GGC AGT GT-3’. Internal standard -actin, 

forward, 5’-GCT CGT CGT CGA CAA CGG CTC-3’; reverse, 5’-CAA ACA TGC 

TCT GGG TCA TCT TCT C-3’. mRNA levels are calculated as fold change of 

control. After completion of the RT-PCR, Ct values (cycle numbers in which 

signal intensity equal to the threshold value) will be obtained from the software. 

For each samples, ΔCt is calculated as ΔCt = CtAkt/Cdk4/GR – Ctactin. Then ΔΔCt is 

calculated as ΔΔCt = ΔCttreatment - ΔCtcontrol. The fold change of the Akt/Cdk4/GR 

mRNA levels relative to control group are calculated as 2-ΔΔCt. 

Pancreatic tumor xenograft.  

  The pancreatic tumor xenograft mouse model was used to test anticancer 

activity of WA similar to previous reports (35, 36). Briefly, 4 to 6-week old nu/nu 
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athymic female mice were obtained from Charles River Laboratories (Charles 

River, Wilmington, MA). Pancreatic cancer Panc-1 cells (5-10×106) were mixed 

with reconstituted basement membrane (Collaborative Research, Bedford, MA) 

and inoculated s.c. to the right and left flanks of the mice. When the tumors 

became palpable (~100 mm3), mice were randomly divided into different groups 

for treatment (n= 6/group). WA was dissolved in the vehicle (10% DMSO, 40% 

Cremophor/ethanol (3:1), and 50% PBS) (13), and administered at 6 mg/kg or 3 

mg/kg by i.p. injection for two continuous days. Then the dosing schedule was 

changed to two injections per week for 4 weeks. Tumor sizes and body weights 

were measured twice a week. After 30 days’ drug treatment, and tumor sizes and 

body weights were monitored until 70 days.   

 

RESULTS 

Withaferin A inhibits proliferation in pancreatic cancer cells. 

  The antiproliferative effect of WA (Figure 2.1A) against human pancreatic 

cancer cell lines was examined by MTS assay. A 48-h exposure to different 

concentrations of WA induced a dose-dependent inhibition in cell proliferation. 

WA exhibited high cytotoxicity against Panc-1 cells with an IC50 of 1.24 M 

(Figure 2.1B), whereas, WA showed relatively lower cytotoxicity against 

MiaPaca2 and BxPc3, with IC50s of 2.93M and 2.78M (Figure 2.1C and 

2.1D). Overall, WA showed potent antiproliferative effect against these three 

human pancreatic cancer cell lines.  
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Withaferin A induces apoptosis in pancreatic cancer cells. 

      To illustrate that WA induces apoptosis in pancreatic cancer cells, annexin-V 

staining was conducted in Panc-1 cells with WA treatment. As shown in Figure 

2.2, the Annexin-V positive staining cells accounted for 18.5±1.68, 46.8±5.22 and 

68.1±7.14 of the overall cell population in Panc-1 cells treated with 1, 5, and 10 

µM WA for 12 h, respectively. In contrast, only marginal apoptotic cells were 

observed in control Panc-1 cells. 

Withaferin A induces Hsp90 client protein degradation.  

     WA exhibited potent cytotoxicity against pancreatic cancer cells and induced 

apoptosis in Panc-1 cells. To investigate the underlying mechanism, we 

screened a panel of protein level changes in Panc-1 cells in response to WA 

treatment. Hsp90 client proteins (Akt, Cdk4 and Glucocorticoid receptor (GR)) 

were observed to be decreased. These proteins exhibited time- and dose- 

dependent degradation in response to WA treatment (Figure 2.3A and 2.3B). 

After exposure to 10 µM WA for 6 h, Akt and Cdk4 protein levels started to 

decrease by 1.88- and 1.95- fold. After 24 h treatment, the protein levels were 

undetectable. GR protein levels decreased even faster and became undetectable 

as early as 2 h after exposure to 10 µM WA (Figure 2.3C). Previous studies have 

shown that these proteins are clients of Hsp90, and inhibiting Hsp90 chaperone 

activity would lead to the degradation of these proteins (35, 38). These data 

suggest that inhibition of Hsp90 chaperone activity might contribute to the 

anticancer activity of WA.   

     To further confirm inhibition of Hsp90 by WA, we examined two additional 
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protein expression level changes, Hsp70 and Cdk2.  The induction of Hsp70 is 

another molecular signature in response to Hsp90 inhibition (39). As shown in 

Figure 2.3D, 10 µM WA increased the protein level of Hsp70 by 13.47-fold after 6 

h while without affecting the Hsp90 protein level. To demonstrate WA specifically 

inhibits Hsp90, a non-Hsp90 client protein Cdk2 was examined. Indeed, Cdk2 

levels were not significantly altered after WA treatment (Figure 2.3E). These data 

demonstrate that WA inhibited Hsp90 chaperone activity.  

Withaferin A directly binds to Hsp90.  

      Previous study reported that Hsp90 is sensitive to cellular redox conditions 

and tend to form disulfide bond under oxidative stress (37, 40). In addition, 

susceptible cysteine residues in C-terminal Hsp90 were revealed including Cys-

521, Cys-589/590 and Cys597 (41, 42). WA was demonstrated to be highly 

reactive with cysteine residues in proteins (43, 44), such as annexin II (19) and 

vimentin (18) to form covalent bonds. Therefore, we tested whether WA will bind 

to Hsp90 using WA-biotin pull down assay.  The results show that WA-biotin 

successfully pulled down Hsp90 both from the cell lysate and purified full length 

human hsp90 (Figure 2.4A). To further illustrate the binding domains of Hsp90 

with WA-biotin, we performed the pull down assay against Hsp90 fragments N-

terminus Hsp90 (without cysteine residue), C-terminus Hsp90 (with cysteine 

residue), and full length yeast Hsp90 (without cysteine residues).  As shown in 

Figure 2.4A, WA-biotin can only pull down C-terminus Hsp90 (with cysteine 

residues), but not N-terminus Hsp90 nor yeast Hsp90. Hence, WA-Biotin binding 

to Hsp90 is dependent on cysteine residues on Hsp90.  In addition, the WA-biotin 
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binding to Hsp90 was in a competitive manner since 100 M unlabeled WA 

preincubation for 1 hr would significantly decrease the WA-biotin binding to 

Hsp90 both in cell lysate and purified full length Hsp90 as well as C-terminus 

Hsp90 (Figure 2.4B).   

     Next we examined the aggregation of Hsp90 after WA treatment. Non-

reducing gel electrophoresis was performed to detect the formation of Hsp90 

aggregation, which would exhibit a slower migration pattern and appeared as 

higher molecular weight bands. As shown in Figure 2.4C, WA induced Hsp90 

aggregation in a dose-dependent manner.  

Withaferin A induces Hsp90 client protein degradation through proteasome.  

      Since classical Hsp90 inhibitor induced Hsp90 client protein degradation was 

proteasome mediated, we further investigated whether WA induced Hsp90 client 

protein degradation was also proteasome-dependent. Two proteasome inhibitors 

Bortezomib and MG132 were used to reverse the protein degradation. As shown 

in Figure 2.5A, preincubation with 10 M Bortezomib and MG132 could rescue 

the degradation of Hsp90 client proteins. All of the three Hsp90 client proteins 

(Akt, Cdk4, and GR) under investigation were found to accumulate in the triton-

insoluble fraction after combination treatment of WA and proteasomal inhibitors, 

while WA alone decreased the levels of Akt, Cdk4 and GR. In addition, we 

carried out RT-PCR to examine whether WA affects the mRNA levels of these 

three genes.  Figure 2.5B shows that WA treatment did not change the mRNA 

levels of these three genes. These data suggest that WA induced Hsp90 client 

protein degradation is proteasome-dependent and WA did not affect the 
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transcriptional level of Hsp90 client proteins.   

Withaferin A does not block ATP binding to Hsp90. 

  Most of current Hsp90 inhibitors, including geldanamycin, 17-AAG, IPI-504 

and 17-DMAG, bind to the Hsp90 ATP binding pocket which prevents client 

protein refolding (23, 27). To investigate whether WA also change the ATP 

binding to Hsp90, an ATP-sepharose beads pull down assay was performed. As 

shown in Figure 2.6, 5 µM 17-AAG completely blocked ATP beads binding to 

Hsp90; in contrast, 5, 10, and 20 µM WA did not block ATP beads binding to 

Hsp90. As a negative control, 20 µM celastrol did not block ATP beads binding to 

Hsp90, which is consistent with previous study (35).  

Withaferin A dissociates Hsp90-Cdc37 complex in pancreatic cancer cells. 

  Since Hsp90 forms a superchaperone complex with other cochaporones, 

including Hsp70, P23, Cdc37, Hop and immunophilins, we further tested the 

alteration of Hsp90 superchaperone complexes in response to WA treatment by 

using co-immunoprecipitation (coIP) assay in Panc-1 cells. Panc-1 cells were 

treated with 10 µM WA for 1, 6, 12, and 24 h, coIP Hsp90 was carried out. The 

coIP samples were then immunobloted with anti-Cdc37 antibody.  Figure 2.7A 

shows that 10 µM WA completely disrupted the Hsp90-Cdc37 complex as early 

as 1 h post treatment. In contrast, the Hsp90-Hop complex was not decreased by 

WA treatment. Figure 2.7B shows the dose-dependence of WA on disrupting the 

Hsp90-Cdc37 complex. After exposure to WA for 24 h, 1 µM WA decreased the 

amount of Cdc37 by 2.04-folds, which was pulled down by Hsp90.  WA (5 µM) 

completely blocked the Hsp90-Cdc37 complex. To investigate whether the 
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decreased levels of Cdc37 in the coIP results were due to the expression level 

alteration of Cdc37, western blotting was carried out to examine the protein level 

of Cdc37 without coIP. Figure 2.7C shows that WA did not change the Cdc37 

protein level. These data further confirmed that the decreased level of Cdc37 by 

WA in coIP Hsp90 samples was due to the dissociation of Hsp90-Cdc37 complex.  

  P23 has been demonstrated to bind directly to Hsp90 when it is in the ATP 

bound conformation (45). Classical Hsp90 inhibitors like geldanamycin (GA) and 

PU24FCl bind to the ATP binding pocket and lock the Hsp90 in the intermediate 

superchaperone complex (46, 47), hence Hsp90 will no longer be available to 

bind to p23.  As shown in Figure 2.7D, coIP with P23 showed that WA did not 

change Hsp90-P23 association, resulting in equal amount of Hsp90 pulled down 

by P23. In contrast, 17-AAG decreased the Hsp90-P23 interaction dramatically, 

which was consistent with ATP binding assay (Fig 2.7D). 

Withaferin A exhibits anticancer activity in pancreatic cancer xenografts. 

  The data described above showed that WA is an Hsp90 inhibitor by binding to 

Hsp90, which resulted in Hsp90 client protein degradation and apoptosis in 

pancreatic cancer cells in vitro. We next examined WA’s therapeutic efficacy in 

vivo. Pancreatic cancer (Panc-1) xenografts were generated in female nude mice. 

When the tumors reached 100 mm³, the mice were randomly divided into three 

groups (n=6). The mice were treated i.p. with either vehicle control or WA at 3.0 

mg/kg or 6.0 mg/kg. After 70 days, control tumors grew to an average size of 

1014±176 mm³. In contrast, tumors from 3.0 mg/kg and 6.0 mg/kg WA-treatment 

group grew to an average size of 701±268 and 422±95 mm³, corresponding to 30% 
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and 58% inhibition, respectively (P < 0.05; Figure .8A). Systemic toxicity of WA 

was analyzed by measuring the animal weights. As shown in Figure 2.8B, the 

higher dose (6 mg/kg) WA treatment group had negligible weight loss (<10%) 

during the first week treatment, regained their weight from the second week, and 

had a 12% increase in body weight increase after 70 days. Meanwhile, mice in 

control group and the 3 mg/kg WA treatment group did not display weight loss. 

These data demonstrated WA shows potential anticancer effect against 

pancreatic cancer in vivo without significant toxicity.  

 

Discussion 

   In the present study, we evaluated the anticancer efficacy of WA against 

pancreatic cancer. WA treatment significantly induced antiproliferative effects 

against Panc-1, BxPc3 and MiaPaca2 pancreatic cancer cells in cell culture and 

exhibited potent tumor growth inhibition of pancreatic cancer xenografts. Our 

data showed that WA directly binds to Hsp90 and leads to the degradation of 

Hsp90 client proteins through an ATP independent mechanism.  

      Hsp90 is crucial for maintaining the native conformation of proteins. It was 

found to be highly expressed in various cancerous tissues compared to the non-

cancerous tissue (48, 49), which provides cancer cells selectivity by Hsp90 

inhibitor (22, 50). For instance, 17-AAG binding affinity to Hsp90 in cancer cells is 

100-fold higher than that to Hsp90 in normal cells (22). Therefore, inhibiting the 

Hsp90 chaperone activity emerged as a new molecular target for developing 

anticancer agents because of its high selectivity and simultaneous knockdown of 
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various oncogenic proteins. Several Hsp90 inhibitors have been developed and 

tested in preclinical and clinical models for their anticancer activity including 17-

AAG, 17-DMAG and IPI-504 (23-26).  

      In addition to ATP binding blockage of Hsp90, researchers have also 

identified other Hsp90 inhibition mechanisms. For example, the histone 

deacetylase inhibitors (hydroxamic acid analogue, LAQ 824 and LBH589) were 

shown to induce the hyperacetylation of Hsp90, resulting in inhibition of ATP 

binding and attenuation of chaperone activity (51). In this study, we 

demonstrated that WA inhibited Hsp90 chaperone activity to induce Hsp90 client 

protein degradation. However, unlike the classical Hsp90 inhibitor, WA directly 

binds to Hsp90 C-terminus. These were evidenced by the pull-down assay of 

WA-Biotin to C-terminus Hsp90 containing cysteine residues but not N-terminus 

Hsp90 or yeast Hsp90 (without cysteine residues). In addition, the binding of WA-

biotin to Hsp90 could be competitively inhibited by unlabeled WA. Furthermore, 

ATP-sepharose beads pull down assay did not show any inhibition of WA to ATP 

binding to Hsp90. These data also further suggest that WA inhibition of Hsp90 is 

not through an ATP dependent mechanism, which is different from the classical 

Hsp90 inhibitors.  

      To further confirm that WA binds to Hsp90 reactive cysteine residues, we 

examined whether exogenous thiols in cell culture would rescue the WA-

inhibition to Hsp90.  N-acetylcysteine (NAC) is a natural sulfur-containing amino 

acid derivative and is a thiol antioxidant (52). Preincubation of Panc-1 cells with 

NAC reversed WA induced Hsp90 aggregation (data not shown), whereas NAC 
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failed to reverse a mild oxidant, hydrogen peroxide (H2O2) induced Hsp90 

aggregation. Although geldanamycin and its derivatives were shown to be able to 

produce ROS (53), 17-AAG was unable to induce Hsp90 aggregation. In addition, 

WA induced Hsp90 client protein degradation and Hsp70 induction were also 

rescued by NAC pretreatment (Data not shown). Regardless the mechanism of 

NAC in reverse WA effects (chemical reaction or cellular response), these data 

suggest that WA may inhibit Hsp90 function through cysteine of the C-terminal 

Hsp90. However, the specific cysteine residues that WA binds to need to be 

further elucidated.  

      One interesting phenomenon we observed is that WA disrupts Hsp90-Cdc37 

complex. Cdc37 is believed to play a central role in regulating kinase client 

proteins in the intermediate Hsp90 superchaperone complex. A client protein first 

binds the Hsp70/Hsp40 chaperone complex and then interacts with Cdc37. 

Hsp90 is subsequently recruited to the complex via p60/Hop (54). Similar to 

Hsp90, Cdc37 is also upregulated in cancer cells. Cdc37 is highly expressed in 

all prostate tumors and absent from normal prostate epithelium. Transgenic mice 

expressing Cdc37 in the prostate epithelium have displayed dramatic proliferative 

disorders in the prostate, including epithelial hyperplasia and dysplasia (55). 

Hepatocellular carcinoma also overexpresses Cdc37 and Hsp90 compared to 

normal and surrounding tissues (56).  Previous study showed that Celastrol 

inhibited Hsp90 chaperone activity by blocking Hsp90-Cdc37 interactions and led 

to Hsp90 client protein degradation for its anticancer activity (35). Celastrol also 

binds to C-terminus of Hsp90 (Zhang et al., unpublished data). In the present 
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study, we found that WA disrupts Hsp90-Cdc37 complex. WA blockage of 

Hsp90-Cdc37 complex might be a result of WA binding-induced conformational 

change of Hsp90 or other unknown mechanisms. Further study is warranted to 

elucidate these mechanisms. It is worth noting that WA inhibition of Hsp90 

chaperone activity should not be solely due to the disruption of Hsp90-Cdc37 

association. As described earlier, Cdc37 helps load its client proteins onto the 

Hsp90 chaperone complex. The client proteins of Cdc37 include many kinases, 

such as Raf-1, Akt and Src family kinases, and steroid receptors such as 

androgen receptor but not the closely related glucocorticoid receptor (GR) (57). 

However, our data showed that WA treatment could also induce the degradation 

of GR. These data suggest that WA inhibits Hsp90 chaperone activity might be 

also due to the direct binding of WA to Hsp90.  

       Furthermore, P23 and Cdc37 were demonstrated to bind to the same sites 

on the N-terminus of Hsp90, and binding of P23 and Cdc37 to Hsp90 is mutually 

exclusive (35, 58). Cdc37 and P23 bind to Hsp90 at different stages of the 

chaperone cycle: Cdc37 binds to Hsp90 in the intermediate complex; whereas 

P23 binds to Hsp90 in the mature complex in which Hsp90 adopts a different 

conformation from the intermediate complex. Classical Hsp90 inhibitors such as 

geldanamycin and 17-AAG lock Hsp90 in the intermediate complex, hence 

preventing P23 binding to Hsp90 (35). Our data showed that WA did not interfere 

with the Hsp90-P23 interaction, while 17-AAG induced Hsp90-P23 dissociation. 

There are two possible mechanisms for WA induced Hsp90-Cdc37 dissociation 

but not Hsp90-P23 dissociation: one is that WA binds directly to the cysteine 
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residues on the C-terminus of Hsp90, resulting in a conformational change of 

Hsp90 which preventing Cdc37 but not P23 from binding; another is that besides 

Hsp90, WA also reacts with cysteines in Cdc37 which contributes to the 

disruption of Hsp90-Cdc37 interaction, however, although cysteine residues are 

present in P23, they are not accessible to WA, thus providing a selectivity of 

action. It is important to note that this is rather speculative and needs to be 

further confirmed.  

      Previous studies have shown that the 4-hydroxy-5, 6-epoxy-2-en-1-one 

moiety and unsaturated lactone are critical for WA’s biological function (59). The 

epoxide within B ring and the unsaturated lactone ring were demonstrated to be 

involved in Michael addition thioalkylation reactions (43, 44, 60). In addition, the 

ketone containing unsaturated A-ring could also react with thiol-nucleophiles and 

act as Michael acceptor (59). Thus these three functional groups could be crucial 

for the interaction between WA and Hsp90.  Gedunin and aforementioned 

Celastrol are two natural products exhibiting Hsp90 inhibitory activity. They 

modulate Hsp90 activity by a mechanism different from classical Hsp90 inhibitors 

such as GA, since they do not competitively bind to the ATP-binding pocket of 

Hsp90 (47). The exact mechanism how Gedunin inhibits Hsp90 is still unknown. 

Gedunin also possesses a ketone containing unsaturated A ring and an 

additional epoxide which are similar to WA. Although the preliminary structure-

activity studies of Gedunin revealed that the, -unsaturated ketone within the A 

ring of Gedunin does not behave as a Michael acceptor (61), the epoxide on 

Gedunin might act as a Michael acceptor and thus Gedunin might also inhibit 
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Hsp90 in a way similar to WA. On the other hand, Celastrol also has electrophilic 

sites within the unsaturated A and B ring and was shown to react with thiols in 

proteins (62, 63). Our unpublished data by Zhang et al. indicate that Celastrol 

binds to C-terminus Hsp90; hence, it would not be surprised if Celastrol inhibits 

Hsp90 via binding to reactive cysteine residues of Hsp90 (64).  

       Withaferin A belongs to a large family of natural products steroidal lactone 

triterpenoids, the withanolides, which are major constituents purified from 

medicinal plant Withania somnifera and its related solanaceae species such as 

Physalis, Nicandra, Dunalia, Datura, Jaborosa, and Acnistus (65). The 

withanolides are demonstrated to have antitumor, antibacterial, anti-inflammatory, 

antidepressant, antioxidant, antiulcer, cytotoxic, quinone reductase induction, 

antileishmanial, antitrypanosomal, immunosuppressive, cognition-enhancing and 

memory-improving effects, as well as hypotensive, bradycardic and respiratory-

stimulant action (66-68). As a prototype of the withanolides, Withaferin A has 

been studied extensively. Up to date, over 130 withanolides are known and more 

than 40 withanolides are isolated (69). The individual withanolides were purified 

and evaluated for their biological functions. For instance, some newly isolated 

withanolides have been shown to have cytotoxic activity, including Withangulatin 

B, Withangulatin C, Withangulatin G, Withangulatin H, and Withangulatin I (68). 

The structure-activity studies further confirmed that the unsaturated A ring and 

epoxide are important for the cytotoxic activity of withanolides (67). Another 

Withanolide, Withangulatin A was shown to inhibit topoisomerase II and induce 

heat shock response (70, 71). Although DNA damage mediated by 
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topoisomerase II inhibitors has been shown to induce heat shock response (72), 

another topoisomerase II inhibitor VM-26 could not induce heat shock response 

in the same cell line as Withangulatin A (71). Therefore, Withangulatin A induces 

heat shock response through a way other than topoisomerase II inhibition 

mediated DNA damage. Considering the quasi identical structure (the same 

unsaturated ketone containing A ring, epoxide containing B ring and unsaturated 

lactone ring) of Withangulatin A to Withaferin A, Withangulatin A might induce 

heat shock response by inhibition of Hsp90 (73). In addition, Tubocapsenolide A 

(TA), another withanolide possessing the three key functional groups, showed 

high cytotoxicity against cancer cells and exhibited Hsp90 inhibitory activity (37). 

TA induces Hsp90 client protein degradation and induces Hsp90 dimer formation. 

Although there’s no direct evidence that TA binds to Hsp90, TA could inhibit 

Hsp90 through binding to the reactive cysteine residues of Hsp90 like WA.  

       In conclusion, our data suggest that withaferin A represents a new type of 

Hsp90 inhibitor. It directly binds Hsp90, inhibits Hsp90 with an ATP-independent 

mechanism, induces Hsp90 client protein degradation and disrupts the Hsp90-

Cdc37 interaction. These Hsp90 inhibition mechanisms of withaferin A may 

partially contribute to its anticancer activity in vitro pancreatic cancer cell lines 

and in vivo pancreatic cancer xenografts. These data provide a potential of 

withaferin A as a novel Hsp90 inhibitor for use against pancreatic cancers.  
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Figure 2.1  Anticancer effect of withaferin A in pancreatic cancer cells. A. 
Chemical structure of WA. B. Effect of WA treatment on viability of Panc-1 
cells. Panc-1 cells were seeded in 96-well plates at a density of 5000 cells per 
well. 24 hours later the cells were subjected to WA treatment with concentrations 

of 0.05, 0.1, 0.5, 1.0, 2.5, 5, 10, and 20 M. MTS assay was performed to assess 
cell viability after 48 h incubation. C. Effect of WA treatment on viability of 
MiaPaCa-2 cells. Viability of MiaPaCa2 cells after WA treatment was assessed 
similar to B. D. Effect of WA treatment on viability of BxPc-3 cells. Viability of 
BxPc3 cells after WA treatment was assessed similar to B.    
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Figure 2.2  Withaferin A induces apoptosis in pancreatic cancer cells. A. 
Representative images from one of four independent experiments. Panc-1 

cells were treated with 1, 5, and 10 M WA for 12 h. Cells were stained with 
Annexin V-EGFP (green). Apoptotic cells were observed under fluorescent 
microscope. B. Quantification of WA induced apoptotic cells. The percentage 
of apoptotic cells were calculated as Annexin-EGFP positive cells divided by the 
total cancer cells.  
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Figure 2.3  Withaferin A induces Hsp90 client protein degradation and 
Hsp70 upregulation. A and B. WA induces Hsp90 client protein Akt and 
Cdk4 degradation in Panc-1 cells in a time- and dose-dependent manner.  
Panc-1 cells were treated with different concentrations of WA for different times. 

Cell lysates (50 g protein in each lane) were analyzed by western blot analysis 
with specific antibodies to Akt, Cdk4 and Actin. Actin was served as internal 
standard. C. WA induces Hsp90 client protein GR degradation. Panc-1 cells 

were treated with10 M WA for different times. Cell lysates (50 g protein in each 
lane) were analyzed by western blot analysis with specific antibodies to GR and 
Actin. Actin was served as internal standard. D. WA induces expression of 

Hsp70. Panc-1 cells were treated with10 M WA for different times. Cell lysates 

(50 g protein in each lane) were analyzed by western blot analysis with specific 
antibodies to Hsp70 and Actin. Actin was served as internal standard. E. WA 

does not change the Cdk2 protein level. Panc-1 cells were treated with10 M 

WA for different times. Cell lysates (50 g protein in each lane) were analyzed by 
western blot analysis with specific antibodies to Cdk2 and Actin. Actin was 
served as internal standard. 
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Figure 2.4  Withaferin A binds to Hsp90 and induces Hsp90 aggregation. A. 

WA-Biotin Hsp90 pull down assay. 1 mg of Panc-1 cell lysates (Lysate), 5 g 

of purified full length human Hsp90   5 g of N-terminus 

human Hsp90  (N-Hsp90), 5 g of C-terminus human Hsp90 -Hsp90) and 

5 g of yeast Hsp90 -Hsp90) were used to carry out the WA-Biotin pull down 
assay. The WA-Biotin pull down protein were subjected to western blot analysis 
with specific antibodies to Hsp90. B. WA competes with WA-Biotin binding to 
Hsp90. The samples (Lysate, Full Hsp90 and C-Hsp90) were preincubated with 

100 M WA for 1 h before subject to WA-Biotin binding assay. The WA-Biotin pull 
down protein were subjected to western blot analysis with specific antibodies to 
Hsp90. C. WA induces Hsp90 aggregation in a dose dependent manner. 

Panc-1 cells were treated with 1, 5 and 10 M WA for 24 h. Cell lysates (50 g 
protein in each lane) were subjected to non-reducing gel electrophoresis and 
then analyzed by western blot with specific antibodies to Hsp90.  
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Figure 2.5  Withaferin A induced Hsp90 client protein degradation is 
proteasome-dependent.  A. WA induced Hsp90 client protein degradation is 
reversed by proteasome inhibitors. Panc-1 cells were preincubated with 10 

M Bortezomib (Brt) or MG132 (MG) for 1 h, and then were treated with 5 M 
WA for another 12 h. Cells were collected and proteins were isolated as triton 
soluble part and triton insoluble part. Proteins (both triton soluble and triton 
insoluble parts) were subjected to western blot analysis with specific antibodies 
to Akt, Cdk4, GR and Actin. Actin was served as internal standard. B. mRNA 
levels of Hsp90 client protein in Panc-1 cells after WA treatment. Panc-1 

cells were treated with 5 M WA for 12 h, and the total mRNAs were isolated. 
RT-PCR was carried out to examine the mRNA levels of Akt, Cdk4 and GR using 
the specific primers of Akt, Cdk4, GR and Actin. Actin was served as internal 
standard.  
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Figure 2.6 WA does not inhibit ATP binding to Hsp90. 5 g of purified human 

Hsp90 was incubated with WA, 17-AAG and Celastrol (Cel) for 30 min. 25 μl 
ATP-sepharose beads were added to the samples to pull down Hsp90. Western 
blot was used to detect Hsp90 using specific antibody to Hsp90.  
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Figure 2.7  WA disrupts Hsp90-Cdc37 complex in Panc-1 cells. A and B. Co-

immunoprecipitation (coIP) Hsp90. Cell lysates (500 g total protein) were 
immunoprecipitated with Hsp90 antibody. Western blot was performed to detect 
Cdc37, Hop and Hsp90 using specific antibodies to Cdc37, Hop and Hsp90. A. 

Panc-1 cells were treated with 10 M WA for 0 to 24 h. B. Panc-1 cells were 

treated with 1, 5, and 10 M WA for 24 h. Input, total cell lysate; -IgG, without 
adding antibody. C. Western blot analysis of Cdc37 expression level. Panc-1 

cells were treated with 10 M WA for different times. Cell lysates (50 g protein 
in each lane) were analyzed by western blot with specific antibodies to Cdc37 
and Actin. Actin was served as internal standard.  D. CoIP P23. Cell lysates (500 

g total protein) were immunoprecipitated with P23 antibody, then western blot 
was performed to detect Hsp90 and P23 using specific antibodies to Hsp90 and 
P23.  
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Figure 2.8  Antitumor effect of Withaferin A in Panc-1 pancreatic cancer 
xenografts. A. Tumor growth curves. The pancreatic tumor xenograft mouse 
model was generated by injecting the Panc-1 cancer cells s.c. to the right and left 
flanks of the nude mice. When the tumors reached 100 mm3, mice were divided 
randomly into three groups (n= 6/group) to receive vehicle, 3 mg/kg or 6 mg/kg 
WA treatment as scheduled. Tumor sizes and body weights were measured 
twice a week. Drug treatment was stopped after 30 days’ treatment, and tumor 
sizes and body weights were monitored until 70 days.  Arrows indicate the date 
that stops treatment. B. Body weight of mice. Body weights of mice were 
monitored twice per week.  

 

 

 

 

 

 

 

 



72 

 

CHAPTER III 

SYNERGISTIC EFFECT OF WITHAFERIN A AND MYRICETIN IN 

PANCREATIC CANCER CELLS  

 

 

Abstract 

Withaferin A (WA) has shown anticancer effect against pancreatic cancers 

through inhibition of Hsp90. However, WA induced Hsp70 upregulation which 

has anti-apoptotic effect. The purpose of this study is to investigate inhibition of 

Hsp70 by myricentin (MY) sensitize WA against pancreatic cancer cells.  MY (5 

M) combination treatment with WA decreased IC50 of WA by 2.19-, 2.65-, and 

3.93-folds compared to WA treatment alone in pancreatic cancer Panc-1, 

MiaPaca-2, and BxPc-3 cells, respectively. WA (1 M) treatment alone induced 

2.3-fold increases in caspase-3 activity compared to control, while the 

combination of WA (1 M) and MY (5 M) induced 4-fold increases in Caspase-3 

activity while 5 M MY alone treatment had minimal effect on Caspase-3 activity. 

Western-blot showed that combination of WA (1 M) and MY (10 M) decreased 

WA-induced Hsp70 expression by 3-fold compared to WA treatment alone. WA 

and MY acted synergistically in downregulating Hsp90 client proteins including 
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mutated P53, Akt, and Cdk4. SiRNA of Hsp70 (siHsp70) was further employed to 

confirm that knockdown of Hsp70 could sensitize pancreatic cancer cells to WA 

treatment. siHsp70 decreased WA-induced Hsp70 mRNA and protein levels by 

2.5 and 6.5-fold, respectively. Combination of siHsp70 and WA treatment 

increased Caspase-3 activity by 2.7-fold compared to WA treatment alone. 

Furthermore, combined 4 mg/kg WA and 50 mg/kg MY treatment  showed further 

inhibition of tumor growth compared to WA treatment alone in pancreatic cancer 

xenografts. These data suggest that Myricetin may be used to sensitize Hsp90 

inhibitors against pancreatic cancer cells.  

Key words: Withaferin A; Myricetin; Pancreatic cancer; Hsp90; Hsp70; 

 

 

Introduction 

     Pancreatic cancer is among the most aggressive cancers to treat due to the 

late diagnosis and lack of effective therapies. Although the incidence of 

pancreatic cancer is relatively low, pancreatic cancer is the fourth leading cause 

of cancer death in the United States with five-year survival of less than 5%(1). 

Pancreatic cancer is highly resistant to conventional chemotherapy (2-5). 

Gemcitabine, the standard therapeutic drug for pancreatic cancer, only improves 

the disease symptoms with no significant five-year survival benefits. Therefore, 

novel agents for prevention and treatment of pancreatic cancers are highly 

desired.  
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  In our previous report, a natural product withaferin A (WA) was demonstrated 

potent antiproliferative activity against various pancreatic cancer cells in vitro (6). 

The anticancer effect of WA was also confirmed in vivo against pancreatic cancer 

cell Panc-1 xenografts with inhibition of tumor growth by 58% at a dosage of 6 

mg/kg. Further study elucidated that the anticancer effect of WA was partially 

through the inhibition of Hsp90 chaperoning activity by covalently binding to the 

C-terminus, which resulted in Hsp90 client protein degradation and cancer cell 

apoptosis.  

  Despite WA exhibited potent anticancer effect against pancreatic cancer cells, 

WA elicited extensive Hsp70 upregulation. Hsp70 is an ATP-dependent 

molecular chaperone assisting nascent polypeptides folding, assembly and 

translocation (7). In normal cells, the expression of Hsp70 is at basal level; under 

heat shock response, Hsp70 is upregulated and assists in the recovery from 

stress and promoting cell survival (8). Hsp70 also acts as Hsp90 cochaperone 

(9). Studies have shown that Hsp70 exhibits antiapoptotic effects, which is 

related to heat shock response. Hsp70 inhibits the mitochondrial pathway of 

apoptosis by associating with apoptotic protease activating factor 1 (Apaf-1), 

blocking the assembly of functional apoptosomes (10), and suppressing the 

activity of caspase-3 (11, 12). In addition, Hsp70 also inhibits caspase-

independent death effecter apoptosis inducing factor (AIF) by directly binding to 

AIF, which prevents its translocation into nucleus and induces chromatin 

condensation and DNA fragmentation (12-14). Hsp70 is constitutively expressed 

in most cancer cells and human cancer tissues from various origins (15-17). The 
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high Hsp70 expression in various human cancers has been demonstrated to 

associate with metastasis, poor prognosis and resistance to radiation therapy or 

chemotherapy (18-24).  

  Considering the antiapoptotic role of Hsp70, the upregulation of Hsp70 after 

WA treatment could undermine the anticancer effect of WA. Thus, we proposed 

that inhibition of Hsp70 would sensitize pancreatic cancer cells to WA treatment. 

Our previous study have shown that a natural product  flavonol myricetin (MY) 

inhibits human Hsp70 ATPase activity with IC50 about 12 M and decreases 

levels of Hsp70 protein, tau, and Akt (25, 26). In the present study, we intend to 

investigate that Myricetin (MY) inhibits Hsp70 to sensitize Withaferin A (WA) 

efficacy inhibiting Hsp90 in pancreatic cancer cells.  

 

Materials and methods 

Cell culture and reagents   

     Human pancreatic cancer cell lines BxPc-3, Panc-1, and MiaPaca-2 were 

cultured in Dulbecco’s Modified Eagle Medium (DMEM) or RPMI-1640 Medium 

supplemented with 10% FBS and 1% P/S at 37oC and 5% CO2. Withaferin A was 

a kind gift from Dr. A. A. Leslie Gunatilaka (The University of Arizona, Tucson, 

AZ). Myricetin was purchased from Sigma-Aldrich, Inc. (St. Louis, MO). The 

following antibodies were used for western blot: Akt (Cell Signaling, Beverly, MA), 

mutated P53, Hsp70, Cdk4, and beta-Actin (Santa Cruz, Santa Cruz, CA).  

MTS assay  

     MTS assay was carried out to evaluate the cytotoxicity of single agent 
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treatment or combination treatment. Pancreatic cancer cells were seeded in 96-

well plates at a density of 3000 - 5000 cells per well for 24 hours. For single 

agent treatment, myricetin (MY, 0.5 to 50 M) and withaferin A (WA, 0.01 to 5 M) 

were added to the cells. For combination treatment, 5 M MY together with 

varied concentrations of WA (0.01 to 5 M) were added to the cells. Cells were 

treated for 48 hours and cell viabilities were measured. The IC50 values of the 

different treatments for cytotoxicity were estimated by WinNonlin software 

(Pharsight, Mountain View, CA).  

For siRNA treatment, the cells are first transfected with siHsp70 with 

lipofectamine 2000 for 24 hours with 5 pmol per well. 24 hours later the cells are 

replaced with fresh medium and treated with increasing concentrations of WA 

(0.05 - 2 M). After additional 48 hours incubation, cell viabilities were measured. 

Apoptosis study  

Cancer cell apoptosis was evaluated by caspase-3 activity assay. Caspase-3 

assay kit (MBL International Corporation, Woburn, MA) was used as described in 

manufacturer protocol. Briefly, after the cancer cells were treated, proteins were 

isolated and incubated with caspase-3 substrate chromophore p-nitroanilide 

(pNA) labeled DEVD-pNA. Active caspase-3 cleaves peptide (after D) and 

releases pNA with absorbance at 405 nm which can be detected by a microtiter 

plate reader.   

Western-Blot  

    siRNA of Hsp70 (siHsp70) and control siRNA (siCtrl) were purchased from 

Dharmacon (Lafayette, CO). siHsp70 has the sequence of 5’-TCA TCA GCG 
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GAC TGT ACCA-3’ (27). siCtrl has the sequence of 5’-AAT TCT CCG AAC GTG 

TCA CGT-3’ (28). Pancreatic cancer BxPc-3 cells were transfected with a total of 

600 pmol of siRNA of Hsp70 (siHsp70) or control siRNA (siCtrl) with 

lipofectamine 2000 reagents for 24 hours in a 100 mm cell culture dish. Then 2.5 

M Withaferin A (WA) was added to the dish with fresh medium to treat for 

another 24 hours. After drug treatment, cells were washed with cold PBS, 

collected and lysed in RIPA lysis buffer (Cell signaling, Danvers, MA) for 30 min 

on ice. Samples were centrifuged at 14,000 rpm for 15 min at 4°C. The 

supernatants were collected and added with 2 × Laemmli sample buffer, boiled 

for 5 min. Then 30 g of protein was subjected to electrophoresis in 10% SDS-

polyacrylamide gel (Bio-Rad, Hercules, CA). The protein was transferred to 

nitrocellulose membrane, blocked and incubated with intended protein primary 

antibodies and -actin antibody (as internal standard) with 1:1000 dilutions in 5% 

milk Tris-buffered saline with 0.1% tween-20 (TBS-T) at room temperature for 2 

hours. The membrane was washed 3 times with TBS-T for 10 min, and then 

incubated with horseradish peroxidase-conjugated secondary antibody for 1 hour 

at room temperature. An enhanced chemiluminescence system ECL (Amersham, 

Piscataway, NJ) was used to detect the protein levels.  

Real-time PCR assay 

    RT-PCR was carried out as described previously (6). Briefly, pancreatic cancer 

BxPc-3 cells were transfected with a total of 200 pmol of siHsp70 or siCtrl with 

lipofectamine 2000 reagents (Invitrogen, Carsbad, CA) for 24 hours in a 60 mm 

cell culture dish. Then 2.5 M WA was added to the dish with fresh medium to 
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treat for another 12 hours. TRIzol reagents (Invitrogen, Carsbad, CA) were used 

to extract total cellular RNAs as described in protocol provided by manufacturer. 

Superscript III first strand synthesis kit from Invitrogen was used to reverse 

transcribe the cDNA. Then the real-time PCR was carried out in ABI PRISM 

7900T real-time PCR system (PerkinElmer, Branchburg, NJ) with SYBR Green 

PCR Master Mix (Applied Biosystems). The primers used in RT-PCR were as 

follows: Hsp70, forward, 5’-TGT TCC GTT TCC AGC CCC CAA-3’; reverse, 5’-

GGG CTT GTC TCC GTC GTT GAT-3’. Internal standard -actin, forward, 5’-

GCT CGT CGT CGA CAA CGG CTC-3’; reverse, 5’-CAA ACA TGC TCT GGG 

TCA TCT TCT C-3’. mRNA level was calculated as fold change of control. After 

completion of the RT-PCR, Ct values (cycle numbers in which signal intensity 

equal to the threshold value) were obtained from the software. For each samples, 

ΔCt was calculated as ΔCt = Cthsp70 – Ctactin. Then ΔΔCt was calculated as ΔΔCt 

= ΔCttreatment - ΔCtcontrol. The fold change of the Hsp70 mRNA level relative to 

control group was calculated as 2-ΔΔCt. 

Evaluate the synergistic effect of combination treatment 

     The synergistic effect was determined by the combination index (CI) (29). 

Combination index was calculated as CI50=IC50WA combination /IC50WA alone + 

IC50MYcombination/IC50MYalone. Where IC50MYcombination  is the IC50 of MY in 

combination treatment with WA; IC50WA combination is the IC50 of the WA after 

combined treatment with MY; IC50WA alone, and IC50MYalone are the IC50s of the 

WA and My treatment alone. The synergism, additivity, and antagonism of the 
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combination effect would be represented by the CI values less than, equal to, or 

more than 1.0, respectively. 

Pancreatic cancer mice xenograft model  

    The pancreatic tumor xenograft mouse model was established to examine the 

in vivo synergistic anticancer activity of WA and MY. 4 to 6-week old nu/nu 

athymic female mice were obtained from Charles River Laboratories (Charles 

River, Wilmington, MA). BxPc-3 pancreatic cancer cells (5-10×106) were mixed 

with reconstituted basement membrane (Collaborative Research, Bedford, MA) 

and inoculated s.c. to the right and left flanks of the mice. When the tumors reach 

~100 mm3, mice were randomly divided into four different groups for treatment 

(n= 6/group): vehicle, WA treatment alone group, MY treatment alone group, and 

combined WA and MY treatment group. WA and MY were dissolved in the 

vehicle (10% DMSO, 40% Cremophor/ethanol (3:1), and 50% PBS). Different 

groups of mice were treated with vehicle, 4 mg/kg WA alone, 50 mg/kg MY alone, 

and combined 4 mg/kg WA and 50 mg/kg MY, respectively, by i.p. injection daily 

for two weeks. Tumor sizes were monitored twice a week.  

Statistical analysis  

     Statistical analysis was performed with one-way ANOVA or Student’s t-test. 

Each experiment was conducted independently at least three times. Data are 

presented as mean ± SD. A probability level of P < 0.05 was considered 

statistically significant.  

 

Results 
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Withaferin A induces Hsp90 client protein degradation and Hsp70 

upregulation in pancreatic cancer cells 

      Withaferin A (WA) was shown to bind to Hsp90, inhibit the chaperoning 

activity of Hsp90, induce Hsp90 client protein degradation and cancer cell death 

(6). Western-blot confirmed that WA induced Hsp90 client protein (Akt, Cdk4 and 

mutated P53) degradation in pancreatic cancer BxPc-3 cells. As shown in Figure 

3.1, 2.5 M WA treatment for 24 hours completely abolished the expression 

levels of Akt, Cdk4 and mutated P53. Whereas, Hsp70 was increased by 5.66 

fold compared to control.   

Myricetin decreases Hsp70 level in pancreatic cancer cells 

      Our previous report demonstrated that 10 M myricetin (MY) treatment 

slightly decreased Hsp70 level in Hela cells and the IC50 determined for the 

inhibition of Hsp70 ATPase activity was 12 ± 1 M (25). Here, we examined 

whether MY reduces the protein level of Hsp70 in pancreatic cancer BxPc-3 cells. 

Figure 3.2 showed that Hsp70 exhibited time-dependent decrease after MY 

treatment. After exposure to 50 M MY for 3 hours, Hsp70 was decreased by 

3.3-fold, which was maintained during the 24 hours treatment. Mutated P53 was 

decreased by 6.8-fold after 50 M MY treatment as early as 1 hour time point. 

Akt level was decreased 2.2-fold at 3 hours time point after MY treatment and 

back to normal level at 24 hours time point which was consistent with our earlier 

finding in Hela cells, in which 50 M MY induced Akt level reduction in 1 to 6 

hours but not after 24 hours (26).  



81 

 

Synergistic anticancer effect of Withaferin A and Myricetin against 

pancreatic cancer cells 

  As shown above, withaferin A (WA) inhibited Hsp90 chaperoning activity, 

induced Hsp90 client protein degradation and Hsp70 upregulation, whereas 

myricetin (MY) inhibited Hsp70 activity and decreased Hsp70 level. Thus, we 

proposed that MY treatment would sensitize pancreatic cancer cells to WA 

treatment due to the reduction of WA induced Hsp70. To confirm the synergistic 

anticancer effect of the combination treatment of WA and MY in pancreatic 

cancer cells, MY and WA were combined to treat pancreatic cancer BxPc-3, 

MiaPaca-2 and Panc-1 cells. The concentration of MY was chosen as 5 M at 

which MY exhibited no significant cell killing effects against the three pancreatic 

cancer cell lines (Figure 3.3A). Our previous data showed that MY (5 M) 

decreased Hsp70 ATPase activity by 34% (25). The combination of WA and MY 

showed a significant synergistic effect (Table 3.1). The IC50s of WA in the 

combination treatment with MY were decreased by 3.93-, 2.65- and 2.19-folds 

compared to WA treatment alone in BxPc-3, MiaPaca-2 and Panc-1 cells, 

respectively. Table 3.1 summarizes the IC50s of WA against different pancreatic 

cancer cell lines and under different treatment conditions. To better illustrate the 

synergism of combination treatment, the combination index (CI) values were 

calculated. CI values less than, equal to, and greater than 1.0 suggests synergy, 

additivity, and antagonism, respectively (29). The CI values of combination use of 

WA and MY were from 0.35 to 0.56 in the three pancreatic cancer cell lines, 

indicating significant synergistic effect between MY and WA (In calculation, IC50 
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of MY was chosen as 50 M at which the pancreatic cancer cell survival was 

over 60%).  

    Next, we further examined the combination effect of WA and MY on the 

induction of apoptosis in pancreatic cancer BxPc-3 cells using caspase-3 activity 

assay. As shown in Figure 3.3B, 1 M WA induced 2.3-fold increase in caspase-

3 activity compared to control; 5 M MY slightly induced caspase-3 activity with 

1.4 fold of control which was not statistically significant; whereas, the 

combination of 1 M WA and 5 M MY treatment induced 4-fold increase in 

caspase-3 activity. Therefore, WA and MY exhibited synergism to induce 

apoptosis in pancreatic cancer cells.  

 Myricetin decreases withaferin A induced Hsp70 upregulation 

      As we have shown that withaferin A (WA) and myricetin (MY) exhibited 

synergism in antiproliferative activity and apoptosis induction in pancreatic 

cancer cells, we further examined the underlying mechanism. Western-blot was 

performed to evaluate Hsp70 and Hsp90 client protein levels after combined 

treatment of MY and WA. As shown in Figure 3.4A, 1 M WA treatment alone for 

24 hours increased Hsp70 level by 4.6-fold, whereas 5 M MY treatment alone 

had no effect on Hsp70 level, however, combination treatment of 1 M WA and  

5 M MY still showed increased Hsp70 level by 3.8-fold, which was similar to 1 

M WA treatment alone. To further confirm that MY could reduce WA-induced 

Hsp70 upregulation, we increased MY concentration to 50 M. Figure 3.4B 

shows that 10 M MY decreased WA-induced Hsp70 expression by 3-fold 

compared to WA treatment alone.  
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    We also investigated Hsp90 client protein levels under combination treatment 

of WA and MY. As shown in Figure 3.4A, 1 M WA alone and 5 M MY alone for 

24 hours did not decrease the protein level of mutated P53, whereas combination 

treatment of 1 M WA and 5 M MY together decreased mutated P53 by 3.4-

folds. Higher concentrations of MY further synergized with WA to induce Hsp90 

client protein degradation. For instance, combination  treatment of 10 M MY and 

1 M WA decreased Akt level by 2.8-folds compared to 1 M WA treatment 

alone; in addition, combination  treatment of 25 M MY and 1 M WA decreased 

Cdk4 level by 3.7-folds compared to 1 M WA treatment alone (Figure 3.4B).  

siRNA of Hsp70 sensitize pancreatic cancer cells to withaferin A treatment 

     As we have proved that withaferin A (WA) and myricetin (MY) acted 

synergistically against pancreatic cancer cells which was partially through the 

inhibition of Hsp70, we further utilized siRNA of Hsp70 (siHsp70) to knockdown 

Hsp70 to confirm that inhibition of Hsp70 sensitizes pancreatic cancer cells to 

WA treatment. To evaluate the knockdown efficiency of siHsp70, RT-PCR and 

Western-blot were performed to examine the Hsp70 mRNA level and protein 

level after siHsp70 and WA treatment. BxPc-3 pancreatic cancer cells (1×106) 

were seeded in the 10 cm cell culture dishes. When cancer cells were confluent, 

cells were transfected with siHsp70 or siCtrl (600 pmol per dish) for 24 hours. 

Then, cancer cells were treated with 2.5 M WA for another 12 hours. RNA was 

isolated and RT-PCR was carried out to measure the Hsp70 levels. Hsp70 

mRNA levels were normalized to control group without WA treatment. As shown 

in Fig 3.5A, siCtrl has no effect on Hsp70 mRNA level, while siHsp70 decreased 
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Hsp70 mRNA by 2.5-folds. After WA treatment, Hsp70 mRNA in WA treatment 

alone and combination of WA and siCtrl treatment groups increased more than 2-

folds compared to control, whereas Hsp70 mRNA in combination of WA and 

siHsp70 group was only 81% of control, which was 42% of WA treatment alone.  

      Western-blot was further carried out to examine whether siHsp70 could 

knockdown WA-induced Hsp70 protein expression. BxPc-3 pancreatic cancer 

cells were transfected with siHsp70 for 24 hours and then treated with 2.5 M 

WA for another 24 hours. Proteins were isolated and western-blot was carried 

out to examine the Hsp70 level. As shown in Figure 3.5B, without WA treatment, 

siHsp70 decreased Hsp70 level by 2.6-fold; After WA treatment, the level of 

Hsp70 was dramatically increased in Ctrl and siCtrl groups, while in siHsp70 

group, there was only minor increase in Hsp70 expression.  

      As we have confirmed that siHsp70 could successfully knockdown both the 

mRNA and protein levels of Hsp70, we used MTS assay to examine the 

antiproliferative effect of combination of siHsp70 and WA treatment. Pancreatic 

cancer cells were seeded in the 96-well plate in a density of 3000 cells per well. 

Cells were transfected with siCtrl or siHsp70 (10 pmol per well) by lipofectamine 

2000 for 24 hours and then treated with indicated concentrations of WA for 

another 48 hours. Figure 3.6 shows that the transfection of siHsp70 further 

increased the antiproliferative activity of WA compared to Ctrl and siCtrl groups. 

Caspase-3 activity assay was further employed to estimate the apoptotic cells 

after combination of siHsp70 and WA treatment. siHsp70 and siCtrl induced 1.8-

fold caspase-3 activity compared to control, whereas WA treatment alone and 
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combination treatment of WA and siCtrl induced 4.7-foldcaspase-3 activity as 

compared to control. Combination treatment of WA and siHsp70 induced 

caspase-3 activity by 13.0-folds compared to control.  

       The protein levels of Hsp90 client protein including Akt, Cdk4 and 

Glucocorticoid receptor (GR) were also examined after siHsp70 and WA 

treatment. Figure 3.7 shows that siHsp70 alone did not significantly alter the 

protein levels of Akt, Cdk4, and GR, whereas combination of siHsp70 and WA 

treatment completely abolished these Hsp90 client proteins.  

Withaferin A and myricetin exhibited synergistic antitumor effect in 

pancreatic cancer xenograft 

      The previous data indicated withaferin A (WA) and myricetin (MY) acted 

synergistically in inducing apoptosis of pancreatic cancer cells and inhibiting cell 

proliferation in vitro, we next addressed whether WA and MY would show 

synergistic anticancer activity in vitro. Therefore, BxPc-3 pancreatic cancer 

xenograft mouse model was established, and the mice bearing tumor were 

randomly divided into four groups, treated with vehicle, 4 mg/kg WA alone, 50 

mg/kg MY alone, and combined 4 mg/kg WA and 50 mg/kg MY treatment, 

respectively. After i.p., daily treatment for two weeks, 4 mg/kg WA treatment 

alone showed significant tumor growth inhibition compared to vehicle treatment 

group, whereas, 50 mg/kg MY treatment alone showed minor effect without 

statistical significance (Figure 3.8). In addition, combined 4 mg/kg WA and 50 

mg/kg MY treatment  showed further inhibition of tumor growth compared to WA 
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treatment alone with p value < 0.05 (Figure 3.8). The result indicated WA and MY 

showed synergistic anticancer effect both in vitro and in vivo.  

 

Discussion 

  Natural products represent a large resource for the discovery and 

development of new drugs. About 40% of the newly approved drugs in the past 

years are either natural products or their derivatives and analogues (30, 31) 

including some well-known drugs such as paclitaxel (Taxol) and pentostatin 

(Nipent) (31, 32).  

       Withaferin A is a steroidal lactone isolated from the roots of the Indian 

medicinal plant Withania somnifera (W. somnifera) (6). W. somnifera is widely 

cultivated in the India and has been used in Ayurvedic and indigenous medicine 

for over 3,000 years (33). Different formulations of W. somnifera including 

decoctions, infusions, ointments, powder, and syrup were applied to treat various 

physiological disorders including burns, wounds, infections, gastrointestinal 

diseases, infertility, and cutaneous abscesses (34). As one of the major active 

constituents of W. somnifera, Withaferin A was shown to have anti-inflammatory, 

anti-angiogenesis, anti-tumor, and radio-sensitizing activity (35, 36).  

       Myricetin (MY) is a phenolic compound naturally occurring in grapes, onions, 

broccoli, berries, garlic, black tea, bell pepper (37-39). MY was demonstrated to 

have antioxidant, anticarcinogenic, antiangiogenesis, antiviral, topoisomerase II 

repressor, analgesic, antithrombotic, antiartherosclerotic and antidiabetic activity 

(40-44). From prevention perspective, intake of MY was correlated with lower 
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prostate cancer incidence with the relative risk (RR) of 0.43 (45). Another study 

carried out by Nöthlings et al. have shown the benefit of  the intake of three 

flavonols including myricetin, kaempferol, and quercetin in treating pancreatic 

cancer (46). A reduced pancreatic cancer risk (RR = 0.77) was observed with the 

intake of total flavonols. MY intake was associated with reduced pancreatic 

cancer incidence in female and Caucasian populations with RR 0.72 and 0.59, 

respectively. In addition, intake of MY dramatically decreased pancreatic cancer 

incidence among current smokers with RR 0.55 (46).  

      We have shown that withaferin A (WA) had Hsp90 inhibitory activity and 

myricetin (MY) had Hsp70 inhibitory activity (6, 25, 26). In the present study, we 

demonstrated that these two natural products withaferin A and myricetin acted 

synergistically against pancreatic cancer cells which was partially through MY’s 

inhibition of Hsp70 as evidenced by the reduction of the Hsp70 induced by WA. 

In addition, MY and WA worked synergistically in mediating Hsp90 client protein 

degradation. Finally, we utilized siHsp70 which knockdown Hsp70 to further 

confirm that inhibition of Hsp70 sensitized pancreatic cancer cells to WA 

treatment. The synergistic effect of MY and WA on pancreatic cancer cells 

indicates the potential chemopreventive and therapeutic effect of MY and WA 

against pancreatic cancer.  

     Recently, Hsp90 has emerged as an exciting molecular target for developing 

anticancer drugs. Hsp90 inhibitors have two advantages: 1, Hsp90 inhibitors 

simultaneously downregulate various oncogenes which are directly involved in 

cancer development; 2, Hsp90 inhibitors showed high selectivity on cancer cells 
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as they rely more on the function of Hsp90 and oncogenic protiens. Currently, 

Hsp90 inhibitors have been tested in preclinical and clinical models for their 

anticancer activity including 17-AAG, 17-DMAG, IPI-504 and LAQ824 against 

various tumors (47-53).  

      However, the clinical efficacy of Hsp90 inhibitor as single agent in treatment 

of cancer is still under investigation (47-51, 53, 54). Some limitations may hinder 

the development of Hsp90 inhibitors: 1, Hsp90 inhibitors such as 17-AAG 

showed dose limiting toxicity  (hepatotoxicity), which limits the dose escalation in 

clinical trials; 2, drug induced heat shock response may undermine its efficacy. 

Heat shock response is mediated by the transcriptional regulator heat shock 

factor 1 (Hsf1). Hsf1 transiently binds to Hsp90 in cytosol and its transcriptional 

activity is sequestered by Hsp90 (55). Under stress such as heat, oxidative 

stress and massive mutant protein presence or inhibition of Hsp90 by Hsp90 

inhibitors, Hsf1 is released from Hsp90 complex, hyperphosphorylated, 

homotrimerized and translocated into nucleus to bind to the heat shock elements 

(HSE) in the promoter of hsp70 gene and activate its transcription (55-57). Heat 

shock response induced by Hsp90 inhibitors was demonstrated to contribute to 

the development of drug resistance to Hsp90 inhibitors (12, 18, 58-60). 

    Researchers have conducted many studies to explore the possibility of 

targeting heat shock response to sensitize cancer cells to Hsp90 inhibitors. For 

example, KNK437 and quercetin, which inhibited the DNA binding and 

transcriptional activation of Hsf1, were found to sensitize multidrug resistant 

cancer cells against hyperthermal therapy and chemotherapeutic drugs including 



89 

 

17-AAG (15, 57, 61, 62). However, KNK437 and quercetin exhibit low inhibitory 

efficiency of Hsf1 (at 200 M level and require multiple dosing). In addition, 

knockdown Hsp70 expression by siHsp70 was also shown to enhance the 

anticancer activity of classical Hsp90 inhibitors such as GA, 17-AAG and EC78 

(59, 60).  

  In the current study, we demonstrated that myricetin (MY) as low as 5 M 

potentiates the anticancer effect of withaferin A (WA) although the IC50s of MY on 

pancreatic cancer cells were over 50 M. Our data indicate myricetin (MY) may 

be used to sensitize Hsp90 inhibitors for pancreatic cancer therapy.  
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Table 3.1 Synergistic anticancer effect of withaferin A and myricetin in 
pancreatic cancer cells.  
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Figure 3.1  Protein level changes after withaferin A treatment in BxPc-3 

cells.  BxPc-3 pancreatic cancer cells were treated with 2.5 M WA for 24 hours. 

Cell lysates (50 g protein in each lane) were analyzed by western blot analysis 
with specific antibodies to Akt, Cdk4, Hsp70, mutated P53 and Actin.  Actin was 
served as internal standard.  
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Figure 3.2 Protein level changes after myricetin treatment in BxPc-3 cells. 
BxPc-3 pancreatic cancer cells were treated with varied concentrations of MY for 

24 hours or 50 M MY for different time points. Cell lysates (50 g protein in 
each lane) were analyzed by western blot analysis with specific antibodies to Akt, 
Hsp70, mutated P53 and Actin.  Actin was served as internal standard.  
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Figure 3.3  Anticancer effect of myricetin and withaferin A against 
pancreatic cancer cells. A, effect of MY treatment on viability of pancreatic 
cancer BxPc-3, MiaPaca-2 and Panc-1 cells. BxPc-3, MiaPaca-2 or Panc-1 cells 
were seeded in 96-well plates at a density of 5000 cells per well. 24 hours later 
the cells were subjected to MY treatment with concentrations of 0.5, 1.0, 2.5, 5, 

10, 20 and 50 M. MTS assay was performed to assess cell viability after 48 h 
incubation. B, apoptosis induced by WA and MY treatment against BxPc-3 
cancer cells. Cancer cell apoptosis was evaluated by caspase-3 activity assay. 

BxPc-3 cancer cells were treated with 5 M MY, 1 M WA or combined 5 M MY 

and 1 M WA for 24 hours, proteins were isolated and analyzed with Caspase-3 
assay kit (MBL International Corporation, Woburn, MA) for caspase-3 activity. 
The measured caspase-3 activities were normalized to control group, and were 
represented as fold change. *, P < 0.05.  
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Figure 3.4 Protein level changes after myricetin and withaferin A treatment 

in BxPc-3 cells. BxPc-3 pancreatic cancer cells were treated with 1 M WA for 

24 hours, or treated with combined 1 M WA and varied concentrations of MY. 

Cell lysates (50 g protein in each lane) were analyzed by western blot analysis 
with specific antibodies to Akt, Cdk4, Hsp70, mutated P53 and Actin.  Actin was 
served as internal standard.  
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Figure 3.5 mRNA and protein level of Hsp70 after siHsp70 and withaferin A 
treatment in BxPc-3 cells. BxPc-3 pancreatic cancer cells were transfected with 
siHsp70 or siCtrl (600 pmol per dish) for 24 hours. Then, cancer cells were 

treated with 2.5 M WA for another 12 hours for isolation of RNA or for another 
24 hours for isolation of proteins. RNAs were used to carry out RT-PCR to 
measure Hsp70 mRNA level, which was normalized to control and calculated as 
fold change of control. Proteins were analyzed by western blot analysis with 
specific antibodies to Hsp70 and Actin.  Actin was served as internal standard.  
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Figure 3.6 Anticancer effect of siHsp70 and withaferin A against pancreatic 
cancer cells. A, effect of siHsp70 and WA treatment on viability of pancreatic 
cancer BxPc-3. BxPc-3 cells were seeded in 96-well plates at a density of 5000 
cells per well. BxPc-3 cells were first transfected with siHsp70 with lipofectamine 
2000 for 24 hours with 5 pmol per well. 24 hours later the cells are replaced with 

fresh medium and treated with increasing concentrations of WA (0.05 - 2 M). 
After additional 48 hours incubation, cell viabilities were measured. B, effect of 
siHsp70 and WA treatment on viability of pancreatic cancer MiaPaca-2. Viability 
of MiaPaca-2 cells after siRNA and WA treatment was assessed similar to A. C, 
effect of siHsp70 and WA treatment on viability of pancreatic cancer Panc-1 cells. 
Viability of Panc-1 cells after siRNA and WA treatment was assessed similar to A. 
D, apoptosis induced by siHsp70 and WA treatment against BxPc-3 cancer cells. 
Pancreatic cancer BxPc-3 cells were transfected with a total of 600 pmol of 
siRNA of Hsp70 (siHsp70) or control siRNA (siCtrl) with lipofectamine 2000 

reagents for 24 hours in a 100 mm cell culture dish. Then 5 M Withaferin A (WA) 
was added to the dish with fresh medium to treat for another 12 hours. Proteins 
were isolated and analyzed with Caspase-3 assay kit for caspase-3 activity 
similar to Figure 3B.  
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Figure 3.7 Protein level changes after siHsp70 and withaferin A treatment in 
BxPc-3 cells. BxPc-3 pancreatic cancer cells were transfected with siHsp70 or 

siCtrl for 24 hours. Then, cancer cells were treated with 5 M WA for another 24 

hours for isolation of proteins to carry out western-blot. Cell lysates (50 g protein 
in each lane) were analyzed by western blot analysis with specific antibodies to 
Akt, Cdk4, GR and Actin.  Actin was served as internal standard.  
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Figure 3.8 Withaferin A and myricetin exhibited synergistic effect in 
pancreatic cancer xenograft model. 5-10×106 BxPc-3 pancreatic cancer cells 
were mixed with reconstituted basement membrane and inoculated s.c. to the 
right and left flanks of the 4 to 6-week old nu/nu athymic female mice. When the 
tumors reach ~100 mm3, mice were randomly divided into four different groups 
for treatment (n= 6/group). Mice were treated with vehicle, 4 mg/kg WA alone, 50 
mg/kg MY alone, and combined 4 mg/kg WA and 50 mg/kg MY, respectively, by 
i.p. injection daily for two weeks. Tumor sizes were monitored twice a week. *, p 
< 0.05 comparing to Ctrl; §, p < 0.05 when comparing to WA treatment alone.  
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CHAPTER IV 

STRUCTURE-ACTIVITY RELATIONSHIP (SAR) OF WITHANOLIDES TO 

INHIBIT HSP90 FOR ITS ACTIVITY IN PANCREATIC CANCER CELLS 

 

 

Abstract 

Withaferin A (WA), a triterpenoid of the withanolides, directly binds to Hsp90 and 

leads to the degradation of Hsp90 client protein. The purpose of this study is to 

investigate the structure activity relationship (SAR) of withanolides for its 

inhibition of Hsp90 and anti-proliferative activities in pancreatic cancer cells. In 

pancreatic cancer Panc-1 cells, withaferin A (WA) and four analogues 

withanolide E (WE), 4-hydroxywithanolide E (HWE), 3-aziridinylwithaferin A 

(AzWA) inhibited cell proliferation with IC50s ranged from 1.05 to 2.76 M. WA, 

WE, HWE, and AzWA also induced caspase-3 activity by 21- , 6- , 11- and 15-

fold, respectively, in pancreatic cancer cells, while withaperuvin (WP) did not 

show any activity. The data showed that WA, WE, HWE, and AzWA, but not WP, 

all directly bound to Hsp90 and induced Hsp90 aggregation in pancreatic cancer 

cells.  Western blotting assay showed that WA, WE, HWE, AzWA, but not WP, 

inhibited Hsp90 chaperone activity to induce degradation of Hsp90 client protein 

Akt and Cdk4 through proteasome-dependent pathway in pancreatic cancer cells.  
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However, only WA, HWE and AzWA disrupted Hsp90-Cdc37 complexes but not 

WE and WP. SAR study suggests that the C-5, 6 epoxy functional group 

contributes considerably for withanolide to bind to Hsp90, inhibit Hsp90 chaperon 

activity, and result in Hsp90 client protein depletion. Meanwhile, the hydroxyl 

group at C-4 within ketone unsaturated A ring may enhance withanolide to inhibit 

Hsp90 activity and disrupt Hsp90-Cdc37 interaction whereas the steric bulk 

substitution at C-3 may reduce its activity. These data provide detailed SAR 

mechanisms for withanolide to inhibit Hsp90 and exhibit anti-proliferative efficacy.   

Key words:  Withanolide; Hsp90; Cdc37; Structure-activity relationship; 

Pancreatic cancer 

 

 

Introduction 

The active constituents from Withania somnifera (WS), including alkaloids 

and withanolides, have been studied extensively for their biological activities (1, 

2). Withaferin A (WA), one of the major active components of withanolides, was 

reported to have anti-angiogenesis, anti-tumor, and radio-sensitizing activities in 

various cancer cell lines (3-6). It  has been reported that withaferin A suppressed 

nuclear factor kappa B (NF-B) activation (7), covalently bound to annexin II, 

altered cytoskeletal architecture (8), and inhibited tumor necrosis factor-induced 

activation of IB kinase via a thioalkylation-sensitive redox mechanism (9). 

Previously, we also showed that withaferin A (WA) exhibited anti-proliferative 

activity via Hsp90 inhibition in pancreatic cancer cells (10). Unlike classical 
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Hsp90 inhibitors (such as geldanamycin) that block the Hsp90 ATP binding site, 

WA directly binds to Hsp90 C-terminus and induces Hsp90-dependent client 

protein degradation. In addition, WA also disrupted Hsp90-Cdc37 complex, which 

is also different from classic Hsp90 inhibitors.  

The 90 kDa heat-shock protein (Hsp90) has emerged as a promising target 

for drug discovery (11, 12). Studies revealed that Hsp90 is associated with the 

folding, stabilization, activation, and maturation of many important oncogenic 

client proteins in cancer cells (13-15). Since Hsp90 regulates many cellular 

processes in cancer cells, such as proliferation, cell cycle progression, survival, 

invasion, angiogenesis and metastasis (16), inhibition of Hsp90 by small 

molecules leads to simultaneous degradation of multiple oncogenic proteins, and 

inhibits these cellular processes of cancer cells (17, 18). 

Hsp90 chaperone activity is regulated by numerous co-chaperones, such as 

Hsp70, Hop, Cdc37, and driven by a cycle of N-terminal ATP/ADP exchange 

through ATP hydrolysis at N-terminal ATP binding site (19). Several natural 

products including geldanamycin (GA) and its derivatives 17-AAG, 17-DMAG 

inhibit Hsp90 ATPase activity through competitively blockage of the N-terminal 

ATP binding pocket and cause proteasomal degradation of client proteins (20-24). 

Another type of Hsp90 inhibitor, novobiocin (and its derivatives) targets the C-

terminal ATP binding pocket, inducing similar cellular responses as N-terminal 

ATP pocket inhibitors (25, 26). In addition to the inhibition of ATPase activity of 

Hsp90, other Hsp90 inhibition mechanisms have also been characterized. For 

instance, epilgallocatechin-3-gallate (EGCG) was reported to directly bind Hsp90 
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C-terminal and impair the Hsp90’s association with its co-chaperones p23 and 

Hsc70 (18). However, EGCG had little effect on ATPase activity (27). Since 

Hsp90 is known to interact with various co-chaperones to assemble a 

superchaperone complex for its protein folding and maturation, disruption of 

Hsp90 complex may provide additional mechanisms to inhibit Hsp90 for cancer 

therapy.  

Withaferin A (WA) binds to Hsp90 C-terminus and also blocks Hsp90-Cdc37 

complex in cancer cells. However, it remains unclear what is the functional group 

of withaferin A which contributes to the inhibition of Hsp90 chaperoning activity. 

Previous studies have shown that the 4 -hydroxy-5 , 6  epoxy-2-en-1 moiety 

and unsaturated lactone are critical for WA’s biological function (28). In this study, 

we intend to investigate different structures of withaferin A (WA) and its four 

analogues for their mechanisms to inhibit Hsp90 and efficacy of anti-proliferative 

activity in pancreatic cancer cells. The data suggest that the C-5, 6 epoxy 

functional group of withanolides is required to bind Hsp90, induce Hsp90 

aggregation, and induce Hsp90 client protein degradation, and eventually show 

anti-proliferative activity. The substitution of C-2, 3 position may hinder 

withanolides to inhibit Hsp90 activity while the C-4 hydroxyl group within ketone 

unsaturated A ring of withanolide may enhance its activity to inhibit Hsp90 and 

disrupt Hsp90-Cdc37 interaction.   

 

Materials and methods 

Compounds and antibodies 
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Withaferin A (Figure 4.1) was purchased from Calbiochem Inc. (San Diego, 

CA). 3-Aziridinylwithaferin A (AzWA, NSC339665, Figure 4.1), withanolide E (WE, 

NSC179834, Figure 4.1), 4β-hydroxywithanolide E (HWE, NSC212509, Figure 

4.1), and Withaperuvin (WP, NSC334387, Figure 4.1) were kindly provided by 

The NCI/DTP Open Chemical Repository (http://dtp.cancer.gov). The following 

antibodies were used for Western blot: Akt, PARP (Cell Signaling, Beverly, MA), 

Hsp70 (StressGen, Victoria, BC, Canada), Cdk4, β-Actin, Cdc37 and Hsp90 

(Santa Cruz, Santa Cruz, CA). Monoclonal Hsp90 antibody H9010 for 

immunoprecipitation was purchased from Alexis Biochemicals (San Diego, CA). 

Pan-caspase inhibitor (Z-VAD-FMK) was purchased from Promega (Madison, 

WI). 

MTS assay 

     Human pancreatic cancer cell line Panc-1 was cultured in 10% FBS RPMI-

1640 at 37 °C and 5% CO2. Pancreatic cancer cells were seeded in 96-well 

microplates at a density of 3,000 to 5,000 cells per well and cultured for overnight. 

The cells were treated with different drugs at various concentrations in DMSO 

(0.5% DMSO final concentration) for 48h. The cell proliferation was assessed 

using MTS assay (Promega, Madison, WI) according to the manufacturer’s 

manual.  The number of living cells in the culture is directly proportional to the 

absorbance at 490 nm by a formazan product bioreduced from MTS in living cells. 

The IC50 value for cytotoxicity was estimated by WinNonlin software (Pharsight, 

Mountain View, CA). 

Caspase-3 activity assay.  
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      Panc-1 cells were treated with 10µM Withaferin A (WA), withanolide E (WE), 

4β-hydroxywithanolide E (HWE), 3-Aziridinylwithaferin A (AzWA), and 

Withaperuvin (WP), respectively  for 48h. The Caspase-3 activity assay was 

performed according to the manufacturer’s instruction of Caspase-3/CPP32 

Fluorometric Assay Kit (Biovision Research Products, Mountain View, CA). 

Cellular protein was extracted with the supplied lysis buffer and protein 

concentration was measured using BCA Protein Assay Reagents (Pierce, 

Rockford, IL). The cleavage of DEVD-AFC, a substrate of caspase-3, was 

quantified using a fluorescence microtiter plate reader with a 400 nm excitation 

filter and a 505 nm emission filter. 

Withaferin A-Biotin pull down assay  

      Biotinyl-Withaferin A (WA-biotin) was prepared and used in the pull down 

assay as described previously (8). Briefly, Panc-1 pancreatic cancer cell whole 

cell extract was prepared in TNEK buffer (5 mM Tris, pH 7.4; NP-40 1%; EDTA 2 

mM; KCl 200 mM) supplemented with protease inhibitors. Aliquots of cell lysate 

containing equal amounts of total protein were precleared with NeutrAvidin beads 

(Pierce) before incubation with equal concentration of different drugs for 1h at 

4 °C, respectively.  Then equal amounts of immobilized WA-biotin were added to 

each sample and incubated for 2 h at 4 °C with constant agitation. The beads 

were then washed with TNEK buffer for three times, and were boiled in loading 

buffer for 4 min to dissociate the bound proteins. Western blot was carried out to 

determine the levels of Hsp90 proteins. 

Western-blot  
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       The procedure for Western blotting analysis was performed as previously 

described (29). Briefly, after treated with different drugs for the 24-48 hr, Panc-1 

cells were washed twice with ice-cold PBS, collected in RIPA lysis buffer (20 mM 

Tris-HCl, 150 mM NaCl, 1% NP-40, 5mM EDTA, 1 mM Na3VO4, pH 7.5) 

supplemented with a protease inhibitor mixture (Sigma-Aldrich, St. Louis, MO), 

and incubated on ice for 20 min. Afterward cell lysate was centrifuged at 14,000 

× rpm for 10 min, and the pellet was diluted in SDS sample buffer. Isolation of 

triton-soluble and triton-insoluble proteins was performed as described by Chen 

et al.(30) . Protein concentration was determined using BCA Protein Reagents 

(Pierce, Rockford, IL). The protein was separated by SDS-PAGE and 

electrotransferred onto a PVDF membrane (BioRad, Richmond, CA). Bolts were 

then probed with appropriate antibodies.  

      To analyze the disulfide-bonded protein, non-reducing SDS-PAGE was 

employed. Briefly, drug-treated cells were washed twice with ice-cold and then 

incubated in ice-cold PBS with 40 mM iodoacetamide (IA) for 5 min to prevent 

thiol-disulfide exchange and inhibit postlysis oxidation of free cysteines (31). 

Afterwards, sample was diluted in SDS-sample buffer without reducing agents 

before loading onto SDS-PAGE. 

Co-immunoprecipitation assay 

      The general procedure for co-immunoprecipitation was described as follows. 

The drug-treated Panc-1 cells were harvested and lysed in RIPA lysis buffer 

supplemented with a protease inhibitor mixture (Sigma-Aldrich, St. Louis, MO). 

After centrifugation pellet was collected and protein was quantified using BCA 
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protein assay reagents (Pierce, Rockford, IL). Each of protein samples (500 µg) 

was first incubated with 5 l H9010 anti-Hsp90 antibody (Axxora, San Diego, CA) 

for 1 h at 4 °C, rotating, and then added with 30 l protein G agarose (Pierce, 

Rockford, IL) followed by incubation of another 2 h at 4 °C. The beads were 

washed three times with PBS plus protease inhibitors and boiled in loading buffer 

for 4 min to isolate the bound proteins. The protein was separated by SDS-PAGE. 

Western blot was performed to determine the levels of co-immunoprecipitated 

proteins. 

 

Results 

Withaferin A (WA), and its analogs withanolide E (WE), 4β-

hydroxywithanolide E (HWE), and 3-Aziridinylwithaferin A (AzWA) inhibit 

cell proliferation and induce apoptosis in pancreatic cancer Panc-1cells 

       To investigate the cytotoxicity of WA, WE, HWE, AzWA and WP, pancreatic 

cancer Panc-1 cells were incubated with increasing concentrations of WA and its 

derivatives for 48 h, respectively. Cell viability was examined by MTS assay. As 

shown in Figure 4.2A, WA, WE and HWE exhibited dose-dependent cytotoxicity 

against Panc-1 with IC50s of 1.05, 1.46 and 1.21 M, respectively; whereas 

AzWA showed relatively weaker inhibitory effect on Panc-1 with IC50 of 2.76 M. 

In contrast, WP did not inhibit cell viability even at a concentration up to 50 M.  

       One of the primary events in apoptosis is activation of caspase-3 (32). To 

study whether WA and its derivatives induced apoptosis, caspase-3 activity was 

measured in Panc-1 cells with WA, AzWA, WE, HWE and WP treatment. As 
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shown in Figure 4.2B, 10 M WA, AzWA, WE and HWE for 48 h treatment 

increased caspase-3 activity by 21.3-, 5.8-, 11.6- and 15.3-fold, respectively, in 

comparison with untreated cells. In contrast, 10 M WP did not induce apoptosis 

in Panc-1 cells. Similarly, PARP protein level also showed that WA, AzWA, WE 

and HWE decreased PARP level and resulted in the occurrence of cleaved 

PARP, whereas WP did not (Figure 4.2C).  

WA’s analogues WE, HWE and AzWA decrease cellular levels of Hsp90 

client proteins 

       Previously, WA was shown to bind Hsp90 and induce Hsp90 client protein 

degradation. Since WA’s analogues WE, HWE and AzWA exhibited potent anti-

proliferative activity and induced apoptosis in Panc-1 cells similarly to WA, we 

also tested if WE, HWE and AzWA would also interact with Hsp90 and cause 

simultaneous down-regulation of multiple oncogenic proteins. To examine this, 

we investigated a panel of cancer-associated Hsp90 client proteins level in 

response to 10 M WA, AzWA, WE, HWE or WP for 24 h treatment, respectively.  

The levels of Hsp90 client protein Akt and Cdk4 were down-regulated by 5-, 4-, 

2-, 4-fold, and 6-, 3-,3-, 3-fold, respectively, upon incubation with WA, WE, HWE 

or AzWA. However, WP did not cause significant alterations of the protein levels 

of Akt and Cdk4 (Figure 4.3A).   

       Because the induction of Hsp70 is another molecular signature in response 

to Hsp90 inhibition (33), we also determined the Hsp70 protein level after WA, 

AzWA, WE, HWE or WP treatment. As shown in Figure 4.3B, 10 µM WA, AzWA, 

WE or HWE increased the protein level of Hsp70 by 2- to 3-fold after 24 h 
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treatment while they did not change the Hsp90 protein level (Figure 4.3C), 

whereas WP failed to increase Hsp70 protein level. These data suggested that 

WA, AzWA, WE and HWE may inhibit Hsp90 chaperone activity, which might 

contribute to their anti-proliferative activity in pancreatic cancer cells. However, 

WP has no effect on the inhibition of Hsp90 activity. 

WA’s analogues AzWA, WE and HWE induced Hsp90 client proteins 

degradation is proteasome-dependent 

       It was reported that WA induced Hsp90 client protein degradation was 

proteasome-mediated (10). Since WA’s analogues AzWA, WE and HWE also 

decreased Hsp90 client protein levels, we further examined whether AzWA, WE 

and HWE induced Hsp90 client proteins via proteasome-dependent pathway. 

WP served as a negative control. MG132 was used as proteasome inhibitor to 

reverse the protein degradation. WA, AzWA, WE or HWE treatment alone 

decreased the level of Akt and Cdk4. To better characterize the protein level 

change, the total protein were divided into two fractions: triton soluble and triton 

insoluble fraction. For proteins whose fate is proteasome mediated degradation, 

the proteins would be encapsulated into the vehicle, and underwent 

ubiquitination and followed by proteasome degradation. The vehicle 

encapsulated proteins are recovered in the triton insoluble fraction but not in the 

triton soluble fraction. When cells were treated with 10 M MG132 combined with 

10 M WA, AzWA, WE or HWE, respectively, the Akt and Cdk4 proteins were 

disappeared from the triton-soluble fraction (Figure 4.4B) but accumulated by 1-, 

7-, 4-, 2-fold and 1-, 7-, 3-, 4-fold, respectively, in the triton-insoluble fraction 
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(Figure 4.4A). Whereas, pre-incubation with pan-caspase inhibitor (Z-VAD-FMK) 

for 1 h and then treated with WA, WE, HWE, AzWA and WP for 24 h did not 

show accumulation of Akt or Cdk4 in the combined treatment group compared to 

WA and its analogues treatment alone in the triton insoluble fraction indicating 

caspase was not involved in the protein degradation of Akt and Cdk4 (Figure 

4.4D). These results indicate that WA, AzWA, WE and HWE may inhibit Hsp90 to 

induce proteasome-mediated client proteins aggregation, while WP did not inhibit 

Hsp90.  

WA’s analogues AzWA, WE or HWE directly binds to Hsp90 and cause 

Hsp90 aggregation  

       It has been reported that Hsp90 chaperone proteins are sensitive to cellular 

redox conditions and tend to form disulfide bonds under stress conditions (30, 

31). WA has also exhibited high reactivity with cysteine residues in proteins such 

as Annexin II (8) and vimentin (34). Moreover, previous studies have shown that 

WA may directly bind to Hsp90 and cause disulfide-linked high molecular weight 

conformers of Hsp90 (10). Therefore, we tested whether WA’s analogues AzWA, 

WE, HWE and WP bind to Hsp90 using competition with biotinyl-withaferin A pull 

down assay. As shown in Figure 4.5A, WA-biotin successfully pulled down 

Hsp90 from cell lysate. Preincubation with 100 M of unlabeled WE, HWE or 

AzWA were able to compete against the WA-biotin binding to Hsp90 in cell lysate, 

while WP did not compete with biotin-WA for its binding to Hsp90. Furthermore, 

we used nonreducing gel electrophoresis to determine the Hsp90 aggregates in 

WA and its derivatives AzWA, WE, HWE or WP-treated cells. When Panc-1 cells 
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were incubated with 10 M WA, AzWA, WE or HWE for 24 h, respectively, the 

formation of Hsp90 aggregates was detected, exhibited as slower migration and 

higher molecular weight band (Figure 4.5B). However, WP did not induce Hsp90 

aggregation.   

WA, HWE, AzWA, but not WE or WP interrupt Hsp90-Cdc37 association in 

pancreatic cancer cells 

        In cancer cells, Hsp90 requires an array of co-chaperones to assemble a 

superchaperone complex, which catalyzes the conformational maturation of 

various client proteins (35). It was reported that Hsp90-Cdc37 complex played a 

significant role in regulating protein kinases in cancer cells (36). In our previous 

study, we have shown that withaferin A dissociated Hsp90-Cdc37 in a time and 

dose dependent manner, and 5 M withaferin A treatment could completely block 

Hsp90-Cdc37 interaction (10). To further characterize whether WA’s analogues 

AzWA, WE, HWE or WP could block the Hsp90-Cdc37 interaction, co-

immunoprecipitation (co-IP) assay was employed. After incubation with 10 µM 

WA, AzWA, WE, HWE or WP for 24h, respectively, Panc-1 cells were collected 

for total cellular protein. Co-IP Hsp90 was carried out, and the Cdc37 protein 

levels were detected by immunoblotting in precipitated Hsp90 complexes. The 

result showed that AzWA, WE, HWE or WP all failed to disrupt the interaction of 

Hsp90-Cdc37 (Figure 4.6A). Further increasing the drug treatment concentration 

to 20 M, co-IP of Hsp90 showed that WA, HWE and AzWA can decrease Cdc37 

interaction to Hsp90 but not WE and WP (Figure 4.6B). Meanwhile, western 

blotting was carried out to analyze the total cellular protein level of Cdc37 
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(without co-IP). As shown in Figure 4.6C, WA, AzWA, WE, HWE or WP did not 

change the total cellular Cdc37 protein level. These data indicate that the absent 

of Cdc37 band after drug treatment in co-IP result was not due to the expression 

level alteration of Cdc37 protein. These data further confirmed that only WA, but 

not AzWA, WE, HWE or WP was able to block Hsp90-Cdc37 interaction. 

 

Discussion 

         Withanolides, a large family of natural steroidal lactone triterpenoids, are 

major constituents purified from medicinal plant W. somnifera and its related 

Solanaceae species such as Physalis, Nicandra, Dunalia,Datura, Jaborosa, and 

Acnistus (28). Withaferin A, a prototype of the natural products withanolides, is 

reported to have antitumor, antibacterial, anti-inflammatory, antidepressant, 

antioxidant, immunosuppressive activities (37, 38). Previous studies indicated 

that withaferin A (WA) represents as a novel Hsp90 inhibitor against pancreatic 

cancers both in vitro and in vivo. WA inhibited Hsp90 activity through directly 

binding to Hsp90, induced Hsp90 client protein degradation and dissociated the 

Hsp90–Cdc37 interaction. The purpose of our current study is to investigate the 

structure and activity relationship inhibiting Hsp90 of withaferin A and its analogs 

withanolide E (WE), 4β-hydroxywithanolide E (HWE), and 3-aziridinylwithaferin A 

(AzWA). 

       To date, several studies have identified the potential pharmacophores of 

withaferin A for its activities. The data showed  that the 4-hydroxy-5, 6-

epoxy-2-en-1-one moiety and unsaturated lactone side chains are critical for  
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biological activity (39). The 5, 6-epoxide group within B ring was reported to 

react with 2-mercaptoethanol, which is a biochemical thiol-oxidizer (40) to be 

involved in Michael addition thioalkylation reactions (41-43). An earlier study also 

demonstrated that the epoxide functionality at C-5,6 acts as a Michael acceptor 

is essential for withaferin A anticancer activities in P-388 lymphocytic leukemia 

(44). In addition, the ketone containing unsaturated A ring is also readily 

alkylated by thiol-nucleophiles and undergoes Michael addition (39). Although it 

was reported that the C-27 hydroxyl group in unsaturated lactone was 

considered to be dispensable (45), it may have some contributions to withaferin 

A’s activity (46). Furthermore, the preliminary structure–activity studies of newly 

identified withanolides also confirmed that the ketone unsaturated A ring and 

epoxide are important for their cytotoxic activity, including withangulatin 

B,withangulatin C, withangulatin G, withangulatin H, and withangulatin I (38, 47). 

        This study showed that withaferin A (WA), withanolide E (WE), 4-

hydroxywithanolide E (HWE) and 3-aziridinyl-withaferin A (AzWA) all share the 5 

, 6 -epoxide group. These compounds resulted in similar anti-proliferative 

activity and apoptosis induction against pancreatic cancer cell Panc-1. In contrast, 

up to 50 M withaperuvin (WP) which does not have 5 , 6 -epoxide group 

within B ring, was unable to significantly decrease the cell viability and induce 

apoptosis in Panc-1 cells. These results suggest that the 5 , 6 -epoxide group 

within B ring plays an important role in the anti-proliferative activity of withaferin A 

against pancreatic cells. Indeed, these finding was confirmed by the previous 
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studies, which reported that the loss or replacement of epoxy functional group at 

C- 5, 6 of withafeirn A abrogated its biological function (40, 41).  

       In addition, the substituent group at C-2, 3 in the unsaturated A ring also 

impacts the biological function of withaferin A. In our study, 3-aziridinyl-withaferin 

A (AzWA) demonstrated relatively weak anti-proliferative activity and apoptosis 

induction in Panc-1 cells as compared to withaferin A. Similar results have been 

revealed that the activity of withaferin A was decreased when it was converted to 

3-methoxy-2,3-dihydrowithaferin A (45). Furthermore, the anti-proliferative 

activity and apoptosis induction of 4-hydroxywithanolide E (HWE), which 

contained a hydroxyl substituent at C-4, slightly increased compared to 

withanolide E, which lacked the 4-hydroxy group. Previous data also confirmed 

that hydroxyl group at C-4 within ketone unsaturated A ring contributed to the 

inhibition of cell viability of withanolides (46).  

       Our study showed that withaferin A (WA) and its analogs may also inhibit 

Hsp90 by direct binging to Hsp90 without affecting its ATP binding site. We 

further explored the structure-activity relationship of WA and its analogs to inhibit 

Hsp90 chaperone machinery.  

        In mammalian cells, Hsp90 plays a critical role as molecular chaperons for 

the stability, maturation and activation of oncogenic client proteins such as Raf, 

Akt, v-Src, Her2, Cdk4, mutant p53, focal adhesion kinase, vascular endothelial 

growth factor receptor, and telomerase, which are crucial for oncogenesis and 

malignant progression (48, 49). Drug-mediated inhibition of Hsp90 leads to 

simultaneous misfolding and aggregation of various client protein, which results 
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in degradation via ubiquitin-proteasome pathway (50, 51). In addition, Hsp90 was 

considered to be over expressed in cancerous tissue and existed as altered 

superchaperone complex, which inherently results in greater drug selectivity to 

cancer cells (52, 53). Therefore, Hsp90 has emerged as a promising therapeutic 

target for cancer therapeutics. Recently, several drugs have been developed to 

inhibit Hsp90 and validated in clinical trials including 17-AAG, 17-DMAG and IPI-

504, which are all derivatives or analogues based on the structure of 

geldanamycin (GA), a potent Hsp90 inhibitor from natural products (54-58). 

In order to assess whether epoxy group at C-5, 6 within B ring, the substituent 

groups at C-3 and the hydroxyl group at C-4 of withanolide affect Hsp90 

inhibition, we examined the protein levels of Akt and Cdk4, two well identified 

Hsp90 client proteins, and Hsp70 a molecular signature in response to Hsp90 

inhibition in cancer cells in response to the treatment of WA and its analogs (49). 

Consistent with the results of cytotoxicity and apoptosis, withanolide E (WE), 4 -

hydroxy-withanolide E (HWE), 3-aziridinyl-withaferin A (AzWA), which all contain 

the 5 , 6 -epoxide group induced the Akt and Cdk4 degradation as well as 

HSP70 up-regulation, whereas withaperuvin (WP) showed little effects. In 

addition, 4 -hydroxywithanolide E (HWE), with an additional hydroxyl group at 

C-4 decreased protein levels of Akt and Cdk4 more than that of withanolide E 

(WE). Furthermore, 3-aziridinylwithaferin A (AzWA), with an additional aziridinyl 

group at C-3 induced much less of Hsp90 client protein degradation compared to 

withaferin A (WA). In the presence of proteasome inhibitor MG132, both Akt and 

Cdk4 accumulated in Triton-insoluble fraction of drug-treated cells, suggesting 
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that withanolide E (WE), 4 -hydroxywithanolide E (HWE) or 3-aziridinylwithaferin 

A (AzWA) triggered proteasome-dependent degradation of misfolded/aggregated 

Hsp90 client protein. The alteration of these important signaling molecules 

suggest that the epoxy group at C-5, 6 within B ring, the substituent group at C-3 

and the hydroxyl group at C-4 within ketone unsaturated A ring contributed 

considerably to the inhibition of Hsp90 activity.  

       The competition of Biotinyl-withaferin A pull down assay by other withaferin 

analogs provide structure-activity relationship for withanolide to bind Hsp90. In 

our previous study, we have shown that withaferin A directly binds to the C-

terminus Hsp90 but not N-terminus Hsp90, which might be though the interaction 

with the reactive cysteine residues. Since only C-terminus Hsp90 contains 

reactive cysteine residues whereas N-terminus Hsp90 not. In addition, withaferin 

A biotin failed to pull down full length yeast Hsp90 which did not contain reactive 

cysteine residues (10).  In the present study, we demonstrated that withanolide E 

(WE), 4 -hydroxywithanolide E (HWE) and 3-aziridinylwithaferin A (AzWA) were 

able to compete for biotin-WA binding to Hsp90 in cell lysate, whereas 

withaperuvin (WP) failed to inhibit biotin-WA binding. These results suggest that 

epoxide functional group at C-5, 6 plays an important role in withanolide 

interacting with the C-terminus of Hsp90.  

       Previous studies revealed that Hsp90 chaperone proteins containing 

cysteine residues are sensitive to cellular redox conditions and form 

intermolecular disulfide bonds in stress conditions, hence cause the formation of 

high molecular weight aggregate of Hsp90 (59, 60). Withaferin A (WA), 
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withanolide E (WE), 4 -hydroxywithanolide E (HWE) and 3-aziridinylwithaferin A 

(AzWA) all induced Hsp90 aggregates, which suggests the importance of 

epoxide functional group at C-5, 6 to induce Hsp90 aggregation.  

       Cdc37, a cochaperone of Hsp90 is crucial in loading protein kinase to Hsp90 

superchaperone complex (61, 62). Cdc37 associated with a large subset of 

Hsp90 client proteins, which are essential in signal transduction, cell proliferation 

and survival (62). Cdc37 was found to be highly expressed in cancer cells and 

may contribute the malignant phenotype (63, 64). 10 M Withaferin A was 

observed to disrupt Hsp90-Cdc37 complex. In addition, 20M 4β-hydroxy-

withanolide E (HWE), and 3-aziridinyl-withaferin A (AzHA) were also 

demonstrated to be able to inhibit Hsp90-Cdc37 interaction. Whereas, 20M 

withanolide E (WE) or withaperuvin (WP) did not disrupt the Hsp90-Cdc37 

interaction in pancreatic cancer cell lysate. Further examining the structures of 

WA, HWE, AzWA which can disrupt Hsp90-Cdc37 interaction whereas WE and 

WP cannot, WA, HWE and AzWA share the same C-5, C-6 epoxide group and 

C-4 hydroxyl group, whereas WE contains C-5, C-6 epoxide group but not C-4 

hydroxyl group, and WP contains C-4 hydroxyl group but not C-5, C-6 epoxide 

group, indicating both C-5, C-6 epoxide group and C-4 hydroxyl group might be 

crucial for disruption of Hsp90-Cdc37 interaction.  

        In summary, various withaferin A analogs were investigated for their 

anticancer activity and mechanisms to inhibit Hsp90. The data suggest that the 

epoxy functional group at C-5, 6 of withanolides is required to bind Hsp90, induce 

Hsp90 aggregation, and induce Hsp90 client protein degradation, and eventually 
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show anti-proliferative activity. The substitution of C-2, 3 position may hinder 

withanolides to inhibit Hsp90 activity while the hydroxyl group at C-4 within 

ketone unsaturated A ring of withanolide may enhance its activity to inhibit Hsp90 

and induce Hsp90 client protein degradation, and disrupt Hsp90-Cdc37 

interaction. These structure-activity relationships of withanolides provide detailed 

mechanism for this class of compounds to inhibit Hsp90 for their anticancer 

activity.   
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Figure 4.1 Chemical structure of withaferin A (WA), withanolide E (WE), 4β-
hydroxywithanolide E (HWE), 3-Aziridinylwithaferin A (AzWA) and 
Withaperuvin (WP). 
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Figure 4.2  Effect of WA, WE, HWE, AzWA, and WP on  cytotoxixty and 
apoptosis induction in Panc-1 cells. A. Dose-response curve of withaferin A 
(WA) and its analogues, withanolide E (WE), 4β-hydroxywithanolide E (HWE), 3-
Aziridinylwithaferin A (AzWA) and withaperuvin (WP), on cell cytotoxity in Panc-1 
cells. Cells were grown in log phase and treated with increasing concentrations 
of WA, WE, HWE, AzWA or WP for 48 h, respectively. The cytotoxicity of those 
compounds were measured by MTS assay. B. Caspase-3 activity in Panc-1 cells 
after WA, WE, HWE, AzWA or WP treatment. Cells were treated with WA, WE, 
HWE, AzWA or WP, respectively and harvested at the indicated time. Cell 
lysates were prepared for caspase-3 activity assay. Results are expressed as 
arbitrary fluorescent units (AFU) normalized to milligram of cytosolic protein. Data 
are presented as mean ± SD (n = 3). C. PARP protein level in Panc-1 cells after 

WA, WE, HWE, AzWA or WP treatment. Cells were treated with 10 M WA, WE, 

HWE, AzWA or WP, respectively for 24 h. Equal amounts of protein (50 g/lane) 
were subjected to SDS-PAGE and analyzed by Western blot with specific 
antibodies to PARP and Actin. Actin was served as internal standard. Results are 
representative of three independent experiments. 
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Figure 4.3  WA, WE, HWE, and AzWA but not WP induced Hsp90 client 
protein degradation and Hsp70 upregulation in Panc-1 cells. A. HSP90 client 
protein degradation in Panc-1 cells induced by withaferin A (WA) and its 
analogues, withanolide E (WE), 4β-hydroxywithanolide E (HWE), 3-
Aziridinylwithaferin A (AzWA) and Withaperuvin (WP). Panc-1 cells were treated 

with 10 M WA or its analogues for 24h, respectively. Equal amounts of protein 

(50 g/lane) were subjected to SDS-PAGE and analyzed by Western blot with 
specific antibodies to Akt, Cdk4 and Actin. Actin was served as internal standard. 
Results are representative of three independent experiments. B. WA, WE, HWE 

or AzWA unregulated Hsp70 protein level. Equal amounts of protein (50 g/lane) 
were subjected to SDS-PAGE and analyzed by Western blot with specific 
antibodies to Hsp70 and Actin. Actin was served as internal standard. Results 
are representative of three independent experiments. C. WA, WE, HWE or AzWA 

did not affect Hsp90 protein level. Equal amounts of protein (50 g/lane) were 
subjected to SDS-PAGE and analyzed by Western blot with specific antibodies to 
Hsp90 and Actin. Actin was served as internal standard. Results are 
representative of three independent experiments. 
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Figure 4.4  Withaferin A (WA) and its analogues induced Hsp90 client 
protein degradation through proteasome-dependent pathway. Panc-1 cells 

were preincubated with 10 M MG132 for 1 h, and then were treated with 5 M 
WA for another 24h. Cells were harvested and were lysed in Triton X-100 buffer, 
and the Triton X-100-insoluble fraction was resolubilized in 2% SDS. Proteins 
(both triton-soluble and triton-insoluble parts) were subjected to Western blot 
analysis with specific antibodies to Akt, Cdk4 and Actin. Actin was served as 
internal standard. Results are representative of three independent experiments. 
A. Triton insoluble part; B. Triton soluble part; C. Panc-1 cells were treated with 

10 M MG132 for 25 h; D. Panc-1 cells were preincubated with 15 M Pan-
caspase inhibitor for 1 h, and then were treated with 5 µM WA for another 24h. 
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Figure 4.5  Withaferin A and its analogues directly bind to Hsp90 and 
induce Hsp90 aggregation. A. Withaferin A (WA) and its analogues, withanolide 
E (WE), 4β-hydroxywithanolide E (HWE), 3-Aziridinylwithaferin A (AzWA) and 
Withaperuvin (WP) compete with WA-biotin binding to Hsp90. One mg cell lysate 

was preincubated with 100 M WA or its analogues for 1 h, respectively before 
subject to WA-biotin pull down assay. The WA-biotin pull down protein were 
subjected to Western blot analysis with specific antibodies to Hsp90. B. WA, WE, 
HWE or AzWA induces Hsp90 aggregation. Panc-1 cells were treated with 10 µM 

WA or its analogues for 24 h, respectively. Equal amounts of protein (50 g/lane) 
were subjected to non-reducing gel electrophoresis and then analyzed by 
Western blot with specific antibodies to Hsp90 and Actin, Actin was served as 
internal standard. Results are representative of three independent experiments. 
  



132 

 

 
Figure 4.6  Disruption of Hsp90-Cdc37 in Panc-1 cells by withaferin A (WA) 
and its analogues.  A. Immunoprecipitation of Hsp90 and Cdc37 complex.  Cell 

lysates (500 g total protein) were immunoprecipitated with Hsp90 antibody. 
Western blot was performed to detect Cdc37 and Hsp90 using specific 

antibodies. Panc-1 cells were treated with 10 M WA, WE, HWE, AzWA or WP 
for 24 h, respectively. Lysis, total cell lysate; IgG, without antibody. B. Panc-1 

cells were treated with 20 M WA, WE, HWE, AzWA or WP for 24 h, respectively. 
C. Total expression levels of Cdc37 in Panc-1 cells.  Panc-1 cells were treated 
with WA, WE, HWE, AzWA or WP for 24 h, respectively. Equal amounts of 

protein (50 g/lane) were subjected to SDS-PAGE and analyzed by Western blot 
with specific antibodies to Cdc37 and Actin. Actin was served as internal 
standard. Results are representative of three independent experiments.  
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CHAPTER V 

SUMMARY 

 

 

         The purpose of this study is to investigate the anticancer activity and Hsp90 

inhibitory mechanism of withaferin A, to investigate the enhanced anticancer 

effect of combined withaferin A and myricetin treatment, and to identify the 

functional groups in withanolides for its anticancer activity and Hsp90 inhibitory 

activity in pancreatic cancer cells.  

         In the present study, withaferin A was demonstrated to exhibit potent 

anticancer activity against pancreatic cancer cells both in vitro and in vivo. MTS 

assay showed that withaferin A inhibited pancreatic cancer cell growth with IC50s 

below 3 M in three pancreatic cancer cell lines Panc-1, MiaPaca-2 and BxPc-3. 

WA-Biotin pull-down assay was employed to show that WA can specifically bind 

to C-terminus Hsp90. The binding of WA to Hsp90 inhibited Hsp90 chaperoning 

activity and induced Hsp90 client protein including Akt, Cdk4, and glucocorticoid 

receptor (GR) degradation as shown by western-blot, which was reversed by 

proteasome inhibitors (MG132 and bortezomib), indicating WA induced Hsp90 

client protein degradation was mediated by proteasome. ATP sepharose binding 

assay showed that withaferin A did not compete with ATP binding to Hsp90 in 
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contrast to classical Hsp90 inhibitor 17-AAG. In addition, examining the Hsp90 

superchaperone complex by co-immunoprecipitation (co-IP) showed that 

withaferin A did not affect Hsp90-P23 association whereas 17-AAG treatment 

resulted in Hsp90-P23 dissociation. Interestingly, withaferin A disrupted Hsp90-

Cdc37 interaction whereas 17-AAG could not, further indicating withaferin A 

inhibited Hsp90 in a way different from classical Hsp90 inhibitors. The antitumor 

effect of withaferin A was also confirmed in the pancreatic cancer xenograft 

models as administration of withaferin A could result in significant tumor growth 

inhibition compared to control.  

        Inhibition of Hsp90 by withaferin A induced Hsp70 upregulation, which was 

shown to have antiapoptotic activity. Therefore, myricetin, another natural 

product which was demonstrated to be Hsp70 inhibitor, was employed to 

examine whether inhibition of Hsp70 by myricetin could sensitize pancreatic 

cancer cells to withaferin A treatment. MTS assay showed that myricetin could 

enhance the anti-proliferative activity of withaferin A by decreasing the IC50s of 

withaferin A by 2.19-, 2.65-, and 3.93-fold compared to withaferin A treatment 

alone in pancreatic cancer Panc-1, MiaPaca-2, and BxPc-3 cells, respectively. 

Caspase-3 activity assay also showed that combined treatment of withaferin A 

and myricetin dramatically increased caspase-3 activity compared with either 

withaferin A or myricetin treatment alone. Western-blot confirmed that myricetin 

could decrease withaferin A induced Hsp70 upregulation. In addition, myricetin 

and withaferin A acted synergistically in downregulating Hsp90 client protein 

(mutated P53, Akt, and Cdk4). Combined withaferin A and myricetin treatment 
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also showed significant advantage in tumor growth inhibition in pancreatic cancer 

xenografts compared to either withaferin A or myricetin treatment alone.  

          Finally, WA and four analogues withanolide E (WE), 4β-hydroxywithanolide 

E (HWE), 3-aziridinylwithaferin A (AzWA) were examined for their anticancer 

activity and Hsp90 inhibitory activity in pancreatic cancer cells to assess the 

structure activity relationship (SAR) of withanolides. WA, WE, HWE, and AzWA 

demonstrated anti-proliferative activity against pancreatic cancer cells whereas 

WP did not. In addition, all the compounds except WA could bind to Hsp90, 

induce Hsp90 aggregation, and induce Hsp90 client protein degradation. WA, 

HWE and AzWA could disrupt Hsp90-Cdc37 interaction with varied potency, 

whereas WE and WP could not. The SAR analysis indicated that the C-5, 6 

epoxy functional group was responsible for Hsp90 inhibition and anticancer 

activity; whereas, the hydroxyl group at C-4 might enhance Hsp90 inhibitory 

activity and induce Hsp90-Cdc37 complex dissociation; in contrast, the steric 

bulk substitution at C-3 may reduce their activity.  

        In conclusion, withaferin A was shown to have potent anticancer activity in 

pancreatic cancer cells both in vitro and in vivo. Withaferin A was also 

demonstrated to inhibit Hsp90 by directly binding to the C-terminus, which was 

different from classical Hsp90 inhibitors, and thus proposing a new mechanism 

for developing Hsp90 inhibitors. Combined withaferin A and myricetin treatment 

was shown to have enhanced anticancer efficacy in pancreatic cancer cells. SAR 

analysis demonstrated the key functional groups in withanolides for their 
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anticancer effect and Hsp90 inhibitory activity, which could be the guidance for 

future Hsp90 inhibitor and anticancer agent development. 
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APPENDIX I 

EXAMINATION OF THE PHARMACOKINETICS OF SEVERAL ACTIVE 

INGREDIENTS OF GINGER IN HUMANS 

 

 

Abstract 

Ginger extracts or powders have been studied in various clinical trials for 

different indications. However, little information regarding the pharmacokinetics 

of the ginger active constituents in human biological matrices is available. This 

study aims to develop a LC-MS/MS method for simultaneous determination of 6, 

8, 10-gingerols and 6-shogaol and study their pharmacokinetics in human 

plasma and colon tissues. A sensitive LC-MS/MS method was established and 

validated with low limit of quantification (LLOQ) in a range of 2 – 5 ng/ml for the 

four analytes. The intra- and inter-day accuracy ranged from -7.3 to 10.4% and 

from -9.4 to 9.8%, respectively. The intra- and inter-day precision ranged from 

0.9 to 10.9% and from 2.0 to 12.4%, respectively. To measure the metabolic 

conjugates (glucuronide and sulfate) of 6, 8, 10-gingerols and 6-shogaol, the 

samples were pretreated with β-glucuronidase and sulfatase hydrolysis. After 

oral dosing of 2.0 gram ginger extracts capsules in human, free 10-gingerol and 

6-shogaol were detected in plasma with peak concentrations (9.5 ± 2.2 and 13.6 

± 6.9 ng/ml, respectively) at 1 h after oral administration, but no free 6-gingerol
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and 8-gingerol were detected in plasma from 0.25-24 h. The peak concentrations 

of glucuronide metabolites of 6, 8, 10-gingerols and 6-shogaol were 0.47 ± 0.31, 

0.17 ± 0.14, 0.37 ± 0.19, 0.73 ± 0.54 g/ml at 1 h, respectively. The peak 

concentrations of the sulfate metabolites of 6, 8, 10-gingerols and 6-shogaol 

were 0.28 ± 0.15, 0.027 ± 0.018, 0.018 ± 0.006, 0.047 ± 0.035 g/ml at 1 h, 

respectively. Very low concentrations (2 to 3 ng/ml) of 10-gingerol glucuronide 

and sulfate were found in colon tissues. Pharmacokinetic analysis performed 

using WinNonlin showed that half lives of these four analytes and their 

metabolites were 1-3 h in human plasma. No accumulation was observed for 6, 8, 

10-gingerols and 6-shogaol and their metabolites after multiple daily dosing.  

Keywords: 6-gingerol, 8-gingerol, 10-gingerol and 6-shogaol, LC-MS/MS, 

glucuronide, sulfate, pharmacokinetics 

 

 

Introduction 

      The antioxidative, anti-inflammatory, and antitumor properties of ginger 

(Zingiber officinale Roscoe, Zingiberaceae) have been recognized in previous 

studies (1-5). Various clinical trials involving ginger powders or extracts have 

been conducted to evaluate the lipid lowering effect (6), treatment of arthritis (7, 

8), prevention of nausea and vomiting (9-11), and relief of pain in women with 

primary dysmenorrhea (12). However, clinical studies using ginger extracts or 

powders produced mixed or moderate/marginal benefits. For instance, 

Chaiyakunapruk et al. demonstrated that administration of ginger at a fixed dose 
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of 1 g was more effective than placebo for the prevention of postoperative 

nausea and vomiting and postoperative vomiting (13). Whereas Betz et al. 

concluded that there was no clear evidence for the efficacy of ginger in the 

treatment of postoperative nausea and vomiting and of kinetosis (14). Bliddal et 

al. showed that 170 mg daily dosing for 3 weeks of ginger extract did not show 

significant benefit over placebo in relieving pain in patients with osteoarthritis (15). 

In contrast, a 6-week treatment period with 510 mg of ginger extract daily dosing 

produced moderate effect on knee pain in patients with osteoarthritis (16).  

     In most of the clinical trials, no substantial information regarding the 

composition of the ginger extract or powders was demonstrated. The use of non-

standardized ginger products throughout the clinical studies might partly explain 

the mixed results of the clinical studies in addition to the different study design 

and dose regimens. Nevertheless, a study carried out by Schwertner et al. 

determined the variation in 6-gingerol, 6-shogaol, 8-gingerol, and 10-gingerol 

concentrations and labeling of different brands of ginger root dietary supplements 

(7). It was found that large variations were present in the gingerol composition of 

ginger root powders from different manufacturers, as 6-gingerol ranged from 0.00 

to 9.43 mg/g, 6-shogaol ranged from 0.16 to 2.18 mg/g, 8-gingerol ranged from 

0.00 to 1.10 mg/g, and 10 gingerol ranged from 0.00 to 1.40 mg/g.  

     Ginger contains volatile oils (~1 to 3%) and non-volatile pungent components 

oleoresin (1). A variety of active components were identified in the oleoresin 

portion of ginger including gingerols and shogaols. Gingerols are series of 

homologues with varied unbranched alkyl chain length; whereas, shogaols are 
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series of homologues derived from gingerols with dehydration at the C-5 and C-4 

during long-term storage or thermal processing. In addition, other active 

compounds from oleoresin portion of ginger were also reported, such as  [6]-

paradol, [6]- and [10]-dehydrogingerdione, [6]- and [10]-gingerdione, [4]-, [6]-, [8]-, 

and [10]-gingerdiol, [6]-methylgingerdiol, zingerone, [6]-hydroxyshogaol, [6]-, [8]-, 

[10]-dehydroshogaol, and diarylheptanoids (17-19). Among these compounds, 

gingerols and shogaols are the major constituents of oleoresin; while the other 

compounds are present in a limited amount, accounting for 1-10 % of the overall 

amount of gingerols and shogaols (19). Gingerols (especially 6-gingerol) are the 

major components in the fresh ginger rhizome. The amount of shogaols is 

increased in the dried ginger, as evidenced by the reduction of the ratio of 6-

gingerol to 6-shogaol from 10:1 in fresh ginger to 1:1 in dried ginger (17, 18, 20).   

     As ginger powders or extracts contain various components, it would be 

valuable to identify certain compounds which are responsible for their 

pharmacological effects. It was demonstrated that 6, 8, 10-gingerols and 6-

shogaol had varied efficacy in anti-inflammatory, antibacterial, antipyretic, 

antilipidemic, antitumorigenic, and antiangiogenic effects (5, 21-27). 6-gingerol 

was shown to inhibit the enzymatic activity of leukotriene A4 hydrolase (LTA4H) 

and suppress anchorage-independent cancer cell growth in HCT116 and HT29 

colorectal cancer cells with IC50s around 50 M, and 35 M, respectively (28). 

Whereas, Sang et al. demonstrated that shogaols (6-, 8-, and 10-) exhibited 

much higher antiproliferative potency than gingerols (6-, 8-, and 10-) against H-

1299 human lung cancer cells with IC50s of 8 M for 6-shogaol, and 150 M for 
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6-gingerol (19). In addition, 10-gingerol was the most potent among the gingerols 

(19). Furthermore, Dugasani et al. evaluated the antioxidative activity of gingerols 

and shogaol, and found that 6-shogaol was the strongest with an IC50 of about 8 

M, while 6, 8, and 10-gingerols had the IC50s of 28, 20, and 12 M, 

respectively (29).   

Despite the numerous studies of the pharmacological effects of the ginger 

extracts or powders in the human clinical trials, there are limited studies of the 

pharmacokinetics of the ginger active constituents in human biological matrices. 

The concentrations of 6, 8, 10-gingerols and 6-shogaol required to show efficacy 

in vivo are still largely unknown. In our previous study, we developed a HPLC 

method to determine the concentrations of 6, 8, 10-gingerols and 6-shogaol in 

healthy human subjects who received p.o. dose of ginger powder capsules at 2.0 

g per day (1). However, due to the low sensitivity of the HPLC method with LLOQ 

ranged from 0.10 to 0.25 g/ml for the four analytes, we did not detect any of 

these four compounds in the plasma, although we detected the glucuronide 

conjugates of the four analytes. No sulfate conjugates of 8-gingerol, 10-gingerol 

and 6-shogaol were detected. Thus, a more sensitive method for the 

quantification of the 6, 8, 10-gingerols and 6-shogaol and their metabolite 

conjugates is desired to characterize the pharmacokinetics of the active 

ingredients of ginger in human.   

     In this study, we developed and validated a LC-MS/MS method for the 

quantification of the 6, 8, 10-gingerols and 6-shogaol simultaneously with the 

LLOQ ranged from 2 to 5 ng/ml. We further utilized this method to analyze 
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human plasma samples and detected low concentrations of free 10-gingerol and 

6-shogaol, while most of 6, 8, 10-gingerols and 6-shogaol existed in plasma as 

glucuronide and sulfate metabolites. The pharmacokinetics of the 6, 8, 10-

gingerols and 6-shogaol and their metabolites were analyzed. The half lives of all 

compounds and their metabolites were between 1-3 h.  

 

Materials and Methods 

Chemicals and reagents 

The ginger product used in this study was manufactured by Pure 

Encapsulations® (Sudbury, MA) (batch #ZO/06006). A 250 mg dry extract of 

ginger root capsule contained 6.60 mg (2.64%) 6-gingerol, 1.58 mg (0.63%) 8-

gingerol, 3.05 mg (1.22%) 10-gingerol, and 5.63 mg (2.25%) 6-shogaol. The 

enzymes -glucuronidase (Type IX-A from Escherichia coli) and sulfatase (Type 

H-1 from Helix pomatia) were purchased from Sigma-Aldrich Inc. Sodium 

phosphate and sodium acetate (American Chemical Society certified) were 

purchased from Fisher Scientific. 6, 8, 10-gingerols, and 6-shogaol were 

purchased from Chromadex. Pelargonic acid vanillylamide (PAV), the internal 

standard, was obtained from Sigma and is >97% pure. Acetonitrile (HPLC grade), 

methanol (HPLC grade) were purchased from Fisher Scientific (Fisher Scientific 

Co., Pittsburgh, PA). Formic acid (analytical grade) was from Sigma (Sigma 

Chemical Company, St. Louis, MO). Water was purified with a Milli- Q water 

system (Millipore, Bedford, MA). 

Clinical trial design  
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Three studies were conducted in healthy volunteers, single dose in normal risk 

participants, multiple doses in normal risk and high risk participants. In common 

to all three studies, participants were 18 years or older and in good health as 

defined by an unremarkable medical history, physical and screening blood work, 

and no chronic medication use. Exclusion criteria for the study included: anyone 

with (1) a history of peptic ulcer disease, gastrointestinal bleeding from gastric or 

duodenal ulcers, or gastrin secreting tumors; (2) pregnant or lactating women; (3) 

history of cardiovascular disease; (4) lactose intolerance; (5) or an allergy to 

ginger. Participants were asked to avoid all foods containing ginger within the 14 

days prior to drug administration and completed a food checklist to verify that 

they were not consuming any ginger-rich foods such as ginger ale or Japanese 

food. All study procedures were administered at the University of Michigan 

General Clinical Research Center (GCRC) after the participant gave written, 

informed consent, and the study was approved by the University of Michigan 

Institutional Review Board.   

Single dose in healthy volunteers  

Nine healthy volunteers received 2 gram oral dose of the ginger capsules.  Blood 

was drawn from the participants at baseline, 15, 30, and 45 minutes as well as at 

1, 2, 4, 6, 10, 24, 48 and 72 hours after ingestion of the ginger capsules. The 

plasma fraction was separated from blood immediately, and kept at -70ºC until 

assayed.  

Multiple doses in normal risk participants  
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A total of 30 participants were enrolled and recruited. Participants to be eligible 

were assessed as being at normal-risk for developing colorectal cancer. Normal-

risk was defined as having had no history of either familial colorectal cancer 

syndromes or first-degree relatives with colon cancer diagnosed before the age 

of 60. Normal-risk individuals also could not have a personal history of colorectal 

cancer or resection of a villous adenoma >1 cm in size or any adenoma 

containing carcinoma in situ.  Participants were randomized (16 to placebo and 

14 to ginger) to receive eight 250 mg ginger capsules of study medication taken 

daily for 28 days. Blood for gingerols/shogaol analysis was drawn at baseline and 

within 24 hours of the last study medication dose. Participants underwent two 

flexible sigmoidoscopies, one before drug treatment and the second, 28 days 

after drug treatment commenced. The second procedure was performed at a time 

as close as possible to 24 h after the participant took the final ginger dose. The 

participants were not prepared for the procedure with any enemas. Tissue 

samples were taken by opening and pressing the biopsy forceps perpendicular to 

the mucosal surface with mild pressure. Each biopsy specimen was taken 2 cm 

or more from other biopsy sites in distal sigmoid colonic mucosa that had no 

visual appearance of trauma or recent biopsy.  

Biopsy samples were placed into a sterile 1.5-ml eppendorf tube and frozen in 

liquid nitrogen at exactly 50 s after the time the biopsy forceps were closed. The 

specimens were stored at -70°C until immediately before analysis. The plasma 

fraction was separated from blood immediately, and kept at -20ºC until assayed.  

Multiple doses in high risk subjects 
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This trial involved 20 participants who were at high risk for developing colorectal 

cancer (CRC). Participants were randomized, 10 in each group, to receive either 

eight 250 mg capsules of ginger or placebo (lactose powder) daily for 28 days. 

High risk for colorectal cancer was defined as having a 1st degree relative 

diagnosed with CRC before the age of 60; and/or a prior history of a colon 

adenoma; and/or resected early (Dukes A, B or C) colon cancer previously. 

Otherwise the trial in people at high risk for CRC was identical to the study in 

individuals at normal risk for CRC. 

Equipment 

The quantitative LC-MS/MS analysis was performed on an API 3200 hybrid triple 

quadrupole/Linear Ion Trap mass spectrometer coupled with an Agilent 1200 

HPLC system (Applied Biosystems, MDS Sciex Toronto, Canada).  

Liquid chromatography parameters 

The chromatography was performed using a 1.8 μm Agilent Zorbax StableBond-

C18 column (4.6 mm × 50 mm i.d.). The injection volume was 10 µl and the flow 

rate was kept constantly at 300 µl/min. Mobile phase A and B were water 

containing 0.1% formic acid (v/v) and ACN, respectively. The flow gradient was 

initially 38 : 62 v/v of A : B for 3 min, linearly ramped to 0 : 100 over 1.5 min, held 

at 0 : 100 for 3.4 min, and then returned to 38 : 62 over 0.1min. This condition 

was held for a further 5 min prior to the injection of another sample.  

MS/MS parameters 

The mass spectrometer was operated at ESI positive ion mode and detection of 

the ions was performed in the multiple reaction monitoring (MRM) mode. The 
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analytes and IS were first characterized by Q1 MS (Q1) scan and enhanced 

product ion (EPI) scan to determine the precursor ions and product ions used in 

MRM mode. Figure 2 shows the EPI spectra of the analytes and IS. The MS/MS 

transitions selected were: 6-gingerol, m/z 295.2 precursor ion [M+H]+ to the m/z 

137.1 product ion; 8-gingerol, m/z 323.2 precursor ion [M+H]+ to the m/z 137.1 

product ion; 10-gingerol, m/z 351.2 precursor ion [M+H]+ to the m/z 137.1 

product ion; 6-shogaol, m/z 277.2 precursor ion [M+H]+ to the m/z 137.1 product 

ion; IS, m/z 294.2 precursor ion [M+H]+ to the m/z 137.1 product ion. The ion 

spray voltage was set at 5000 V. Ionization temperature was set as 400 °C. CAD 

was set as Medium. Ihe was set as OFF. The instrument parameters, curtain gas, 

Gas 1 and Gas 2 (auxillary gas), were set at 10, 60 and 40, respectively. 

Compounds parameters, declustering potential (DP), collision energy (CE), 

entrance potential (EP), collision entrance energy (CEP) and collision exit 

potential (CXP) were 33, 27, 5, 18.4, 2 V for 6-gingerol; 33, 27, 5,19.19, 2 V for 

8-gingerol; 33, 27, 5, 19.97, 2 V for 10-gingerol; 44, 18, 5, 17.9, 2 V for 6-shogaol; 

and 33, 27, 5, 18.38, 2 V for internal standard PAV, respectively. Data acquisition 

and quantitation were performed using analyst software version 1.4.2 (Applied 

Biosystems, MDS Sciex Toronto, Canada). 

Preparation of stock solution, calibration standard and quality control 

samples 

The stock solutions of 6, 8, 10-gingerols, 6-shogaol and PAV were prepared in 

methanol with concentrations of 1 mg/ml individually. A series of working 

standard of the four analytes mixture containing 0.04, 0.1, 0.2, 0.4, 1, 2, 4, 10, 40 
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g/ml of the four analytes was prepared by dilution from the stock solutions with 

methanol. Internal standard PAV working solution was prepared by diluting the 

stock solution with methanol to the final concentration of 2 g/ml. Low, medium 

and high concentration quality control working stock solutions (0.3, 5, 20 g/ml, 

respectively) were prepared in methanol using separately weighed stock 

solutions of the four analytes. Nine calibration standard solutions at 0.002, 0.005, 

0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 2 g/ml were prepared by spiking blank 

plasma with appropriate amounts of working standards. QC plasma samples at 

0.015, 0.25, 1 g/ml were prepared in the same way as calibration standard. 

Blank plasma sample without analytes and internal standard and zero plasma 

sample with internal standard but not analytes were also prepared and analyzed. 

All the standard solutions were stored at 4 °C. 

Sample preparation 

Plasma samples (100 l) were transferred to microcentrifuge tubes. Then 5 l 

internal standard PAV working solution (2 g/mL) was added to the plasma and 

the mixture was added with 295 l ACN and vortexed for 1 min at high speed. 

The tubes were centrifuged at 13,000 rpm for 10 min to precipitate protein. The 

clear supernatants were transferred to vial inserts and 10 l was injected into LC-

MS/MS.  

To analyze the metabolic conjugates (glucuronide and sulfate) of 6, 8, 10-

gingerols and 6-shogaol, the plasma samples were pre-incubated with the 

enzymes -glucuronidase and sulfatase as described previously (1, 30). Briefly, 

100 l plasma samples were added with either 10 l -glucuronidase (500 units) 
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in sodium-phosphate buffer (0.1 M, pH 6.8) or 10 l sulfatase (60 units) in 

sodium-acetate buffer (0.1 M, pH 5.0), and incubated at 37 °C for 1 h. The 

samples were then extracted as described above.  

Method validation 

Specificity: specificity of the analytical method was investigated by the analysis of 

blank plasma samples from six different sources to avoid potential endogenous 

interferences at the retention times of the analytes and IS.  

Extraction recovery: extraction recovery was determined in triplicate by 

comparing the peak areas of analytes determined in QC samples spike-pre-

extraction and QC samples spike-after-extraction. 

Linearity and LLOQ: linearity was evaluated in triplicate for 6, 8, and 10-gingerols 

in a concentration range from 0.005 to 2 g/ml, while in a concentration range 

from 2 to 2000 ng/ml for 6-shogaol. The lower limit of quantification was 

determined as the lowest concentrations of the analytes which had a signal-to-

noise ratio (S/N) over 10 and had acceptable accuracy within ±20% (% bias) and 

precision were less than 20% (% R.S.D). 

Accuracy and Precision: accuracy was calculated as the mean percentage 

deviation of measured concentrations of the three QC samples and LLOQ 

sample from their nominal concentrations. Precision was calculated as the 

coefficient of variation (CV) of multiple determinations. Both the inter-day and 

intra-day results were determined for the accuracy and precision.  

Pharmacokinetic analysis 
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Pharmacokinetic analysis of the plasma analytes concentration – time profile was 

carried out by Winnolin software (Pharsight, Mountain View, CA).  

 

Results 

 LC-MS/MS analysis 

Blank plasma samples from six different sources were analyzed and found to be 

free of the interference at the retention times and the mass transitions as the 

analytes and IS. Figure A1.3 shows representative chromatograms of the blank 

plasma, blank plasma spiked with analytes and IS, and real plasma sample 

obtained 1 h after oral administration of ginger powder capsules. The retention 

time was 4.03 min for 6-gingerol, 7.16 min for 8-gingerol, 9.42 min for 10-gingerol, 

8.35 min for 6-shogaol and 4.80 min for IS. Despite the isotope of IS resulted in a 

peak at 4.82 min in the 6-gingerol channel, all the analytes and IS achieved 

baseline separation from each other.  

Linearity and LLOQ 

Calibration curves were constructed from the peak-area ratios of analytes to IS 

vs plasma concentrations using quadratic regression with a 1/x weighting. Table 

A1.1 shows linear range, coefficient (r) and LLOQ. The LLOQ of 6, 8, 10-

gingerols and 6-shogaol were determined as 5 ng/ml, 5 ng/ml, 5 ng/ml, and 2 

ng/ml, respectively.  

Extraction recovery 

Extraction recoveries of the established method ranged from 84.4% to 97.6% for 

6-gingerol, from 81.7% to 94.7% for 8-gingerol, from 80.4% to 92.2% for 10-
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gingerol, and from 81.8% to 93.6% for 6-shogaol, respectively (Table A1.2). 

Overall, the extraction recovery was efficient and consistent at different 

concentration levels of analytes.  

Accuracy and Precision 

The results for intra-day and inter-day accuracy and precision are listed in Table 

A1.3. The intra- and inter-day accuracy (expressed as percentage bias against 

the nominal concentration) ranged from -7.3 to 10.4% and from -9.4 to 9.8%, 

respectively. The intra- and inter-day precision (expressed as R.S.D.) ranged 

from 0.9 to 10.9% and from 2.0  to 12.4%, respectively. Therefore, the accuracy 

and precision for this quantification method are acceptable.     

Stability 

As the single dose study involved re-analysis of samples that were previously 

collected and analyzed by HPLC, we set out to examine the stability of the 

glucuronide and sulfate conjugates of the 6, 8, 10-gingerols and 6-shogaol. 

Because of the lack of gingerol and shogaol glucuronide or sulfate conjugates 

standard, we were not able to determine the stability of the conjugates directly. 

We reanalyzed the samples 6 months after our original quantification. The 

concentrations determined were within 90 to 110% of the original quantification 

determined values by using LC-MS/MS. In addition, the concentrations of the 6, 8, 

10-ginerols and 6-shogaol conjugate metabolites were within 85 to 115% of the 

concentrations determined by HPLC which was performed 1.5 years ago.  

Pharmacokinetic study 
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Concentrations of 6, 8, 10-gingerols and 6-shogaol in the plasma after the 

single dose of ginger powder capsules  

In the present study, we applied LC-MS/MS method to quantify the 

concentrations of 6, 8, 10-gingerols and 6-shogaol, as well as their glucuronide 

and sulfate conjugates. Free 10-gingerol was detected in plasma with peak 

concentration of 9.5 ± 2.2 ng/ml at 1 h, which was undetectable after 2 h post 

dosing. Free 6-shogaol was detected in plasma at peak concentration of 13.6 ± 

6.9 ng/ml at 1h, which was undetectable after 4 h post dosing (Figure A1.4). No 

free 6-gingerol or 8-gingerol were detected in the plasma samples from 0- 24 h 

time post dosing. The terminal half lives of 10-gingerol and 6-shogaol were 2.1 

and 1.3 h, respectively. Other pharmacokinetic parameters were listed in table 

A1.4.  

Glucuronide conjugates of 6, 8, 10-gingerols and 6-shogaol in the plasma 

after single dose of ginger powder capsules  

As gingerols were predominantly present in the form of glucuronide conjugates in 

the plasma samples after oral dosing (1), we further analyzed the glucuronide 

conjugates of 6, 8, 10-gingerols and 6-shogaol . The plasma samples were first 

subjected to the -glucuronidase hydrolysis, then followed by liquid-liquid 

extraction as described previously (1). 6-gingerol glucuronide conjugate was 

detected from 0.25 to 10 h with peak concentration of 0.47 ± 0.31 g/ml at 1 h. 8-

gingerol glucuronide conjugate was observed from 0.25 to 10 h with peak 

concentration of 0.17 ± 0.14 g/ml at 1 h. 10-gingerol glucuronide conjugate was 

observed from 0.25 to 10 h with peak concentration of 0.37 ± 0.19 g/ml at 1 h. 
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6-shogaol glucuronide conjugate was observed from 0.25 to 8 h with peak 

concentration of 0.073 ± 0.054 g/ml at 1 h (Figure A1.4). To analyze the 

pharmacokinetic parameters of glucuronide conjugates, the concentrations were 

calculated with subtraction of free analytes concentrations, since the 

concentrations of glucuronides were measured after conversion of metabolites to 

free analytes. The pharmakinetic parmameters were summarized in table A1.4. 

The half lives of glucuronide conjugates of 6, 8, 10-gingerols and 6-shogaol were 

1.6, 1.0, 2.1, and 1.5 h, respectively. 

Sulfate conjugates of 6, 8, 10-gingerols and 6-shogaol in the plasma after 

single dose of ginger powder capsules  

The sulfate conjugates of 6, 8, 10-gingerols and 6-shogaol were also determined 

after the sulfatase hydrolysis. 6-gingerol sulfate conjugate was detected from 

0.25 to 8 h with peak concentration of 0.28 ± 0.15 g/ml at 1 h. 8-gingerol sulfate 

conjugate was observed from 0.5 to 4 h with peak concentration of 0.28 ± 0.18 

g/ml at 1 h. 10-gingerol sulfate conjugate was observed from 0.25 to 10 h with 

peak concentration of 0.017 ± 0.007 g/ml at 1 h. 6-shogaol sulfate conjugate 

was observed from 0.25 to 6 h with peak concentration of 0.047 ± 0.035 g/ml at 

1 h (Figure A1.4).  

Similarly, to analyze the pharmacokinetic parameters of sulfate conjugates, the 

concentrations were calculated with subtraction of free analytes concentrations. 

The pharmacokinetic parameters of the sulfate metabolites of 6, 8, 10-gingerols 

and 6-shogaol were shown in table A1.4. Their half lives were 1.8, 1.3, 3.2, and 

1.4 h, respectively.  
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Concentrations of 6, 8, 10-gingerols and 6-shogaol and their conjugate 

metabolites in the plasmas after multiple dose of ginger powder capsules  

Total of 23 healthy human subjects received either placebo (n=11) or ginger 

powder capsules 2.0 g/day (n=12) for 24 days. Their plasmas were drawn within 

24 h of the last dose. Free 6, 8, 10-gingerols and 6-shogaol and their conjugate 

metabolites were determined. Due to their short half lives, no free 6, 8, 10-

gingerols and 6-shogaol were detected in the plasma of all the subjects in 24 

hours after last dosing. These data suggest that no accumulation of free 6, 8, 10-

gingerols and 6-shogaol in plasma after multiple daily dosing.  Low levels of 6-

gingerol glucuronide (ranged from 5.43 to 13.6 ng/ml), 6-gingerol sulfate (ranged 

from 6.19 to 7.29 ng/ml) and 10-gingerol glucuronide (ranged from 6.96 to 9.33 

ng/ml) were observed in 4 subjects who received ginger powder capsules. The 

levels of 10-gingerol sulfate, 8-gingerol glucuronide, 8-gingerol sulfate, 6-shogaol 

gluruconide and 6-shogaol sulfate were below the detection limits in all the 

participants. These  data demonstrated no accumulation of 6, 8, 10-gingerols and 

6-shogaol or their conjugate metabolites in plasma after 24 days’ multiple daily 

dosing regimen due to their short half lives and fast clearance.  

Concentrations of 6, 8, 10-gingerols and 6-shogaol and their conjugate 

metabolites in the colon tissues after multiple doses of ginger powder 

capsules in normal and high risk colon cancer subjects   

Although 6-gingerol was shown to  have high concentration in gastrointestinal 

tract after p.o. dosing (31), no free 6-gingerol and its metabolites were detected 

in the colon tissues at 24 h after multiple daily dose ginger powder capsules. 
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Only marginal levels of 10-gingerol glucuronide and sulfate conjugates were 

detected at 24 h after multiple daily dosing of ginger powder capsules which 

ranged from 1.72 to 2.76 ng/ml.  

 

Discussion 

In a previous study, Wang et al. developed a HPLC/MS method to quantify 6, 8, 

10-gingerols and 6-shogaol in rat plasma after oral administration of ginger 

oleoresin (3). The LLOQ ranged from 3.57 to 10.4 ng/ml for 6, 8, 10-gingerols 

and 6-shogaol. Free 6, 8, 10-gingerols and 6-shogaol were detected in rat 

plasma with varied concentrations at dose 300 mg/kg (p.o.). However, only 

glucuronide conjugate of 6-gingerol was detected in rat plasma, whereas the 

levels of the glucuronide conjugates of 8, 10-gingerols and 6-shogaol were under 

LLOQ. Another study at p.o. dosing 30 mg/kg of purified 6-gingerol in rats failed 

to detect free 6-gingerol in rat plasma (32).  

In the current study, we developed a LC-MS/MS method for the simultaneous 

quantification of 6, 8, 10-gingerols and 6-shogaol with LLOQ ranged from 2 to 5 

ng/ml, which was more sensitive compared to the LC/MS method developed by 

Wang et al. In addition, we analyzed pharmacokinetics of these 4 analytes and 

their glucuronide and sulfate metabolites in human plasma. Our data indicate that 

only free 10-gingerol and 6-shogaol were detected in the human plasma, 

whereas, the majority of the 6, 8, 10-gingerols and 6-shogaol existed as 

glucuronide and sulfate metabolites after oral dosing of 2 gram ginger powder 

capsules. Furthermore, due to the short half lives of the 4 analytes, no 
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accumulation was observed in the plasma after multiple daily doses. Moreover, 

no analytes or their conjugates were detected in the colon tissues at 24 h after 

multiple dosing.  

Our data suggest both the glucuronide and sulfate conjugates of 6, 8, 10-

gingerols and 6-shogaol are present in human plasma. No free 6-gingerol was 

detected in plasma despite it was the most abundant component of the ginger 

powder capsule (2.64%).  In comparison, although 6-shogaol makes up 2.25% 

and 10-gingerol only accounts for 1.22% of the ginger powder capsule, 6-shogaol 

and 10-gingerol free compounds were detected in the human plasma. Whether 

6-gingerol conversion  to 6-shogaol in gastro-intestinal tract needs to be further 

explored, as previous report demonstrated that 6-gingerol and 6-shogaol inter-

converted to each other in simulated gastric fluid (33). Overall, all the 6-gingerol, 

8-gingerol and the majority of 10-gingerol and 6-shogaol were present as either 

the glucuronide conjugate or sulfate conjugate, and only small amount of 10-

gingerol and 6-shogaol were present as the free drugs, therefore, the 

pharmacological efficacy of 6-shogaol and 10-gingerol needs to be further 

validated. In fact, reports showed that 6-shogaol and 10-gingerol were much 

more pharmacologically active than 6-gingerol or 8-gingerol (19, 29, 34). 

However, the peak concentrations determined for 10-gingerol and 6-shogaol 

were 9.5 ± 2.2 ng/ml (0.027 ± 0.006 M) and 13.6 ± 6.9 ng/ml (0.049 ± 0.025 M), 

which were less than the IC50s of 10-gingerol and 6-shogaol (12 M and 8 M, 

respectively). Although gingerols and shogaol might be higher in colon tissues 

(31), in the present study, only limited amount of 10-gingerol glucuronide and 
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sulfate conjugates were detected at 24 h after multiple daily dosing in several 

subjects. To better understand the pharmacokinetics of the gingerols and 

shogaol in colon tissues and correlate pharmacokinetic to pharmacodynamic 

effect, early sampling time would be required to quantify the drug concentrations 

in colon tissues in future clinical studies.    

In the present study, we measured 6, 8, 10-gingerols, 6-shogaol and their 

glucuronide and sulfate conjugates in human plasma and colon tissues. However, 

it is worth noting that other metabolites of the gingerols and shogaol might also 

have pharmacological activity. For instance, rac-6-dihydroparadol (6-DHP), a 

mammalian metabolite of 6-gingerol and 6-shogaol which was chemically and 

metabolically stable, was shown to inhibit IB- degradation and NF-B nuclear 

translocation, thus decreased iNOS protein expression and suppressed NO 

synthesis in murine macrophage, finally led to anti-inflammatory effect (35). In 

addition, the other components of ginger powders or extracts such as paradols 

were not quantified due to the lack of commercially available standards. Paradols 

have shown pharmacological effects similar to gingerols and shogaols (36-39). 

All these components warrant future studies.  

 

Conclusion 

     In conclusion, this study developed and validated a sensitive LC-MS/MS 

method for the simultaneous quantification of 6, 8, 10-gingerols and 6-shogaol in 

the human plasma. Low levels of free 10-gingerol and 6-shogaol were detected 

in human plasma, whereas most of the 6, 8, 10-gingerols and 6-shogaol existed 
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in the form of glucuronide or sulfate conjugates. The pharmacokinetics of the 6, 8, 

10-gingerols and 6-shogaol and their metabolites were analyzed. The half lives of 

all compounds and their metabolites are between 1-3 h in human plasma.    
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Table A1.1 Calibration curve, linear range and LLOQ of 6-gingerol; 8-gingerol; 
10-gingerol; 6-shogaol in plasma. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compounds  r  

Linear range 

(ng/ml)  

LLOQ 

(ng/ml)  

6-gingerol  0.998  5 – 2000  5  

8-gingerol  0.999  5 – 2000  5  

10-gingerol  0.999  5 – 2000  5  

6-shogaol  0.999  2 - 2000  2  
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Table A1.2 Extraction recovery for 6-gingerol; 8-gingerol; 10-gingerol; 6-
shogaol in human plasma, expressed as Mean ± R.S.D. (%). 
 

 

QC (ng/ml)  6-gingerol  8-gingerol  10-gingerol  6-shogaol  

15 96.6 ± 7.2 87.1 ±  2.1  82.4 ±  9.0  85.7 ± 0.6  

250 84.4 ± 2.4  81.7 ± 4.1  80.4 ± 7.6  81.8 ± 2.9  

1000 97.6 ± 2.7  94.7 ± 2.0  92.2± 4.8  93.6 ± 3.2  
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Table A1.3 Precision and accuracy of LC/MS/MS analysis of 6-gingerol; 8-
gingerol; 10-gingerol; 6-shogaol.  

 

 

 

 

 

Analyte Nomical 

concentratio

n (ng/ml) 

Intra-day Inter-day 

Measured 

concentratio

n (ng/ml) 

Precision 

(% 

R.S.D.) 

Accuracy 

(% bias) 

Measured 

concentration 

(ng/ml) 

Precision 

(% 

R.S.D.) 

 

Accuracy 

(% bias) 

6-gingerol  15 16.5 1.0  10.0  16.1 9.0  7.1  

 250 245 2.3  -2.0  249  6.2  -0.1  

 1000 926 5.7  -7.3  904  3.0  -9.5  

8-gingerol  15 15.9 2.0  6.2  15.8 4.4  5.3  

 250 235 10.9  -5.9  267  4.0  7.2  

 1000 941 2.5  -5.8  978  12.4 -3.2  

10-gingerol  15 16.5 1.3  9.8  15.9  2.0  6.4  

 250 248 2.6  -5.5  274  5.4  9.8  

 1000 992 5.2  -0.7  1025  9.4  2.5  

6-shogaol  15 16. 6 0.9  10.4  15.3  4.1  2.2  

 250 242 1. 6  -3.3  269  2.4  7.6 

 1000 966 4.3  -3.4  969  6.5  -3.1  
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Table A1.4 Estimated plasma phamacokinetic parameters after single oral 
administration of 2.0 g ginger extracts. 
 

 

 

 

 

 

 

Parameter 6-gingerol 8-gingerol 10-gingerol 6-shogaol 

 

Free Glucuronide Sulfate Free Glucuronide Sulfate Free Glucuronide Sulfate Free Glucuronide Sulfate 

AUC(0-t) 

(μg*h/mL)  
N/A 0.74 ± 0.56 

0.43 ± 

0.26 
N/A 0.26 ± 0.27 

0.036 ± 

0.035 

0.008 ± 

0.004 
0.88 ± 0.60 

0.059 ± 

0.015 

0.024 ± 

0.013 
0.11 ± 0.08 

0.079 ± 

0.044 

MRT(0-t) 

(h)  
N/A 1.61 ± 0.34 

1.77 ± 

0.34 
N/A 1.34 ± 0.36 

1.05 ± 

0.36 

0.93 ± 

0.28 
2.04 ± 0.34 

2.94 ±  

1.03 

1.18 ± 

0.36 
1.48 ± 0.52 1.58 ± 0.40 

T1/2 (h)  
N/A 1.64 ± 0.88 

1.79 ± 

0.99 
N/A 1.03 ± 0.34 

1.25 ± 

0.26 

1.79 ± 

0.32 
2.09 ± 0.44 

3.24 ±  

1.83 

1.32 ± 

0.44 
1.54 ± 0.66 1.40 ± 0.36 

Tmax (h)  
N/A 1.03 ± 0.41 

1.03 ± 

0.41 
N/A 1.06 ± 0.40 

1.03 ± 

0.38 

1.11 ± 

0.40 
1.19 ± 0.51 

1.14 ±  

0.52 

1.00 ± 

0.41 
1.03 ± 0.41 1.06 ± 0.37 

Cmax 

(μg/ml)  
N/A 0.45 ± 0.25 

0.26 ± 

0.13 
N/A 0.16 ± 0.11 

0.027 ± 

0.015 

0.009 ± 

0.002 
0.41 ± 0.24 

0.017 ±  

0.006 

0.011 ± 

0.007 

0.080 ± 

0.057 

0.049 ± 

0.026 

CL/F 

(L/h/kg)  
N/A 1.32 ± 0.58 

1.77 ± 

0.84 
N/A 0.70 ± 0.44 

2.16 ± 

0.84 

14.5 ± 

0.6 
0.82 ± 0.61 

5.98 ±  

2.56 

2.75 ± 

0.71 
1.14 ± 0.69 1.30 ± 0.59 
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Figure A1.1 Chemical Structures of 6-, 8-, 10-gingerols, 6-shogaol and 
internal standard Pelargonic acid vanillylamide (PAV).  
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Figure A1.2 Enhanced product ion (EPI) mass spectra of the analytes and 
internal standard. A, EPI of 6-gingerol; B, EPI of 8-gingerol; C, EPI of 10-
gingerol; D, EPI of 6-shogaol; E, EPI of IS. 
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Figure A1.3 Representative MRM chromatograms of the analytes and 
internal standard. 6-gingerol, 295.2/137.0; 8-gingerol 323.2/137.0; 10-gingerol, 
351.2/137.0; 6-shogaol, 277.2/137.0; Internal standard PAV, 294.2/137.0. A, 
blank plasma sample; B, blank plasma sample spiked with four analytes and IS; 
C, plasma sample obtained 1 h after oral administration of ginger powder. 
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Figure A1.4 Mean plasma concentration-time profiles of  6-gingerol; 8-
gingerol; 10-gingerol; 6-shogaol, and their glucuronide, and sulfate 
conjugates in human plasma after oral administration of 2.0 g ginger 
powders (n=8). A, 6-gingerol; B, 8-gingerol; C, 10-gingerol; D, 6-shogaol.  



169 

 

APPENDIX II 

SUPERPARAMAGNETIC IRON OXIDE NANOPARTICLE (SPIO) 

“THERANOSTICS” FOR MULTIMODALITY TUMOR IMAGING, GENE 

DELIVERY, TARGETED DRUG AND PRODRUG DELIVERY 

 

 

Abstract 

The superparamagnetic iron oxide nanoparticle (SPIOs) “theranostics”, which 

contain imaging probes for tumor diagnosis and therapeutic compounds for 

therapy in a single nanoparticle, might provide significant benefits compared to 

exiting tumor imaging and therapeutic strategies. In this review, we summarize 

the progress of SPIOs “theranostics” that integrate tumor targeting, multimodality 

imaging, and gene delivery, or targeted drug and prodrug delivery. This review 

describes various methods of SPIOs synthesis, surface coating, and 

characterization. Different tumor targeting strategies such as antibody fragments, 

nucleotides, receptor ligands are discussed to improve SPIOs delivery for 

multimodality imaging. We also examine the utility of SPIOs for gene, siRNA 

delivery and imaging. Several methods for drug encapsulation and conjugation 

onto SPIOs are compared for targeted drug delivery, site-specific release, and 

imaging-guided drug delivery. Finally, we also review pharmacokinetics 

(including biodistribution) of SPIOs based on their characteristics.  
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Keywords: SPIOs, theranostics, multimodality imaging, gene delivery, prodrug, 
targeted drug delivery 
 

 

      Cancer remains to be the second leading cause of death in the United States 

after heart disease. For people under 85 years, cancer causes more deaths than 

heart disease despite much progress in cancer treatment in the last three 

decades (1). The estimated occurrence of cancer incidence and mortality were 

1,479,350 new cancer cases and 562,340 deaths, respectively in 2009 (1). 

Hence, the development of novel approaches for early detection, diagnosis and 

effective cancer treatment and prevention strategies are critical to decrease 

cancer incidence and increase cancer patient survival.  

   Nanotechnology has been applied in our daily lives, ranging from carbon soot 

or carbon black in ink, cosmetics, to delicate nanoparticles drug delivery systems 

(2, 3). The progress in nanotechnology and nanomedicine may contribute to the 

successful management of some diseases including cancer. Wagner et al. 

recently summarized the application of nanoparticles in medicine, which included 

drug delivery and drug therapy, imaging and diagnostics, biomaterials and 

implants (4). Nanoparticles may be generated from a variety of materials for 

medical use. Liposome, the first nanotechnology drug delivery system, can be 

traced back to 1960s (5, 6). Subsequently, a variety of nanoparticles made from 

different biomaterials including organic dedrimers, carbon, silicon, 

semiconductors, gold, and iron oxide were fabricated and tested for tumor 

imaging, diagnosis and therapy (2, 7). The advantages of nanoparticles in drug 
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delivery and molecular imaging have been well recognized. The advances 

include targeted delivery of therapeutic agents to the specific disease sites (8, 9), 

delivery of physicochemically unfavorable drugs, e.g., water-insoluble drugs (10, 

11), non-invasive and real-time monitoring of the sites of drug release, and 

assessment of drug efficacy (12).  

   Recently, one of the significant advances of nanoparticles is to integrate 

targeting, imaging, and drug delivery into one single nanoparticle (12-15). The 

development of these nano “theranostics”, which combines drug therapy and 

diagnostic imaging using the carrier nanoparticles, might provide significant 

benefits over exiting tumor imaging and chemotherapy strategies.  

  Superparamagnetic iron oxide nanoparticles (SPIOs) emerged as a feasible 

nano “theranostics” for tumor imaging and drug delivery owing to their distinct 

characteristics. The superparamagnetic nature of SPIOs makes them excellent 

magnetic resonance imaging (MRI) contrast agents. The ability of SPIOs to 

convert the energy absorbed from an oscillating magnetic field to the thermal 

energy can be used to destroy local tumor tissues for cancer therapy 

(hyperthermia effect) (10, 16). In addition, the large surface area of SPIOs makes 

the functional modifications of the SPIOs feasible, which enables the conjugation 

of the targeting moiety, drug molecules and imaging agents (15). For example, 

Liong and colleagues synthesized multifunctional mesoporous silica 

nanoparticles with the SPIOs core encapsulated in the esostructured silica 

spheres for multiple modality imaging and cancer therapy (14). The SPIOs core 

was used for MRI imaging. The surface mesoporous silicate was further modified 
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by using folic acid for tumor targeting, conjugated with fluorescein isothiocyanate 

(FITC) for optical fluorescent imaging, and loaded with either camptothecin (CPT) 

or paclitaxel (TXL) for anticancer efficacy (14).   

  This review summarizes the progress in SPIOs theranostics that integrates 

multimodality tumor imaging, gene delivery, and drug delivery. The focus of this 

review is on their synthesis and characterization, distinct role in MRI imaging, 

application in multimodality imaging, gene delivery, targeted drug and prodrug 

delivery for cancer therapy. We also summarize the pharmacokinetic, 

biodistribution, and toxicity profile of SPIOs.  

Synthesis and characterization of SPIOs 

 Synthesis of SPIOs 

 SPIOs consist of an iron oxide core and a hydrophilic surface coating. The 

ferromagnetic substances have intrinsic magnetic properties due to the aligned 

unpaired electron spins; whereas SPIOs have no net magnetic field without 

external magnetic field (17). In the presence of an external magnetic field, the 

iron oxide particles generate local field inhomogeneities that promote the 

relaxation of the transverse magnetization (T2 and/or T2*) thereby resulting in 

MRI signal loss. Typically, the larger the iron core and/or hydrated particle size, 

the greater the T2/T2* effects. The iron oxide cores are typically composed of 

either magnetite (Fe3O4) or maghemite (Fe2O3) (18). Fe2O3 could be converted 

from synthesized Fe3O4 through oxidation by exposure to oxygen or oxidizing 

agents, and these two iron oxide structures share similar magnetic properties 

(18). A conventional chemical method for synthesizing magnetite is 
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coprecipitation, by adding a base to the Fe2+ and Fe3+ aqueous salt solutions (19). 

Different pH, ionic strength, temperature, Fe2+ and Fe3+ ratio, and different salts 

could result in different size, shape and composition of nanoparticles (19-21). 

Although the coprecipitation technique is simple and efficient to yield a large 

amount of nanoparticles per batch, the nanoparticles produced are polydispersed 

with a broad particle size distribution. To produce monodispersed nanoparticles, 

some other methods were developed including microemulsion, ultrasound 

irradiation, sol-gel syntheses, electrospray syntheses, hydrothermal synthesis 

(18, 21, 22). For instance, Hyeon et al. synthesized highly crystalline and 

monodisperse maghemite nanocrystallites by using thermal decomposition (23). 

The uniformity of the nanoparticles was confirmed by the transmission electron 

microscopic (TEM) images, and the nanoparticles exhibited 2-dimensional and 3-

dimensional assembly of the particles. The advantage of this method is that the 

procedure omits the exhaustive size selection step.  By adjusting the 

experimental parameters, nanoparticles can be easily produced with size of 4-16 

nm.   

 Surface coating of SPIOs 

 The surface coating of SPIOs is critical for the stability (with respect to 

aggregation) as well as for the biodistribution and pharmacokinetics of the SPIOs. 

Without surface coating, the large hydrophobic surfaces of the SPIOs would 

induce the hydrophobic interactions between the particles, resulting in 

aggregation and precipitation. In addition, the surface coating of the SPIOs can 

protect them from uptake by the reticular endothelial system (RES) such as 
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macrophages, and therefore prolong their circulation in plasma for in vivo use 

(24). Furthermore, the functional groups of the surface coating of the SPIOs 

make the surface modification possible for the manufacturing of the 

multifunctional SPIO nanoparticles. A variety of materials have been applied to 

coat the SPIOs including both inorganic components (such as silica (25), gold, 

gadolinium, carbon (26)) and organic shells (such as polymers) (22). Silica has 

been widely used to coat iron oxide nanoparticles because of its favorable 

properties including compatibility, hydrophilicity, controllable coating density, and 

the terminal silanol group available for bioconjugation (27-29). For instance, 

Zhang and colleagues coated SPIOs with silica without significantly increasing 

the particle sizes. The coated SPIOs showed no cytotoxicity and exhibited high 

T2 relaxivity after internalized by the immortalized Rat progenitor cells (25). 

There are a variety of polymers used to coat SPIOs, including poly (lactic-co-

glycolic acid) (PLGA), dextran, chitosan, poly (vinyl alcohol) (PVA), poly 

(vinylpyrrolidone) (PVP), poly (ethyleneglycol) (PEG) (19, 30-32). The surface 

coating of the newly synthesized SPIOs can be carried out during synthesis or 

post-synthesis. The post-synthesis might be preferred since the former 

procedure would change the physical characteristics of the resulting 

nanoparticles (33).  

 Characterization of SPIOs 

 According to the overall diameter of SPIOs (including both iron oxide core and 

surface coating), SPIOs can be categorized into the following subgroups (18, 34): 

oral SPIOs (large SPIOs > 300 nm, including clinically used AMI-121 and OMP); 
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standard SPIOs (SSPIOs 60 – 150 nm, including clinically used AMI-25 and SHU 

555A); ultrasmall SPIOs (USPIOs 10-40 nm, including clinically used AMI-277 

and NC100150) and monocrystalline iron oxide nanoparticles (MION with size 

2.8 ± 9 nm). The former three groups are being clinically used for imaging of 

various organs and physiological functions including bowel, liver/spleen, lymph 

node, bone marrow, perfusion imaging and MRI angiography. Due to its 

monocrystallinity and small size, MION can pass through capillary fenestra to 

reach the extravascular space for targeted MRI imaging and magnetically labeled 

cell probe MRI imaging (34, 35).  

  The superparamagnetic properties, stability and biological functions of SPIOs 

largely depend on their structural and physicochemical factors including particle 

size, particle shape, crystal structure, charge and surface coating (21, 34). For 

instance, Sato et al. determined that the critical size of magnetization for iron 

oxide nanoparticles was 25 nm. Below 25 nm, with the decrease in the particle 

size, the saturation magnetization of iron oxide nanocrystals reduced sharply, 

which was probably due to the surface effects such as the appearance of a 

magnetically inactive layer (36). Although the magnetic properties of iron oxides 

(at room temperature) are determined primarily by the size, shape and purity of 

the iron oxide core, the surface coating may also influence the magnetic 

properties of the particles. Zhang et al. synthesized three SPIOs coating with 

silica-, APTMS-, and AEAPTMS, respectively. Subsequent characterization of 

the three SPIOs revealed that silica-coated SPIOs exhibited highest T2 relaxivity 

of 339.80 ± 0.22 s-1mM-1, and APTMS- and AEAPTMS-coated SPIOs exhibited 
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much less T2 relaxivity of  134.40 ± 0.01 and 84.79 ± 0.02 s-1mM-1 s-1, 

respectively (25). In addition, there is a tradeoff between large crystal/particle 

size and good T2/T2
* effects and optimal tumor uptake. Typically, particles over 

100 nm exhibit high magnetization (and T2/T2
* effects), but have poor uptake into 

non-RES tissue. However, smaller particles (<25 nm) exhibit good uptake (via 

diffusion through non-normal endothelium) but lower magnetizations (lower T2/T2
* 

effects). 

 Therefore, before application of the SPIOs, the characterization of the 

physicochemical parameters of the SPIOs is indispensable. Various techniques 

are currently used to characterize the SPIOs including transmission electron 

microscopy (TEM), high resolution TEM (HRTEM), X-ray diffraction (XRD), Infra 

red spectroscopy, photon correlation spectroscopy (PCS)/dynamic light 

scattering (DLS), Mossbauer spectroscopy, relaxometry (NMRD profiles), and 

vibrating sample magnetometry (VSM)(37-41). Typically, TEM, HRTEM and XRD 

are used to evaluate the iron oxide core size and core size distribution. PCS/DLS 

and NMRD analysis maybe used to determine the hydrated particle size. The 

magnetization is generally evaluated using VSM or NMRD analysis.  

  TEM: is a microscopy technique with higher resolution than light microscopes. 

It utilizes a beam of electrons to transmit through and interact with the specimens 

to obtain the image. It is generally used to obtain the morphology and size 

distribution of the nanoparticles.  

 HRTEM: is an imaging mode of the TEM with much higher resolution. It can 

be employed to image the local microstructure (such as glide plane, lattice 
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fringes, screw axis, lattice vacancies and defects) of the nanoparticles at an 

atomic scale (42, 43).  

 PCS/DLS: is a method to derive dynamic information about particles’ 

movement in solution. It is also used to determine the hydrodynamic size of the 

nanoparticles (the total size of the particle comprising both iron oxide core and 

the surrounding coating materials and water molecules) (44).  

 VSM: is widely used to measure the magnetic properties of a variety of 

materials. The samples are placed in a uniform magnetic field to induce a dipole 

moment. Then the samples are vibrated sinusoidally to induce electrical signal in 

the pick-up coil. The signal produced is proportional to the sample’s magnetic 

moment. Therefore, the magnetic property of the material can be determined by 

measuring the induced electrical signal in the pick-up coil.  

 Zeta-potential is another important parameter for the nanoparticles as it is 

related to the stability of the colloidal dispersions. In addition, zeta potential is 

also critical for biodistribution of SPIOs and attachment of DNA to the particle 

surface. When the zeta-potential is large (both negative and positive), there is 

large repulsion between particles, hence, particles resist aggregation, whereas 

when the zeta-potential is low (near zero), the particles are rapidly coagulated or 

flocculated due to the overwhelming attraction forces (Van der Waals). Zeta-

potential is determined by the surface charge density, surface structure and 

shear plane location (42). Zeta-potential can be calculated from different 

experimental techniques including microelectrophoresis, electric conductivity, 

and electrophoretic mobility (42, 45).  
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SPIOs for multimodality tumor imaging 

 SPIOs for MRI imaging 

 Since the acquisition of the first MRI image by Lauterbur (46) (who shared 

Nobel Prize with Mansfield for their contribution in MRI development), MRI has 

become one of the major imaging modalities to visualize the internal organs and 

physiological functions of the body.  MRI utilizes an external magnetic field, an 

intermittent radiofrequency pulse and a gradient magnetic field to generate the 

MRI signal. MRI images are formed when the patient is placed in an external 

applied magnetic field. Water protons may align with or against the applied field. 

The small excess of water protons aligned with the field represent the net proton 

magnetization that rotates in the direction of applied field at a given frequency 

(determined by the applied field strength). Radio-frequency energy (rf) is applied 

at the rotational frequency of the water protons causing the net magnetization to 

move away from equilibrium (aligned with the field). Once the rf is removed the 

net magnetization returns to equilibrium at rates defined by the longitudinal and 

transverse magnetization decay. Gradients are used to define the imaging 

location or slice (in 2D or 3D space) and the resultant native soft tissue contrast 

is due to endogenous variations in the proton densities and longitudinal and 

transverse relaxation times associated with the different tissues. Although MRI 

can utilize the endogenous water protons (normally hydrogen nuclei) to produce 

the signal, a contrast agent is often used to improve sensitivity and specificity. 

The contrast agent itself does not produce the image, rather, it affect the 

magnetic resonance relaxation properties of the protons surrounding it. For 
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instance, the paramagnetic Gadolinium (Gd) chelates which are commonly used 

as contrast agent clinically, induce shortening of T1 relaxation (longitudinal or 

spin-lattice relaxation) resulting in increased signal intensity on a T1-weighted 

image. However, Gadolinium chelates suffered from relatively low contrast 

capacity (the detection limit is approximately 10-5 moles/L), short retention time in 

vivo with half life about 1.5 hr, and potential renal toxicity in renal function 

impaired patients (47-50). Although the generation of high relaxivity lipid based 

Gadolinium agents (micelles and lipoproteins) has proven effective for targeted 

molecular imaging (51), the clinical utility of these materials has yet to be 

determined since a large percent of the injected Gadolinium dose (<10%) may be 

retained and/or metabolized. As a result, safety issues may limit clinical 

translation of these agents. More recently, SPIOs have been applied to act as 

contrast agents. Unlike gadolinium chelates, SPIOs are negative contrast agents 

since they induce shortening of T2/T2
* relaxation (transverse or spin-spin 

relaxation/effective transverse), which produces decreased signal intensity on a 

T2/T2
* weighted image (52). SPIOs are more efficient than gadolinium chelates as 

signal contrasts and have a detection limit of approximately 10-6 moles/L (53, 54). 

In addition, due to the fact that the iron is an endogenous metal ion and that most 

cells may safely take up, metabolize and excrete iron oxide particles, SPIOs are 

generally preferred as molecular imaging probes (15, 55). In fact, different sized 

iron oxide nanoparticles have been used for bowel contrast, liver/spleen imaging, 

lymph node imaging, bone marrow imaging, perfusion imaging and MRI 

angiography (34). For tumor imaging, SPIOs have been extensively employed for 
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detection of hepatic and splenic tumor, nodal metastases, bone tumor, brain 

tumor (56-61). The above imaging of tumors utilizes the physiological process of 

SPIOs in circulation including the uptake of SPIOs by RES cells to accumulate in 

certain organs including liver, spleen and lymph node as well as enhanced 

permeation and retention (EPR) effect due to the leaky vasculature in tumor 

tissues for passive targeting of tumors (62, 63). For instance, large SPIOs (such 

as clinically used Feridex, >90 nm) are used for liver imaging indications since 

healthy liver Kupffer cells are able to quickly take up circulating SPIOs. As a 

result, normal liver appears dark and tumors (that do not have normal Kupffer 

cells) appear bright. However, imaging of the lymphatic system, bone marrow, 

and atherosclerotic plaque requires the use of smaller iron oxide particles (<25 

nm) that exhibit prolonged circulation, limited RES uptake, and the ability to 

diffuse through non-normal endothelium.   

 As negative contrast agents, one challenge for SPIOs in MRI is the fact that it 

is difficult to separate signal loss due to the SPIOs and signal loss from MRI 

imaging artifacts such as motion, pari-vascular effects, and partial voluming 

effects. Recently, several positive-contrast techniques have been developed to 

generate signal hyperintensity (signal gain) in the vicinity of SPIOs such as white 

marker imaging (64, 65), GRASP (gradient echo acquisition for 

superparamagnetic particles) (66), IRON (inversion recovery on-resonance water 

suppression) (67), and SGM (susceptibility-gradient mapping) (68-70). For 

instance, Liu et al. used white marker imaging, IRON and SGM to detect the 

SPIO-labeled C6 glioma cells in an experimental flank tumor model by MRI (69). 
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They found that these three positive-contrast techniques produced 

hyperintensities in areas around the labeled flank tumors against a dark 

background, and provided greater sensitivities than the T2
*- weighted images. 

Furthermore, the three positive-contrast techniques also provided better 

accuracy since it’s easier to differentiate the hyperintense regions from other 

signal voids such as blood flow observed on T2
*- weighted images. In addition, 

SGM technique exhibited the highest sensitivity among the three positive-

contrast techniques. Overall, the new advances in positive-contrast techniques 

might allow for more sensitive and accurate detection of iron oxide particles.  

Targeting 

 Targeting SPIOs to tumors with antibody 

 Although SPIOs show increased contrast efficiency to gadolinium chelates in 

MRI imaging, the detection limit of 10-6 moles/L of SPIOs in MRI is still much less 

than the detection limit of 10-8 moles/L of fluorescence detection in optical 

imaging system and of 10-11 moles/L of PET/SPECT (53, 71). Thus, strategies 

still need to be developed to increase the sensitivity and specificity of SPIOs.  

 One method is to incorporate a targeting moiety to actively deliver SPIOs to 

tumor tissues rather than the passive EPR effect to increase the local 

concentration of SPIOs in the tumor tissues to enhance the contrast. A variety of 

targeting moieties have been used, including antibodies and their fragments, 

peptides, aptamers, and specific ligands. Antibodies are commonly used 

targeting groups utilizing the high affinity and high specificity between antibody-

antigen bindings. For example, Chen et al. immobilized Herceptin, the 
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monoclonal antibody against HER2/neu receptors which are overexpressed in 15 

to 25% of breast cancer patients, to the surface of SPIOs and evaluated the 

targeted SPIOs endocytosis by different breast cancer cells resulting MRI images 

(72). The internalization of the Herceptin-SPIO was observed in four HER2/neu 

receptor positive cells (BT-474, SKBR3, MDA-MB-231 and MCF7) by 

fluorescence microscopy while the internalization of Herceptin-SPIO was not 

observed in HER2/neu negative KB cell line. The magnetic resonance contrast 

was observed, with the enhancement proportionally to the HER2/neu expression 

levels in the four HER2/neu receptor positive cell lines. The targeting capacity of 

Herceptin-SPIO was further confirmed in breast cancer cell xenografts. 

Herceptin-SPIO was found to decrease the average enhancement of positive 

tumor (SKBR3 cell) and negative tumor (KB cell) by about 45.7 ± 1.9 and 3.3 ± 

1.2 %, respectively, indicating the specific targeting of Herceptin-SPIO to the 

HER2/new expressing cells. Some other antibodies were also used, such as 

antibody against prostate-specific membrane antigen (PSMA) (73), and antibody 

against carcinoembryonic antigen (CEA) (74). Although antibody showed 

promise as targeting moiety, there are still some drawbacks for antibody 

targeting. First, immunogenicity of antibody from non-human source might 

generate immune response. Although humanized monoclonal antibodies are 

developed to minimize immunogenicity, they might still cause immune reactions 

in a small population (53); second, the high molecular weight of intact antibody 

(150 kDa, 15 nm) might limit the SPIO-antibody’s penetration through the 

vasculature and tumor tissues (15). An alternative approach is to utilize antibody 
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fragments, including Fab’ and scFv with relatively low molecular weight while 

maintaining comparable antigen binding affinity. For instance, Natarajan et al. 

conjugated anti-MUC-1 antibody fragments di-scFv-c (50 kD) to iron oxide 

nanoparticles. The conjugates can specifically target to aberrant MUC-1, a 

protein abundantly expressed in most human epithelial cell adenocarcinomas 

(16). Because of the smaller size of antibody fragment, they managed to 

conjugate 20-30 molecules of di-scFv-c to one nanoparticle compared to 4-5 

intact monoclonal antibodies per nanoparticle. The anti-MUC-1 di-scFv-c 

conjugated nanoparticles showed specific binding to MUC-1 expressing cancer 

cells both in vitro and in vivo. A single chain anti-EGFR antibody (ScFvEGFR, 25 

kD) was also successfully conjugated to SPIOs. The conjugates specifically 

bound to and were internalized by EGFR expressing tumor cells for enhanced 

MRI contrast (75). Small peptides are also used as targeting moieties, including 

AGKGTPSLETTP peptide specific for human hepatocellular carcinoma cells (76), 

Chlorotoxin (a 36-amino acid peptide) with high selectivity and binding affinity for 

membrane matrix metalloproteinase-2 (MMP-2) in a variety cancer cells (77), 

v 3 integrins as a biomarker of angiogenesis in tumor (78).  

 Targeting SPIOs to tumors with nucleotides 

 Aptamers, short strands of oligonucleotides, may bind to various molecular 

targets, such as nucleic acid, proteins, small molecules. The small size, limited 

immunogenicity, high selectivity, and easy production make the aptamers 

favorable candidates for targeting groups. Wang and his colleagues used an A10 

RNA aptamer (Apt) as targeting group which can specifically recognize the 
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extracellular domain of PSMA (79). Since PSMA is highly expressed in prostate 

cancer cells, the engineered SPIO-Apt nanoparticles can be differentially taken 

up by PSMA-expressing prostate cancer LNCaP cells compared to non-PSMA-

expressing prostate cancer PC3 cells. The uptake of SPIO-Apt nanoparticles by 

LNCaP cells led to a dramatic decrease in the transverse relaxation time (T2) 

from 104.2 ± 1.4 to 26.6 ± 0.4 ms, while SPIO-Apt nanoparticles incubated with 

PC3 cells did not affect the T2 relaxation time, which further indicates the specific 

uptake of SPIO-Apt nanoparticles by the PSMA-expressing LNCaP cells.  

   Targeting SPIOs to tumors with receptor ligands 

   Many receptors are aberrantly expressed on the cancer cell surface due to 

the high proliferation nature of cancer cells, such as epithelial growth factor 

receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), and 

folate receptor, which makes their corresponding ligands or ligand analogs as 

innate targeting moieties. For example, folic acid has been extensively used as a 

targeting ligand for delivery of anticancer agents, proteins, and genes to the 

cancer cells via folate receptor (80-83). Landmark et al. conjugated folic acid to 

the SPIO nanoparticles, and SPIO-folic acid nanoparticles showed selective 

binding and uptake by the folate expressing KB tumor cells (84). Octreaotide 

(OCT), a somatostatin (SST) analog binding to somatostatin receptors (SSTRs) 

expressed on breast cancer cells, was utilized by Li et al. to direct SPIOs for 

target specific MRI imaging (85).  OCT-SPIO was able to specifically bind to 

SSTR expressing MCF-7 cells and decreased the T2 relaxation time dramatically. 

The OCT-SPIO targeted contrast ability was further confirmed in vivo with the 
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signal intensity of the tumor decreased in a T2-weighted image. A ligand 

fragment ATF (amino-terminal fragment of urokinase plasminogen activator, 

residue 1-135) was used as target to systemically deliver SPIOs to pancreatic 

tumor tissues since its receptor uPAR is highly expressed in more than 86% of 

pancreatic cancer tissues. The SPIO-ATF exhibited selective accumulation in 

tumors and enhanced MRI contrast (86). Transferrin has also been used as 

target to direct SPIOs to tumor cells by ways of transferring receptor pathway (87, 

88). 

 Multimodality imaging using labeled SPIOs  

 Benefit from its multifunctionality surface, SPIOs may be developed for 

multimodality tumor imaging. For instance, bioconjugate fluorescent dye on to the 

SPIOs surface to integrate both MRI and fluorescent imaging, or bioconjugate 

radioactive tracers (e.g., 124I) to integrate both MRI and PET, or all of the three. 

As there are hundreds of functional groups on the surface of SPIOs, it’s possible 

to conjugate dozens of fluorescent dye molecules or radioactive tracers to SPIOs 

to further increase their sensitivity. A key issue for multimodality imaging is that 

multimodal imaging systems need to be clinically available to acquire images 

from different morphologic or functional contrast agents simultaneously or 

sequentially. Therefore, an integration software would also be required to 

integrate these acquired multimodality images to better illustrate the information. 

Although difficulties exist, multimodality imaging shows advantages by 

complementing the individual imaging modality to give better detection, more 

accurate diagnosis, and capability to monitor the molecular level events. 
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Clinicians have studied the possibility of PET/MRI fusion imaging by taking 

advantage of high sensitivity of PET and high anatomical resolution of MRI (89-

91). The fusion images of PET and MRI showed better sensitivity and specificity 

than the single modality, as well as providing important diagnostic information 

(92). Automated software for analysis of fusion images (93) and integrated single 

machine for detection of both MRI and PET (53) have been developed, which 

made the multimodality imaging more feasible. Another example is a triple 

labeled SPIO nanoparticle developed by Lewin et al. which was conjugated with 

FITC fluorescent dye and diethylenetriamine pentaacetic acid (DTPA) for 111In 

labeling achieving triple imaging modalities (magnetic resonance, fluorescent, 

and nuclear imaging) (94). The multimodality imaging was able to track single 

cells in tissue samples.  

 As MRI lacks real time information while ultrasound (US) gives excellent real 

time information. Researchers have tried to combine these two imaging 

modalities together. Yang et al. fabricated a novel encapsulated microbubble 

(EMB) construct with SPIOs embedded in the polymer shell of the microbubble 

(95). Such microbubble vesicles showed enhanced magnetic susceptibility while 

maintaining echogenicity to be US contrast agents which were acoustically active 

to generate sonoporation under US exposure. This microbubble vesicle showed 

potential for developing US and MRI dual contrast agents.  

SPIOs for targeted gene delivery and multimodality imaging 

        In addition to conventional cancer treatment such as chemotherapy, 

radiotherapy and surgery, gene therapy appears to be another promising option 
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for cancer treatment with several products entering phase III clinical trials, such 

as Advexin (targeting tumor suppressor gene p53), Rexin-G (targeting cell cycle 

control gene cyclin G) (96-98). Cancer gene therapy is featured by the transfer 

and expressing of exogenous genetic materials (plasmid DNA, siRNA, microRNA) 

in cancer cells to express certain proteins (e.g., Advexin expresses wild-type p53 

to promote cancer cells undergo apoptosis) or knockdown the specific proteins 

(e.g., siRNA against oncogene mutant K-ras to induce K-ras protein degradation 

and hence promote cancer cell death). Currently, the majority of delivery vectors 

are viral, which show high efficiency but have safety concerns (98). The viruses 

can induce immune responses which lead to the neutralization of viruses, or the 

exaggerated immune reactions could produce severe side effects. Another 

disadvantage is that the mis-incorporation of the viral genome to the host 

genome probably would lead to oncogene expression, which was the case for 

the occurrence of leukemia in some children who received gene therapy. Thus, 

some non-viral gene delivery strategies are developed including electroporation 

(99), sonoporation (100), gene gun utilizing the gold nanoparticles (101), and a 

variety of carriers such as bacteria (102), Peptide  (103), antibody-protamine 

fusion protein (104), polymers (105), and liposomes (106).  

SPIO –DNA complex for gene delivery  

 SPIOs have also been used to deliver genetic materials into cancer cells. 

SPIOs based gene deliveries either utilize the surface positive charges of SPIOs 

to interact with the negatively charged genetic materials to form complex or 

through chemical conjugation. Li et al. coated SPIOs with poly-L-lysine to convert 



188 

 

the negatively charged SPIOs surface to positively charged, which could be used 

to condense negatively charged pNM23-GFP plasmid DNA to form complexes 

(107). The protein NM-H1 expressed by pNM23-GFP plasmid DNA shows anti-

metastasis ability in a variety of cancers. They found that the administration of 

SPIO-PLL/pNM23-GFP complex would suppress the tumor metastasis in a 

pulmonary metastasis model, whereas administration of pNM23-GFP plasmid 

DNA alone did not affect the tumor growth and metastasis, which indicate the 

effective transfection of the pNM23-GFP plasmid DNA. The administration of 

SPIO-PLL/pNM23-GFP complex prolonged the survival of the tumor bearing 

mice in a pattern similar to conventional chemotherapeutic agent 

cyclophosphamide treat group. The combination group of SPIO-PLL/pNM23-GFP 

complex treatment and cyclophosphamide produced even longer survival in 

tumor bearing mice. The SPIO-PLL mediated pNM23-GFP delivery provides 

following advantages: (1) the naked plasmid DNA is subject to nuclease 

digestion in the blood circulation and uptake by the mononuclear phagocytic 

system, which limit the circulation time of plasmid DNA and efficient targeting to 

cancer cells (108); (2) the nanoparticles protect plasmid DNA from enzymatic 

degradation, probably due to that the positive charges on nanoparticles surface 

repels Mg2+ which is required for enzyme cleavage and the conformational 

change of DNA structure which limits the enzyme susceptible sites (109, 110); (3) 

the positively charged SPIO-PLL nanoparticles would facilitate the uptake of 

plasmid DNA by cancer cells (111); (4) the EPR effect would allow the SPIO-

PLL/pNM23-GFP complex accumulation in the tumor tissues and thus achieve 
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passive targeting. However, one challenge for cellular delivery of DNA via SPIOs 

is that most SPIOs transport the DNA to endosomes/lysosomes thereby limiting 

gene delivery efficiency. For effective gene delivery, some of the DNA must be 

released within the cellular cytosol so that it can migrate to the nucleus.  

SPIO-siRNAs conjugates for siRNAs delivery and multimodality imaging 

 Medarova and his colleagues utilized chemical conjugation to conjugate the 

synthetic siRNAs duplex to the SPIOs (13). In addition, they further conjugated 

Cy5.5 dye for the purpose of near-infrared optical imaging (NIRF), and a 

myristoylated polyarginine peptide for membrane translocation. They chose two 

candidate siRNAs for delivery, siGFP (for imaging) and siSurvivin (for therapy). 

They found that the conjugated MN-NIRF-siGFP could be efficiently uptake by 

the cancer cells to show efficient gene silencing effect which was indicated by the 

decrease in GFP fluorescence. In vivo test of MN-NIRF-siGFP also confirmed the 

ability of conjugated nanoparticles to target to tumor tissues as evidenced by the 

decrease of T2 relaxation times in tumor tissues in MRI image and strong 

fluorescent signal observed by NIRF. The gene silencing effect was proved by 

RT-PCR demonstrating the decrease of GFP mRNA levels. When they replaced 

the siGFP with siSurvivin (survivin, an anti-apoptotic protein, knockdown survivin 

by siRNAs can induce cancer cell death), they found that MN-NIRF-siSurvivin 

significantly increased the cancer cell apoptosis and necrosis, and survivin 

mRNA level was also decreased as expected. Therefore, MN-NIRF-siSurvivin 

conjugates combining siRNA delivery with dual imaging modality (MRI and NIRF) 

were feasible for multimodality imaging and targeted gene delivery. Several 
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points are worthy of noting:  Myristoylated polyarginine peptide was used as 

membrane translocation enhancer, whereas no tumor targeting moiety was 

conjugated to the nanoparticles; although the cell uptake of the conjugate was 

increased, the accumulation of conjugates in tumor tissues was mediated by the 

passive accumulation (EPR effect) only, therefore, the incorporation of a tumor 

targeting ligand probably would further increase tumor targeting ability and 

minimize the toxicity. In addition, siRNAs were conjugated to iron oxide 

nanoparticles through a stable thioether bond; although the chemical conjugation 

was shown not to affect siRNAs’ silencing efficiency significantly, the relatively 

large SPIO nanoparticle would probably have sterical hindrance, and thus affect 

siRNAs recognition to the target mRNA and its  process by RNA-induced 

silencing complex (RISC). These would compromise the silencing efficiency of 

siRNA (112). Lee et al. used similar strategy as Medarova but conjugated 

manganese-doped magnetism-engineered iron oxide (MnMEIO) nanoparticles 

with a cancer specific targeting moiety RGD peptide (specifically binds to tumor 

expressing v3 integrin) and Cy5 dye-labeled siGFP through a disulfide bond, 

which can be cleaved in the cytoplasm to release the siGFP (113). The 

constructed MnMEIO-siGFP-Cy5/PEG-RGD conjugate showed specific 

internalization by v3 integrin expressing breast cancer MDA-MB-435 cells while 

not by lung carcinoma A549 cells (deficient in v3 integrin) by both MRI and 

fluorescence confocal microscopy. The target gene silencing ability of the 

MnMEIO-siGFP-Cy5/PEG-RGD conjugate was proved by its dose dependent 

knockdown of the GFP in MDA-MB-435-GFP cells while no significant change 
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was observed in A549-GFP cells. In addition, MnMEIO-siGFP-Cy5 without 

targeting group also showed no gene silencing effect on either MDA-MB-435-

GFP or A549-GFP cells.  

SPIOs for prodrug and targeted drug delivery  

 Site specific drug release from SPIOs 

 SPIOs based prodrug strategy achieves site specific delivery of the 

chemotherapeutic drug molecules to increase local concentration in tumor 

tissues and minimize the unwanted toxicity to the normal tissues. Drug molecules 

are either entrapped in the SPIOs surface layer using physical interactions 

(electrostatic interaction or hydrophobic interaction) or chemically conjugated to 

SPIOs surface functional groups for controlled release in target cells through pH 

dependent release or enzymatic cleavage (11, 76, 79, 114, 115).  

Jain et al. developed an oleic acid (OA)-pluronic-coated iron oxide magnetic 

nanoparticles to load water-insoluble basic compound doxorubicin (DOX) (11). 

DOX molecules partitioned into the hydrophobic OA shell with an encapsulation 

efficiency of 82%. The release kinetics of DOX from nanoparticles was 

determined in vitro in PBS buffer (pH 7.4). Sustained release was observed, with 

28% cumulative drug release occurring in 2 days and about 80% cumulative drug 

release occurring in over 2 weeks. The DOX loaded nanoparticles showed 

cytotoxic effect in cancer cells. Yang et al. also used DOX as model 

chemotherapeutic agent to evaluate their SPIOs’ drug delivery ability (114). DOX 

were incorporated onto the amphiphilic block polymer coated IO nanoparticles 

with 85% loading efficiency for 5 nm IO nanoparticles and 95% loading efficiency 
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for 10 nm IO nanoparticles. ATF peptide was also conjugated to the 

nanoparticles for targeted delivery to the uPAR-expressing breast cancer cells. 

They further examined pH-dependent release of DOX from nanoparticles as the 

amine group of DOX is converted to a charged molecule at low pH, and thus 

become water soluble. Indeed, increased release of DOX was observed with 

decrease of pH in the incubation buffer. At pH 4.0, 70 to 80% of DOX was 

released after 2 hr incubation, while 20-30% was released at pH 6.0. This pH 

dependent release of DOX from nanoparticles might mimic the actual release 

mechanism in cells. After ATF-IO-DOX was taken up by cells through the ATF-

receptor mediated endocytosis, the low pH environment in the endosome (pH 

5.5-6.0) and lysosomes (pH 4.5-5.0) facilitates the release of DOX from 

nanoparticles. The ATF-IO-DOX showed favorable delivery efficiency than IO-

DOX and exhibited highest cytotoxicity against breast cancer cells, whereas free 

DOX showed marginal cell uptake and least cytotoxicity.  

 Targeted prodrug delivery 

 Hwu and his colleagues used chemical conjugation to covalently attach the 

anticancer agent paclitaxel molecules to the IO nanoparticles through a 

phosphodiester bond (prodrug) (116). The paclitaxel molecules (parent drugs) 

were expected to be released from the nanoparticles by the intracellular 

phosphodiesterase. The in vitro drug release confirmed that 91% of paclitaxel 

were hydrolyzed and released as free drugs by phosphodiesterase after 10 days 

from paclitaxel-IO (prodrug). The paclitaxel-IO showed selective cytotoxicity 
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against human cancer cells (OECM1), while it had much lower effect against 

human normal cells (HUVEC).  

Methotrexate, a folic acid analog served as both therapeutic agent and 

targeting moiety to the folate receptor overexpressing cancer cells, was 

chemically conjugated to the SPIOs via a peptide bond (117). The authors 

postulated that MTX (parent drug) would not be released from the nanoparticles-

MTX (prodrug) under intravenous conditions, while MTX would be cleaved in the 

cellular lysosomal compartment (low pH and the presence of lysozymes), and 

thus achieve cell specific delivery and decrease off-target effects. In vitro release 

kinetics showed that MTX release was in a pH-dependent manner in the 

presence of proteases, with higher release under lower pH. In addition, 

methotrexate-SPIOs exhibited specific uptake by the folate-receptor 

overexpressing breast cancer MCF-7 cells (approximately 20-folds higher than 

the primary cardiomyocyte cells with low folate-receptor expression). The 

majority of the methotrexate-SPIOs were internalized and resided in the 

lysosomes of the cells. The methotrexate-SPIOs efficacy was validated against 

MCF-7 cells and human cervical cancer cells. 

   Imaging-guided drug delivery 

   In addition, SPIOs were also applied in drug delivery and controlled drug 

release since they were able to rupture the thermal sensitive phospholipids 

outshell to release the encapsulated drugs when they were exposed to an 

exogenous magnetic field (118-120). Barbincova et al. first tested the possibility 

of this strategy for use in controlled drug release. Both DOX and SPIOs were 
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encapsulated in the liposomes. After applying the AC-magnetic field with a 

frequency of ~ 1 MHz, DOX was immediately released from the liposomes (118). 

The magnetic field induced SPIOs to generate heat for controlled drug release. 

At these frequencies, heat was produced exclusively from the Néel relaxation, 

thus, the adjacent normal tissues were not heated to minimize the side effect 

(121). Hu et al. constructed (Fe3O4/PAH)4 microcapsules with iron oxide 

nanoparticles distributed throughout the polyelectrolyte shell (120). They found 

that the FITC-dextran or DOX molecules can be released from the (Fe3O4/PAH)4 

microcapsules in the presence of a high-frequency magnetic field (HFMF, 50-100 

kHz). In the absence of HFMF, the cumulative released amount of DOX was 9%, 

whereas in the presence of HFMF, the cumulative released amount of DOX was 

increased to about 67% in 30 minutes, indicating the deterioration of the outshell 

of the (Fe3O4/PAH)4 microcapsules which resulted in the fast release. This 

approach can be adapted for imaging-guided drug delivery.  

Biodistribution, pharmacokinetics and toxicology of SPIOs 

 The biodistribution and pharmacokinetics of SPIOs depend on their size, 

charge and surface coating. Normally, nanoparticles with a small size less than 

10 nm will be quickly removed by renal clearance and extravasation, while the 

nanoparticles with large size over 200 nm are sequestered by liver and spleen by 

macrophage uptake (122). Thus the SPIOs with an intermediate size would 

favorably used since they have longer half lives and circulation time to reach the 

target site. However, larger SPIOs may also be used due to specific purpose. For 

instance, oral SPIO agents such as AMI-121 (crystal core 10 nm, hydrodynamic 
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diameter 300 nm) and OMP (crystal core 50 nm, hydrodynamic diameter 3.5 m) 

have been clinically applied for the evaluation of bowel function (34).  These 

nanoparticles are coated with nonbiodegradable and insoluble matrix (e.g., 

polystyrene) to protect them from being absorbed by GI tract hence become 

excellent contrast agents for bowel abnormalities.  

 After i.v. administration of SPIOs, nanoparticles are extensively taken up by 

macrophages in the liver (Küpffer cells), spleen and bone marrow (44). For 

instance, a pharmacokinetic study of clinically used SPIO AMI-25 with an 

average diameter of 80 nm using 59Fe radiotracer in rats showed that 59Fe-AMI-

25 was predominantly located in the liver and spleen, with 6.3 ± 0.52%ID/g and 

10.9 ± 7.56%ID/g (percentage of injected dose per gram of tissue), respectively 

at 1 hr post injection, indicating early RES macrophage uptake (123). Minimal 

amounts of 59Fe were detected in other organs including kidney, lung and brain. 

The human blood half-lives of the various clinically used SPIOs for MRI imaging 

have been determined to be from 1 hr to 36 hrs, e.g., AMI-25 has the blood half 

life of 2 hrs (44).  

 By modifying particle size, particle surface coating and charge, macrophage 

uptake of SPIOs can be controlled. In general, larger size and charged 

nanoparticles would have higher macrophage uptake relative to smaller particles 

and electrically neutral particles (124-126). SPIOs surface properties could also 

contribute to the uptake by phagocytic cells. Matuszewski et al. found that 

carboxyl dextran-coated SPIOs (of equal or even smaller sizes) exhibited higher 

uptake by macrophages than dextran-coated SPIOs (127). To minimize 
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macrophage uptake and increase circulation time, some strategies were 

proposed. For instance, MG-CoA reductase inhibitor lovastatin which 

downregulates class A types I and II macrophage scavenger receptors was used 

to decrease macrophage uptake; and decoy particles Ni-liposome were used to 

eliminate plasma opsonins (15, 128, 129).  

      Although gadolinium agents have been associated with toxicity (such as 

nephrogenic systemic fibrosis (NSF) in renally impaired patients), clinically used 

SPIOs as MRI contrast agents exhibited high biocompatibility and low toxicity 

(130). SPIOs were generally metabolized in lysosomal compartment in 

macrophage and endothelial cells, and the resulting iron molecules were 

incorporated into hemoglobin as body iron supplements (30, 123, 131). Therefore, 

the administration of SPIOs was shown to reverse iron deficiency anemia. Singh 

et al. demonstrated Ferumoxytol, a carbohydrate-coated SPIOs, was well 

tolerated and had a safety profile comparable to placebo in anemic patients with 

chronic kidney disease (CKD) (132).                

     Macrophage plays an important role in the immune system acting in both 

innate immunity and adaptive immunity. Upon phagocytose pathogens, 

macrophage would release a variety of substances including enzymes, 

complement proteins, growth factors and cytokines, such as interleukin-1, to 

initiate immune response or develop inflammation. Titania particles have been 

shown to induce IL-1 production from macrophage, while uptake of SPIOs by 

macrophages elicited minimal IL-1 secretion indicating a low pro-inflammatory 

potential of SPIOs (124).  In addition, Medarova et al. showed that the 
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administration of SPIO conjugated siRNAs exhibited no immunostimulatory 

properties with comparable levels of interferon (IFN)- and inflammatory cytokine 

IL–6 to control groups, whereas immunogenicity for in vivo delivery of siRNAs 

was still a challenge (13). Iron oxide nanoparticles also did not provoke 

inflammatory response in human aortic endothelial cells (HAECs). In contrast, 

yttrium oxide (Y2O3) and zinc oxide (ZnO) nanoparticles induced inflammatory 

response characterized by the secretion of inflammatory markers intra-cellular 

cell adhesion molecule-1, IL-8, and monocyte chemotactic protein-1 (133). 

      Although SPIOs exhibited high biocompatibility, more studies might be 

warranted to ensure the safe use of SPIOs based on the following reasons: (1) 

reactive oxygen species (ROS) generation: SPIOs were shown to induce reactive 

oxygen species (ROS) to increase the cell membrane permeability, which 

probably contribute to their internalization by cells (134). In vivo study 

demonstrated that lipid hydroperoxide (LHPO, as a measure of oxidative stress) 

level was increased in liver, spleen and kidney after SPIOs administration, and 

then gradually back to normal (135). There were no significant changes in other 

organs such as lung, brain and heart. Further histological analysis of the liver, 

spleen and kidney showed no significant change in the cellular structure. (2) 

neurotoxicity:  PC12 cells exhibited diminished viability and capacity to 

differentiate in response to nerve growth factor when exposed to 

dimercaptosuccinic acid (DMSA) coated iron oxide nanoparticles (136). (3) 

toxicity profile of surface modification: Cationic surface coating exhibited more 

toxicity than uncoated nanoparticles and anionic coated nanoparticles (137). 
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Dextran coated magnetite inhibited cell proliferation similar to uncoated 

magnetite, whereas albumin coated magnetite even stimulated cell proliferation 

(138). Overall, the toxicity of specific SPIOs still needs to be tested for their 

various compositions and physical chemical properties.  

Other inorganic nanoparticle  

      Besides iron oxide nanoparticles, other inorganic nanoparticles have been 

used for the purpose of imaging, gene delivery and drug delivery, which include 

quantum dot (112, 139), silica (110, 140), silver (141), and gold (142-145).  

      Quantum dot, semiconductor nanocrystals with exceptional photostability, is 

extensively used in imaging both in vitro and in vivo animal model. A typical 

quantum dot fluorophore is made of CdSe cores coated with a layer of ZnS. 

Quantum dots exhibit size tunable fluorescent emission capacity and have broad 

excitation spectra which distinguished them from organic dyes (146). Quantum 

dots have also been used in gene delivery (112). However, quantum dots 

suffered from high toxicity, which might limit their future applications (147).  

  Gold nanoparticles, based on their specific geometries, can be further divided 

into gold nanospheres, gold nonobelts, gold nanocages, gold nanoprisms, gold 

nanostars, and gold nanorods (145). Gold nanoparticles showed distinct optical 

properties due to the excitation of local surface plasmon resonances (LSPRs). 

The fluorescent properties of gold nanoparticles have been applied to label DNA 

strands to investigate the complementary DNA hybridization events as the 

fluorescent spectra intensity would be sharply decreased when the oligos 

hybridize, which leads to the aggregates of DNA linked gold nanoparticles (148). 
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Furthermore, gold nanoparticles can also act as fluorescence or Raman 

spectrum enhancer. It was shown that adsorbed molecules on gold surface 

enhanced fluorescence or surface Raman scattering (149, 150). The intrinsic 

Raman enhancement factors can be as high as 1014 to 1015, which makes single 

molecule detection possible (151). Gold nanoparticles have also been implicated 

in tumor imaging (152), gene delivery (143) and drug delivery (153, 154). Similar 

to SPIOs, gold nanoparticles can be used in cancer hyperthermal therapy (155). 

The antiangiogenic role of gold nanoparticles, mediated by the inhibition of 

vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) –165 

and basic fibroblast growth factor (bFGF), has also been recognized for their 

potential use in angiogenesis inhibition (156). The radiotherapy enhancement 

was achieved by the administration of gold nanoparticles through the mechanism 

of high-Z radioenhancement (144). Gold nanoparticle and SPIOs were found to 

degrade the MDR1 level in Pgp overexpressing K562/A02 cells when combining 

with anticancer drug daunorubicin (DN), and thus increased the cellular 

accumulation of DNR and increased cancer cell death (157). Gold nanoparticles 

might also be a potential X-ray or CT contrast agent (158). The easy preparation, 

surface modification and low toxicity of gold nanoparticles make them as 

potential candidates for tumor imaging, therapy, gene delivery, and drug delivery.   
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