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CHAPTER I

A Model of Recommended Retail Prices

1.1 Introduction

Manufacturers routinely use non-binding recommended retail prices in markets ranging from com-

mon household goods found at the grocery store to big ticket items such as electronics, appliances,

and cars. These recommendations come in a variety of forms (list prices, manufacturer suggested

retail prices (MSRPs), sticker prices, etc.) and are made visible to consumers whether they shop

at a brick and mortar retailer or online. There is consensus that price recommendations are closely

linked to real market outcomes. This relationship has both been shown empirically (e.g. Faber and

Janssen (2008)) and also implicitly assumed in the myriad studies that use recommendations as

a proxy for transaction prices (e.g. Berry, Levinsohn, and Pakes (1995)). There is also anecdotal

evidence that recommendations can directly affect the decisions of market participants. For exam-

ple, when buying a new car consumers know not to accept a price at or above MSRP and strategic

dealers seem to take this into account as they set prices.1 However, despite the evidence that price

recommendations effect behavior, our understanding of how they do so is quite limited. In part

due to the fact that price recommendations are non-binding, the mechanism by which they have

an impact and the motives of the manufacturer in making these recommendations are still not well

understood.

In practice, most products tend to sell at or below their recommended price, hence a common

explanation is that recommendations act as price ceilings. This story is compelling because how

a manufacturer benefits from a price ceiling is well understood. Retailers with market power im-

pose additional markups which hurt the manufacturer’s sales and the manufacturer can resolve this

problem with a price ceiling (Mathewson and Winter (1984) ). Yet such an explanation of recom-

1While the majority of vehicles sell for prices strictly below MSRP there have been a few notable exceptions such
as the Toyota Prius.

1
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mendations is incomplete. Since price recommendations are non-binding, at least in name, it is not

clear why a manufacturer would make a recommendation instead of just imposing a price ceiling

directly. In addition, manufacturers often go to great lengths to publicize their recommendations

through advertising or by printing them on product packaging. An explanation of recommendations

as explicit price ceilings ignores the potential role played by consumers.

This paper provides an alternative explanation in which price recommendations directly affect

consumers’ search behavior. Rather than explicitly restraining retailers, price recommendations

provide consumers with information. Consumers are uncertain about aggregate market conditions

and when they engage in costly sequential price discovery, they do not know the distribution of

retail prices. Consequently, when a consumer observes a particular price, she does not know if it

represents a “good deal” or whether she should keep searching. With a price recommendation the

manufacturer reveals this information and helps consumers decide between purchasing or contin-

uing to search. Retailers anticipate consumers’ reactions to the recommendation and adjust their

prices accordingly. By this mechanism, non-binding price recommendations directed at consumers

have a real impact on consumer and retailer behavior, and thus on market outcomes.

Price recommendations help consumers avoid the costs of learning about market conditions. But

what incentive does the manufacturer have to provide this information? I show that by informing

consumers and affecting search, the manufacturer faces a classic price-quantity tradeoff. In the main

model consumers have either a high or a low valuation for the manufacturer’s product. When a

price recommendation induces consumers to reject high prices, the manufacturer restricts his ability

to set a high wholesale price and cannot extract as much surplus from high valuation consumers.

At the same time, when consumers reject high prices retailers are forced to reduce their markups

and this increases sales to consumers with low valuations. Hence inducing more search trades off

serving more low valuation consumers for extracting surplus from high valuation consumers, and

which of these two effects is more important for the manufacturer depends on market conditions.

Since the manufacturer has a vested interest in how much search is undertaken, there is an issue

of credibility. If the manufacturer has incentive to mislead consumers, consumers would rationally

ignore recommendations and then no information can be transmitted. Furthermore, assuming this

issue away by imposing an exogenous penalty for lying may be unrealistic. For example consider a
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book cover with one of two possible statements: “best seller” or “MSRP $19.99”. Assuming that

the first statement must be truthful is reasonable since whether a book is a best seller is easily

verified. But the price recommendation is not a falsifiable statement; it is not immediately obvious

how a manufacturer can be accused of recommending a “false” price. In a main result, I show that

credibility often does not have to be assumed and that the manufacturer can communicate market

conditions to consumers using cheap talk.

The cheap talk result stems from the fact that the manufacturer’s and consumers’ interests can

be aligned. In the main model, there is uncertainty about aggregate demand, modeled as the

proportion of consumers with a high valuation. The manufacturer and retailers observe aggregate

demand but consumers do not. Recalling the manufacturer’s tradeoff to inducing search, he prefers

less search in states when consumers are predominantly high types and more search in states when

consumers are predominantly low types. For their part, consumers expect retailers to charge high

prices when aggregate demand is high and low prices when aggregate demand is low and accordingly

prefer to search more in the low demand state and search less in the high demand state. Since the

two parties agree on whether more or less search is desirable in either state, by the logic in Crawford

and Sobel (1982) the manufacturer can credibly convey information to consumers and the cheap

talk result goes through.

To address how one should consider price recommendations from an antitrust perspective I present

two policy experiments. First, I examine a ban on recommendations and find that in situations

in which aggregate demand is sufficiently uncertain, the ban can reduce welfare and in particular

the surplus of the manufacturer and consumers. I show that in equilibrium only consumers with

high valuations engage in search, and the welfare result hinges on this observation. High valuation

consumers, by virtue of having learned their type, believe it is more likely that aggregate demand

is also high and hence they are on average overly pessimistic about the distribution of prices. As

the amount of uncertainty about aggregate demand is increased, high demand consumers become

more pessimistic and eventually no search can be supported. This results in a loss of sales to con-

sumers with low demand due to higher downstream prices and a loss of sales to consumers with

high demand that may exit the market prior to observing a price they would accept.

Given that price recommendations tend to look like price ceilings in practice, and that even in
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the context of the model presented here every recommendation maps to some upper bound on

prices, a natural question is whether recommendations are just a substitute for price ceilings. I

contend that this is actually not the case and that there is a distinction to be drawn between

information and control. While a price ceiling gives the manufacturer power to directly influence

retail prices, it does not allow the manufacturer to directly influence consumers’ search behavior. I

present an informal argument suggesting that there are outcomes that the manufacturer can achieve

with recommendations that are not available with price ceilings alone.

While there is an extensive theoretical and empirical literature that deals with vertical relation-

ships, an explicit treatment of the role of price recommendations has been largely lacking. Price

recommendations have long been lumped in as an instrument of resale price maintenance with

the mechanism behind them left unexplored. Recently though, the question of what impact rec-

ommended retail prices can have given that they are non-binding has been posed in two papers.

Buhler and Gartner (2009) propose a repeated setting where the recommendation guides a retailer

about which price to set under threat of future punishment. A different approach is taken by Puppe

and Rosenkranz (2006), in which the price recommendation directly enters loss-averse consumers’

utility functions as the reference point. My model provides a different mechanism from both of

these papers. I depart from Buhler and Gartner by modeling recommendations as messages to

consumers and in doing so argue that recommendations are more than vertical restraints. In addi-

tion, unlike Puppe and Rosenkranz, I provide an explanation where the role of recommendations

is not to change consumer preferences but rather to provide information. That recommendations

affect consumers’ behavior is not assumed but instead emerges in equilibrium, and the effect that

recommendations have is not fixed by the model but rather is determined by market conditions.

Although I focus on price recommendations in vertical markets, there is a literature on the role of

non-binding list prices in markets where producers sell directly. An example is residential housing,

in which studies such as Horowitz (1992) have empirically demonstrated the relationship between

list and transaction prices. Still, the theoretical foundations for why this relationship should exist

have been largely lacking. For instance, while Horowitz conjectures that list prices help inform

consumers of a seller’s reservation price, he does not show that such information can be credibly

communicated in an equilibrium. By contrast, theoretical models of list prices in this setting rely

on them being more than just information. For example, Gill and Thanassoulis (2010) explicitly
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characterize the effect of list prices on industry competition, but in doing so assume that list prices

act as binding price ceilings. I propose a mechanism by which price communications are truly

non-binding, and yet have a real impact by providing consumers with information that affects their

search. While a vertical structure plays an important role in my results, this approach of modeling

list prices as cheap talk can potentially help us understand their role in the housing and other

related markets.

Lastly, this paper provides a modest methodological contribution to the literature on price search

with aggregate uncertainty. Models in this literature either have sequential search but only two

firms (Benabou and Gertner (1993)) or a larger number of firms and non-sequential search (Yang

and Ye (2008)). The issue is tractability: sequential search with many firms potentially allows for

equilibria where consumers follow non-stationary strategies. I provide a model in which search is

sequential and there is a continuum of potential sellers, yet search strategies are stationary because

information is communicated credibly using cheap talk. Hence, I show that in principle sequential

search among a large number of sellers can be modeled tractably.

The rest of this paper proceeds with Section 2 which presents the model. Section 3 characterizes

the full information equilibrium, followed by Section 4 which shows the result that cheap signaling

can credibly convey information. Sections 5 and 6 discuss the two policy experiments: a ban on

cheap communication and an introduction of price ceilings, respectively. Section 7 then concludes.

1.2 The Model

On the demand side there is a continuum of consumers with measure one. Each consumer demands

a single unit of a good. Consumers draw their valuation for the good from a distribution in which

with probability ϕ they draw the high value of 1 and with probability 1−ϕ they draw the low value

v < 1. The parameter ϕ is uncertain and has two equally likely realizations ϕL and ϕH . Consumers

learn only their own valuation and not the realization of ϕ.

The supply side consists of a monopolist manufacturer and a continuum of retailers with mea-

sure one. The manufacturer has zero production costs and is restricted to setting a uniform linear

wholesale price w for all retailers. Each retailer has constant marginal costs made up of two com-

ponents: the common wholesale price w and an idiosyncratic cost c. Retailers independently draw
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c from a continuous and differentiable distribution F (·) with support on [0, 1].

The game proceeds as follows. First, nature selects ϕ and the realization is observed by the man-

ufacturer and retailers but not by the consumers. The manufacturer then chooses wholesale price

w and signal σ ∈ {σL, σH}2. Next, retailers, having observed ϕ, w, σ and their own cost c, simul-

taneously set prices. These prices are then fixed for the rest of the game. Next, each consumer

learns her own valuation and observes the manufacturer’s signal σ and a price p from a randomly

selected retailer. The consumer can purchase the good at price p and exit the market, exit the

market without purchasing, or search. If she chooses to search, the consumer pays a search cost s,

observes another price at a randomly selected retailer,3 and at this point has the option to purchase

the good at any of the prices she has seen so far, exit without purchasing, or search again. This

process continues until every consumer has exited. There is no time discounting.

Time

ϕ realized,

observed by

Manufacturer

and Retailers

Manufacturer

sets

w(ϕ), σ(ϕ)

Retailers set

p(c|w, σ, ϕ)

Consumers

search

Figure 1.1: Model Timing

Strategies are w(ϕ), σ(ϕ) for the manufacturer and p(c|w, σ, ϕ) for retailers. Define ~P as the set of

all possible price histories, so that

~P ≡ {~p = {pi}i=1,...,n | n ∈ I, pi ∈ R+}

Conditional on her valuation θ ∈ {v, 1}, a consumer has strategy A(σ, ~p|θ) and beliefs µ(σ, ~p|θ)

where

A : {σL, σH} × ~P× {v, 1} → {exit, purchase, search}

µ : {σL, σH} × ~P× {v, 1} → [0, 1]

2This restriction on the signal space is without loss of generality given that there are two states of nature.
3Specifically, I assume that when consumers search they draw every retailer with equal chance.
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I use the Perfect Bayesian Equilibrium solution concept, where all strategies are mutual best re-

sponses and beliefs are formed using Bayes rule whenever possible.

1.2.1 Model Discussion

I introduce downstream retailer heterogeneity to induce price dispersion as in Reinganum (1979).

On the consumer side, I depart from Reinganum’s setting by having heterogenous consumers with

unit demand.4 The choice of unit demand is motivated in part by the fact that many of the goods

that come with price recommendations (cars, electronics, books, etc.) are purchased one at a time

as opposed to in continuous quantities. Unit demand also improves tractability while still delivering

important qualitative features like downstream price dispersion and search.

The key to ensuring that the manufacturer’s signals have content is to endow the manufacturer

with information that consumers do not have. I have chosen aggregate demand as the source of

uncertainty to reflect the fact that in many markets consumers expect prices to depend on how

popular a product may be, and that sellers are more aware of this information than consumers

through marketing research or other such means. In principle uncertainty can come from other

sources, for instance manufacturer costs. In the conclusion, I will argue that in this scenario there

is good reason to believe that the manufacturer can still inform consumers with cheap talk.

As a final note, I find that in equilibrium some retailers do not makes sales due to their high

costs and the number of these retailers matters for real market outcomes. I restrict the support of

retailer costs to [0, 1] in order to include only retailers that can have positive gains from trade.

In the ensuing analysis, I look for an equilibrium in which price recommendations reveal the state

via cheap talk. I solve for this equilibrium in two steps. In Section 1.3, I solve an auxiliary model in

which there is complete information about aggregate demand ϕ. I then use this solution in Section

1.4 to help characterize an equilibrium of the main model where the manufacturer’s signal perfectly

reveals the state to consumers.

4Reinganum’s model has homogeneous consumers with continuous demand. In either case, the key to generating
price dispersion is that every retailer has different costs and faces an elastic demand function.
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1.3 Equilibrium in a Full Information Setting

In this section I solve the model above but as if aggregate demand ϕ is common knowledge. The

model is solved backwards by first characterizing the downstream equilibrium between consumers

and retailers for some fixed wholesale price w and then use this solution to characterize the manu-

facturer’s optimal choice of w.

1.3.1 Downstream Equilibrium

I show that any downstream equilibrium must be of the following form:

• low valuation consumers never search and either buy immediately or quit,

• high valuation consumers use a threshold search strategy p̄, and

• retailers makes sales at one of two prices: either v or p̄.

To start, in equilibrium consumers know the distribution of prices from which they sample and

by a standard result in McCall (1970) they optimally follow stationary threshold strategies. Every

consumer has search cost s and one implication of this is that given an equilibrium distribution of

prices, if the lowest price charged is p, no consumer will reject any price p ∈ [p, p + s) unless it is

bigger than her valuation.

Next, in any equilibrium the lowest price charged, p, cannot be smaller than v. Toward a con-

tradiction, imagine an equilibrium where p < v. In such an equilibrium no consumer would reject

a price p ∈ [p , min{p+ s, v}). This implies that the retailer charging p is not maximizing profits:

he can increase his price slightly and not lose any sales. Hence, no equilibrium can be supported

where a price below v is charged.5

In turn, this implies that low valuation consumers will not collect surplus in any equilibrium and

consequently never find it optimal to search after their first price observation (which is free). Thus

in any equilibrium low valuation consumers either purchase at the first price if it is v or they exit.6

5This argument is adapted for this setting from its original version in Diamond (1971).
6Low valuation consumers are actually indifferent between buying at price v or exiting. However, for a technical

reason no equilibrium can be supported when low valuation consumers reject v with positive probability. Given v

is the low types’ threshold, if they reject v with probability ε > 0, there always exists a δ > 0 small enough where
a retailer can charge v − δ, gain the ε in sales, and make higher profits. A retailer’s best response is to choose the
highest price from the set of prices strictly smaller than v, but since this is an open set no such price exists. So by
a closure problem an equilibrium cannot be supported for any ε > 0. By the same logic, high valuation consumers
must accept with probability 1 at their threshold as well.
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High valuation consumers may have incentive to search. Let p̄ be their threshold and since no price

is ever charged below v, it must be that p̄ ≥ v + s.

Now consider the prices set by retailers. Retailers potentially face three kinds of consumers: new

low valuation consumers, new high valuation consumers, and high valuation consumers that have

already seen some prices but continued to search. Retailers face a step demand function: they can

set a price p ≤ v and serve all the consumers that visit them or they can set a price p ∈ (v, p̄] and

serve only the high types. A price p > p̄ would result in no sales. Letting ϕκ be the number of high

type searchers that visit any particular retailer, with κ later defined, the retailer’s demand function

is

q(p) =







1 + ϕκ if p ≤ v

ϕ+ ϕκ if v < p ≤ p̄

0 if p > p̄

and is illustrated in Figure 1.2.

p

p̄

v

ϕ+ ϕκ 1 + ϕκ
q

c̄+ w

Figure 1.2: Retailer demand

Retailers choose price p to maximize their profit, given by

π(p|c) = (p− c− w)q(p)
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Any retailer with a cost c > p̄ − w is priced out of the market. For the purpose of exposition, I

assume that all priced out retailers charge a price p = ∞.7 Retailers that can afford to participate

then charge either v or p̄ depending on their cost. Define c̄ as the cost at which a retailer is

indifferent between these two prices:

π(v|c̄) = π(p̄|c̄) ⇔ c̄ = v − w −
ϕ

1− ϕ
(p̄− v)(1 + κ) (1.1)

If the c̄ that solves equation (1.1) is negative, it must be that all retailers prefer to charge the higher

price p̄. Figure 1.3 illustrates an equilibrium distribution of prices when c̄ > 0.

c

p

∞

p̄

v

c̄ p̄− w 1

Figure 1.3: Downstream prices

To this point the structure of the equilibrium has been established: consumers follow a thresh-

old strategy that depends on their valuations and retailers follow a threshold strategy that depends

on their cost. The low types’ threshold has already been shown to be their valuation v, now it

remains to solve for thresholds p̄ and c̄.

Let V (p) be the high type’s value function given that p is the lowest price she has seen. By

definition,

V (p) = max{0, 1− p, V s(p)} (1.2)

where the consumer’s options are to exit, accept p, or continue to search and receive continuation

value V s(p) ≡ E[V (p′)|p] − s. Given the distribution of equilibrium prices summarized by c̄, in

7In any equilibrium in the full information setting where the highest accepted price is p̄, the set of prices set by
priced out retailers does not affect any equilibrium outcomes.
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equilibrium the high type’s threshold must satisfy

1− p̄ = max
{

0, V s(p̄)
}

= max
{

0, F (c̄)(1− v) + (1 − F (c̄))(1 − p̄)− s
}

(1.3)

The left hand side is the value to accepting p̄ and the right hand side gives the maximum of either

the value of exiting or the continuation value of searching. When continuing to search, a consumer

will pay cost s and observe price v with probability F (c̄) or a price at least as high as p̄ with

probability 1−F (c̄). If v is observed, the consumer will accept it and obtain payoff 1− v. If a price

of p̄ or higher is observed the continuation payoff to the consumer is 1 − p̄ since she is indifferent

to accepting p̄ at that point. When p̄ < 1 solves the equation above, the expression simplifies to

(p̄− v)F (c̄) = s (1.4)

This gives a natural interpretation for the threshold, with the left hand side being the expected

benefit from another observation and the right hand side being the expected cost.

With p̄ defined, it is also necessary to specify a high type’s behavior when she observes a price

above p̄. Since search is costly, she may find it optimal to either continue to search or exit depend-

ing on the distribution of prices. Having observed only prices above p̄, a consumer’s continuation

value to searching is

V s(p ≥ p̄) = F (c̄)(1 − v) +
(

F (p̄− w)− F (c̄)
)

(1 − p̄)

+
(

1− F (p̄− w)
)

max
{

0, V s(p ≥ p̄)
}

− s (1.5)

That is, a consumer can either observe and accept a price of v or p̄ or observe a higher price and have

the option to search or exit.8 Let α be the probability with which a consumer searches conditional

on rejecting. When p̄ < 1 solves equation (1.3), the continuation value to searching must be strictly

positive, hence α = 1. When p̄ = 1, that is when high type consumers accept any price at or below

their valuation, the continuation value to searching is either exactly zero or strictly negative (see

8Note that implicit in equation (1.5) is the fact V s(p ≥ p̄) is constant in p. This is a standard result, stemming
from the fact that having access to a price one will never accept in the future provides the same continuation value
regardless of what that price actually is.
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equation (1.2)). In this case equation (1.5) simplifies to

V s(p ≥ p̄ = 1) = F (c̄)(1− v)− s

If F (c̄)(1 − v) − s < 0 exiting is strictly preferred to searching so α = 0. If F (c̄)(1 − v) − s = 0,

then any α ∈ [0, 1] is optimal for the consumer. To summarize, α must satisfy

α =







1 if p̄ < 1

0 if p̄ = 1, F (c̄)(1 − v)− s < 0

(1.6)

Lastly, the equilibrium must specify the number of searchers ϕ · κ received by each retailer. The

probability that a high type consumer rejects her first price but eventually purchases is given by

Pr(search and buy) = F (p̄− w)

∞∑

i=1

(

α(1− F (p̄− w))
)i

= F (p̄− w)
α(1− F (p̄− w)

1 − α(1 − F (p̄− w)

Since consumers are equally likely to visit every retailer on any draw, in equilibrium all participating

retailers serve the same number of searchers. Hence,

κ =
Pr(search and buy)

F (p̄− w)
=

α(1− F (p̄− w)

1− α(1 − F (p̄− w)
(1.7)

Note than when α = 1 and high types continue to search until they buy, this expression reduces to

κ = (1−F (p̄−w))/F (p̄−w), that is the ratio of the number of retailers that induce searchers and

the number that receive searchers. When α = 0, κ = 0 since high types either purchase at the first

retailer or exit. The retailer’s threshold can now be directly expressed as a function of high types’

strategy p̄ and α and is given by

c̄ = v − w −
ϕ

1− ϕ

p̄− v

1− α(1 − F (p̄− w))
(1.8)

With consumer behavior described by equations (1.3) and (1.6) and retailers’ prices described by

equation (1.8), the following proposition summarizes the structure of the downstream equilibrium.

Proposition I.1. Under full information, any downstream equilibrium is characterized by thresh-

olds p̄ and c̄, and probability α that satisfy equations (1.3), (1.6), and (1.8) with strategies as

follows:

• low valuation consumers accept any p ≤ v, else they exit
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• high valuation consumers accept any p ≤ p̄, else they search with probability α and exit with

probability 1− α

• retailers set prices according to

p(c) =







v c ∈ [0, c̄]

p̄ c ∈ (c̄, p̄− w]

∞ c ∈ (p̄− w, 1]

Furthermore, a downstream equilibrium always exists.

That any equilibrium must be characterized in this way follows from the line of argument presented

in preceding text. Existence can be proven by showing that equations (1.3) and (1.8) must intersect

and the formal proof can be found in Appendix A.

Lastly, note that while the equilibrium must be of the form described in Proposition I.1, there

may still be multiple equilibria. This is due to the complementarity between c̄ and p̄. A higher

search threshold can lead to fewer retailers charging v which can then justify the increased search

threshold. For clarity of exposition I restrict attention to the downstream equilibrium with the

lowest prices.

1.3.2 Upstream Decision

With downstream behavior characterized, I now solve for the manufacturer’s optimal wholesale

price. It is important here to recall the information structure, in particular that while retailers

observe and react to the wholesale price w, consumers only observe retail prices. Hence, the man-

ufacturer knows that although changing the wholesale price affects the prices set by retailers (as

summarized by c̄), it would not affect the search threshold p̄ or search probability α of the high

valuation consumers.
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The demand function faced by a manufacturer is given by

Q(w) = (1− ϕ)F (c̄(w))
︸ ︷︷ ︸

+ ϕF (p̄− w)(1 + κ(w))
︸ ︷︷ ︸

sales to low types sales to high types

= (1− ϕ)F (c̄(w)) + ϕ
F (p̄− w)

1− α(1 − F (p̄− w))
(1.9)

The first term is the total sales to low types and this object decreases in w. Note from equation

(1.8) that

∂c̄

∂w
= −1−

ϕ

1− ϕ
(p̄− v)

αf(p̄− w)

1− α(1 − F (p̄− w))
< 0

That fewer retailers serve low types at a higher wholesale price is a consequence of two effects: a

higher wholesale price reduces markups and also increases the number of searchers by excluding

more retailers. Both effects make charging the higher p̄ relatively more attractive. This can be

thought of as the double marginalization effect, which in the vertical markets literature refers to

the idea that retailers use their market power to charge markups above their costs. In this setting,

a retailer’s market power derives from the search friction and the decision to switch to charging p̄

rather than v reflects the use of this power.

The second term in the demand function is the total sales to high types. Here the probability

α that high types continue to search plays an important role. When α = 1, the manufacturer’s

demand reduces to

Q(w|α = 1) = (1 − ϕ)F (c̄(w)) + ϕ · I(w < p̄) (1.10)

Recall that consumers do not observe the wholesale price. Rather, their only information comes

from the prices they observe when searching. Given an equilibrium in which α = 1, high type

consumers never exit and continue to search until they see a price below their threshold p̄. A man-

ufacturer can take advantage of this behavior by increasing his wholesale price to a point at which

very few retailers remain in the market. In this situation high type consumers would eventually

purchase, but only after searching for a long time. Consumers cannot, from the length of their

search, infer that the manufacturer has increased his wholesale price, instead they interpret a long
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sequence of very high prices as bad luck.

Figure 1.4 illustrates a downstream demand function Q(w|α = 1, p̄), assuming that when w = 0

some retailers sell to low types. The figure is meant only to show manufacturer incentives con-

ditional on the strategy (α = 1, p̄) of high type consumers; it has not yet been shown that it

represents an equilibrium.

Q

ϕ

ŵ p̄
w

Figure 1.4: Downstream demand when α = 1

The downward sloping part of the demand curve corresponds to wholesale prices that induce sales

to both high and low type consumers. From equation (1.10), as the wholesale price w increases,

sales to low types fall because ∂c̄
∂w

< 0, and sales to high types remain unchanged. The demand

curve kinks at the wholesale price ŵ where c̄(ŵ) = 0.9 For higher wholesale prices, all high types

continue to be served and thus the demand curve is flat. Once w > p̄, no retailers can afford to

serve the high types and the manufacturer induces no sales. Note also that as Figure 1.4 is drawn,

ϕ is relatively small and consequently the optimal w falls in the region in which both high and low

types are served. That this is actually true in equilibrium will proven later in this section.

Next consider the manufacturer’s decision when high types do not always search, i.e. α < 1.

Then demand is given by

Q(w|α < 1) = (1− ϕ)F (c̄(w)) + ϕ
F (p̄− w)

1− α(1 − F (p̄− w))
(1.11)

In this case not all high type consumers are served. Every time consumers visit a retailer that is

priced out they exit the market with chance 1− α. For example, when α = 0 the manufacturer is

9By equation (1.1) for any p̄ there exists a w at which c̄ = 0.
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only able to sell to high types with probability F (p̄ − w). Figure 1.5 shows an example of such a

demand function, Q(w|α = 0, p̄ = 1), with a uniform distribution of retailer costs F . Again, the

same caveat as in Figure 1.4 applies in that the consumer behavior is taken as given and not shown

to be an equilibrium behavior.

Q

ϕ

ŵ p̄
w

Figure 1.5: Downstream demand when α = 0

There is still a kink in the demand curve at the wholesale price ŵ at which c̄(ŵ) = 0 and low types

are no longer served. However, beyond this point increasing the wholesale price continues to result

in a loss of sales. Again, as Figure 1.5 is drawn, the number of high types ϕ is sufficiently large so

that the optimal wholesale price falls in the region in which only high types are served.

It is important for the later cheap talk result that in fact Figures 1.4 and 1.5 do depict equi-

librium objects. That is, when demand ϕ is small enough the manufacturer serves all types in

equilibrium and induces search while when demand is large enough the manufacturer serves only

high types in equilibrium. This proposition is stated below with the proof relegated to Appendix

B.

Proposition I.2. The full information equilibrium is characterized by Proposition I.1 and wholesale

price w = argmax w · Q(w), as given by equation (1.9). Furthermore, when aggregate demand ϕ

and search cost s are sufficiently small, low types are served in equilibrium and high types search

until they purchase. When ϕ is sufficiently large no search is induced and low types are excluded.

1.4 Cheap Signaling

Having solved the full information model, that analysis can now be used to help characterize the

equilibrium with cheap communication. I look for an equilibrium in which consumers learn the



17

aggregate demand ϕ immediately upon observing the recommendation σ at the first retailer that

they visit. In such an equilibrium, consumers act as if they are fully informed. But for this to

be an equilibrium, when given the opportunity the manufacturer cannot have incentive to mislead

consumers. That is, given that the manufacturer can induce consumers to search as if it were the

high state or as if it were the low state, it needs to be verified that he will choose to signal truthfully

in both states. Changing consumers’ search behavior through the cheap signal amounts to a shift

of the demand function faced by the manufacturer, hence showing that truthful signaling is opti-

mal requires showing that the payoff the manufacturer obtains in the full information equilibrium

is higher than the payoff he would obtain for any wholesale price were he to send a false signal.

Cheap signaling is not always credible, instead the aim is to show that cheap signaling is possible

and to highlight the conditions under which cheap signaling can arise.

First, having switched back to a game of incomplete information it is now necessary to specify

consumers’ beliefs. A high type consumer’s belief that aggregate demand is high, µ(σ, ~p), depends

on the manufacturer’s signal σ and the set of prices she has observed thus far ~p. In an equilibrium in

which signals reveal the state, beliefs must be consistent with equilibrium play so that µ(σH , ~p) = 1

and µ(σL, ~p) = 0 for all price vectors ~p on the equilibrium path.10 However, off the equilibrium path

beliefs are unrestricted and this can lead to consumers pursuing a non-stationary search strategy.11

To address this, I restrict attention to equilibria in which a consumer’s beliefs are µ(σH , · ) = 1

and µ(σL, · ) = 0. This implies that when a consumer sees a price and signal combination that are

inconsistent, she trusts the manufacturer’s signal.

Given this restriction on beliefs, consumers act as if they are fully informed about the state. Retail-

ers anticipate consumers’ behavior as a function of recommendation σ, and since retailers expect

consumers to still follow threshold strategies, they still set retail prices according to equation (1.8).

I now consider the manufacturer’s incentives for revealing truthfully.

Let (p̄L, αL) and (p̄H , αH) be the search strategies employed by consumers in the full informa-

tion equilibrium in the low and high demand state, respectively. I focus on parameters such that

10Formally, given an equilibrium price distribution G(p), any price p is on the equilibrium path if

limε→0
G(p+ε)−G(p−ε)

2ε
> 0.

11As an example suppose the manufacturer sends signal σL and consider a price path ~p = {p1, p2} in which
price p1 is on the equilibrium path but p2 is not. Since off the equilibrium path beliefs are unrestricted, suppose
µ(σL, {p1, p2}) = 1. Then the consumer would be using one threshold strategy p̄L after observing p1 and a different
threshold strategy p̄H after observing {p1, p2}.
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under full information, search is induced in the low demand state (αL = 1, p̄L < 1) but not in the

high demand state (αH = 0, p̄H = 1). By Lemmas I.6 and I.7, this requires that ϕL and s are

sufficiently small and ϕH is sufficiently large. To prove the existence of a cheap talk equilibrium, I

verify that conditional on being in the high demand state, the manufacturer is better off inducing

(p̄H , αH) than (p̄L, αL) and vice versa in the low demand state. In doing this, it is important to

remember that retailers are aware of the true state. While in equilibrium consumers’ beliefs and

hence their search behavior change in response to the manufacturer’s signal, retailers know the

true state and respond to the signal only in anticipation of the consumers’ actions. That is, the

threshold retailer c̄(w,ϕ, p̄(σ), α(σ)) depends on the wholesale price w, the true state ϕ, and the

anticipated consumer behavior p̄(σ) and α(σ).

First, suppose that aggregate demand is high. By sending signal σH and revealing the high state,

the manufacturer earns a profit

Π∗(σH |ϕH) = max
w

w ·Q(w, σH |ϕH)

= max
w

w
(

(1− ϕH)F (c̄(w,ϕH , 1, 0)) + ϕH · F (1− w)
)

The downstream demand is given by equation (1.11), and by assumption αH = 0 and p̄H = 1. That

is, by signaling the high demand state the manufacturer induces consumers to either accept their

first observed price or exit. If the manufacturer were instead to send the false signal σL, he would

induce p̄L < 1 and αL = 1 and obtain a profit

Π∗(σL|ϕH) = max
w

w ·Q(w, σL|ϕH)

= max
w

w
(

(1− ϕH)F (c̄(w,ϕH , p̄L, 1)) + ϕH · I(w ≤ p̄L)
)

The above demand function follows from equation (1.10). When sending his signal, the manufac-

turer thus induces one of two demand functions, as depicted in Figure 6, in which retailers’ costs

are distributed uniformly.

When the manufacturer signals the high state with σH , he faces the same demand as in Figure 1.5

in the full information equilibrium. If the manufacturer falsely signals the low state, he induces

the lower search threshold p̄L but also induces high types to search instead of exiting. As a result,

by falsely signaling σL it is possible that the manufacturer can serve more consumers for wholesale

prices below p̄L. However p̄L also acts as a wholesale price ceiling on the manufacturer. The exer-
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ϕH

Q(w, σH |ϕH)

Q(w, σL|ϕH)

w
p̄H = 1p̄L

Q

Figure 1.6: Signaling in state ϕH

cise is to show that there are parameters for which p̄L is small and thus restrictive, while for those

same parameters the maximized profit from truthfully signaling σH remains relatively high.

Lemma I.1. Given ϕH is high enough so that no low valuation consumers are served under full

information, if s, ϕL, and v are sufficiently small then the manufacturer prefers to reveal the high

demand state truthfully.

Sketch of Proof Using the fact that αL = 1 and p̄L < 1, re-arrange equation (1.3) to get

p̄L = v +
s

F (c̄L)
(1.12)

Note that c̄L is an equilibrium object that depends in part on the values v and s. I show in Ap-

pendix C that when s, v, and ϕL are appropriately small, the full information p̄L is arbitrarily close

to 0, which makes Π∗(σL, ϕH) also arbitrarily close to zero. To get some intuition for this, consider

the extreme case with s = 0. Here, all consumers will use threshold p̄ = v, and thus as v is reduced

toward zero, so is the equilibrium p̄. At the same time, fixing those values of v and s, for any ϕH

the profit to truth telling Π(σH , ϕH) is bounded from below by maxw w · ϕHF (1−w) > 0. Hence

inducing p̄L will reduce profits.

Next consider the low demand state ϕL. Here, the argument will be that when demand is low

enough the manufacturer’s optimal wholesale price will induce sales to low types regardless of

which signal he sends. It will then be shown that for any wholesale price that induces sales to low

types, demand is higher when the signal σL is sent. Figure 1.7 depicts this situation.
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First it follows from equation (1.9) that regardless of search behavior α and search threshold p̄ > v,

when ϕ is sufficiently small, that is when consumers are overwhelmingly of low type, the manufac-

turer will find it optimal (and feasible) to set a wholesale price low enough to induce sales to low

types.

It needs to be shown that for any wholesale price that includes low types, total sales are higher

with signal σL. Consider first sales to high types. Since αL = 1 every high type is eventually served

while under αH = 0 some high types will exit prior to finding a price to which they would agree.

Thus sales to high types are unambiguously higher.

Sales to low types are higher under signal σL if they induce a higher threshold c̄ for retailers.

The difference in c̄ under the two signals is given by

c̄(w,ϕL, p̄L, 1)− c̄(w,ϕL, 1, 0) =
ϕL

1− ϕL

(

1− v −
p̄L − v

F (p̄L − w)

)

By the proof in Appendix C, the expression p̄L−v
F (p̄L−w) can be made arbitrarily small by choosing

appropriately small values for ϕL and s. Hence, for small enough ϕL and s, it must be that

c̄(w,ϕL, p̄L, 1) > c̄(w̃, ϕL, 1, 0) and thus at every w that induces sales to low types sending the

signal σL increases sales to low types. As a result, we obtain the following Lemma.

ϕL

Q(w, σH |ϕH)

Q(w, σL|ϕL)

w
p̄H = 1p̄L

Q

Figure 1.7: Signaling in state ϕL

Lemma I.2. Whenever ϕH is sufficient large, if search cost s and low state aggregate demand ϕL

are sufficiently small then the manufacturer prefers to reveal the low demand state truthfully.
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All that remains to check is that there exist parameter values that satisfy the conditions for truth

telling in the low state and the high state. By inspection of the two preceding lemmas, as long as

the low state is characterized by a small enough ϕL and v, the high state is characterized by a large

enough ϕH , and the search cost s is sufficiently small, signaling can be credible in both states.

Proposition I.3. The manufacturer can credibly communicate via cheap talk when search cost s

is sufficiently small, ϕH is sufficiently high and v and ϕL are sufficiently low.

The intuition behind why the manufacturer could credibly signal comes from understanding the im-

pact of increasing the search threshold p̄ on the manufacturer’s demand function Q(w). Increasing

p̄ worsens double-marginalization and reduces sales wholesale prices designed to serve low types.

However, a higher p̄ also means that a higher price is available at which high types can be served,

and if the manufacturer intends to set a high wholesale price a higher p̄ is beneficial.

Having established that it is possible that price recommendations can act as cheap signals that

inform consumers about aggregate demand, I now consider the implications of a policy that would

prohibit the manufacturer from doing so.

1.5 The Effects of a Ban on Recommendations

The ability to make price recommendations endows the manufacturer with some indirect control

of downstream prices. This practice can be considered a type of vertical restraint and a natural

question from an antitrust perspective is what would happen if such signaling were banned.

Without recommendations the model becomes substantially more difficult to solve as consumers’

search strategies are now non-stationary and every observed price can change a consumer’s beliefs

about whether it is the high or low demand state. Retailers in turn would face consumers that hold

heterogeneous beliefs and possibly different search thresholds. This paper will not characterize the

set of equilibria with no signaling, thus a welfare effect of a ban on recommendations is not derived

in general. However, a set of parameters is identified that both guarantees credible signaling and

provides a tractable solution to the no-signaling equilibrium, and in these situations a clear welfare

implication emerges.

In solving for the no-signaling equilibrium, the key is the belief of a consumer that has learned

her type but not yet observed any prices. If a consumer learns that she has a high type, her belief
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is

µ0 =
ϕH

ϕH + ϕL

with associated likelihood ratio λ0 = ϕH

ϕL
. Consequently, every high valuation consumer is overly

pessimistic about aggregate demand (in the sense that high demand implies high prices) and every

low valuation consumer is overly optimistic. Since it is only the high valuation consumers that

search, consumers may search less on average than they ought to.

I focus on a setting in which λ0 is a large number. Specifically, let ϕH be high enough so that

the manufacturer finds it optimal to sell only to high types and ϕL be low enough so that the

manufacturer finds it optimal to sell to all types.

Recall that ~p = {p1, ..., pn} represents a sequence of observed prices and µ(~p) is the high valuation

consumer’s belief conditional on having observed ~p. For tractability as well as to be consistent with

the assumption made in the model with recommendations, I consider only equilibria in which price

observations off the equilibrium path do not alter beliefs. Formally, restrict attention to equilibria

with

µ
(
{pi}i=1,...,n

)
= µ

(
{pj}j∈E

)
where E = {i | pi is on the equilibrium path} (1.13)

In addition, I look only for equilibria in which retailers that do not make sales convey no infor-

mation beyond the fact that they are priced out. Specifically, if a retailer has costs w + c and in

equilibrium demand at any p ≥ w + c is zero, then the retailer charges p = ∞.

I define a “no search equilibrium” to be an equilibrium of the following form. In the low demand

state retailers charge either v or 1, in the high demand state retailers charge only 1. Consumers do

not search after their first price draw and either accept or exit. Beliefs off the equilibrium path at

all prices other than v or 1 are µ = ϕH

ϕH+ϕL
by the assumption above.

Lemma I.3. When signaling is banned, the no search equilibrium is supported whenever ϕH is

sufficiently large and ϕL is sufficiently small.

The proof can be found in Appendix D. The idea of the proof is that when a high type’s prior belief

ϕH

ϕL
is sufficiently high and thus pessimistic, she will not find it optimal to search and will exit if

her first observation is at a retailer that is priced out.
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Recall that to support a cheap talk equilibrium, it must be that ϕL, v, and s are sufficiently

small and ϕH is sufficiently large. Given that the requirement to support the no search equilibrium

is also that ϕH is sufficiently large and ϕL is sufficiently small, there exist parameter values where

both of these equilibria are supported. I focus my analysis on this set of parameters.

Let the equilibrium with cheap signaling be described by

(

(ws
L, c̄

s
L, p̄

s
L, α

s
L), (ws

H , c̄sH , p̄sH , αs
H)
)

In the low state search is induced and thus p̄sL < 1 and αs
L = 1, and low types are served so that

c̄sL > 0. In the high demand state sales are made only to high types and there is no search, thus

c̄sH ≤ 0, p̄sH = 1, and αs
H = 0. In the no search equilibrium when signaling is banned, consumers

do not search and either purchase immediately or exit and manufacturer and retailer strategies are

described by

(wns
L , c̄nsL , wns

H , c̄nsH ; p̄ns = 1, αns = 0)

In this equilibrium sales are made to low types only in the low state, thus c̄nsL > 0 and c̄nsH ≤ 0.

Having defined the equilibria across the two regimes, let us compare the outcomes. In the high

demand state, both in the signaling and no signaling cases outcomes are identical. Downstream,

consumers do not search and ϕH is high enough that for any w, retailers that make sales all charge

a price of 1. This implies that the manufacturer faces the same downstream demand function in

both situations, and sets a wholesale price that solves

ws
H = wns

H = argmax
w

w · ϕHF (1− w)

In the low demand state several differences emerge. First under no signaling fewer low types are

served. This is because serving only high types is relatively more attractive since p̄sL < p̄ns = 1.

Also, fewer high valuation consumers are served when signaling is banned. With signaling every

high valuation consumer purchases in the low state but with the ban, high valuation consumers

purchase with probability F (p̄nsL − wns
L ) < 1. In addition, with no signaling those consumers

that purchase do so from retailers with costs that are higher on average, since retailers with costs

c ∈ [p̄sL − ws
L, 1 − wns

L ] can now make sales. Both reduced sales to high and low types and the
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increase in the average retailer costs diminish welfare. On the other hand, a ban on signaling does

allow high valuation consumers that quit to save on search costs. For a high type consumer, the

expected total cost of searching in a setting with signaling is given by

∑

i=1,...,∞

(

(1 − F (p̄sL − ws
L) · s

)i

F (p̄sL − ws
L) = F (p̄sL − ws

L)
(1− F (p̄sL − ws

L)s

1− (1− F (p̄sL − ws
L)s

Expected total search cost becomes arbitrarily small with a shrinking s. At the same time, con-

ditional on consumers not searching both the strategies of the retailers and the manufacturer do

not vary with s. Thus, as s falls the savings on search costs associated with a ban on signaling fall

while the welfare losses due to fewer sales and higher average costs remain unchanged. For small

enough s, the losses must dominate.

Lemma I.4. For parameter values that support a cheap talk equilibrium and an equilibrium with

no search without signaling, when search cost s is sufficiently small welfare is higher in the cheap

talk equilibrium than in the no search equilibrium.

The proof is omitted but follows along the lines of the preceding arguments.

Another way to examine the ban on recommendations is to consider its effect on the individual

parties. The manufacturer is made unambiguously worse off. If the high state ensues the manufac-

turer is indifferent, however in the low state the outcome is as if the manufacturer successfully lies

about the state to consumers, which by the cheap talk result is not in the manufacturer’s interest.

Low valuation consumers are equally well off as they receive zero surplus under either scenario.

High valuation consumers are worse off with the ban; they receive zero surplus in the low state

whereas with signaling they expect positive surplus. The effect on retailers as a group is ambigu-

ous. Retailers that are priced out in the setting with recommendations can now make sales since p̄

has increased to 1. But retailers with low costs make fewer sales, both due to the fact that some

consumers are now served by higher cost retailers and because they receive no searchers.

1.6 A Comparison of Recommendations and Price Ceilings

Most products sell at or below their recommended price, and consequently recommendations have

often been treated as binding price ceilings in the literature (Gill and Thanassoulis (2010)). While

I present an alternative explanation in which recommendations communicate information, the equi-

librium is still observationally equivalent to a situation in which the manufacturer sets a price ceiling
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p̄L and p̄H in each state. At the same time, in my model the manufacturer can only induce p̄L or

p̄H and not any other ceiling. The question is are recommendations just a poor substitute for price

ceilings?

In this section I present an informal argument that the answer to this question is no, that in

fact recommendations may allow a manufacturer to achieve outcomes unattainable with price ceil-

ings alone. The essence of the argument is a distinction between information and control.

To this end, consider a setting as in the previous section in which the manufacturer is unable

to communicate with consumers in any way but now can also set a binding price ceiling pc for

retailers. While consumers do not observe the ceiling12, in equilibrium they hold beliefs about the

ceiling in each state that match equilibrium strategies. What I present here is an informal argument

suggestive of the fact that control is not quite enough.

Consider a set of parameters that supports a no-search equilibrium from the previous section.

Without price ceilings, recall that in equilibrium retailers charge v and 1 in the low state and only

1 in the high state. As argued in Lemma I.3, a no-search equilibrium is supported because high

types are convinced that it is a high demand state, in which case the returns to searching are zero.

With this in mind, one may conjecture that for these parameters an equilibrium with search can

be supported if the manufacturer sets a price ceiling pc < 1 in the high state. Doing so would then

give returns to searching in the high state, and thus even agents that are pessimistic would continue

searching until they find an acceptable price.

However this equilibrium would be quite difficult to support. The issue is commitment by the

manufacturer. Suppose with some price ceiling pc the manufacturer induces the search behavior

α = 1 so that no consumer ever exits. If in the high demand state the manufacturer looks to serve

only high types, then he has incentive to eat into the returns to searching by, for instance, increasing

his wholesale price almost all the way up to the price ceiling. Doing so would not cost him sales

since high types would continue to search until eventually buying, however it would make search

no longer optimal ex-post. Since this commitment concern is commonly known, an equilibrium

in which a price ceiling can deliver the requisite returns to searching in the high demand state is

12If pc were public, consumer could infer from it aggregate demand, hence the ceiling would serve both as infor-
mation and control and should in principle do at least as well as information alone.
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difficult to obtain.

Suppose then that a manufacturer is unable to induce an equilibrium with search with price ceilings

alone. If this is the case, then the comparison of outcomes with price ceilings versus with price

recommendations is the same comparison as in the previous section. Namely, the manufacturer is

worse off with ceilings. By communicating with consumers, the manufacturer can induce them to

search if the demand is low and losing this ability can be costly.

1.7 Discussion

This paper addresses the question of how price recommendations can impact a market for consumer

goods. I posit that such communication is an attempt by manufacturers to inform consumers about

their returns to searching. When aggregate demand is low, the manufacturer induces more search

and in doing so reduces retailer markups and increases sales to consumers with low valuations.

When aggregate demand is high, the manufacturer induces less search which allows him to charge

a higher wholesale price thereby extracting surplus from consumers with high valuations. I show

that when search costs are low and aggregate demand is sufficiently uncertain, the manufacturer is

able to credibly communicate with consumers via cheap talk.

This model draws a sharp distinction between price recommendations and resale price maintenance.

Recommendations are not just an indirect method to manage double marginalization. Though the

effect of recommendations is observationally similar to that of price ceilings, the mechanism is quite

different — in my model the manufacturer influences outcomes by informing consumers rather than

imposing constraints on retailers. And while providing information sometimes leads to reduced

double marginalization, at other times it leads retailers to actually set higher prices.

While I introduce uncertainty about aggregate demand in the main model, other forms of ag-

gregate uncertainty could potentially make cheap communication possible. For example, consider

uncertainty about the manufacturer’s costs. A manufacturer facing high costs would be more inter-

ested in extracting surplus from high valuation consumers, while a manufacturer facing low costs

would be relatively more interested in increasing total sales. At the same time, consumers should

expect higher prices in the high cost state and lower prices in the low cost state. I conjecture that

when the two cost states are sufficiently different, the manufacturer can credibly communicate his
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costs via cheap talk.

In practice there is variation in the way actual prices relate to price recommendations. For in-

stance, books often sell for exactly their jacket price while cars tend to sell for strictly less than

MSRP. Even within the car market, how far below MSRP a car sells varies by the popularity of

that vehicle, and in fact some cars sell above MSRP. Imposing that recommendations are price

ceilings or some other exogenously determined restraints precludes the analysis from explaining

such variation. Since in my model a recommendation is just a cheap message, I allow for the con-

sumers’ interpretation of this message to vary with market conditions and thus can accommodate

the varying relationship between prices and recommendations.

The goal of this paper was to highlight a mechanism by which price recommendations serve a

purely informational role and still influence market outcomes. Towards this end, the model I de-

velop is quite stylized and thus has limitations for direct use in assessing policy. Nonetheless, the

message that seems to emerge is that ceteris paribus price recommendations help consumers, al-

lowing them to make more informed decisions and saving search costs. Hence, an antitrust policy

discussion of the merits of price recommendations should keep these informational benefits in mind.

1.8 Appendix

Appendix A: Proof of Existence of the Downstream Equilibrium Under Full Informa-

tion

I show that a downstream equilibrium that is characterized in Proposition I.1 must exist by arguing

that equations (1.8) and (1.3) are continuous and that they must intersect.

Recall equation (1.3) which describes the high valuation consumer’s threshold:

1− p̄ = max{0, F (c̄)(1− v) + (1 − F (c̄))(1 − p̄)− s}

and let p̄(1.3)(c̄) be the implicit function implied by this equation. By inspection this function is

continuous. First note that p̄(1.3)(c̄) > v for all c̄. This can be seen by contradiction. Rewrite

equation (1.3) as

1− p̄ = max{0, 1− p̄+ F (c̄)(p̄− v)− s}
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If p̄ < v then the left hand side must be larger than the right hand side, hence a contradiction.

Next note that because of the max operator, p̄(1.3)(c̄) ≤ 1 for all c̄.

Now recall equation (1.8)

c̄ = v − w −
ϕ

1− ϕ

p̄− v

1− α(1 − F (p̄− w))

Recall also that p̄ < 1 implies α = 1, else if p̄ = 1 any α ∈ [0, 1] can be used to support an

equilibrium. In this sense, α helps the existence argument in that for p̄ = 1, there are many values

of c̄ that can satisfy equation (1.8) given a choice of α.

Let equation (1.8) implicitly define the function p̄(1.8)(c̄). Continuity once again is obvious here.

First note that p̄(1.8)(v−w) = v. Also, note that there exists a c̄ low enough (and possibly negative)

so that p̄(1.8)(c̄) = 1.

Hence, p̄(1.8)(v − w) < p̄(1.3)(v − w) and p̄(1.8)(c̄) ≥ p̄(1.3)(c̄) for some small enough c̄. Given

that p̄(1.8)(c̄) and p̄(1.3)(c̄) are continuous functions, they must then intersect.

Appendix B: Proof of the Characterization of the Full Information Equilibrium

This section provides a proof to Proposition I.2, restated here.

Proposition I.2 The full information equilibrium is characterized by Proposition I.1 and wholesale

price w = argmax w · Q(w), as given by equation (1.9). Furthermore, when aggregate demand ϕ

and search cost s are sufficiently small, low types are served in equilibrium and high types search

until they purchase. When ϕ is sufficiently large no search is induced and low types are excluded.

Proof. The proof proceeds through a series of claims.

Lemma I.5. When ϕ is small enough, the optimal wholesale price chosen by the manufacturer

induces sales to low types.

Proof of Lemma I first show that when the proportion of high valuation consumers ϕ is small

enough it is feasible for the manufacturer to induce sales to low types. I then show that it is optimal

for him to do so.
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By equation (1.8)

c̄ = v − w −
ϕ

1− ϕ

p̄− v

1− α(1 − F (p̄− w))

≥ v − w −
ϕ

1− ϕ

1− v

F (v − w)

By inspection, the above expression shows that when ϕ is sufficiently small c̄(w = 0) > 0. In

fact, for sufficiently small ϕ there will be a range of wholesale prices that will induce search to

low types. Equation (1.9) then shows that that as ϕ is decreased, the quantity sold by setting a

wholesale price that serves only high types goes to zero while the quantity that can be sold with a

wholesale price that includes low types is bounded strictly above zero. Hence, it is also optimal for

the manufacturer to choose a wholesale price that serves low types.

In fact, I prove a stronger statement about the low state. Specifically, if both ϕ and search cost s

are sufficiently small, the manufacturer will optimally induce a downstream equilibrium in which

α = 1.

Lemma I.6. When ϕ and search cost s are small enough, high type consumers search in equilibrium

with probability α = 1.

Proof of Lemma Fix a high type consumer’s strategy p̄ < 1 and α = 1. By Lemma I.5 there

exists a ϕ low enough so that the manufacturer chooses a w to induce sales to low types, and let c̄

be the ensuing retailer threshold induced by w. In order for this to be an equilibrium, it must be

that p̄ < 1 is a best response to the induced price distribution. By inspection of equation (1.3), for

any c̄ and p̄ > v, there exists an s small enough to make the equation hold. Hence p̄ < 1 can be

supported in equilibrium and as a result α = 1 is supported.

I have shown that when ϕ is small, the manufacturer sets an equilibrium wholesale price that

induces sales to low types. Furthermore, when the search cost s is small, consumers will search in

equilibrium. Next I argue that when ϕ is high enough the manufacturer will set a wholesale price

that excludes low types.

Lemma I.7. When ϕ is large enough, for any search threshold p̄ > v the manufacturer charges a

wholesale price w that excludes low types.
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Proof of Lemma By equation (1.1)

c̄ = v − w −
ϕ

1− ϕ
(p̄− v)(1 + κ) ≤ v −

ϕ

1− ϕ
· s

The second inequality follows from the fact that p̄− v ≥ s and 1 + κ ≥ 1. The above expression is

negative for ϕ large enough, hence the manufacturer will not have the option of inducing sales to

low types.

Lastly, if there is an equilibrium in which the manufacturer only serves high types, it must be

that there is no search and α = 0. The reason is that if only high types are included, and high

types follow a threshold strategy, then only a price of 1 can be supported downstream. If the only

price charged is 1 then search is never worthwhile. Along with Lemmas I.5, I.6, and I.7 the proves

the proposition.

Appendix C: Proof of Arbitrarily Low Threshold p̄ in the Full Information Equilibrium

This section proves that for any small p̄ > 0, there exist small enough ϕ, s, and v so that p̄ is

supported in the full information equilibrium. I will show this by first noting that a manufacturer’s

profits in any equilibrium are bounded away from zero. Then, I will show that as s and ϕ are

reduced toward zero, either p̄ approaches v or the manufacturer’s profit approaches zero, which

would contradict the first statement. Lastly, since p̄ can be made arbitrarily close to v, when v is

chosen to be small, p̄ will be small as well.

First, recall that by Lemma I.6, the manufacturer chooses to set a wholesale price w to induce

sales to low types, i.e. he induces c̄ > 0. It will be useful for this argument to show that as ϕ → 0,

the manufacturer’s profit is uniformly bounded strictly above 0.

Claim I.1. For any δ > 0, there exists a low enough ϕ̂ so that for any ϕ < ϕ̂, the manufacturer’s

equilibrium profit exceeds v/2 · F (v/2)− δ.

Proof of Claim: The manufacturer’s equilibrium profit, given w is the optimally charged wholesale
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price, is given by

Π(w, ϕ) = w
(

(1− ϕ)F (c̄(w,ϕ)) + ϕ · I(w ≤ p̄)
)

≥ w

(

(1 − ϕ)F

(

v − w −
ϕ

1− ϕ

p̄ − v

F (p̄− w)

))

(by equation (1.8))

= w




F (v − w)−

(

F

(

v −w −
ϕ

1− ϕ

p̄− v

F (p̄− w)

)

− F (v − w)

)

︸ ︷︷ ︸

−ϕF

(

v −w −
ϕ

1− ϕ

p̄− v

F (p̄− w)

)

︸ ︷︷ ︸






A B

Consider a manufacturer that chargesw = v/2. At this wholesale price, p̄−w ≥ v+s−w ≥ v/2+s >

0, hence both terms A and B go to zero as ϕ goes to zero. For ϕ low enough, v/2 · (A + B) < δ.

Hence, Π(w,ϕ) ≥ Π(v/2, ϕ) ≥ v/2 · F (v/2)− δ.

Next, I prove by contradiction that as s and ϕ decrease, p̄ − v approaches zero. Suppose to-

ward a contradiction that there exists an ε > 0 such that there is some ŝ with the property that

for any s < ŝ, in the full information equilibrium p̄ − v > ε. By equation (1.12), this implies that

s
F (c̄) > ε for any s < ŝ. Recall equation (1.8):

c̄ = v − w −
ϕ

1− ϕ

p̄− v

F (p̄− w)

For small enough ϕ in any equilibrium w < v. By the hypothesis above, this implies that

p̄ − w ≥ p̄ − v ≥ ε for all s < ŝ. Then as s and ϕ both shrink toward zero, the right hand

side of the equation above must approach v − w. At the same time, since by hypothesis s
F (c̄) > ε

for all small s, it must be that c̄ is converging toward zero. Hence, it must be that as s and ϕ

shrink toward zero, the equilibrium w approaches v. However, this implies that the manufacturer’s

equilibrium profit approaches zero which contradicts the claim above since the manufacturer’s profit

has an absolute lower bound strictly above zero.

Hence I have shown that as search cost s and low state demand ϕL diminish toward zero, the

equilibrium search threshold p̄ approaches the low types’ valuation v. Thus, there always exists a

full information equilibrium where the search threshold is arbitrarily close to zero given parameters

ϕ, s, and v are all chosen to be sufficiently small.
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Appendix D: Proof of Existence of a No Search Equilibrium When Recommendations

are Banned

When recommendations are banned, I show that an equilibrium with no search can be supported

when initial belief λ0 is sufficiently high.

Proof. In the proposed equilibrium, retailers face the step demand function

q(p) =







1 if p ∈ [0, v]

1− ϕ if p ∈ (v, 1]

0 if p ∈ (1,∞)

Retailers use threshold strategy c̄ given by equation (1.1)

c̄(w,ϕ) = v − w −
ϕ

1− ϕ
(1− v)

Given an equilibrium where consumers do not search, the manufacturer solves

max
w

w ·Q(w,ϕ) = w ·
(

(1− ϕ)F (c̄(w,ϕ)) + ϕF (1 − w)
)

in each state ϕ, with c̄(w,ϕ) given above and decreasing in w. Let w(ϕ) be the solution to the

above optimization and note that 0 < w(ϕ) < 1.

Claim I.2. When ϕH is large enough, c̄(ϕH) ≤ 0 and when ϕL is small enough c̄(ϕL) > 0 in

equilibrium.

Proof of Claim This does not follow immediately because in equation (1.1) wholesale prices are

endogenous. That c̄(ϕH) ≤ 0 for a large enough ϕH does follow directly. From the manufac-

turer’s optimization it is clear that when ϕL is small enough, setting a w that induces c̄ > 0 is

optimal and by (1.1) also feasible for the manufacturer. Hence, when ϕL is small enough c̄L > 0.

On the supply side I have shown that when consumers follow the strategy of no search then only a

price of 1 is charged in the high state and prices v and 1 are charged in the low state. Next, I must
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show that no searching is a best response for consumers. For notational clarity, define

wL ≡ w(ϕL), wH ≡ w(ϕH)

c̄L ≡ c̄(wL, ϕL), c̄H ≡ c̄(wH , ϕH)

Low valuation consumers expect no prices strictly below v in either state and will either purchase

on their first price draw or exit. High valuation consumers will assign a likelihood to the high state

conditional on the price they see according to

λ(p) =







0 if p = v

λ0
F (1−wH)

F (1−wL)−F (c̄L) if p = 1

λ0
1−F (1−wH)
1−F (1−wL) if p = ∞

λ0 for all other p

(1.14)

Likelihoods at equilibrium prices are computed as the product of the prior likelihood λ0 and the

ratio of the probabilities of seeing the price in either state. Prices off the equilibrium path are by

assumption ignored by consumers when forming beliefs. Note that likelihood λ translates into belief

µ = λ
λ+1 .

A high type consumer whose lowest observed price is p and who holds belief µ has a value function

recursively defined by

V (p, µ) = max
{

0, 1− p, E[V (p′, µ′)|p, µ]− s
}

(1.15)

Claim I.3. There exists a high enough belief µ̄ so that whenever µ > µ̄, the continuation value to

searching E[V (p′, µ′)|p, µ]− s < max{0, 1− p} ∀ p.

Proof of Claim I provide an upper bound for the continuation value to searching:

E[V (p′, µ′)|p, µ]− s ≤ µ(max{1− p, 0}) + (1− µ)(1 − v)− s

If the state is high, the consumer will not see a price below 1 and the highest payoff she can

obtain is to accept p if it is less than 1 else exit. If the state is low, the highest payoff the con-

sumer can get is if she observes and accepts price v. For large enough µ, it must then be that
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E[V (p′, µ′)|p, µ]− s < max{0, 1− p}.

To restate the claim, for any price p once consumers are convinced enough the state is high they

will not search and either purchase or exit.

Claim I.4. There exists a λ̄ so that for any λ0 > λ̄, µ(p) > µ̄ ∀ p.

Proof of Claim The proof follows from equation I have thus shown that for large enough λ0 no

price will induce search and this concludes the proof of the lemma.



CHAPTER II

Optimal Timing of Selection Contests

2.1 Introduction

Going into the 2008 Beijing Olympics hopes were particularly high for American swimmers Michael

Phelps and Katie Hoff, both world record holders and slated to compete in numerous events. Yet

at the Olympics while Phelps met and exceeded expectations Hoff under-performed. Why the dis-

parity in the two athletes’ performances? Putting aside explanations relying on swimmer-specific

idiosyncracies, their performances can be understood by considering the athletes’ strategic environ-

ment. Swimmers can peak only for a short period and they time their peak for a particular date.

Each could peak closer to the trials to improve their chances of making the team but, by doing

so hurt their Olympic performance. Katie Hoff faced stiff domestic competition and was forced to

peak closer to the trials; Michael Phelps maintained a comfortable lead over his American rivals and

was able to peak closer to the Olympics.1 For USA Swimming, Katie Hoff’s mediocre performance

was avoidable: had they chosen a significantly earlier date for the trials, she would have had the

opportunity to recover and peak again at the Olympics.2 But holding the trials early would have

also come at a cost, since the best swimmer at the trials might no longer still be the best swimmer

at the Olympics. In choosing the optimal time to hold the trials, USA Swimming had to balance

the accuracy of their selection with the cost of not allowing swimmers sufficient time to recover.

This problem facing USA Swimming is one faced by many organizations: how to time the se-

lection of an agent when waiting longer makes the selection more accurate but also more costly.

Take as another example a political party choosing a candidate for a general election. Candidates

1In each event USA Swimming selects the top two performers. Going into the Olypmic trials, Michael Phelps’
average lead over the eventual third place finishers was roughly twice that of Katie Hoff, in percentile terms.

2In fact Australia, another traditional swimming power, held their trials a full year in advance.

35
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will attempt to position themselves on the political spectrum to match the views of their party’s

median voter, but in order to win the general election they would be best off at the median of the

entire population. Given that shifting one’s political platform takes time, holding a later primary

hurts the chances of the eventual primary winner. At the same time, a lengthy primary election

can reveal characteristics about a candidate which are independent of his or her platform but are

important in determining electability in the general election.3 In this sense a later primary ensures

that the winner is the most likely of the group to win the general election. Party organizers must

weigh the accuracy benefits of a later primary with the costs of a running a more extreme candidate

in the general election.4

A similar tradeoff is also found in the workplace. A manager must select which of several ana-

lysts to promote to associate. Delaying the promotion decision allows the manager to ascertain

which of his analysts is most highly skilled. However, the longer the promotion decision is delayed,

the more time is spent by the eventual winner performing the tasks of analyst instead of the more

productive tasks of an associate.

In all of these examples, a principal faces a group of agents whose types he does not know and

must choose one to perform a task. To make this decision, the principal chooses a time at which

all agents compete and uses the results of this competition to make the selection. Agents divert

resources from their final task to improve their performance in the competition and the principal

must keep this in mind when choosing the timing optimally. The aim of this paper is to explore this

timing decision and to ascertain which factors induce the principal to choose a later more accurate

contest and which favor an earlier and noisier selection.

We take two approaches to address this question. First we note that from the point of view of

the principal, the choice of timing is indirectly a choice of an allocation rule and a corresponding

incentive compatible transfer function. That is, for any given selection time, agents choose how

many resources to divert to the contest from their final performance, i.e. their transfer, and in

an equilibrium conditional on these actions agents will have some probability of winning, i.e. the

allocation rule. The choice of timing can be thought of as a blunt tool in the more general prob-

3For example, if candidate is a particularly inspiring public speaker or is has damaging secrets from his or her
past.

4The timing of the primary can be broadly understood as the time at which candidates begin to compete, for
instance the first televised debate.
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lem of choosing an optimal incentive-compatible screening mechanism, and our first approach is to

solve that more general problem. Specifically, we consider a setting in which agents are privately

informed about their types and simultaneously send costly signals to the principal, who in turn

commits to an allocation rule as a function of the signals. The principal’s payoff is the performance

of his chosen agent, hence he wants to choose the best agent but suffers that agent’s signaling cost.

We show that ex-ante the principal prefers to allocate not necessarily to agents with the highest

type but to those with the lowest hazard ratio, roughly speaking those agents facing the least com-

petition. The optimal mechanism is stochastic, that is for some collections of signals the principal

will allocate using a lottery between some or all of the agents. While this may seem suboptimal

ex-post, a stochastic mechanism lessens the returns to costly signaling and reduces competition

ex-ante. Thus, it is best to include some noise in the selection process.

The stochastic optimal allocation rule relies on commitment by the principal and may be difficult to

implement in practice. Taken at face value, the mechanism requires the principal to sometimes not

select the best agent despite having perfectly inferred all participants’ types through their signals.

The principal cannot always commit to this behavior, just as, for instance, a party chairman may

not find it feasible to flip a coin between two candidates when one has received significantly more

votes. On the other hand, the party chairman is able to commit to an early primary and this can

indirectly infuse a stochastic component into the decision process. Given that a candidate’s types

evolves over time, the person chosen early is not necessarily the best one at the time of the general

election.5

Restricting the principal to making only a timing decision then reduces the set of allocation rules

that he can implement, and in our second approach we look for the the optimum in this reduced

set. We consider a continuous time environment in which agents privately observe the evolution of

their types over time and choose an effort level for the selection contest that comes at the expense

of their final performance. We assume that the cost of effort decreases as the time between the

selection and the final task grows so that agents are better able to recover given more time. In

choosing a later selection time, the principal benefits from the option value of picking the agent

with the best shocks but potentially pays the price in higher effort costs. We show that if agents’

ability to divert resources from the final task is unrestricted, agents divert the same amount of

5Or more precisely, if an agent’s type evolves so that it is best at the time of the final task, she may not have
necessarily been chosen during the selection contest.
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resources from the final task regardless of the timing of the contest. That is, as there is less time to

recover between the selection and the final task and effort becomes costlier, all agents adjust their

effort to exactly offset this. Hence, it is always optimal to select agents as late as possible.

This result sheds some light on the underlying mechanism and we treat it as a benchmark case.

However, the assumption that agents are unrestricted in how many resources they can divert is

strong and violated in many applications. For instance in swimming, even if athletes peak for the

trials, they can once again peak for the Olympics given enough time to recover. By choosing a

trials date sufficiently early the principal can thus restrict the amount of resources participants

can divert. To capture this, we consider a simplified timing model in which the principal chooses

between an early and a late contest. The early contest is sufficiently early so that agents will fully

recover; hence, they are unable to divert resources from their final performance. The late contest

is one in which an agent’s ability to divert resources is unconstrained. We assume that all agents

start with the same type at the early contest and since types evolve, each agent’s type is expected

to be distributed according to some function F at the time of the late contest. We show that

the principal’s payoff to holding a late contest is independent of the mean of F but grows in the

dispersion of F . We also show that the effect of adding more agents to the late contest is ambiguous

as there is a tradeoff between choosing a type from a higher order statistic but also inducing more

competition. In addition, we consider selection contests of skill in which higher types have a natural

advantage and prove this improves the returns to a later contest.

This paper is concerned with the question of how to time a selection contest, and answering this

question overlaps with several literatures. A selection contest is in essence a screening mechanism,

and as such our setting is strategically similar to those in the seminal works of Spence (1973) and

Myerson (1981), as well as in the myriad papers spawned thereafter. Aside from establishing a

general framework, Myerson (1981) also provides several techniques that we adopt to characterize

equilibria. A point of departure from these classic works is that the designer can suffer the costs

(or transfers) along with the agents. This idea is present in more recent work such as Hartline and

Roughgarden (2008) and Chakravarty and Kaplan (2006). Both papers consider a setting in which

agents’ efforts are wasteful to the principal, with the latter explicitly characterizing the optimal

mechanism for a benevolent social planner that wants to assign a good but suffers the sum of all the

signaling costs of the agents. Our paper is motivated by a selfish designer who cares only about the
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costs expended by the agent that he chooses, yet we show that the two problems are strategically

equivalent and the same mechanism maximizes both objectives. We re-interpret Chakravarty and

Kaplan’s result in the context of competition, showing that the optimal allocation rule assigns the

good to those who have to compete the least. We also differ in spirit from Chakravarty and Ka-

plan (2006) in addressing the issues of commitment and implementation by focusing on the timing

question in particular.

In the part of the paper that deals with the timing model, we ask questions that are often ad-

dressed in the field of tournament design, such as how to assign a winner (Lazear and Rosen (1981),

Moldovanu and Sela (2001)) and how many participants to include (Fullerton and McAfee (1999)).

The answers to these questions are quite different in our setting in which a principal wishes to min-

imize effort as compared to a tournament design setting in which the principal wants to maximize

effort.

The rest of the paper proceeds with Section ??, in which we present a model of costly screening.

There we establish the equivalence to the general solution from Chakravarty and Kaplan (2006)

and offer an interpretation for our particular application. In Section ?? we drop the assumption

that a principal can commit to an allocation rule and explicitly model a principal that must choose

a time for a selection contest. Then Section ?? concludes.

2.2 A Model of Costly Screening

We consider a setting in which a principal must choose one among N agents to perform a task.

Each agent i has type θi which describes her ability to perform the task. Types are drawn privately

and independently from distribution F (·) and are not observed by the principal. An agent i can

signal her type by taking a publicly observable costly action ei ≥ 0. The cost of this action is that

it diverts resources away from the agents’ performance of the task conditional on being selected.

For instance, ei can represent how far a candidate in a primary election moves her platform away

from that of the population’s median voter; the cost of this move is a reduced chance of winning

the general election and is only borne if the candidate wins the primary. An agent’s performance

conditional on being chosen is

yi = θi − ei
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Agents choose ei simultaneously and the principal can commit to a mechanism

M : e → x

in which the principal maps each action profile e = {e1, ..., eN} into a profile of allocations x =

{x1, ..., xN}, where xi is the probability that agent i is selected. We refer to the vector xM (e) as

the allocation rule under mechanism M . We explicitly allow for the allocation mechanism to be

stochastic since a central question of our analysis is whether a stochastic mechanism is optimal. A

mechanism M is feasible if for every profile e,
∑

i x
M
i (e) ≤ 1.

Agent i’s payoff is her performance on the task, and her VNM expected utility function is

ui = xi(θi − ei)

The principal’s payoff is his chosen agent’s performance, hence his VNM utility is

u0 =
∑

i

xi(θi − ei) =
∑

i

ui

An equilibrium is characterized by two conditions: expected utility maximizing behavior of each

agent conditional on mechanism M∗

e∗i (θi,M
∗) = argmax

ei
Ee−i

[xM∗

i (ei, e−i)(θi − ei)] (2.1)

and the principal’s optimal choice of mechanism M∗

M∗ = argmax
M

Eθ

[
∑

i

xM
i (e∗(θ,M))(θi − e∗i (θi,M))

]

= argmax
M

Eθ

[
∑

i

ui(θ,M)

]

(2.2)

One way to think about the optimal allocation mechanism M∗ is as a tradeoff between choosing

accurately and inducing costly signaling. As extreme examples, an allocation rule xi(e) =
1
N

would

choose randomly but induce ei = 0 by all participants while xi(e) = I{ei = max{e1, ..., eN}} would

always select an agent with the highest action but would induce high signaling costs. As we will

show, the optimal mechanism uses either the latter of these two allocation rules or is a lottery
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amongst those with the highest effort levels, depending on vector e.

We use a mechanism design approach to characterize the M∗, and we do so in two steps. First, we

invoke the revelation principle to show that the allocation rule xM∗

is the same as an allocation

rule xDM∗

which maximizes the sum of the expected utilities of the agents in a direct revelation

mechanism. Then, we use a result in Chakravarty and Kaplan (2006) which characterizes xDM∗

.

From Myerson (1981), we know that if (xM (e), e∗(θ,M)) is an equilibrium in our setting then in a

direct revelation game (xDM (θ), τ(θ, xDM )) is a truth-telling equilibrium if xDM (θ) = xM (e∗(θ,M))

and τ(θ, xDM ) = e∗(θ,M).

xM∗

(e) = argmax
xM

Eθ

[
∑

i

xM
i (e∗i (θi, x

M ))(θi − e∗i (θi, x
M ))

]

= argmax
xDM

Eθ

[
∑

i

xDM
i (θ)(θi − τi(θ, x

DM ))

]

= argmax
xDM

Eθ

[
∑

i

ui

(
θ, xDM

)

]

(2.3)

= xDM∗

(θ)

The revelation principle is invoked in going from the first to second line, equating choosing an

allocation xM conditional on agents playing equilibrium e∗(θ, xM ) to choosing allocation xDM

given that transfers τ(θ, xDM ) are constructed so that truth-telling is optimal.

Proposition II.1. (From Chakravarty and Kaplan (2006), Proposition 1)

Let xDM∗

(θ) be the allocation rule in a direct revelation mechanism that maximizes the sum of

participants’ expected utilities, as in (2.3). Let θM = max{θ1, ..., θN}. There exists a family of

disjoint intervals Ik = [θk−, θk+], k = 1, ...,K such that

if θM ∈ Ik for some k then xi(θ) =







1/#(θj ∈ Ik) if θi ∈ Ik

0 otherwise

else if θM /∈ Ik for any k then xi(θ) =







1/#(θj = θM ) if θi = θM

0 otherwise
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We refer the interested reader to Chakravarty and Kaplan (2006) for a characterization of the in-

tervals Ik along with a proof of the proposition. The authors call intervals Ik the “lottery” regions

and the rest of the type space as the “contest” regions. Whenever the highest type is in a lottery

region, the allocation is a random assignment among all others in the region. In what follows we

provide some intuition for why such an allocation rule is optimal with an example.

Consider a setting with N = 2 agents and assume that the lowest type is θ = 0. Using the

law of iterated expectations, we can rewrite the principal’s objective in the direct mechanism from

equation (2.3)

Eθ

[∑

i

ui(θ, x)
]

= 2

∫

θi

Eθj

[

ui(θi, xi)
]

f(θi)dθi (2.4)

In other words, the principal wants to maximize the ex-ante expected utility of a participant.

Following Myerson (1981), an allocation rule x(θ) can be obtained in equilibrium if it satisfies the

following four constraints:

Eθj

[

ui(θi, xi)
]

= Eθj

[

ui(θ, xi)
]

+

∫ θi

θ

X(θ̂)dθ̂ (2.5)

X(θi) non-decreasing (2.6)

Eθj

[

ui(θi, xi)
]

≥ 0 (2.7)

∑

i

xi(θ) ∈ [0, 1] and 0 ≤ xi ≤ 1 (2.8)

Conditions (2.5) and (2.6) are derived from first and second order conditions for truthful reporting,

respectively. Condition (2.7) is a participation constraint and (2.8) is a feasibility constraint.

To solve the constrained optimization, we solve a relaxed program by ignoring (2.6), and then

use a technique from Myerson (1981) called ironing to apply that constraint. Plugging (2.5) into

the objective function (2.4), we obtain

max
x

2Eθj

[

ui(θ, xi)
]

+ 2

∫

θi

∫ θi

θ

X(θ̂)f(θi)dθi

⇔ max
x

2

∫

θi

X(θi)(1 − F (θi)) dθi (2.9)

⇔ max
x

2

∫

θi

(
∫

θj

xi(θi, θj)f(θj) dθj

)

(1− F (θi)) dθi
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The second line follows because, with non-negative transfers, type θ = 0 gets a utility of at most

zero, and, by the participation constraint, must get exactly zero. Next we claim without proof

that (2.8) binds so that x1(θ1, θ2) + x2(θ1, θ2) = 1 and that we can restrict attention to symmetric

allocations, so x1(a, b) = x2(b, a). This allows us to rewrite the objective as

max
x

2

∫

θi

∫

θj≤θi

xi(θi, θj)f(θj)(1 − F (θi)) + (1− xi(θi, θj))f(θi)(1− F (θj)) dθj dθi (2.10)

Expression (2.10) can be maximized pointwise, and by inspection the optimal allocation rule must

satisfy

x1(θ1, θ2) =







1 if 1−F (θ1)
f(θ1)

≥ 1−F (θ2)
f(θ2)

0 otherwise

(2.11)

We can think of θi as having a “virtual type” given by the inverse hazard ratio 1−F (θi)
f(θi)

. The haz-

ard ratio is a measure of how competitive the neighborhood is around a particular type, and the

principal wants to allocate probability to types that will not be forced to compete very hard.6

This allocation rule will generally not satisfy condition (2.6), as higher types will tend to have

lower virtual types. For instance, if θi is distributed uniformly on [0, 1] then (2.11) results in in-

terim probabilities given by X(θi) = 1−θi, which is everywhere decreasing. To account for this, one

must use a procedure similar to the ironing algorithm outlined in Myerson (1981). The basic idea

is that over regions in which (2.11) causes X(θi) to be decreasing, one must increase the allocation

to higher types at the expense of lower types, and the optimal way to do so is to identify intervals

such that whenever two types are from the same interval their allocation is decided by a random

lottery.

2.3 Timing Models

A key assumption in Section ?? is that the principal commits to the allocation rule and in many

applications this assumption is difficult to defend. For example, imagine a party chairman flipping

a coin between two candidates despite one receiving more votes than the other, or holding the US

Olympic trials and then rolling a die to determine which of the top six performers goes to the

6This is in contrast to a principal who maximizes revenue and defines virtual types by θi−
1−F (θi)
f(θi)

. This principal

prefers agents with high hazard ratios so that they compete away their information rents.
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Olympics. Aside from having incentive to choose the revealed-best agent, there is also institutional

pressure to do so.

Yet while the principal is pressured to choose the winner of the selection contest, he can make

ex-ante decisions about the design of the contest so that the winner is not necessarily the highest

type. We consider a setting in which the decision is about when to hold the selection contest.

Agents have types that evolve stochastically over time, hence an earlier selection makes it less likely

that the chosen agent will be best at the time of the task. However agents can also divert resources

toward the selection contest, and the less time between selection and the task the costlier that

diversion. The tradeoff in the timing decision is analogous to that in the previous section: accurate

selection versus inducing harmful effort. In essence, the timing structure now restricts the set of

available stochastic allocation rules and we look for the “second-best” optimum within this set.

2.3.1 A Model in Continuous Time

A principal commits to a time t ∈ [0, 1] in which to hold a selection contest. There are N agents

and all have type θ0 at time t = 0. Each agent’s type evolves independently and stochastically

over time such that for any t > t′, θi(t) is a mean preserving spread of θi(t
′). Let F (θi|t) denote

the distribution of θi(t) and assume that for any t the support is always bounded weakly above

zero and below infinity.7 As an example, one may think of log (θi(t)) following Brownian motion,

though many other stochastic processes would also be admissible.

Each agent privately observes the evolution of her type and at time t chooses action ei ∈ [0,∞],

which we will refer to as effort. The agent that wins the selection contest is the one with the highest

score s(ei, θi). For now, assume the score increases in effort only8 so that

s(ei, θi) = s(ei).

7This is an assumption made for mathematical convenience. In our setup, an agent with a negative type would
choose not to participate and to compute equilibrium strategies would require accounting both for the distribution
of types and the number of participants.

8An agent’s score in the selection contest can depend both on her effort and her type. For example, in an Olympic
trial a swimmer’s chance of winning depends not only on how close she is to her peak but also on her ability. The
assumption here is made to match the setup in the previous section; later we consider how relaxing this assumption
affects the timing decision.
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Each agent’s action ei comes at a cost c(ei, t) to the agent’s final task performance

yi = θi(1)− c(ei, t).

Note that an agent’s final task performance depends on her type in period t = 1. However by

assumption E[θi(1)|θi(t)] = θi(t), hence from the risk-neutral perspectives of both the agent and

the principal, choosing type θi at time t has the same payoff as choosing type θi at time t = 1.

The cost function c(ei, t) is weakly increasing and continuous in effort and in time. Agents that

choose ei = 0 divert no resources from the final task, thus c(0, t) = 0 for any t. The set of feasible

costs at any time is [0, c̄(t)], where c̄(t) ≡ lime→∞ c(e, t). Note that since ce and ct are both weakly

increasing, it must be that c̄(t) is weakly increasing as well. As before, agent i’s expected utility is

ui = xiyi and the principal’s expected utility is u0 =
∑

i xiyi.

For a given selection time t, agents solve

max
ei

Pr
(

si(ei) > max
j 6=i

sj

)(

θi − c(ei, t)
)

⇔ max
ci∈[0,c̄(t)]

Pr
(

si(ei(ci, t)) > max
j 6=i

sj

)(

θi − ci

)

(2.12)

The selection contest can then be interpreted as a first price auction in which each agent chooses bid

function c(θi, t) bound by the budget constraint c̄(t). The principal anticipates expected equilibrium

behavior for each time t and solves

max
t

EF (θi,t)

∑

i

(

θi(t)− c(θi, t)
)

The timing choice is then a choice of a distribution of bidders F (θi, t) along with their corresponding

bidding strategies c(θi, t). A later selection contest has the benefit of sampling from a distribution

with higher variance but can also be associated with higher effort costs. We now examine this

tradeoff in more detail.
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Contests in Which c̄(t) Does Not Bind

First as a benchmark we examine the optimal timing decision when at every t, c̄(t) is large enough

so that it does not bind.9 In this situation we will show that in the timing decision there is no

tradeoff for the principal. In holding a later contest the effort cost of the winner remains constant

while the benefit of the option value of waiting continues to accrue. Thus, waiting until the end is

optimal.

Proposition II.2. Suppose c̄(t) is sufficiently large at every t so as not to bind. Then the optimal

selection time is t = 1.

Proof Sketch

Given that c̄(t) does not bind it must be that for any realization of types (θ1(t), ..., θN (t)) the

highest type wins for sure. This implies that type θi(t) has an interim probability of winning

X(θi(t)) = FN−1(θi, t). Using the analog of expression (2.9) for N agents, we can write the

principal’s payoff as

u0(t) = N

∫

θi

FN−1(θi, t)(1− F (θi, t)) dθi

We need to show that ∂u0

∂t
> 0 by making use of the fact that as t increases the distribution F

undergoes a mean-preserving spread. Roughly speaking a mean preserving spread makes bidding

less competitive by making types more disperse and increases the expected type of the winner.

Thus, the expected surplus of the winner also increases. See Appendix A for details.

Contests in Which c̄(t) May Bind

From Proposition II.2 we learn that when the cost of effort in the selection contest is unconstrained

agents will exactly offset the cost savings of an earlier selection contest with higher effort, leaving

the principal unable to affect the effort costs by his choice of timing. However, in many applications

when the principal chooses the selection contest sufficiently early, even in maximizing their selection

contest performance agents are only able to incur a limited cost to their final task performance. For

instance, imagine an Olympic trials that takes place a full year prior to the Olympics. An athlete

can peak at the trials and, with a full year to recover, peak again at the Olympics. Similarly, a

political candidate can move her platform all the way to that of the party’s median voter and still

have sufficient time until the general election to move it back to the population median. In both

9For instance c̄(t) ≥ maxθ supp(F (θ, t))
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situations, by running the selection contest early enough the principal restricts the agents’ ability

to incur costs.

We accommodate for this by now considering a setting in which in some periods the cost con-

straint binds. In such a period t the equilibrium in the selection contest is characterized by a cutoff

type θ̂i such that c(θi, t) is the solution to (2.12) for θi ≤ θ̂i and c(θi, t) = c̄(t) for θi > θ̂i. The

cutoff type is indifferent between the two bids. If the cutoff type bids according to (2.12), she wins

if and only if all other agents have types below θ̂i. Hence this cutoff type’s interim probability of

winning is Xi(θ̂i, t) = FN−1(θ̂i, t). If she were to bid c̄(t) she would win against all types below θ̂i

and tie with any types above θ̂i. With N agents there are several combinations in which ties can

occur and the interim probability of winning is given by

X̄ ≡
N−1∑

k=0

1

k + 1

(
N

k

)

F (θ̂i)
N−1−k(1− F (θ̂i))

k (2.13)

Note that X̄(θ̂i) > FN−1(θ̂i, t) since the possibility of tying with higher types makes the interim

probability of winning jump discretely. When N = 2 the expression simplifies to

X̄(θ̂i) = F (θ̂i) +
1

2

(

1− F (θ̂i)
)

The cutoff type θ̂i is then defined implicitly by the indifference condition

FN−1(θ̂i, t)(θ̂i − c(θ̂i, t)) = X̄(θ̂i)(θ̂i − c̄(t)) (2.14)

In order for the equality to hold, it must be that when bidding the ceiling, the discrete jump in the

interim probability of winning is accompanied by a corresponding discrete jump in the bid; thus

c̄(t) > c(θ̂i, t). Figure 1 depicts an example of a selection contest equilibrium with a binding ceiling

constraint.

Having characterized what happens when the bid ceiling binds in the selection contest, we will

argue shortly that without additional structure the timing of the selection contest is a complex

problem that does not easily lend itself to comparative statics. To this end, we first ask a simpler

question: Does a lower bid ceiling make the principal better off? That is if it were the case that an

earlier selection contest reduces the maximal cost agents can incur and if we ignore the lost option
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θi

Xi(θi, t)

θ̂i

1

0

X̄(θ̂i)

Figure 2.1: Interim allocations with a binding ceiling

value of waiting, does the principal benefit from an earlier contest?

The answer is not necessarily, and the reasoning behind this answer comes from the discussion

of the optimal mechanism in Section 2.2. Recall that equation (2.10) allows us to express the payoff

to the principal in any incentive compatible mechanism only in terms of the allocation rule. Recall

also that ceteris paribus, in a collection of agents (θ1, ..., θN ) the principal wants to assign all the

probability to the agent with the highest virtual type 1−F (θi)
f(θi)

. In this sense, a lower bid ceiling

is just a different allocation rule, and depending on the distribution of types F , not necessarily a

better one.

Lemma II.1. Depending on the distribution of types F , the principal can be either better or worse

off with a lower bid ceiling. That is ∂u0

∂c̄
is unsigned.

See Appendix B for a proof of Lemma II.1.

Lemma II.1 highlights that the optimal timing problem is difficult to solve in general. Waiting

to hold the contest always involves the benefit of cherry-picking those agents who have received

a positive shock. However, the expected cost incurred by the winner in the selection contest can

either increase or fall with time and, moreover, this effect can be non-monotonic. We now impose

some additional structure on the problem that will provide tractability while still preserving the

central tradeoffs.
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2.3.2 A Two-Period Model

The principal now has only two choices of timing, an early contest at t = 0 or a late contest at

t = 1. The early contest is defined as early enough so that agents can fully recover and peak again

for the final task, hence c̄(0) = 0. As before at t = 0 all agents have type θ0. Since all agents have

the same type and will expend no costs, it follows that the payoff to the principal from holding the

selection contest in period t = 0 is

u0(t = 0) = θ0

In the late contest agents are distributed according to F (θi, 1) = F (θi). Recall that since types

evolved over time through a mean-preserving stochastic process, E[θi] = θ0. We assume that c̄(1) is

large enough so as not to bind. This principal’s payoff from holding the selection contest in period

t = 1 is

u0(t = 1) = N

∫

θi

FN−1(θi)(1 − F (θi)) dθi (2.15)

Note that u0(t = 0) is a fixed value and thus in examining the timing decision we can solely focus

on what affects u0(t = 1). For example, what about the shape of F makes a later selection more

appealing? What happens to the benefit of a later selection when there are more participants? We

provide first an example with a parameterized uniform distribution and then a series of lemmas to

answer these questions more generally.

As a benchmark, first consider a distribution F (θi) that is uniform on [θ0 − α, θ0 + α] ⊂ R+.

The expected surplus to the principal is

u0(t = 1) = N

∫ θ0+α

θ0−α

(
θi − (−α+ θ0)

2α

)N−1
α+ θ0 − θi

2α
dθi

=
2α

N + 1

This surprisingly simple expression yields immediate comparative statics. The benefit to a later

selection contest is (i) independent of θ0, (ii) increases in the amount of noise, and (iii) decreases

in the number of participants. Intuitively, increases in θ0 get competed away by all the agents;

a greater α adds to the option value of waiting; and a larger number of participants eats away

at the winner’s surplus through increased competition. In what follows, we will show that (i) and
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(ii) hold in general, while there is a countervailing effect that makes (iii) depend on the distribution.

First, we show that the payoff to the later contest depends only on the shape of F and is not

a function of where F is centered.

Lemma II.2. For some a > 0, let G(θi) = F (θi − a) so that distribution G is obtained by shifting

F to the right by a. Then u0(t = 1|F ) = u0(t = 1|G).

Proof. Follows from applying a change of variables to (2.15).

One can think of an agent’s type as composed of a common component θ0 and an idiosyncratic

component θi−θ0. The lemma states that a later selection contest erodes away the common compo-

nent through competition, and while this relies on the fact c̄ does not bind, the qualitative message

still holds when the assumption is relaxed. One implication is that if a principal can make a costly

investment which can improve all agents’ types, he should weigh this investment carefully since the

eventual winner will have lost much of its benefit through competition. On the other hand, when

holding the selection contest early the principal gets the full return on such an investment.

While the mean of F has no effect on the payoff of a later contest, given that there is an op-

tion value associated with waiting, we may expect that when F is more disperse a later contest is

more beneficial. However, the shape of the distribution also effects the level of competition, thus

the result is not immediate and requires a more careful analysis.

Lemma II.3. If G(θi) is a mean preserving spread of F (θi) then u0(t = 1|G) ≥ u0(t = 1|F ).

Lemma II.5 is proven in Appendix A.

This result is a generalization of the finding in the uniform case in which u0(t = 1) is increas-

ing in α. Note that MPS is a partial ordering over distributions and that the converse of the lemma

is not true. That is, one can construct examples in which u0(t = 1|G) > u0(t = 1, F ) but G is not

a mean preserving spread of F . The two lemmas combine into one of our main propositions.

Definition II.1. The distribution of Y is a spread of the distribution of X iff there exists a random

variable Z and constant c such that (i) E[Z|X ] = c for all values of X and (ii) Y
d
= X + Z.

Proposition II.3. If G(θi) is a spread of F (θi) then u0(t = 1|G) ≥ u0(t = 1|F ).
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Next we consider how the number of agents N figures into the timing decision. The payoff to

the early t = 0 contest is independent of N . However, at t = 1 the number of agents matters in

two ways. On one hand, the identity of the highest of N draws is on average higher when N is

higher. On the other hand, an increase in the number of agents makes the contest more compet-

itive, inducing the eventual winner to bid a higher cost. As we will show, either effect can dominate.

We consider a parameterized family of distributions F (θi) = θai with support on [0, 1] and a > 0.

Using equation (2.15) we can compute the principal’s payoff in the later contest as a function of N .

u0(N) =

∫ 1

0

θ
a(N−1)
i (1− θai ) dθi =

aN

(1 + a(N − 1))(1 + aN)

u0(N + 1)− u0(N) =
a

(1 + a(N − 1))(1 + a(N + 1))(1 + aN)
(1− a(N + 1))

≥ 0 if and only if a ≤
1

N + 1

When a is sufficiently small the principal is better off with an extra agent, otherwise he is better

off with one fewer agent. With more agents the field becomes more competitive but also the odds

of drawing a very good agent increase, and the margins of both of these effects are sensitive to the

shape of the distribution. In the particular family that we have chosen, for small values of a most

agents are already crowded in a small interval at the low end of the distribution and the marginal

increase in competition from an additional agent is negligible relative to the marginal increase in

the likelihood that an extra agent will draw a much higher type.

Lemma II.4. The principal’s payoff to the later contest can increase or decrease with the number

of participants.

2.3.3 Contests of Skill

Thus far we have assumed that the selection contest is one of will in the sense that higher types

win because they are willing to pay a higher cost in order to win. But often, selection contests are

also contests of skill so that of two agents putting in the same effort, the agent with the higher type

will score higher in the contest. Thus, in this section we assume that s(ei, θi) is increasing in the

second argument and analyze how this change affects the optimal timing decision.

First, note that although it may seem intuitive that reducing agents’ cost of obtaining a high

score in the selection contest leads to lower costs and better final task performance, we have al-
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ready implicitly shown that generally this is not the case. Specifically, note that in Section ?? no

assumptions were placed on the function s(ei) other than it being increasing. Hence, if we were to

change the contest so that we have a new scoring function s̃(ei) = s(2ei), thus making a given score

half as expensive, the equilibrium utility to the principal would remain unchanged. We will show

that it is not the absolute value of s(ei, θi) that matters but rather how it varies with θi.

For clarity, we continue to evaluate the two period case, specifically the contest at t = 1 with

a c̄ that does not bind. Assume that s2(ei, θi) > 0. Let c(s, θi) be the cost borne by type θi in

obtaining a score of s in the selection contest. An agent’s expected utility is

ui(si, θi) = Pr (si > sj 6=i) (θi − c(si, θi))

Claim II.1. There is a separating equilibrium in which s(θi) is strictly increasing, thus the interim

probability of winning is Xi(θi) = FN−1(θi).

Proof Sketch

In the original setting with s(ei, θi) = s(ei), this result was guaranteed by the single crossing prop-

erty since higher types have a higher marginal willingness to pay and the same marginal cost. In our

setting, higher types still have a higher marginal willingness to pay and a smaller marginal cost.

Since the equilibrium is separating, we can use the standard direct mechanism tools to compute

agents’ expected equilibrium utility. Given some equilibrium function s(θi), let c(θ̃, θi) ≡ c(s(θ̃), θi)

be the cost to type θi of choosing the equilibrium score of type θ̃. An agent’s expected utility can

be rewritten in terms of her type and her report is

ui(θ̃, θi) = FN−1(θ̃)(θi − c(θ̃, θi))

dui

dθ
=

∂ui

∂θ̃
(θi, θi) +

∂ui

∂θi

= 0 + FN−1(θi)− c2(θi, θi) (2.16)

That ∂ui

∂θ̃
(θi, θi) = 0 follows because reporting one’s own type is a best response. Expression (2.16)

is similar to the incentive constraint from Myerson (1981), with the last term accounting for the
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heterogeneous costs. An agent’s expected utility in the contest is then

ui(θi) = ui(θ) +

∫

θ̂

FN−1(θ̂)− c2(θ̂, θ̂) dθ̂

=

∫

θ̂

FN−1(θ̂)− c2(θ̂, θ̂) dθ̂ (2.17)

The last line follows because type θ wins with probability zero. Since s2(ei, θi) > 0, it must be that

c2(si, θi) < 0. Comparing (2.5) with (2.17), it is evident that when higher types are more skilled in

the selection contest, the interim expected utility of all agents and thus the expected utility of the

principal are higher.

Proposition II.4. The more is the selection contest one of skill, the more beneficial it is to hold

it at t = 1. That is, given two selection contests sA(ei, θi) and sB(ei, θi), if s
A
2 > sB2 at every point,

u0(t = 1|sA) > u0(t = 1|sB).

2.4 Conclusion

We consider the decision of a principal that times a selection contest for a group of agents whose

types he does not know. The principal uses the outcome of the contest to choose the agent best

suited to perform a task, and any effort that agents put forth in order to win the contest hurts their

task performance. Agents’ types evolve over time making a later selection more accurate, however

as time passes effort in the contest becomes costlier to the agents’ task performance conditional on

being selected. We examine the determinants of the principal’s decision in light of this inherent

tradeoff.

Considering the timing problem directly, we find that while effort is less costly in earlier con-

tests much of these savings are wiped out by agents simply putting in more effort. Hence it is

not enough for a principal to pick a slightly earlier contest; he must pick one early enough so as

to physically constrain agents from being able to divert resources from the final task. We show

that the benefits of a later contest are only a function of the dispersion of agents’ types and not a

function of the average of their types, which means a later contest is only optimal if the dispersion

of ability is sizeable relative to the average ability. We also show that including more agents in a

later contest is not necessarily beneficial, as doing so trades off drawing a potentially higher type

against the effects of increased competition. Lastly we show that in selection contests in which skill

gives agents an edge, a later contest is more favored because the eventual winner is likely to in-
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cur a smaller cost. Improving all agents’ ability in the selection contest however provides no benefit.

Recasting this problem as one of designing an optimal screening mechanism provides several in-

sights. Namely, due to the fact that competition is costly for the principal, he wants to design

a noisy contest so that the incentive for effort is muted. Along the same lines, when taking the

effects of competition into consideration, the principal wants to design a mechanism that favors

those agents that are “isolated” in the distribution and thus compete away relative little of their

surplus.

The optimal screening mechanism provides a first best benchmark but is not always implementable,

as it requires a principal to commit to actions ex-ante that he may not want to take ex-post. The

timing games on the other hand require no commitment by the principal, as every action he takes is

best conditional on his beliefs. Yet timing games are just a subset of the bigger set of implementable

mechanisms, and an important extension would be to characterize this set and the optimum within

it.

2.5 Appendix

Appendix A

Proposition II.2 and Lemma II.5 follow directly from this lemma:

Lemma II.5. If G(θi) is a mean preserving spread of F (θi) then

∫

θi

G(θi)
N−1(1−G(θi))dθi ≥

∫

θi

F (θi)
N−1(1− F (θi))dθi

Proof. Rothschild and Stiglitz (1970) have shown that if G is a mean preserving spread of F then

there exists a sequence Fi so that F0 = F and Fi → G such that Fn and Fn+1 are separated by

what the authors call a “single Mean Preserving Spread” (single MPS). Our goal is then simplified

to prove the proposition only for F and G separated by a single MPS.
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We restate the Rothschild and Stiglitz (1970) definitions here. It is useful to define the function

s(x) =







α for a < x < a+ t

−α for a+ d < x < a+ d+ t

−β for b < x < b+ t

β for b+ e < x < b+ e+ t

0 otherwise

with

α, β ≥ 0

a ≤ a+ t ≤ a+ d ≤ a+ d+ t ≤ b ≤ b+ t ≤ b + e ≤ b+ e+ t

αd = βe

An example of such a function is depicted in Figure 2.2. When the function s(x) is added to a

probability density function, f(x), it shifts α probability mass down a distance d and β probability

mass up a distance e, and since αd = βe, this preserves the mean.

xa
a+ d

α

t

t

α

b
b+ e

t

t

β

β

Figure 2.2: A single MPS s(x)

A couple of things to note here. Given that probability density functions are defined so g(x) =

f(x)+s(x), it must be that G(x) > F (x) for a < x < a+d+t and G(x) < F (x) for b < x < b+e+t;

for all other x, it must be that G(x) = F (x). Furthermore,

∫ a+d+t

a

G(x)− F (x) dx =

∫ b+e+t

b

F (x)−G(x) dx ≡ ∆
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Thus to go from F to G we first add a mass of ∆ over the interval [a, a+ d+ t] and then take that

mass away over the interval [b, b+ e+ t].

Claim II.2.

∫ a+d+t

a

G(x)N−1(1−G(x))− F (x)N−1(1− F (x)) dx

> (F (a+ d+ t) + ∆)N−1(1− (F (a+ d+ t) +∆))− F (a+ d+ t)N−1(1− F (a+ d+ t)).

and

∫ b+e+t

b

G(x)N−1(1−G(x))− F (x)N−1(1− F (x)) dx

< (F (b) + ∆)N−1(1− (F (b) +∆))− F (b)N−1(1− F (b)).

Proof. Follows from the fact that the function FN−1(1 − F ) is concave in F and maximized at

F = 1
2 .

Intuitively consider maximizing the function
∫
F (θ)N−1(1−F (θ))dθ by adding a mass to a partic-

ular realization of F (θ). Because FN−1(1 − F ) is concave in F and maximized at F = 1
2 the best

place to add this mass is as far left as possible. Conversely, if we were to be removing a mass, the

best place to do so would be as far right as possible.

Putting the inequalities from the claim together, an immediate corollary is that

∫ a+d+t

a

G(x)N−1(1−G(x))−F (x)N−1(1−F (x)) dx ≥

∫ b+e+t

b

G(x)N−1(1−G(x))−F (x)N−1(1−F (x)) dx

which implies that
∫
G(x)N−1(1 −G(x)) dx >

∫
F (x)N−1(1− F (x)) dx. This concludes the proof

of the lemma.

Appendix B

Lemma II.1 is proven below.

Proof. The principal’s expected payoff in this selection contest is given by equation (2.10)

u0 = N

∫ θ̄i

θi

X(θi, t)(1 − F (θi, t))dθi

= N

∫ θ̄i

θi

FN−1(θi, t)(1− F (θi, t))dθi +N

∫ θ̄i

θ̂i

(

X̄(θ̂i)− FN−1(θi)
)

(1 − FN−1(θi))dθi
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It follows from equation (2.14) that ∂θ̂i
∂c̄

> 0, hence it suffices to examine ∂u0

∂θ̂i
. Note that only the

second term is a function of θ̂i.

∂u0

∂θ̂i
= N

[

∂X̄

∂θ̂i

∫ θ̄i

θi

(
1− FN−1(θi)

)
dθi −

(

X̄(θ̂i)− FN−1(θ̂i)
)(

1− FN−1(θ̂i)
)
]

From equation (2.13),

∂X̄

∂θ̂i
= f(θ̂i)

N−1∑

k=0

1

k + 1

(
N − 1

k

)
(
(N − 1− k)FN−2−k(1− F )k − kFN−1−k(1− F )k−1

)

= f(θ̂i)

N−1∑

k=0

(
(N − 1)!

(N − 2− k)!(k + 1)!

)(
1

k + 2

)

FN−2−k(1− F )k > 0

The second line follows from the first through a grouping of terms. We see that ∂X̄

∂θ̂i
is strictly

positive and increases linearly in f(θ̂i). Fixing the function F (θi), the derivative ∂u0

∂θ̂i
is positive

for large values of f(θ̂i) and negative for small values. This is consistent with the idea that the

principal wants to allocate to agents with high virtual types. An increase in θ̂i means that this type

will now lose to people above her instead of tying with them. The larger is f(θ̂i), the lower is that

agent’s virtual type and the better off is the principal in allocating away from her.



CHAPTER III

A Model of Rational Speculative Trade

3.1 Introduction

A major discovery of economic theory is that two traders with a common prior and private infor-

mation about a common value object cannot agree on a price at which to trade. This fact was

initially conceived by Aumann (1976) and sparked a robust literature which continued to find this

result in increasingly complex settings (seminal works include Milgrom and Stokey (1982), Kreps

(1977), and Tirole (1982)). As it turned out, regardless of how one models a market rational agents

simply cannot trade for purely speculative purposes. Tirole states that even in a dynamic setting,

“speculation relies on inconsistent plans and is ruled out by rational expectations”.

The robustness of these “no trade” theorems is quite surprising because in practice speculative

trade is so common. Consider as a salient recent example the market for credit default swaps. In

2008, the notional amount of all the credit default swaps outstanding was $62 trillion dollars while

the market for the underlying assets for which these contracts were written was roughly one twelfth

the size. For every dollar owed by any bond issuer, there were twelve dollars of insurance purchased

for it, hence in the vast majority of trades neither party had exposure to the underlying asset. In

this regard credit default swaps are not unique; many other financial instruments are traded in

volumes that seem significantly beyond what normal gains from trade would produce (see Odean

(1999)).

Starting with Kyle (1985), a myriad of models has emerged offering a variety of behavioral ex-

planations for the existence of what seems to be speculative trade. In this paper I present yet

another explanation, however it is the only one in which agents are fully rational, share a common

58
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prior, and still willingly engage in speculate zero sum trade.

In the model agents all have private types, which in the context of a financial market can be

thought of as an idea for a trading strategy. Agents can enter a market in which they are randomly

matched with other agents and trade. The payoffs from two agents trading are such that a higher

type extracts money from a lower type. The interaction can potentially have no gains from trade

and be purely a zero sum game. A key assumption is that at the start agents do not know their

own types. That is, an agent may have an idea but whether this idea works can only be ascertained

through actually testing it out. As agents learn their types through trading, they may eventually

discover that their idea is not good and exit the market. On the other hand, those who discover

that their idea is profitable remain in the market and continue to make surplus.

In entering a trade an agent has two potential sources of value: the direct payoff and the op-

tion value of information. The presence of the informational benefit can induce an agent to enter a

trade against an opponent who is on average of higher type. This is crucial, since in a steady state

a potential entrant faces a market that is adversely selected against her.

The paper poses two questions. One is whether a steady state with entry exists in the extreme case

of zero sum games. That is, can the informational benefit be strong enough to support a purely

speculative market? To address this, I set up a model with discrete types in which learning is en-

dogenous in the sense that the expected informational content of trades depends on the equilibrium

distribution of the market. I demonstrate that for any parameter values a steady state with entry

can be supported without any gains from trade.

The second question is that of volume. If some trades can occur in the purely speculative set-

ting, what happens to the trade volume as some surplus is introduced? A discrete environment is

not well suited for this inquiry, hence I amend the model so that agent’s types are on a continuum.

For tractability I simplify the learning rule so that information flows to agents at an exogenous rate.

In the continuous setting I show it is still the case that a steady state with entry can always be

supported when there is pure speculation. Then, I show that trading volume grows and is convex

in gains from trade, a phenomenon I refer to as the speculative multiplier. The addition of surplus

induces slightly lower types to remain in the pool and their presence becomes self-reinforcing.
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The paper proceeds in four sections. Section 3.2 introduces the discrete model with endogenous

learning, Section 3.3 amends the model to a continuum of types and exogenous learning, and Section

3.4 concludes.

3.2 Model with Discrete Types

Time passes discretely in periods (..., t − 1, t, t + 1, ...). Each period a measure H of high type

agents and L of low type agents are born and have the option to enter the existing pool. Those

that choose not to enter remain out of the pool and receive a payoff of zero from that point on.

Agents that enter are randomly matched with another participant in the pool and their interaction

results in payoffs ui(θi, θj), in which θi and θj are the agents’ types. An agent’s lifetime utility

is Ui =
∑

t ui(t). Each agent observes her payoff immediately after being matched and decides

whether to remain in the pool for another round or exit. If she chooses to remain, the agent lives

until the next round with probability 1− δ and exits exogenously with probability δ.

Each agent is initially uninformed about her type and holds the common prior that she is a high

type with probability H
H+L

. If an agent enters the pool, she can learn about her type indirectly by

observing the outcomes of her interactions and using Bayes rule to update beliefs.

I employ a steady state analysis, in which the makeup of the pool remains constant from one

period to the next, both in the measure and distribution of agents. Let Hs and Ls denote the

steady state measures of high and low types, respectively. In steady state the agent is uncertain

only about her own type and perfectly anticipates the distribution of types in the pool.

The payoffs from the meeting of two agents are as follows:

ua(a, b) =







0 a = b

x a > b

−x a < b

(3.1)

When two agents are of the same type, the payoff to both is zero; when one agent has a higher

type then she extracts x > 0 from the agent with the lower type. Every meeting between agents is
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zero-sum and consistent with purely speculative trade.

The requirement that the outcome of any meeting is a function only of agents’ types distinguishes

this model from a typical model of dynamic matching and bargaining, in which agents’s equilibrium

payoffs depend also on the distribution of types in the pool. For example, in a bargaining model in

which a buyer has unit demand her willingness to pay in any round is a function of her expected

future offers, hence the distribution of agents affects her bargaining outcome. In contrast, agents in

the model presented here should be thought of as risk-neutral speculative traders whose decision on

whether to purchase an asset for a particular price is independent of previous or future purchases.

3.2.1 Steady State Equilibrium

A central question of this paper is whether a steady state can be supported in which agents make

the initial decision to enter. It is not immediately clear that such an equilibrium can be sustained

given the fact that the steady state pool is selected adversely against potential entrants. This is

because only those agents that are sufficiently optimistic about their type remain in the pool. Still,

I will find that the informational benefits of entry negate the initial expected trading losses.

It is useful to track agents’ likelihood ratios rather than beliefs. With payoffs given by (3.1),

the likelihood ratio of being a high type from one observation of payoff u is

λ(u) =







0 u = −x

Hs

Ls
u = 0

∞ u = x

(3.2)

and the likelihood ratio of a history of trade outcomes (u1, ..., uT ) is

Λ(T ) = λ0

T∏

t=1

λ(ut),

in which λ0 = H
L
. With any outright win (u = x) or outright loss (u = −x) an agent learns her

type with certainty. In the case of a tie (u = 0), the agent makes a statistical inference and the

likelihood λ(u = 0) = Hs

Ls
plays an important role in the formulation of the equilibrium. If Hs > Ls

then a tie is good news in that an agent will be more convinced that she is a high type; conversely

if Hs < Ls then a tie is bad news. If it is the case that agents are exactly indifferent to entering for
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the first time, as will shortly be shown to be the case, this distinction determines whether agents

will remain or exit if their first market interaction is a tie. This, in turn, determines the equilibrium

inflow and outflow patterns that characterize the equilibrium.

Lemma III.1. In any steady state equilibrium with entry, it must be that EU0 ≡ Et=0[Ui] = 0.

Proof. This is an accounting exercise. Since ex-ante all participants are identical and any interaction

between any two participants is zero sum, no agent can expect to make positive surplus.

That in any equilibrium with entry agents are indifferent about entering at time t = 0 is important

because it implicitly defines the threshold likelihood that agents use for all entry/exit decisions, not

just the initial one.

Lemma III.2. The likelihood Λ(T ) is sufficient for the entry/exit decision at time T . Furthermore

in a steady state equilibrium with entry, it is optimal for each agent to exit at time T if and only if

Λ(T ) < λ0.

Proof. The sufficiency follows from the fact that future payoffs depend only on one’s expected

type and not on the specific history of signals by which this expectation was constructed. That

a threshold policy is optimal is a standard result for this stationary problem, and that λ0 is the

threshold likelihood follows from Lemma III.1.

Now, let us consider the two cases in which ties are either good or bad news in more detail. Since

the steady state measures Hs and Ls are equilibrium objects, the approach is to conjecture an

equilibrium in which, say Hs > Ls, and then infer what this implies about parameters H,L, and δ.

I will show that this approach partitions the parameter space.

Case 1: When Ties Induce Optimism, Hs > Ls

Conjecture an equilibrium with entry in which Hs > Ls. Let ρ = H
H+L

and ρs = Hs

Hs+Ls
be

the proportion of high types in the inflow and in the steady state pool, respectively. As previously

argued, agents only voluntarily exit after a loss; a win or a tie both increase an agent’s likelihood

ratio Λ. Since high types never lose, in steady state

H = δHs (3.3)
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The left hand side is the inflow and the right hand side the outflow, with high type agents leaving

only exogenously. Low types enter and choose to exit only upon their first loss. The steady state

condition for low types is

L = (δ + (1 − δ)ρs)Ls (3.4)

The right hand side describes the outflow and is comprised of those that exit exogenously and of

those who do not but who meet a high type and lose. These two equations then imply a unique

steady state Hs and Ls. Given this steady state, it must be verified that entry in period zero is

optimal.

EU0 = xρ
(
(1 − ρs) + (1− δ)(1 − ρs) + (1− δ)2(1− ρs) + ...

)

− x(1 − ρ)
(
ρs + (1− δ)(1 − ρs)ρs + ((1 − δ)(1− ρs))

2ρs + ..
)

= x

(
ρ(1 − ρs)

δ
−

(1 − ρ)ρs
1− (1− δ)(1− ρs)

)

(3.5)

Above, an agent with a high type receives a payoff x in every period in which she participates and

meets a low type. A low type will lose x at most once and only if she does not exogenously exit

prior to meeting a high type.

Lemma III.3. There exists an equilibrium with steady state entry in which Hs > Ls.

Proof. Follows from plugging (3.3) and (3.4) into (3.5) and obtaining EU0 = 0. This implies not

only that the initial decision is a best response but also that the threshold likelihood is Λ∗ = λ0,

which rationalizes the decision to remain in the pool conditional on observing a tie.

Lastly, one must identify the set of exogenous parameters L,H, and δ for which Hs > Ls. Using

equations (3.3) and (3.4), obtain

Hs

Ls

> 1 ⇔
2δH

−H + δL+
√

4δ2HL+ (H − δL)2
> 1 (3.6)

By inspection Hs

Ls
≥ 0, is increasing in H , decreasing in L, and decreasing in δ, all monotonically.

Hence there is a plane in H × L × δ space that separates the set for which inequality (3.6) holds

from the set for which it does not hold.
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Case 2: When Ties Induce Pessimism, Hs < Ls

Next conjecture an equilibrium with entry in which Hs < Ls. An agent’s likelihood ratio now

decreases after having observed a tie, forcing an agent to exit after her first trade unless she wins.

Taking this behavior as given, the steady state condition for high types is

H = H(ρs + (1− ρs)δ) + δ(Hs −H) (3.7)

There are two kinds of high types in the pool: the newest cohort and the rest. Members of the

newest cohort can exit either if they meet another high type or exogenously. The rest of the high

types, by virtue of having won in their first trade, have discovered their type and will remain until

exiting exogenously. Low types either tie or lose upon entry, hence every low type that enters

immediately leaves the next period. Thus

L = Ls (3.8)

With the steady state thus defined by equations (3.7) and (3.8), once again it needs to be verified

that initial entry is a best response.

EU0 = xρ((1 − ρs) + (1− ρs)
2((1 − δ) + (1− δ)2 + ...))− x(1 − ρ)ρs

= x

(

ρ(1 − ρs)

(

1 +
(1− δ)(1− ρs)

δ

)

− (1 − ρ)ρs

)

(3.9)

When an agent is a high type, if her first trade is a win then she stays in the pool until she exits

exogenously, otherwise if her first trade is a tie she exits and receive a payoff of zero. When an

agent is a low type, she trades only for one period and only loses if she meets a high type.

Lemma III.4. There exists an equilibrium with steady state entry in which Hs < Ls.

Proof. As in Lemma III.3, plugging (3.7) and (3.8) into (3.9) and obtaining EU0 = 0 suffices.

Using equations (3.3) and (3.4), the set of parameters for which Hs < Ls is given by the condition

Hs

Ls

< 1 ⇔
H − L+

√

H2 − 2HL+ 4HL
δ

+ L2

2L
< 1 (3.10)
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In this parameter space, it is still the case that Hs

Ls
≥ 0, is increasing in H , decreasing in L, and

decreasing in δ, all monotonically. Hence equation (3.10) is also a hyperplane that partitions the

parameter space. This leads to the section’s main proposition.

Proposition III.1. For all parameters L > 0, H > 0, and 0 < δ < 1, there exists a steady state

equilibrium with entry. Furthermore, the steady state is generically described either by equations

(3.3) and (3.4) or (3.7) and (3.8).

Proof. First, algebraic manipulation reveals that the left hand side of both (3.6) and (3.10) is

the same hyperplane, thus except for the hyperplane itself, every point in the parameter space

satisfies exactly one of these inequalities. Lemmas III.3 and III.4 ensure the existence of a steady

state equilibrium for parameters satisfying (3.6) and (3.10), respectively. For parameters on the

hyperplane, both types of equilibrium can be supported since these parameters induce Hs = Ls,

rationalizing either staying or exiting after the first tie.

This result demonstrates that a wholly speculative market can emerge in a setting in which agents

have no productive reason to interact. Since it is specifically the benefit of information that induces

an agent to enter an adversely selected pool, it is important for the robustness of the result that

the process by which the agent obtains information is endogenous to the model. That is, the rate

at which the agent learns his type in equilibrium depends on the parameters of the problem, yet

regardless of the parameters an equilibrium with entry is supported.

It is well known that dynamic models with endogenous learning are notoriously intractable and

to alleviate this the current model imposes a structure with discrete types and deterministic out-

comes of agents’ interactions. While this provides the requisite tractability, the discreteness of the

problem hamstrings the study of some comparative statics. In particular, an important question is

how do gains from trade affect the trading volume? As it turns out, the current model is not very

well suited for such a question.

To see why, imagine for example that Hs < Ls so that ties are bad news. Imagine also that

the surplus from the meeting of two agents is some ε > 0. If this surplus ε is small, it will not be

enough to convince an agent whose first observation is a tie to remain in the pool. Hence, when

gains from trade are small they have no effect on agents’ behavior and consequently on the equi-

librium trading volume. Once ε is large enough, an agent observing her first tie will be convinced

to remain in the pool and thus the composition of the steady state will jump discretely. However,
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the analysis of this threshold value of ε is quite cumbersome.

I instead amend the original model to allow for a continuum of types, thus resolving the prob-

lem of discrete jumps in the policy function of the agents. However, in order to keep the model

tractable I must simplify the learning rule.

3.3 Model with a Continuum of Types

The model in this section departs from the one in the previous section in three ways. First, now

the potential pool of entrants has measure normalized to one and each agent draws her type from

continuous distribution F (θ). Second, conditional on entering, agents learn their type perfectly

after the first interaction regardless of the outcome of that interaction. In this sense information

acquisition is exogenous. And third, I build into the model the possibility of gains from trade. Let

the payoffs from the meeting of two agents be

ua(a, b) =







1
2ε a = b

x+ 1
2ε a > b

−x+ 1
2ε a < b

(3.11)

in which ε is the gain from trade between any two agents. In order to ensure that in any match the

loser gets a negative payoff, assume that 0 ≤ 1
2ε < x. Note that for ε = 0 the payoffs are identical

to that in equation (3.1).

3.3.1 Steady State Equilibrium

Again I conjecture a steady state with entry, follow the implications of this conjecture, and at the

end confirm that entry in fact is optimal. Let F s(θ) be the steady state mass with a type below

θ.1 There is a threshold trader θ̂ who, when informed of her type, is indifferent between exiting or

1Technically F s is not a probability distribution because the pool accumulates a measure of agents greater than
one.
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continuing. That is, θ̂ solves

0 =

∫

θ

uθ̂(θ̂, θ) dF
s(θ)

= (x+
1

2
ε)F s(θ̂) + (−x+

1

2
ε)(1 − F s(θ̂))

F s(θ̂) =
x− 1

2ε

2x
≡ F̂ s (3.12)

This identifies the proportion of the time that the threshold type needs to win in the steady state

pool in order to be indifferent. For instance, when ε = 0 and there are no gains from trade the

threshold type needs to win exactly half of the time. As gains are introduced, the threshold type

can tolerate winning less often.

Next, if θ̂ represents the threshold it must be that all types below exit after the first round and all

types above remain until exiting exogenously. The steady state conditions are that

F s(θ) =







F (θ) θ ≤ θ̂

1
δ
(F (θ)− F (θ̂)) + F (θ̂) θ > θ̂

(3.13)

The total mass in the steady state pool is thus

M ≡ F (θ̂) +
1

δ
(1− F (θ̂)) (3.14)

Threshold type θ̂ wins only when matched with new entrants, which yields

F̂ s =
F (θ̂)

F (θ̂) + 1
δ
(1− F (θ̂))

Plugging in equation (3.12) and rearranging, the equilibrium threshold type θ̂ is identified as a

function of the parameters of the problem.

F (θ̂) =
x− 1

2ε

x− 1
2ε+ δ(x+ 1

2ε)
(3.15)

Note by inspection that ∂F (θ̂)
∂ε

< 0, thus gains from trade induce lower types to remain in the pool.

The threshold type is sufficient to describe the equilibrium, and now as in the previous section we

confirm that conditional on θ̂ from (3.15) initial entry is a best response.
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Proposition III.2. For any ε ≥ 0 and any distribution F , there exists a steady state equilibrium

with entry characterized by threshold type θ̂ from equation (3.15).

The proof demonstrates that EU0 ≥ 0 for all ε ≥ 0. See Appendix A for details. With Proposition

III.2 verifying that equation (3.15) in fact characterizes an equilibrium, I explore the comparative

static for which this model was developed. Specifically, the question is not simply whether trading

volume grows with gains from trade but whether it does so disproportionately. Intuitively, including

gains from trade has the direct effect of inducing more traders to remain in the pool keeping fixed

the steady state distribution. There is also an indirect effect, in that lower types remaining in the

pool begets more lower types doing the same. I can now formally show that this is the case, and

that adding gains from trade involves a multiplier effect.

Proposition III.3. (Speculative Multiplier) Trading volume is increasing and convex in gains

from trade. That is,

dM

dε
> 0 and

d2M

dε2
> 0.

Proof. Follows directly from equations (3.14) and (3.15).

3.4 Discussion

This paper provides a bridge between the empirical observation that many trading markets are

speculative and the theoretical result that rational speculators should not transact with one an-

other. The insight is that aside from the current period speculative payoff, participating in a trade

gives an agent information about her ability and this information has value in the continuation

game. An agent that considers entry must weigh the expected informational benefits of the first

trade against the expected cost of entering an adversely selected pool. I demonstrate that even

when the informational content of a trade is endogenous to the equilibrium, in a purely speculative

environment a steady state with entry is supported for all parameter values. I also show that as

surplus is introduced into the market, it increases trading volume at an increasing rate.

In Proposition III.1, the existence of an equilibrium with entry is obtained for a specific endogenous

learning rule. A different exogenous learning rule still yields the existence of such an equilibrium in

the continuous model. I conjecture that with any information structure in which traders statisti-

cally learn from trades, an equilibrium with entry can be supported with no gains from trade, and

demonstrating this formally would be a valuable addition to the analysis.
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Another important extension is to include leverage into the model. Agents that can publicly show

their ability through previous earnings are able to cheaply borrow money to finance more trading.

Whether the existence result still obtains with leverage is unclear. On one hand, when higher types

can leverage the market for a potential entrant is more adversely selected. On the other hand, the

payoff to finding out that one is a high type also increases. These two effects cancel out in the

models presented in this paper and I conjecture that this will continue to be the case when leverage

is introduced.

On the empirical front, the model predicts that older cohorts on average should have higher types.

An agent remains in the market only if her likelihood has not dipped below the threshold in the

past, and the longer the past the more difficult it is to achieve this. Anecdotally, this seems to

match the makeup of many trading floors on which the older traders are on average more highly

skilled than the younger ones. Along the same lines, the model makes a prediction about hazard

rates. Younger cohorts hold beliefs that have higher variance, thus they are more likely to exit in

the future than are older cohorts who are quite certain of their ability. This also is true on trading

floors, where a trader with one year of experience is much less likely to still be on the job two years

later than a trader with ten years experience. Finally, a sharper prediction of the model is that the

frequency of losses should predict exit beyond the dollar amount. If the learning story is true, an

agent that flips a coin once and loses $10 should be less likely to exit than one that lost ten coin

flips in a row for $1 each. Whether empirically this is the case in financial markets is something

that remains to be tested.

3.5 Appendix

Appendix A: Proof of Existence of a Steady State Equilibrium with Entry for a Con-

tinuum of Types

Proposition III.2 For any ε ≥ 0 and any distribution F , there exists a steady state equilibrium

with entry characterized by threshold type θ̂ from equation (3.15).

Proof. It needs to be demonstrated that EU0 ≥ 0. An agent anticipates that if her type is below θ̂

she will trade only once and if her type is above θ̂ she will continue to trade until exiting exogenously.
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Her ex-ante expected utility is

EU0 =

∫

θ<θ̂

(
F s(θ)

M

(

x+
1

2
ε

)

+
1− F s(θ

M

(

−x+
1

2
ε

))

dF (θ)

+
1

δ

∫

θ≥θ̂

(
F s(θ)

M

(

x+
1

2
ε

)

+
1− F s(θ)

M

(

−x+
1

2
ε

))

dF (θ)

Here, F s(θ)
M

is the probability density in the pool and probability of a tie has zero measure and is

omitted. Plugging equations (3.13) and (3.14) into the above and simplifying obtains

EU0 =
εx

δ
(
1
2ε+ x

)
+
(
x− 1

2ε
)

Since by assumption x ≥ 1
2ε, the expression above is positive and exactly equals zero when ε = 0.

Hence, an equilibrium with entry can be supported even in the case of no gains from trade.
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