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ABSTRACT 

Particles in particle-laden flows are subject to many forces including turbulent 

impaction, Brownian, electrostatic, thermophoretic, and gravitational. Our scaling 

analysis and experiments show that thermophoretic force is the dominant deposition 

mechanism for submicron particles.  

One common example of industrial devices in which thermophoretic particle 

deposition occurs is exhaust gas recirculation (EGR) heat exchangers used on diesel 

engines. They are used to reduce intake charge temperature and thus reduce emissions of 

nitrogen oxides. The buildup of soot particles in EGR coolers causes a significant 

degradation in heat transfer performance (effectiveness) generally followed by the 

stabilization of cooler effectiveness (no more degradation) for longer exposure times.  

To investigate the initial sharp reduction in cooler effectiveness, an analytical 

solution, computational one dimensional model and an axi-symmetric model are 

developed to estimate particulate deposition efficiency and consequently the overall heat 

transfer reduction in tube flows. Internal flows (tube/channel) are employed in this 

dissertation to resemble real EGR coolers. The analytical solution is employed for a 

parametric study and sensitivity analysis to highlight the effect of critical boundary 

conditions. The computational models are developed to solve the governing equations for 

exhaust flow and particles. Model output including predicted mass deposition along the 

tube and the tube effectiveness drop has been compared against experiments conducted at 

Oak Ridge National Laboratory with good accuracy. CFD models improve the output 

compared to the analytical solution while the axi-symmetric model is significantly closer 

to the experiments due to accurate calculations of near wall heat and mass fluxes.  



xvii 

Mechanisms responsible for the cooler effectiveness stabilization in long 

exposure times are not clearly understood. To address the stabilization trend, a 

visualization test rig is developed to track the dynamics of particulate deposition and 

removal in-situ, and a digital microscope records any events. Interesting results are 

observed for flaking/removal of the deposit layer at various boundary conditions. In 

contrast to conventional understanding, large particles (tens of microns) were also 

observed in diesel exhaust. Water condensation occurring at a low EGR cooler coolant 

temperature resulted in a significant removal of deposit in the form of flakes while 

thermal expansion alone did not remove the deposit layer.  
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CHAPTER 1 

INTRODUCTION 

There are many applications involved in understanding of nanoparticle-laden 

flows including gas cleaning, prevention of particle deposition on silicon wafers of 

semiconductors, pharmaceutical applications, and heat exchanger fouling (accumulation 

of material on solid surfaces i.e. particle deposition). Depending on the purpose of the 

application, particle deposition is desired (gas cleaning) or unwanted (microelectronics 

and pharmaceutical applications, and heat exchangers). Therefore, particle transport 

modeling helps to understand the physics and the process of particle deposition so that it 

can be prevented (mitigated) or enhanced depending on the application. 

Although developed models in this study are general for particle transport in 

internal flows and can be used for similar applications, we focused on studying of the 

particle transport in heat exchangers. One common example of heat exchanger fouling is 

in exhaust gas recirculation (EGR) coolers used in diesel engines with the purpose of 

emission reduction. In the following sections, the aim of EGR cooler usage and the 

problem associated with them is introduced and plans are discussed on how to tackle the 

problem and propose solutions. 

1.1 Exhaust Gas Recirculation (EGR) Cooler Fouling 

Petroleum fuels are vastly used in the U.S. transportation system. Beside the 

massive consumption of these fuels, vehicles produce CO2 emissions that have a drastic 
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effect on global warming. While diesel engines are very efficient and consequently 

produce less CO2, one of their main shortcomings is their high level of nitrogen oxides 

(NOx) emissions. Exhaust gas recirculation (EGR) has proven to be an effective way of 

reducing NOx formation in diesel engines; however the performance of the EGR system 

has been shown to significantly degrade with particulate deposition (fouling). The aim of 

this thesis is to study the mechanisms of particulate deposition and removal in EGR 

coolers and to find ways to mitigate or prevent deposition and/or enhance removal 

mechanisms. 

In practical engine systems, a portion of exhaust gas, known as EGR, is returned 

to the engine and mixed with incoming fresh air.  Through the use of EGR, peak in-

cylinder and flame temperatures can be lowered, leading to drastically lowered engine 

out NOx emissions. Within the EGR cooler, engine coolant is used to cool the exhaust 

gas, which enhances the reduction of NOx emissions. So, the presence of cooled surfaces 

will cause soot deposition and condensation of hydrocarbons and acids.  The buildup of 

deposits in EGR coolers causes significant degradation in heat transfer performance, 

often on the order of 20-30% and accordingly clogging flow passages.  Deposits also 

increase pressure drop across coolers. However, future emission standards will require 

increased EGR flow rates and reduced temperatures, requiring particulate deposition 

within the EGR cooler to be reduced or prevented so that the engine can meet future 

emission standards. 

It is unlikely that EGR cooler deposits can be prevented from forming when soot 

and HC are present. It is generally felt that dry fluffy soot is less likely to cause major 

fouling than heavy wet soot.  Experimental data indicates that majority of deposited mass 

is due to particulates and only a small fraction of hydrocarbons condense on tubes [1].  

Most current diesel engines have a single EGR cooler, using engine coolant to 

cool the EGR.  Some engines have more than one cooler; this is primarily driven by the 

amount of cooling required and the package space available.  Some manufacturers have 
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designed engines to have more effective cooling by use of a second cooler and a second 

cooling system (FORD 6.7L diesel engine).  Here, coolant can be supplied at 40-50°C so 

that the EGR outlet temperature can be reduced further than could be done with the 

normal cooling system.  

In the following sections (extracted from [1]), we discuss what the deposits are, 

characterization of the deposit build, and deposit stabilization and recovery.  

1.2 What Are Deposits 

The deposits in the EGR cooler form a layer on the cooled surfaces, Figure 1.1 

[2].  Here, deposits are shown after 200 hours of an EGR cooler fouling engine 

dynamometer test.  The figure shows the inlet of the first EGR cooler.  The deposits are 

black, and in this case fairly dry and fluffy in appearance.  There is some evidence of 

flaking of the deposits, although it cannot be said with certainty whether this occurred 

while the engine ran or during handling and cutting. 

Cooler deposits can also have a wet, oily appearance or in some cases can be hard 

and brittle in character.  These differences evidently arise depending on the relative 

quantities of elemental soot particulate matter (PM), hydrocarbon (HC), acids, and 

perhaps the time-temperature history.  These issues will be discussed in more detail in 

following sections. 

 

 
Figure 1.1 – Deposits at EGR cooler inlet following 200 hour engine fouling test [2] 
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Lepperhoff and Houben [3] note that engine deposits (general deposits, not diesel 

EGR coolers specifically) are a combination of organics including carbon, HC, oxygen, 

and nitrogen, along with inorganics including sulfur and traces of barium and calcium. It 

is useful to examine the constituents of these deposits in more detail. 

1.2.1 Soot 

Deposits contain soot from the exhaust.  The soot coming out of the engine is 

“elemental carbon”; that is, mainly carbon.  It generally consists of small (20-30 nm) 

roughly spherical particles, agglomerated into larger particles. Maricq & Harris [4] show 

that diesel soot agglomerate size ranges about 20-300 nm (0.02-0.30 μm). 

Many studies of diesel PM include measurement of “SOF” or soluble organic 

fraction.  For EGR coolers, we must understand how this is measured.  Most literature on 

PM includes the steps of mixing exhaust with dilution air and cooling to room 

temperature.  During this process, some of the HC and sulfate in the gas will condense 

onto the surface of the soot particles.  However, this does not generally happen to the soot 

arriving in hot exhaust gas at the EGR cooler inlet.  Thus, “SOF” probably is not a large 

part of the soot in the EGR cooler unless the HC has separately condensed.  Nonetheless, 

hydrocarbons associated with the deposits are sometimes incorrectly called SOF. 

1.2.2 Hydrocarbons (HC)  

Diesel exhaust contains a wide range of hydrocarbon and hydrocarbon-derived 

species. These include unburned and partially burned fuel and lube oil. Some of these 

compounds can condense on cooler surfaces. Condensation occurs when the surface of 

the cooler is below the dew point for the partial pressure of the compound. Thus, heavier 

species and higher concentration species will condense most. 



5 

Although some authors such as Lepperhof argue that a layer of HC on the surface 

is essential to act as a “glue” causing soot to stick to the surface, most authors agree that 

for particles as small as diesel soot, the soot sticks to the surface due to Van der Waals 

forces, whether or not there is HC present [5].  Nonetheless, it is clear that condensed HC 

will change the character of the deposit layer. 

Hoard et.al. [2] analyzed the extractable fraction of the deposit HCs.  Figure 1.2 

shows the relative amounts (nanograms of each component per gram of deposit sample) 

of C10-C17 alkane, C18-C24 alkane, and light and heavy aromatics extracted from EGR 

cooler deposits.  These are generally in the range of the heaviest fraction of diesel fuel, or 

the typical range of lube oil. Note that there are two EGR coolers in series in these data; 

the figure shows samples from inlet and outlet of each cooler. 
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Figure 1.2 –  Speciation of the extractable fraction of HC from EGR cooler deposit – 

Data from Hoard et.al. [2] 

1.2.3 Acids 

The relatively low temperature cooler surfaces can cause condensation of acids 

and water from the exhaust.  McKinley [6] gives an excellent account of sulfuric acid 
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condensation.  For typical fuel sulfur levels, the dew point for sulfuric acid is in the range 

of 100°C – i.e., close to normal operating temperature for an EGR cooler.   

Girard et.al. [7] collected sulfuric acid condensate from an engine EGR system.  

With EGR cooler outlet temperature at 103°C, they collected 20-24 ml/hr liquid 

condensate; the condensate was 1.1-1.3% H2SO4. 

Similarly, the dew point for nitric acid is around 40°C – potentially an issue for 

cold-coolant operation or for future engines with low temperature secondary EGR 

coolers.  Organic acids such as formic and acetic acid can also be found in exhaust 

condensate. 

Such acid condensation is of course a concern in material choices; typically a high 

grade stainless steel is required to resist the corrosive effects of these acid condensates.  

Stolz et.al. [8] show corrosion test results indicating that 904 stainless has better 

corrosion performance than 304 or 316L. 

In addition, acids are known to contribute to chemical reactions with 

hydrocarbons, leading to hard deposits.  It is possible that acids play a role in aging of 

deposits, although there does not seem to be any literature confirming this mechanism. 

Although hydrocarbon and acids are important, it is shown that the majority of 

deposit is dry fluffy soot particles. Therefore, in this thesis, only soot deposition is 

considered to model the formed deposit. There is a developed model in  

Appendix A for condensation of hydrocarbons and acids in EGR coolers but it was not 

hooked to the soot deposition model. A comprehensive description when the HC 

subroutine is hooked to the soot deposition model is presented in [9] .  

1.3 Characteristics of Deposit Build 

Many authors have presented data on cooler effectiveness degradation with 

deposits.  An example of cooler degradation is shown in Figure 1.3 ([2]).  Here, a 2008-
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level diesel engine having two EGR coolers in series is run on a three mode cooler 

fouling test, and the cooler effectiveness is plotted versus time.  In the curve, the cooler 

effectiveness drops on a roughly exponential curve, reaching a steady state value at lower 

effectiveness than clean.  At the condition shown, effectiveness drops roughly 15-20% 

from clean to dirty. 

 

 

Figure 1.3 –  EGR cooler system effectiveness versus engine running hours, Data from 
Hoard et.al. [2]  

In addition to the data shown in above, Banzhaf and Lutz [10] show a 15% 

change in effectiveness over a 200 hour engine deposit test of a tube-in-shell “winglet” 

style cooler. Majewski and Pietrasz [11] report on a heat exchanger used to cool engine 

exhaust downstream of an oxidation catalyst.  After 100 hours of operation the cooler 

heat transfer resistance Rf stabilized at 0.0053 m2K/W. 

Stolz et.al. [8] state that deposit build is worst at low speeds and loads.  They also 

state (without showing data) that at typical driving conditions there is a self-cleaning 

process caused by abrasive high speed gas.  They found vehicle aged coolers had deposit 

thickness 0.1-0.2 mm with no significant difference between inlet and outlet of the 
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cooler.  Effectiveness loss is 15% for severe conditions, improving to 8-10% loss after 

recovery.  They state that gas side pressure drop increases 5% with deposits. 

Ewing et.al. [12] exposed simple straight tubes, as EGR cooler surrogates, to 

diesel exhaust.  The tubes were then analyzed with neutron radiography as a non-invasive 

technique to measure the deposit thickness inside the tubes.  Figure 1.4 from that paper 

shows the deposit thickness along the tube length (0 is the tube inlet) for a condition at 

Reynolds number = 7000 (turbulent flow).  The deposit is thickest at the inlet.  There is 

some wave-like structure to the deposit along the tube, perhaps indicating some deposit-

relocation mechanism similar to sand dunes. 

 

 
Figure 1.4 –  Deposit thickness along a cooler tube ([12]) 

Stolz et.al. find no difference in deposit depth front to rear, while Ewing et.al. 

found a strong difference. It may be related to the test time.  Ewing et.al. ran tests of 1, 2, 

and 5 hours duration – i.e., rather short times although Stolz ran 200 hours.  If deposits 

initially are heavier at the front, the deposit layer will create an insulation effect, tending 

to reduce deposition rate as the deposit builds. Thus, the gas arriving downstream is 

hotter and dirtier, so the deposit will gradually even out over a long time. 

Lepperhoff [3] measured deposit mass per unit area, deposit thickness, and heat 

transfer coefficient during 80 hours of deposit accumulation in a simulated EGR cooler 
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tube in diesel exhaust.  He shows that the deposit thickness grows rapidly until reaching a 

steady value at about 20 hours. The heat transfer coefficient drops rapidly, stabilizing 

about the same time that the deposit thickness does.  However, the deposit mass per unit 

surface area continues to increase over the 80 hour test. This seems to indicate that the 

heat transfer loss is related to properties other than the deposit mass. It is assumed that 

deposit porosity and density may change over time, with effect on heat transfer. 

1.4 Stabilization and Recovery 

It is common for EGR cooler effectiveness to degrade rapidly at first, then 

approach a steady state value exponentially. Such behavior can be seen in Figure 1.3 and 

in a large number of publications.  The mechanisms leading to this stabilization are not 

clearly understood and there is no published article discussing deposit removal of sub-

micron particles in the sub-sonic flow range. There may be deposit removal mechanisms, 

or it may be that the rate of deposition decreases or that the deposit layer thermal 

properties change as deposits build. It is not easily possible to determine whether either 

or both of these mechanisms is the reason, but in any case the exponential approach to 

steady thermal performance is typical of many heat exchanger systems ([13]). 

Another behavior, rarely reported, is cooler recovery1 – that is, a sudden 

improvement in thermal performance.  Banzhaf & Lutz [9] state without showing data 

that “load changes between the operating points helped to reduce deposits which had 

been formed during the previous steady state operation”. Andrews et.al. [14] report that 

particulate can store and be blown out of exhaust pipes and mufflers.  Presumably, 

similar effects can happen with soot in EGR coolers.  There is little real data on this 

recovery effect, and the little that exists is not very clear.  This is a topic that seems to 

need more research. 

                                                 
1 We use the term recovery to indicate at least partial recovery of clean cooler performance, and avoid the 
term regeneration since that is easily confused with diesel particulate filter (DPF) regeneration. 
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Bravo et.al. [15] developed a cooler aging cycle.  They report (without showing 

data) that coolers are sometimes cleaned during transient operation.  In a separate 

experiment [16] they tried a strategy that opens the EGR valve during decelerations in 

order to generate a large flow velocity in the cooler, in hopes that would blow deposits 

out of the cooler.  The strategy was not successful, and they found no design or strategy 

that clearly improves the self-cleaning capability of the coolers. 

Charnay et.al.  [17] tested fouling of EGR coolers on a test cycle.  They note that 

during steady idling conditions with EGR inlet temperature 120°C and engine coolant 20-

25°C an oily layer built up in the EGR cooler.  This layer disappeared during the 

following, higher speed/load/temperature mode of the test cycle.  They report that the 

EGR cooler effectiveness recovered near original levels after engine shut down and 

restart.  They hypothesize that a liquid layer, including water, may loosen the deposit 

adhesion during engine-off periods leading to an effectiveness recovery.  Detailed data on 

this is not included in the paper. 

Epstein [13] notes that most people assume there is a deposit particle removal 

process associated with the shear forces of gas flow over the layer.  This is not a lifting 

force, but a force trying to “roll” the particle downstream.  However, note that if an EGR 

cooler is tested on a test cycle with varying flow rates, and deposits build up then the 

highest flow rate must not be enough to remove the deposits completely.  Otherwise, the 

deposits would not accumulate.  The presence of heavy deposits in used EGR coolers 

implies that normal vehicle operation does not generate high enough flow (and thus shear 

velocity) to remove most of the deposits. 

Although there is not a clear indication in the literature on what mechanisms may 

be responsible for self-cleaning of EGR coolers, the following potential mechanisms are 

suggested.  Experiments should be run to determine which mechanisms are active. We 

address most of the following in chapter 5 of this thesis based on a series of visualization 

experiments that we designed and conducted. 



11 

 Blow Out – deposits accumulated under some conditions might blow off 

the surface at another, higher flow condition. This would be related to the 

shear force on the surface due to gas flow. 

 Flaking – deposits might lose adhesion to the surface and flake off.  This 

could be due to a factor reducing the strength of adhesion, such as water, 

liquid HC, and/or acids. 

 Cracking – If the deposits harden with time, then the deposit layer might 

crack due to thermal or other stresses, causing portions to break off 

 Evaporation or Oxidation – it is possible that some of the deposit material 

might be semi-volatile, and some operating conditions might raise 

temperature high enough for these components to evaporate.  Oxidation of 

soot layers would require temperature above 500°C or so, unlikely to 

occur in an EGR cooler.  For EGR valves, it is known that “hot side” 

locations (upstream of the EGR cooler) allow the EGR valve to reach 

temperatures where deposits are cleaned periodically. 

 Wash Out – heavy condensation of water, HC, and/or acid might form a 

liquid film that would carry deposits out of the cooler 

 Big particles bombardment - big particles or flakes coming from the 

cylinders might hit the formed deposit layer and cause the deposit removal  

Each of these mechanisms has been briefly suggested in the literature, but there is 

no previous experimental data to show any are actually effective, nor how to intentionally 

create appropriate conditions to cause self-cleaning. 

1.5 Dissertation Overview 

The objective of this thesis is to study the deposition mechanisms of exhaust soot 

particles in EGR coolers and propose possible removal or recovery methods that are 
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applicable for real EGR coolers. Applicable methods for EGR coolers recovery reduces 

the cost of EGR coolers and helps auto-manufacturers meet future standard emissions. 

The document is organized as follows: 

In chapter 2, the scaling analysis of different deposition mechanisms for small 

soot particles in exhaust flows are discussed and described in detail. Additionally, 

different removal mechanisms from literature for particles larger than soot particles are 

studied to see if they can potentially be responsible for removal in EGR coolers. 

Dominant deposition mechanism is understood for EGR coolers in this chapter but 

existing removal mechanisms for larger particles did not seem to be the reason for 

removal of small soot particles in EGR coolers.  

Since EGR coolers are mainly shell-and-tube heat exchangers, we limited our 

study to fundamental investigation of particulate transport in turbulent tube flows that 

resembles real EGR coolers. Therefore, in chapter 3, an analytical study is done in order 

to predict the soot particle deposited mass and effectiveness drop of surrogate tubes at 

various boundary conditions. A parametric study and a sensitivity analysis are done to 

study the effect of critical boundary conditions including inlet gas temperature and 

pressure, wall temperature, inlet particle concentration, and gas mass flow rate on the 

particle deposition and heat transfer reduction of tubes. The results are compared with 

EGR flow experiments (in a controlled engine test set up) performed at Oak Ridge 

National Laboratory (ORNL) at the same boundary conditions.  

In chapter 4, a one dimensional model in MATLAB and an axi-symmetric model 

in ANSYS-FLUENT are proposed to study the particulate deposition in turbulent tube 

flows. These two models are more accurate compared to the proposed analytical method 

and include more physics (gas properties variation along the tube, deposit layer properties 

variation, and deposit layer thickness variation in axial and radial directions) when the 

axi-symmetric model shows a significantly better prediction of the deposited mass gain 

and thickness compared to the analytical solution and the one dimensional model (52% 
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improvement compared to the analytical solution and 14% improvement compared to the 

1D model). Although the results of CFD models are good for a relatively short exposure 

time, there is a need for either removal mechanisms or measurement of deposit layer 

properties when the layer builds up in order to predict the stabilization behavior of the 

fouled (deposited) layer. Therefore, we decided to study the dynamics of the fouling 

phenomenon in-situ. 

In chapter 5, we describe a unique visualization experimental apparatus that we 

designed and constructed to monitor the deposition and removal of the deposit layer and 

potentially measure the deposit layer properties while it grows in-situ. We proposed two 

recovery methods based on our observation. Out of two, one method is published in this 

document and the other method (seems very promising for recovery of real EGR coolers) 

remains Ford confidential. This recovery method will be disclosed for a potential patent 

in the tech transfer office of the University of Michigan. 

Finally, in Chapter 6, the major conclusions derived from this thesis and our 

contributions to the field are stated. Possible areas for future investigation are discussed 

as well. 
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CHAPTER 2 

SCALING ANALYSIS OF PARTICLE DEPOSITION AND REMOVAL 

MECHANISMS 

In this chapter, a scaling analysis of deposition and removal forces on a small 

particle (mean average diameter of exhaust soot particles) is presented. Different 

correlations in literature are employed and discussed and a scaling analysis is shown. 

This study led us through the modeling of the particle deposition based on the dominant 

mechanism and finding strategies to investigate particle removal in EGR coolers.  

2.1 Deposition Mechanisms 

Before describing deposition mechanisms, the soot particulate distribution in the 

exhaust flow must be analyzed. Harris and Maricq [1] studied the EGR particle 

distribution in many different engine conditions. A log-normal distribution for particle 

diameter is offered in the aforementioned work with the mean particle diameter of 

3.57g  nm and the standard deviation of 8.1g . Figure 2.1 illustrates the 

normalized particle distribution of diesel exhaust flow.  

It is noted that the EGR soot particle range is between 10nm to 300nm. It is seen 

that almost 50% of soot particles have a size of 60 nm and less. This number (60 nm) is 

used to show how the deposition mechanism for small particles on this range differs from 

the deposition of larger particles.  
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Figure 2.1 –  EGR soot particles normalized distribution 

In order to perform the scaling analysis of particle deposition and removal, some 

quantitative numbers are needed. Since most EGR coolers are tubes in shell type heat 

exchangers, this analysis is done for geometry similar to real EGR coolers tubes and the 

associated boundary conditions for a real EGR cooler (listed in Table 2.1). These 

numbers help us compare the mechanisms in the following sections. More detailed 

calculations are presented in the next chapter when deposition models are proposed.  

Figure 2.2 shows a schematic of a surrogate tube in EGR cooler. The tube length 

( L ), tube diameter ( ID ), averaged temperature (T ), soot particle concentration (C ), 

pressure ( P ), velocity (u ), and wall temperature ( wT ) are shown.  
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Table 2.1 – Geometry and boundary conditions of an EGR cooler tube 

Tube inside diameter 5.5 mm 

Tube length 0.3 m 

Averaged gas temperature (K) 600 K 

Wall temperature (K) 363 K 

Averaged velocity (m/s) 25  

Averaged pressure (kPa) 200  

Averaged gas viscosity (kg/ms) 3.1710-5  

Averaged gas density (kg/m3) 1.17  

Particle concentration (mg/m3) 30  

Particle density (kg/m3) 1770  

Averaged sub-layer thickness ( m ) 100  

Averaged shear velocity (m/s) 1.7  

 

 
Figure 2.2 – Schematic of a surrogate tube and EGR flow 

Total deposition flux of particles ( J ) toward the tube wall is defined as 

summation of all deposition fluxes based on the drift velocities (discussed in the 

following) as: 

 i
i

J CV  
(2.1) 
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There are a number of possible mechanisms by which particles may move from 

the gas flow onto the cooler surface. A comparison is made later between the deposition 

velocities of different mechanisms. 

2.1.1 Thermophoresis 

Thermophoresis is a particle motion generated by thermal gradients. 

Thermophoresis is the phenomenon that when a temperature gradient exists, particles 

move toward the cooler direction (Figure 2.3). This force arises from the fact that hotter 

gas molecules have higher velocity due to a larger kinetic energy.  Thus, in a thermal 

gradient the gas on the hot side of the particle hits with higher force than the gas from the 

cooler side, and a net force is created toward the cooler region. As particles are 

transported from the bulk gas flow into the boundary layer near the surface, they enter a 

region of large thermal gradient and thus are thermophoretically driven toward the wall.  

Particles reaching the wall stick to the wall due to Van der Waals forces [2].  

 

 
Figure 2.3 – Schematics of thermophoresis phenomenon 

Researchers have studied thermophoresis and there are some correlations in 

literature for the thermophoretic force and velocity. Two common correlations are Brock-

Talbot and modified Cha-McCoy-Wood (MCMW). 
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Brock-Talbot correlation 

The thermophoretic drift velocity of a particle is defined as: 

T
T

KV thth






  (2.2) 

where   is gas kinematic viscosity and thK  is the thermophoretic coefficient 

defined by: 
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gk , pk  are gas and particulate thermal conductivity, respectively. Kn  is Knudsen 

number ( pd2 ), is the mean free path of a gas molecule and pd  is the particle 

diameter.  
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The correction factor ( cC ) is also defined as: 

)(1 / KnCC
nc BBeAAKC    (2.5) 

The thermophoretic constants tms CCCCCBBAA ,,,,,  are 1.2, 0.41, 0.88, 1.147, 

1.146, and 2.20, respectively [3].  

MCMW correlation 

Thermophoretic force in the MCMW equation [4] is defined as: 
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where:   
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In this study, the normal and tangential momentum accommodation coefficients 

are assumed 1, 0 n tS S , respectively. 

Thermophoretic drift velocity in this correlation is calculated as: 
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where  is the particle relaxation time defined by: 
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It is usual to choose Brock-Talbot equations in articles; however, there is a 

criterion for employing that equation. He and Ahmadi [5] studied the thermophoretic 

deposition of particles and compared Brock-Talbot equation with the MCMW 

correlation. By comparing the two correlations with experimental measurements ([6],[7]), 

they showed that Brock-Talbot equation deviates from experimental results when 

particles are very small and the Knudsen number is larger than 2.  

When the particle diameter equals to the mean free path of gas molecules, the 

Knudsen number is 2. So, if the particle diameter is less than the mean free path of gas 

molecules, the gas medium is not considered continuum anymore. It is recommended by 

He and Ahmadi [5] to use Brock-Talbot equation when Kn<2 and the MCMW equation 

when Kn>2.  

According to the given boundary condition in Table 2.1, the mean free path of 

EGR gas molecules is calculated to be 78 nm (close to the exhaust soot particle mean 

diameter of 57 nm). Figure 2.4 compares the two correlations for a wide range of 

Knudsen numbers corresponding to the range of soot particles in the exhaust flows.  
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Figure 2.4 –  MCMW and Brock-Talbot correlations comparison 

Since more than 50% of particles have a diameter less than 60 nm, using Brock-

Talbot equation over-predicts the thermophoretic deposition by a few percent. So, instead 

of taking the mean particle diameter, a weighted thermophoretic coefficient can be 

calculated for the whole range of soot particles. The fraction of each particle is calculated 

based on the accumulative distribution given in Figure 2.1. Also, the thermophoretic 

coefficient of each particle can be calculated from the Brock-Talbot formula (for Kn<2) 

and the MCMW (for Kn>2).  Then, an equivalent thermophoretic coefficient for the 

given range of particle diameter (1 nm to 1000 nm) is: 

i
i

ithth FractionKK .
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Finally, considering the above correlation for the thermophoretic coefficient, we 

are able to find the thermophoretic drift velocity of soot particles at the following 

temperature gradient:  
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Results of all deposition velocities are compared at the end of the section. 

2.1.2 Fickian Diffusion  

Submicron particles could be easily moved by the eddy motion toward the wall. 

The migration of particles from a higher concentration region to a lower one is called 

diffusion. Diffusion can be well described by the well-known Fick's law. There are many 

theoretical and experimental studies on deposition of ultrafine particles by diffusion from 

a stream ([8]-[13]). The deposition velocity due to diffusion in a turbulent flow is [14]: 

3/2*057.0  pd ScuV
 (2.12) 

Where Schmidt number of particles is defined as the ratio of gas kinematic 

viscosity to the Brownian diffusion coefficient: 


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The particles diffusion coefficient is also defined by: 

3
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k TC
D

d
 (2.14) 

where bk  is the Boltzmann constant ( KJ /1038.1 38 ). 

2.1.3 Turbulent Impaction 

Inertial impaction due to turbulence is sometime called turbulent impaction, eddy 

impaction, or turbophoresis. Similar to thermophoresis, particle is subject to a higher 

force where turbulence is higher. For many heat exchangers operating in dusty flows, 

particles can be inertially deposited.  This occurs when the particle is large enough that it 

cannot easily follow rapid changes in the gas flow direction.  However, small particles 

have very short relaxation times and thus follow the flow. A measure for the inertia of a 
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particle is the particle relaxation time  defined in (2.9). The particle relaxation time 

should be compared to the smallest time scale of the flow that is the Kolmogrov scale Kk  

and the largest time scale of the flow Lk . When the particle relaxation time is larger than 

the largest time scale, the particle transport is controlled inertially but when it is between 

the two aforementioned scales, the transport is under the control of eddies. The two scales 

are defined by: 

3U

L
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
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(2.15) 

U

L
kL 

 
(2.16) 

L and U are taken as the tube diameter and the averaged gas velocity, respectively 

(given in Table 2.1). So, the Kolmogrov time scale is 6102~  s and the largest time 

scale is 4101~  s. Substituting above numbers, we find out that the inertia is important 

for particles of ~5 m  and larger while transport starts to be controlled by eddies for 

submicron particles. Another way of comparison is to find the drift velocity due to the 

inertial impaction for a turbulent flow as [8]: 

22**4 ))/((105.4 uuVt   (2.17) 

2.1.4 Electrostatics 

Electrostatic forces can be another mechanism of particle deposition. There are 

two types of electrostatic forces: the Coulomb force, and the image forces. Charged 

particle transportation under the effect of an electric field is called the Coulomb effect 

while the image force is a polarization phenomenon that occurs when a charged particle 

is moved towards a conducting surface. There have been many attempts to simulate 

charge particle trajectories in the presence of an electric field ([15]-[18]) but there is little 

literature on investigating the effect of image forces. The reason is the image forces in 
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general are not comparable with the Coulomb forces in different applications. The 

migration velocity due to the Coulomb force is: 

f

neE
Ve   (2.18) 

n  is the number of elementary charges on the particles and e  is the elementary 

charge ( C1910602.1  ). Since there is not an external electric field in EGR coolers, the 

Coulomb force is zero for the soot particles in exhaust. Applying an external electric field 

results in a higher soot deposition as discussed in [19]. 

Researchers showed that 60-80% of soot particles in EGR coolers are electrically 

charged with almost equal numbers of positively and negatively charged particles which 

leaves the exhaust flow electrically neutral [20]. The charge arises due to the adsorption 

of ions in the medium or dissociation of molecules on the solid surface (image forces). 

The drift velocity caused by the electrostatic image forces is: 
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y  is the distance from the surface and EK  is the electrostatic coefficient 

( 229 /109 CNm ) and f  is the drag coefficient:  
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Dielectric constant factor ( ) for the bulk gas (assumed as the dry air) and the 

deposit layer (assumed as the graphite): 
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Number of charges acquired by a particle of diameter pd : 
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iN  is the ion concentration and ic  is the thermal speed of the ions in m/s. It is 

assumed that charged particles are at equilibrium with Boltzmann charge distribution:  
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)(nf  is the fraction of particles of a given diameter pd  having n  elementary 

charges (either positive or negative). Maricq [20] has measured n  for the soot particles of 

a diesel engine exhaust stream to be 4 (positive or negative). If the viscous sub-layer 

thickness is assumed to estimate the drift velocity, we are able to estimate the image force 

drift velocity.  

2.1.5 Gravitational  

Gravitational drift velocity of particles can be simply defined based on gas to 

particle density ratio as [8]: 
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g )1(    (2.24) 

2.1.6 Summary of Deposition Mechanisms  

Figure 2.5 shows a schematic of the particles soot deposition and the possible 

particles removal in tube flows. Convection and diffusion bring particle from the core 

main flow to the edge of the viscous sub-layer and the thermophoresis is responsible for 

particle deposition.  
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Figure 2.5 –  Schematics of particles deposition and removal in a tube flow  

Figure 2.6 illustrates a comparison made among different deposition mechanisms 

for submicron particles (a logarithmic graph). The drift velocity caused by the 

electrostatic image forces, gravitational forces and turbulent impaction are much smaller 

than the other two mechanisms. The diffusion mechanism is more significant for smaller 

particles (10-50 nm) in the submicron range due to their lower Schmidt numbers. 

Diffusion velocity for small particles (less than 50nm) is one order of magnitude less than 

the thermophoretic velocity but it is not comparable with the thermophoretic velocity for 

larger particles at all. It is clear that the thermophoretic velocity is the dominant 

mechanism for deposition of soot particles in the exhaust gas stream of a diesel engine 

(we will show this experimentally in chapter 5). A similar calculation was done for a 

lower gas averaged temperature of 400  C (not presented) and the results still show the 

dominancy of thermophoresis for this range particle diameter. Diffusion is taken into 

account in our one dimensional and axi-symmetric modeling studies that are described in 

chapter 4. 
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Figure 2.6 – Comparison of various deposition mechanisms for submicron particles at the 

given condition in Table 2.1 

As a summary, the scaling analysis reveals that the thermophoresis is the 

dominant deposition mechanism for exhaust soot particles. When particles land on the 

wall, Van der Waals forces are responsible to keep them attached to each other or onto 

the surface as many researchers believe. Van der Waals forces include forces between 

dipole and quadrupoles molecules produced by either the polarization of the atoms and 

molecules in the material or by presenting an induced polarity [21] .  

Hamaker [2] extended London’s theory to the interaction between solid bodies. 

His theory is constructed based on the atomic and molecular interaction and calculates 

the attraction between larger bodies. The theory utilizes a constant called Hamaker 

constant that takes care of the properties of bodies. Hamaker constants are available in 

the literature for many materials. 

Kennedy and Harris computed Van der Waals interaction energy for a vast 

number of particles of silver and water in the range of nanometer. Based on their 

calculation, particle collision rates have been deduced [22]. Oliveria [23] believes that 
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adhesion of particulates is an essential factor in the formation of fouling (particle 

deposition and hydrocarbon and acid condensation). He explained this phenomenon in 

terms of colloid chemistry and discussed the physicochemical factors that play an 

important role in fouling.  

2.2 Removal Mechanisms 

It is common for EGR cooler effectiveness to degrade rapidly at first, then 

approach a steady state value exponentially.  Similar behavior can be seen in a large 

number of publications for particles with larger diameter than that of exhaust soot 

particle. There may be some removal mechanism or the rate of deposition decreases as 

the deposit layer grows. If such a removal mechanism has the characteristic that the mass 

removal rate is proportional to the total deposit mass, then an exponential approach to the 

steady state value where removal rate equals deposit rate occurs.  

It is not easily possible to determine whether either or both of these mechanisms 

is the reason, but in any case the exponential approach to steady thermal performance is 

typical of many heat exchanger systems. Although there is not a clear indication in the 

literature on what mechanisms may be responsible for self-cleaning of EGR coolers, the 

following potential mechanisms are suggested for a wide range of particle diameters. The 

analysis in this chapter led us towards an experimental study that is discussed in chapter 5 

in order to determine if any removal mechanism exists or if there is any recovery method 

to clean the fouled coolers. 

In a review article a complete study of soot particulate deposition and removal in 

exhaust flows is done by Hoard et. al. [24] and in another work a scaling analysis is 

performed to find the dominant deposition and removal mechanism for soot particles in 

EGR flows [25]. Kern and Seaton [26] believe that the shear force is the only important 

factor to cause particles reentrainment. Hubbe observed that submicron particles might be 
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re-entrained due to shear force [27]. Taborek et. al. [28] also believe that wall shear force 

is responsible for the deposited particles removal . In contrast, some researchers believe 

that for small particles in the range of exhaust soot particles Van der Waals force is 

strong enough to prevent re-suspension of particles to the flow ([29],[30]). Charnay et. al. 

[31] state that in some cases water condensation in the cooler can loosen deposits and 

cause some effectiveness recovery; no data is shown to support the statement.  

Epstein [32] notes that most people assume there is a deposit particle removal 

process associated with the shear forces of gas flow over the layer. This is not a lifting 

force, but a force trying to roll the particle downstream.  Bridgewater [33] mentioned that 

the structure of the deposit layer may undergo some changes due to the thermal stress at 

the surface. This may affect particle removal. The stored thermal stress can induce planes 

of weakness in the deposit layer which causes particles removal.  

Cleaver and Yates [34] hypothesize that particles can be removed and re-

entrained to the main flow by the updraft generated during the fluid ejection. Turbulent 

burst can create enough lift to remove particles. In case of turbulent burst assumption, the 

sub-layer flow is not steady state anymore. Yung et. al [35] showed the role of turbulence 

burst in particle removal from the viscous sub-layer by utilizing flow visualization 

techniques. Their result shows that a rolling mechanism due to the drag force was more 

dominant than vertical lift forces, and turbulent burst effect was insignificant in particles 

removal in contrast to what Cleaver hypothesized.  

Kaftori et. al [36] in agreement with Yung also believes that particle removal 

occurs as a result of the turbulent burst which consists of random sequence of ejections 

from the boundary layer into the main fluid flow.  Reeks and Hall [37] presented 

dominance of the drag force over the lift force by measurement of tangential and normal 

adhesive force. They found out that the drag force had a much greater effect by a factor 

of 100 over the lift force. Kallay et. al.[38] also studied the kinetics of adhesion and 

removal of uniform spherical particles.  
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The differences in results may be due to the fact that researchers’ experiments 

were conducted on different thermo-hydraulic conditions and particles size and materials. 

That is the reason they proposed different conclusions.  

Deposits might lose adhesion to the surface and flake off.  This could be due to a 

factor reducing the strength of adhesion, such as water, liquid HC, and/or acids. 

Kalghatgi ([39]-[41]) investigated the effect of water drops on combustion chamber 

deposits. Although his research was not directly related to EGR cooler deposit, one can 

find it really helpful in understanding the flake off mechanism. As a summary, one can 

conclude the following from his articles:  

 Combustion chamber deposit flakes off when exposed to water. Water is a 

critical factor that seems to be much more effective than other organic 

solvents in flaking particles.  

 Deposit flaking could be due to thermal stress and it may occur locally. 

 Deposit flake off was usually seen after cold starts rather than during 

engine operation 

 Water disappears below the deposit surface and the deposit cracks 

continue to propagate in sudden bursts for a further 10 minutes. 

 It can be hypothesized that the water runs along the cracks and forces the 

deposit apart. It could also be due to water reaction chemistry with deposit 

layers at the surface. 

 There is a thin layer of deposit still left on the metal surface after each 

flaking.  

 Young deposits do not flake.  

 Deposits must go through a thermal history before they can be flaked. 

 There is not a firm correlation between deposit thickness and deposit 

flaking tendency. 



32 

Thermal history and the age of deposits are critical factors in deposit flaking. This 

field is an important area that needs to be investigated in more detail beyond the scope of 

this thesis.  

A scaling analysis is conducted in this part of the chapter to compare variable 

correlations and theories for removal of small particles. Initially we did a simple 

calculation to identify forces that can potentially overcome Van der Waals forces acting 

on a particle attached to the wall or the deposit layer (Figure 2.7). Acting forces on a 

particle are listed as ([39],[42]): 

Drag force:  
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Van der Waals Force: 
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Hamaker's constant ( HA ) is assumed to be J2010  and the distance between 

particles ( 0Z ) is assumed to be 1/50 of the particle diameter (it can even be less and the 

Van der Waals forces can be stronger). 
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Figure 2.7 – Forces acting on a particle attached to the surface 

Figure 2.8 shows a comparison among the aforementioned forces for a range 

wider than the range of EGR soot particles (logarithmic scale). It is seen that the lift force 

and the weight are not comparable with the drag and Van der Waals forces for submicron 

particles (particle distribution is also demonstrated on the graph). 

 

 
Figure 2.8 – Forces acting on submicron particles 

It seems that Van der Waals forces are strong enough for smaller particles so that 

removal by drag or lift forces seem unlikely. In the following, a hypothesis on removal 

mechanisms based on current correlations in literature is presented.  
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2.2.1 Turbulent Burst 

Cleaver and Yates [43] investigated the effect of the turbulent burst and the 

caused lift force on the re-entraining of particles to the main flow. Although the lift force 

is proven to be small (Figure 2.8), they believe that the turbulent burst applies an updraft 

force normal to the wall in a time duration. They claimed that the duration of this force is 

enough to move a particle through one diameter. This movement is larger than the range 

of adhesion force and the particle can be removed to the main flow. This force is defined 

as:  
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They proposed a criterion for particles removal. The criterion is achieved by 

equating Van der Waals force and the updraft force due to turbulent burst Cv FF  : 

 3/4
pwd  (2.30) 
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  Figure 2.9 shows a comparison made between Van der Waals force and the 

updraft force for the given boundary condition. It is seen that they just are barely equal 

for larger particles that are not in the EGR soot particle distribution.  

Also, Figure 2.10 depicts the shear force required to satisfy the criterion for the 

range of EGR soot particles. According to the given boundary condition in Table 2.1, the 

averaged shear on the deposit layer is 3.4 Pa that is significantly lower than the criterion 

for the turbulent burst removal. Although the distance between particles is a critical factor 

in determining the criterion and it has not been really measured, it seems really unlikely 

that soot particles can be removed by the turbulent bursts or the velocity of EGR flow on 
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this range (25 m/s). There are a few articles on particle removal by supersonic flows to 

confirm this claim ([44]-[46]).  

 
Figure 2.9 – Comparison of the updraft force and Van der Waals force 

 
Figure 2.10 – Required shear to remove the particles with different diameters based on 

the turbulent burst criterion 
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2.2.2 Removal due to the Drag Force 

The only force that is comparable with Van der Waals is the drag force (Figure 

2.8). There is a hypothesis which says the drag force is responsible for particles removal. 

Philips [47] developed a force balance model for particles re-entrainments into the main 

flow. He categorized the mechanisms in four groups for large, intermediate, small 

particles and a mechanism for unrealized regimes. His force balance requires: 

LwvDC FFFForF 
 (2.32) 

Weight and the lift are not comparable with the rest of the two, and the updraft 

force is not responsible for removal as discussed in the previous section. Yung et. al.[35] 

performed an experiment and showed that if the drag force is larger than the adhesion 

force for small particles, removal occurs. So, the criterion for removal based on his claim 

is: 

 pwd  (2.33) 

where: 
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Figure 2.11 shows the required shear force to remove submicron particles based 

on Yung's theory. It is noted that for removing 60 nm particles a shear of 1200 Pa is 

required. This is significantly larger than the shear force given in Table 2.1. To remove 

the particles by drag force, a mean velocity of 355 m/s (Mach number of 0.75 at 600K) is 

required to remove 60 nm particles. It seems unlikely to remove the soot particles at 

regular EGR flows with a low velocity. 
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Figure 2.11 – Required shear to remove the particles with different diameters based on 

Yung's hypothesis 

2.2.3 Removal due to Water Condensation 

There is a possibility that in low wall temperatures in EGR coolers, water 

condensation causes particle removal as Kalghatgi mentioned. There could also be a 

wash-out mechanism that removes the deposit layer. The criterion to have the water 

condensation is that the mole fraction of water in the main flow is equal or larger than the 

mole fraction at the surface of the deposit layer or the tube wall. The mole fraction at the 

interface ( giy ) is defined by:  
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Also, water vapor pressure is calculated based on Antoine coefficients of water: 
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Antoine coefficients for water are: 235CC1750,BB10.23, AA . Pressure in 

the equation is in Pascal and the surface temperature is in Celsius. Figure 2.12 

demonstrates water vapor pressure at various temperatures. 

 

 
Figure 2.12 – Water vapor pressure vs. temperature 

To find the water mole fraction in the main flow: the diesel fuel H:C ratio CH = 

1.809 and the dry based mole fraction of carbon dioxide based on the experimental 

measurements of Oak Ridge National Laboratory are used at the ideal chemical reaction 

in the diesel engine as below: 

222222809.1 667.2491.159045.0)76.3(12.4 ONOHCONOCH   

Air/Fuel ratio in conducted experiments is 40.95. The dry based mole fractions of 

species are also given by experimental measurements as:  

( %214.77%,294.13%,508.4%,984.4
2222
 NOOHCO XXXX ) 

The mole fraction of CO, NOx, HC, and all other existing species in the exhaust 

gas are negligible for this purpose and ignored. Now, having the mole fraction of water in 

the main flow (0.04508) and an averaged pressure of the flow (Table 2.1), we can find 
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the critical interface temperature at which (and below) condensation occurs 

( CT erfacecritical
42int  ). This temperature is likely to be the coolant temperature of EGR 

coolers especially at cold start of the engine. 

2.2.4 Chemical Reactions and Aging 

Deposit layer can be hardened and cracked over time due to being exposed to 

ambient and loosing volatile fraction of the mass. Cracked deposit is more prone to 

removal by shear. There can also be surface chemistry [48] or chemical reactions in the 

deposit layer that cause the properties to change over time. Hydrocarbon, acid, and water 

condensation can change the deposit morphology and change all calculations presented 

above. This subject needs more investigations that require long tests to monitor the layer 

when exposed to the ambient, hydrocarbons, or acids. The possible reactions and 

behavior of the layer can be recorded to understand the physics of such reactions. This is 

not the scope of this thesis and is not discussed further.  

2.2.5 Kinetic Energy (Thermal Force) 

Based on the kinetic theory, when particles are attached, Van der Waals force is 

larger than thermal forces between them. So, a criterion for particles removal can be that 

the kinetic energy of attached particles must be larger than Van der Waals potential 

energy. Then, 

Kinetic energy: 
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Van der Waals potential energy: 
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Another important fact is that the deposit layer is less dense and is fluffier on the 

top layers compared to the layers closer to the wall. Figure 2.13 (courtesy of Michael 

Lance – Oak Ridge National Laboratory [49]) shows two images of the deposit layer, one 

from the gas-deposit interface and one from the deposit-metal interface. The images show 

that the layer near the metal is denser compared to the fluffy layer at the gas-deposit 

interface. It means that Van der Waals force for the top layer can be less compared to that 

of the bottom layer. The top layer deposit can be more prone to removal due to smaller 

binding forces. 

Therefore, we hypothesize that the reason for seeing less dense (fluffier) layers 

with weaker bind forces on the top side of the deposited layer is the larger kinetic energy 

compared to the bottom layers due to higher temperatures. This makes particles at the 

gas-deposit interface more prone to removal if (2.40) is valid for the interface 

temperature. Interface temperature acts like a cut-off mechanism for removing particles. 

It is noted that the fluffy layer seems to have a larger distance 0Z  between particles. 

Shear force does not seem to be an effective factor in submicron particles removal and 

the thermal force could be more possibly the reason. We do not yet have any 

experimental evidence to verify this hypothesis. We show in the last chapter (future 

work) what is planned to prove or disapprove the kinetic theory hypothesis. 
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Figure 2.13 – Image As is from the gas deposit interface and image B is from the deposit 

metal interface (Courtesy of Michael Lance – Oak Ridge National Laboratory [49]) 

2.2.6 Other Removal Mechanisms 

There are other mechanisms including laser-assisted methods ([50]-[51]) or 

hypersonic flows to remove small particles from surfaces but these methods are not 

practical recovery methods for cleaning of EGR coolers.  The behavior of small particle 
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collision with the surface is a complex problem. Some researchers even believe there is 

no removal of already landed submicron particles [52]. 

As a summary, the scaling analysis shows that current proposed mechanisms in 

literature including the drag force and the turbulent burst seem not to be applicable for 

submicron particles. Water condensation is a strong candidate for the deposit removal at 

low wall (coolant) temperatures (below C40 ). Experimental evidence to prove this 

theory is presented in chapter 5.  

2.3 Particles Sticking Probability 

Sticking probability of particles is not fully understood and there is not a unique 

equation that covers a wide range of particle size. Authors have proposed many formulas 

that may not work for different cases. Watkinson and Epstein [53] proposed a sticking 

probability as a ratio of adhesion force to the shear stress. Beal ([54]-[55]) showed that 

the sticking probability for small particles remains constant but it decreases with a non-

dimensional parameter called stopping distance. Stopping distance is a critical distance 

from the wall in which the particles are detached from an eddy and are projected in a 

free-flight motion across the viscous sub-layer to impact with the wall. In other word, the 

stopping distance is defined as the distance which a particle travels through a stagnant 

fluid when it is projected with an initial velocity. 

Van Beek et. al. studied the gas side fouling of waste recovery boilers which is 

mainly caused by particulate matter. They calculated the deposition rate and discussed 

the sticking coefficient of particles in the range of submicron and micrometers [56]. 

There are many other articles discussing the sticking probability of particles for different 

applications ([57]-[63]). Overall, the sticking probability for small particles on the range 

of EGR soot particles seems to be 100% but this field needs more experimental 

investigation. 
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2.4 Surface Roughness Effect 

Based on the literature and ORNL experiments, the deposit layer is not uniformly 

distributed. It is also seen that deposit flake off and a relevantly large roughness occurs in 

the layer. So, it is worth looking at the criterion for the surface roughness. A roughness 

Reynolds number is defined for the surface in [64] by:  
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where sk  is a length dimension to describe the roughness size. After some 

simplifications,  
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If 5Re k , the surface behaves as perfectly smooth. If 70Re5  k , some of the 

smooth characteristics of a smooth surface persist. For larger roughness Reynolds 

numbers, the surface is fully rough and sub-layer disappears entirely and viscosity is no 

longer important. Following calculations show how rough the surface could be in our 

simulation to be considered as a perfect smooth or rough surface, respectively. 
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Although it is occasionally seen in the experiments a large flake that causes a 

roughness larger than m100 , assuming a smooth surface is a rational assumption. 

2.5 Concluding Remarks 

Different particle deposition mechanisms were discussed and compared for EGR 

soot particles. The scaling analysis showed that the thermophoresis is the dominant 
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mechanism compared to the rest. Also, possible removal mechanisms offered in literature 

were studied and compared analytically to find if they can potentially be in charge of re-

entraining EGR soot particles to the main flow. We hypothesize that the higher surface 

temperature may cause the higher kinetic energy of soot particles at the gas-deposit 

surface and make their bond forces weaker. That could be the reason that the outer layer 

of deposit is always fluffier and more prone to removal. Also, water condensation can be 

a strong wash-out mechanisms to remove the deposit layer and act as a recovery method. 
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2.6 Nomenclature 

HA  Hamaker's constant 

C  Averaged particle concentration ( 3/ mkg ) 

ic  Thermal speed of ions (240 m/s) 

vc  Volume specific heat ( /J kgK ) 

BD   Particle diffusion coefficient ( sm /2 )  

pd   
Soot particle diameter (m) 

md  Molecular diameter (m) 

E   Parallel component of electric field to the flow (V/m) 

e   Elementary charge ( C1910602.1  ) 

CF  Updraft burst Force (N)  

DF  Drag Force (N) 

LF  Lift Force (N) 

vF  Van der Waals Force (N) 

wF  Weigth (N) 

f   Drag coefficient 

g  Gravity (N/kg) 

EK    Electrostatic Constant ( CNm /109 29 ) 

bk    Boltzmann's constant Kkgsm /1038.1 2223  

gk    
Gas thermal conductivity (W/mK) 

Kn   Knudsen number  

Kk    Kolmogrov time scale (s) 

Lk    Largest time scale of the flow (s) 

pk    
Particle thermal conductivity (W/mK) 

thK   Thermophoretic coefficient 

gMW   Gas molecular weight (kg/mol) 

pm   
Particle mass (kg) 
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iN   Ion concentration 

n   Number of elementary charges on the particle 

P  Averaged gas pressure ( Pa ) 

R    Gas constant (J/mol K) 

pRe    Particle Reynolds number 

pSc  
Particles Schmidt number 

tn SS ,
 Normal and tangential momentum accommodation coefficients 

T     Averaged gas temperature (K) 

wT   Inner tube wall temperature (K) 

t  Elapsed time of particles in the tube (s) 

U   Averaged gas velocity (m/s) 

*u  Shear velocity (m/s) 

dV   Fickian diffusion velocity (m/s) 

gV   
Gravitational deposition velocity (m/s) 

iV  Image force drift velocity (m/s) 

tV    Turbulent impaction velocity (m/s) 

thV   Thermophoretic velocity (m/s) 

 y  Distance from the surface (m) 

 0Z  Distance between particles molecules (m) 

Greek  

  Specific heat ratio 

  Particle mean free path (m) 

   Viscosity of the bulk flow ( mskg / ) 

g  
Mean particle diameter (nm) 

   Density of the bulk flow ( 3/ mkg ) 

p   
Particle layer density ( 3/ mkg ) 

g  
Standard deviation 

   Particle Relaxtation time 
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w   Wall or deposit layer Shear stress (Pa) 

   Bulk gas kinematic viscosity ( sm /2 ) 

)(  Dielectric constant factor 
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CHAPTER 3 

ANALYTICAL STUDY OF THERMOPHORETIC PARTICLE DEPOSITION  

It was shown in chapter 2 that the dominant deposition mechanism for nano-

particles in non-isothermal flows is thermophoresis. It was also discussed that most EGR 

coolers are tubes in shell type of heat exchangers. To understand the physics of particle 

transport under thermophretic forces, we limited our study to a simple non-isothermal 

tube flow and we proposed an analytical method to estimate thermophoretic particulate 

deposition efficiency and its effect on overall heat transfer coefficient of tube flows in 

transition and turbulent flow regimes [1]. The proposed analytical solution is validated 

against experiments conducted at Oak Ridge National Laboratory.  

3.1 Introduction 

There are many industrial applications involved in thermophoretic particulate 

deposition including gas cleaning, prevention of particle deposition on silicon wafers of 

semiconductors, and heat exchangers. Accordingly, there have been many attempts to 

propose analytical correlations for thermophoretic soot particle depositions in laminar 

and turbulent tube flows. Analytical solutions provide proportionality and functionality of 

variables especially for complex problems where many variables are involved. 

Considerable theoretical work with experimental validation has been done by 

Walker et. al. [2], Batchelor and Shen [3] to study thermophoretic particulate deposition 

in laminar tube flows. There are also experimental investigations of thermophoretic 

particle deposition in laminar flow regime for a wide range of particle diameter ([4]-[7]). 
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The experimental data agrees well with theoretical models when Talbot equation [8] for 

thermophoretic coefficient is employed.  Another effort is the work done by Lin and Tsai 

[9] for investigation of the thermophoretic deposition efficiency under developing flow at 

the entrance region. They found that the thermal entrance region of the pipe makes the 

thermophoretic deposition efficiency slightly higher than the fully developed case for a 

long pipe. They also developed empirical equations to predict thermophoretic efficiency 

of a laminar flow in a circular pipe in fully developed and developing flow under laminar 

flow conditions.  

Besides laminar flow regimes, there is considerable work in the literature 

addressing thermophoretic deposition of particles under turbulent tube flow regimes as 

listed in the following. Chiou [10] focused on developing the theoretical and analytical 

models for turbulent thermophoretic deposition in tube flows. Byers and Calvert [11] 

studied thermophoretic deposition of particles in turbulent flow with the aspect of air 

cleaning. Their experiments were done to cover a wide range of particle size from 300nm 

to 1.3 micrometer. They proposed an analytical correlation to predict the particle 

deposition efficiency based on the experiments. Singh and Byers [12] extended the field 

by conducting experiments in the transition regime.  

Nishio et. al. [13] performed experiments to study thermophoretic deposition of 

aerosol particles in pipe flows at various Reynolds numbers in laminar and turbulent flow 

regimes. They also proposed analytical correlations for the particle deposition and 

compared them with their experimental results. They also investigated the effect of 

different parameters including temperature gradient between hot fluid and coolant and the 

fluid velocity.  

Romay et. al. [14] studied the thermophoretic deposition of aerosol particles 

under laminar and turbulent pipe flows. They performed the experiment for variable gas 

inlet temperature, different particle sizes, and mass flow rates correlating to laminar, 

transition, and turbulent Reynolds numbers in a pipe flow. They proposed an analytical 
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correlation for the deposition efficiency and compared it with other correlations in the 

literature ([3],[11],[12]).   

A steady-state model has been developed by Housiadas and Drossinos [15] to 

predict thermophoretic particle deposition in laminar and turbulent pipe flow. Their 

results suggest that the 1D boundary layer approximation in turbulent flow is adequate, in 

general. The 1D model and 2D Lagrangian model in their work provide the same level of 

accuracy until the gas to wall temperature difference is large. In that case, the 2D model 

shows significant improvements.  

He and Ahmadi [16] studied the thermophoretic deposition of particles in laminar 

and turbulent duct flows and compared the Brock-Talbot equation with the modified Cha-

McCoy-Wood correlation. They also compared these two correlations with experimental 

measurements (Li and Davis [17],[18]) for a wide range of Knudsen numbers. They also 

studied the dominant mechanisms of soot deposition for different Knudsen numbers. 

In another work, Chen conducted an analytical study on thermophoretic motion of 

two free aerosol particles with constant temperatures [19].  The particles can have 

different surface properties, diameter, and temperature. For the case that particles have 

the same diameter, particle interactions drives the pair system approaching each other if 

the particle temperature is less than the temperature of the surrounding. But if the 

temperature of the particles is higher than the surrounding temperature, the 

thermophoretic force will have a repulsive effect between the particles. 

Lin [20] developed an analytical procedure to predict the particle deposition 

efficiency by considering the thermophoretic velocity in the conservation equations of 

particles. Lin investigated the effect of significant variables, including the temperature 

difference between the inlet gas and the wall, particle size, and Lewis number, on 

thermophoretic deposition efficiency.  

Teng and Renger [21] also investigated soot deposition in EGR coolers. They 

proposed analytical correlations for particulate deposition efficiency and the effectiveness 
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for turbulent particle-laden flows but they did not include the effect of the formed layer 

on the effective tube diameter and the deposition rate. Besides aforementioned theoretical 

and analytical approaches, there are studies that are relevant to the subject ([22]-[24]).  

Although analytical correlations for thermophoretic particle deposition have been 

proposed before, the objective of this study is to develop a novel correlation for cases 

where: 

 The tube diameter reduction due to the deposit layer and thermal 

resistance of the deposit layer are taken into account in the solution 

 The proposed solution is applicable to longer exposure times compared to 

steady-state solutions previously reported in literature and this method 

accounts for time varying parameters 

This approach is to solve the energy equations for the bulk gas flow and the mass 

conservation of particles for a simple turbulent tube flow with different boundary 

conditions including gas inlet temperature, gas mass flow rate, and inlet particulate 

concentration.  

The Oak Ridge National Laboratory experiments employing engine exhaust gas in 

a controlled test set up are used to verify the proposed analytical solution of this study 

[25]. Engine exhaust gas carries submicron soot particles and that makes it suitable for 

verification purposes of the analytical method. The exhaust gas was divided in a few 

tubes with designed Reynolds numbers to correlate transition and turbulent flow regimes.  

The heat transfer coefficient (or effectiveness) of the tube, and soot mass 

deposited along the tube were compared to the experimental measurements for a 

relatively short exposure time (3 hours). The comparison shows an agreement between 

the analytical solution and experimental measurements with good accuracy; however, 

there are still improvements to be considered.  

Although this solution is compared with engine exhaust flows representative of 

diesel engine exhaust gas recirculation (EGR) coolers, it can be generally used for 
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prediction of thermophoretic deposition of submicron particles in turbulent flows for a 

short exposure time. 

3.2 Governing Equations  

In this part, the analytical method for thermophoretic particulate deposition in 

turbulent and transition tube flows is described. Hot gas passes through the tube that has a 

constant wall temperature. The schematic of the tube is shown in Figure 3.1. The tube 

length (L), the inner diameter of a clean tube (ID), the transient inner diameter due to 

particulate deposition ( )(tD ), the inlet temperature ( 0T ), the inlet concentration of 

particles ( 0C ), the interface temperature at the deposit-gas interface ( erfaceTint ), and the 

wall temperature ( wT ) are depicted. Gas temperature (T ), particle concentration (C ), 

tube diameter, heat transfer coefficient, and gas velocity are functions of time since this 

problem is a transient problem. By finding the transient diameter of the tube, the 

conductive thermal resistance of the deposit layer and consequently the heat transfer 

coefficient (or effectiveness) drop of the tube can be calculated. 

 

 
Figure 3.1 – A schematic of the model 

The assumptions in developing the solution are: 

 Constant wall temperature – A constant wall temperature is an appropriate 

assumption since the liquid coolant temperature typically changes only a 
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few degrees across the cooler, and the coolant-to-metal thermal resistance 

is much less that the gas-to-metal 

 The particles do not affect the flow field due to their low mass fraction 

within the bulk gas 

 The radial variations of temperature and particle concentration in main 

equations (energy and concentration) are neglected compared to the axial 

changes  

 The bulk gas flow has low viscosity  

 The deposit layer has a uniform radial and axial distribution in the tube 

and has a smooth surface (Figure 3.1). This assumption is made to 

simplify the equations and it seems to give reasonable results that will be 

discussed later in this chapter. 

3.2.1 Energy Equation for Bulk Gas 

By neglecting the axial conduction in the gas phase (large Peclet number) and the 

transient term (quasi steady assumption), the convection heat transfer along the axis will 

be equal to the amount of heat that is transferred to the tube walls (


Q ). Considering the 

thermal resistance of the deposit layer and the heat transfer to the wall, the energy 

equation for an elemental tube segment (dx) can be written as: 
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In the above equations, the convection thermal resistance of the gas flow 

( convectionR ) and the conduction thermal resistance ( conductionR ) of the deposit layer are taken 



59 

into account. It is also assumed that the state variables (i.e. interface temperature, tube 

diameter, gas velocity (U ), density (  ), specific heat ( pC ), and gas convection heat 

transfer coefficient ( h )) are not functions of x and they just vary with time ( t ). Constant 

values are considered for deposit properties. By integrating equation (3.2) along the tube 

length, the temperature can be calculated as: 
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3.2.2 Particle Mass Conservation  

Deposition is mainly due to thermophoresis for submicron particles as discussed 

in chapter 2. Neglecting the diffusion and other deposition mechanisms, and equation the 

convective and thermophoretic terms, the particle mass conservation in the tube can be 

expressed as:  

DdxCVUdCD th


 2

4
  (3.5) 

By reorganizing terms in equation (3.5) and introducing the definition for the 

thermophoretic velocity ( thV ): 
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The thermophoretic velocity correlation was shown in chapter 2. For 

thermophoresis to occur, a temperature gradient in the radial direction is required. In 
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turbulent flows, temperature and concentration variations in radial direction just occur in 

a thin layer near the wall. Hence, the temperature gradient can be defined by equating the 

heat fluxes at the gas-deposit interface as: 

))(( int erface
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(3.8) 

The convection heat flux between the gas and the deposit interface must also be 

equal to the conduction heat flux through the deposit layer.  
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So, the interface temperature is: 

))ln((21

))ln((2
int DIDhDk

DIDhDTkT
T

d

wd
erface 


   

(3.10) 

Substituting the interface temperature and the temperature gradient in the particle 

concentration equation (3.7) results in: 
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Integrating equation (3.11) along the length (from 0 to x) yields: 
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Then, the particle deposition efficiency over the entire tube length can be defined 

as: 
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where LC  is the outlet particulate concentration. 

3.2.3 Transient Tube Diameter due to Particulate Deposition  

Particulates create a growing layer of deposits after landing on the tube wall over 

time. Although the rate of deposition seems to be larger in the inlet compared to the 

outlet due to larger particulate concentration and larger driving force (temperature 

gradient), it is assumed that the layer is formed uniformly in the axial and radial 

directions in order to simplify the problem and make it solvable. Then the rate of mass 

deposition of the layer in terms of particulate deposition efficiency and particulate inlet 

concentration can be evaluated as: 
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Considering the deposit layer forming inside the tube (a hollow cylinder), 

equation (3.15) can be rewritten as: 
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Assuming that the bulk gas mass flow rate (


m ) is constant over time and 

substituting the deposition efficiency, one obtains: 
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The convective heat transfer coefficient and the velocity of the bulk gas flow are 

also functions of the transient tube diameter. The heat transfer coefficient can be 

calculated from the Nusselt number (Nu ) definition for fully turbulent tube flows as 

[26]: 

2000Pr5.0,105Re10,
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Since the Nusselt number in equation (3.18) is applicable for turbulent flows, its 

use in transient regimes may cause errors or deviations from experimental results. There 

is a modified version of the aforementioned Nusselt number that covers the transition 

region but it is not employed in this study for simplicity. The Reynolds number is defined 

by: 

D

m
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


4

Re   (3.19) 

The reduction of the tube diameter due to deposition changes the Reynolds 

number over time. For results presented later in this paper, 0Re t  is defined to represent 

the Reynolds number for a clean tube without the deposit layer as:  

ID

m
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

 
4

Re 0   (3.20) 

The friction coefficient ( f ) is a function of the tube diameter, but the effect of the 

tube diameter variation on f  due to particulate deposition is small. Consequently, the 

variation of the friction factor with the tube diameter (Reynolds number) can be 

neglected and f  can be treated as a constant for the sake of simplicity. 

  62
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The gas velocity is extracted from the continuity equation as: 
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Substituting all the definitions in equation (3.17) and some manipulation yield: 
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(3.24) 

Equation (3.23) is nonlinear and does not have an analytical solution unless some 

simplifications and assumptions are made. Accordingly, a Taylor expansion is employed 

for the exponential term as follows: 
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The first two terms in equation (3.25) are selected and the rest will be the error of 

this estimation. So, after simplifications equation (3.23) can be rewritten as: 
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(3.26) 

Another Taylor expansion is utilized to estimate the power term in equation (3.26) 

as: 
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Since the criteria for using the proposed expansion are met, applying it simplifies 

equation (3.26) to: 
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Now, the ODE in equation (3.28) is linearized and can be integrated as: 
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After applying the initial condition IDtD  )0( , the result for the tube diameter 

can be expressed as: 
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Taylor series expansion is used again to simplify the natural logarithmic term: 
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So, the result becomes: 
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Equation (3.33) can be rewritten as: 

KtJFDEDD  23   (3.34) 
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Solving equation (3.34) results in three solutions for the transient tube diameter, 

as follows: 
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(3.36) 

Depending on the parameters and variables of the problem, the above set can give 

either three real numbers or one real number and two conjugate complex numbers. In 

each of the two cases, it is really trivial to detect the physically meaningful solution for 

the transient diameter so that it is not a complex or negative number, or larger than the 

clean tube inner diameter (ID).   
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Due to the fact that non-linear terms are repeatedly expanded by Taylor 

expansions to first order terms for simplification of equation (3.23), a comparison is 

made with the numerical solution of equation (3.23) with the results presented in equation 

(3.36). Figure 3.2 shows how the transient tube diameter is predicted by employing 

Taylor expansions. To perform a quantitative comparison some values are selected for 

critical parameters including inlet gas temperature (380  C), the tube wall temperature 

(90  C), inlet gas pressure (200 kPa), Initial Reynolds number (8000), and inlet particle 

concentration (30 3mmg ). It is seen that the linearized solution of (3.23) for the time-

dependent tube diameter is less than what numerical solution of the non-linearize original 

ODE in (3.23)  predicts.  There is a small error percentage involved in calculation of the 

tube diameter after 3 hours (2.1%) and the difference between absolute values is 

( m110 ) which is quite small relative to the tube diameter. The deposited particulate 

thickness predicted by the numerical solution is m274  while the analytical solution 

predicts it to be m384  for 3 hours of exposure time. This error cannot be avoided if an 

analytical solution is desired. This analytical method is a simple fast way to perform a 

parametric study and a sensitivity analysis of the important boundary condition on the 

results. 
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Figure 3.2 – Comparison between the numerical and analytical solutions of the transient 
tube diameter. 10000Re,200,/30,90,400 00

3
00  tw KpaPmmgCCTCT   

Having the transient tube diameter or the deposit thickness ))((5.0 tDID  , the 

tube effectiveness (actual heat transfer divided by the maximum possible heat transfer) 

can be computed as: 
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where, )(tTL is the gas outlet temperature defined as: 
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(3.38) 

Effectiveness drop (
0

 
 


t t tend
) is a metric to quantify the loss of thermal 

performance of the tubes. It is defined as the difference between the effectiveness at the 

start of deposition experiment (for a clean tube) minus the effectiveness at the end of the 

experiment. Since the diameter is a function of time, all other parameters including the 

effectiveness can be calculated as a function of time and explicit functions are defined. 
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The deposit mass gain can also be obtained from a geometrical estimation (deposit layer 

is a hollow cylinder along the tube length): 
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4

)( 22 tDIDLtMass ddeposit  
  (3.39) 

3.2.4 Boundary Conditions 

The inlet gas temperature, pressure, mass flow rate, inlet particle concentration, 

and tube wall temperature are constant in each case. So, the boundary conditions for this 

problem are listed as: 

0

),0(

),0(

),0(

),0(

2/

2/

0

0

0
















Dr

wIDr

C

TT

PtP

CtC

TtT

mtm

 

3.3  Exhaust Gas Thermodynamic and Transport Properties 

Since the diesel fuel H:C ratio CH = 1.809 for experiments used for verification is 

known, and the dry based mole fraction of carbon dioxide based on the experimental 

measurements, the ideal chemical reaction in the diesel engine is as below [9]: 

 

222222809.1 667.2491.159045.0)76.3(12.4 ONOHCONOCH   

Air/Fuel ratio in conducted experiments is 40.95. Using the aforementioned 

reaction, one can determine the mole fraction of each species in the exhaust gas: It is 

noted that the dry based mole fraction of CO2 is also given by experimental 

measurements and it is comparable with the following calculations: 
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The mole fraction of CO, NOX, HC, and all other existing species in the exhaust 

gas are negligible for this purpose. Utilizing the calculated mole fraction, one can find the 

gas flow properties including specific heat, viscosity, and thermal conductivity. Specific 

heat (molar based) of the main EGR flow can be found as: 
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For gas-phase species, the standard state is an ideal gas at 1 atmosphere. The 

coefficients ( ma ) of individual specific heat of each species are extracted from 

CHEMKIN [28]. 

The Lennard-Jones Formula (in cgs units) is used to predict the viscosity of each 

species. 
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while the viscosity of the main flow, as a mixture of different species, is: 
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The data for collision diameter of each species (  ) is extracted from 

CHEMKIN [29]. Also, the definition of the collision integral is [30]: 
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k


: an intermolecular force parameter of each species (from CHEMKIN [29])  

Thermal conductivity of a gas mixture containing polyatomic molecules can be 

estimated as [31]: 
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It is noted that exhaust gas flow properties in this analytical study are calculated at 

the average temperature of the inlet flow and the wall.  
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After linearizing, the properties of the exhaust gas as a function of temperature 

and pressure are listed as: 

mol

g
MW

MW

R
R g

g
g 89.28,    

(3.50) 

avggTR

P0   
(3.51) 

7126.071007.3 avgT   (3.52) 

49.9602168.0  avgp TC   (3.53) 

01084.01043.5 5  
avgg Tk   (3.54) 



71 

g

p

k

C 
Pr   

(3.55) 

Above correlations are valid for a temperature range between 298 K and 1000 K. 

3.4 Deposit Layer Properties 

There was little or no data in the literature to describe the thermal properties of 

EGR cooler deposits before Lance et. al. at Oak Ridge National Laboratory measured 

deposit thermal properties of EGR cooler deposit [32]. They measured the thermal 

diffusivity of the deposited soot cake by milling a window into the tube and using the 

Xenon flash lamp method. The heat capacity of the deposit was also measured and it was 

slightly higher than graphite, presumably due to the presence of hydrocarbons.  

By combining above measurements, they calculated the deposit thermal 

conductivity to be 0.041 W/mK (averaged value), only~1.5 times that of air and much 

lower than the 304 stainless steel tube (14.7 W/mK). The most important factor in their 

measurement is density, which was measured to be just 2% that of the density of the 

primary soot particles (or 98% porous). Experiments are being done at Oak Ridge to also 

measure the mechanical strength of deposits. 

Deposited soot layer properties are provided from the experimental data [32] to 

the model and listed in Table 3.1. Soot particle density and thermal conductivity are also 

listed in Table 3.2. 

 

Table 3.1 – Properties of the deposited soot layer 

Density 
3/35 mKgd   

Thermal conductivity 0.041 /dk W mK  

Porosity 98% 
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Table 3.2 – Properties of soot particles 

Mean diameter nmd p 57
 

Density 
3/1770 mKgp 
 

Thermal conductivity mKWk p /5.0
 

 

Maricq & Harris [33] showed that diesel engine soot agglomerate size ranges 

between 20 and 300 nm. They also showed that the mean particle size is 57 nm in most 

experimental conditions; hence, that is the number used to represent the particle diameter 

in this article. 

3.5 Test Case for Verification of the Solution (ORNL Experiments) 

To verify the model, a particle-laden EGR engine flow is selected for verification 

of this solution. The Oak Ridge National Laboratory has run EGR flow experiments in a 

controlled engine test set up. Details of the test set up and measurement procedures are 

fully described in Sluder et. al. [25]. The exhaust gas was divided to a few tubes at 

different designed boundary conditions (Table 3.3). In all selected experiments, the tube 

wall temperature was kept at C90  and HC level was enough low in order to prevent 

water or hydrocarbon condensation in the tube. Also, the gas inlet absolute pressure was 

kept at 196 Kpa. 

Hot gas flow passes through the tube and the coolant circulates around it in the 

outer tube to keep a constant wall temperature. The coolant temperature rise is negligible 

(~2o C). This low rise in coolant temperature is due to the large heat capacity of the 

coolant compared to that of exhaust gas flow. The tubes are made of stainless steel that 

has a large thermal conductivity compared to that of soot and exhaust gas. After each 

time exposure (3 hours), the sample tubes were removed from the fixture and analyzed. 
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Table 3.3 – Boundary conditions for selected experiments 

Experiment 

No. 

Initial Reynolds number 

( 0Re t ) 

Inlet Soot Concentration 

(mg/m3) 

Inlet temperature 

(

C) 

1 4500 7.5 220 

2 4000 7.5 380 

3 4500 30 220 

4 4000 30 380 

5 9000 7.5 220 

6 8000 7.5 380 

7 9000 30 220 

8 8000 30 380 

3.6 Results and Discussion 

In this part, the results of the analytical approach are described and discussed. 

Before verification of the solution, a parametric study is done to highlight the effects of 

boundary conditions on thermophoretic particle deposition.  

3.6.1 Parametric Study 

For this parametric study, the geometry in Figure 3.1 and the aforementioned 

layer information are used. In each case, all boundary conditions except one were kept 

constant in order to magnify the effect of the varying boundary condition on particulate 

mass deposited. It is also noted that the unit of the particulate concentration is defined as 

kg  per 3m of the gas flow and not based on the particulate number or particulate mass 

fraction.  

Figure 3.3 shows the effect of the gas inlet temperature on the amount of 

particulate mass deposited along the tube. Increasing the inlet temperature while the wall 
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temperature is constant results in increasing the thermophoretic driving force applied to 

particulates in the main flow. Also, increasing the inlet temperature decreases the gas 

density and increases the volumetric flow at a constant inlet pressure and the initial 

Reynolds number. Therefore, to have a constant particle concentration, the number of 

particles must be larger in a larger volumetric flow rate. As a result, the larger inlet 

temperature yields more deposited mass along the tube over the selected exposure time (3 

hours) due to larger driving forces and number of particles. 

 

 
Figure 3.3 – Variation of particulate mass deposited with gas inlet temperature ( 0T ). 

KpaPmmgCCTwt 200,/30,90,10000Re 0
3

00 
  

While the gas temperature and pressure are kept constant, gas properties do not 

vary. Figure 3.4 shows that by increasing the initial Reynolds number (gas mass flow 

rate) for a clean tube (defined in (3.20)), the deposit mass increases. This is due to the 

fact that a larger initial Reynolds number means a larger mass flow rate while the inlet 

temperature is constant (referring to (3.20). A larger mass flow rate results in a larger 

volumetric flow for a constant inlet gas temperature (density). To satisfy the constant 
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concentration constraint in this graph, the number of particles (quantity of particles not 

their size) must be also larger. This results in larger deposition of particulate.  

 

 
Figure 3.4 – Variation of particulate mass deposited with initial Reynolds number 

( 0Re t ). KpaPmmgCCTCT w 200,/30,90,400 0
3

00    

An expected trend is illustrated in Figure 3.5 . Increasing the inlet particulate 

concentration when the mass flow rate and the gas temperature are constant results in a 

larger mass deposited along the tube due to the presence of more particles in the main 

flow. The effect of gas inlet pressure on deposited mass along the tube is presented in 

Figure 3.6. Increasing the inlet pressure increases the gas density while gas inlet 

temperature is kept constant. For a constant mass flow rate, increasing gas density lowers 

the volumetric flow rate. Thus the number of particles carried by the flow must be lesser 

to keep the particulate concentration constant. Therefore, a lesser inlet particulate number 

due to higher gas inlet pressure causes less particulate deposition. 
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Figure 3.5 – Variation of particulate mass deposited with particulate inlet concentration 

( 0C ). KpaPCTCT wt 200,90,400,10000Re 000 
  

 

 
Figure 3.6 – Variation of particulate deposited mass with gas inlet pressure ( 0P ). 

3
000 /30,90,400,10000Re mmgCCTCT wt 

  
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3.6.2 Sensitivity Analysis 

To investigate how changes in variables (


mCPTk dd ,,,,, 000 ) affect the model 

output (deposited mass gain and effectiveness drop), a sensitivity analysis is performed. 

The analysis in section 3.6.1 shows that each variable affects the results of deposited 

mass gain in a monotonic manner. For the sensitivity analysis, the variable values are 

randomly selected based on a normal distribution where the means correspond to the 

average values from the orthogonal experiments by Oak Ridge National Laboratory 

(ORNL) and the standard deviation is set to be 20% of the mean. This sampling was 

conducted 1000 times (it shows similar results with even a lower number). The mean of 

the deposited mass gain is 12 mg and the standard deviation is 5.6 mg, about 46% of the 

mean. We are also interested in how each parameter correlates with the model output 

(deposited mass gain and effectiveness drop). Therefore, we calculated the partial rank 

correlation coefficient (PRCC). PRCC is a robust measure of sensitivity for nonlinear but 

monotonic relationships between a certain input and the output. A positive PRCC implies 

that the input is correlated with the output and increasing the input increases the output as 

well. A negative PRCC means the input parameter is negatively correlated with the 

output and increasing the input results in the output reduction. A zero value for PRCC 

shows input and output are uncorrelated.  

As shown in Figure 3.7, the deposited mass gain show negligible correlation with 

the deposit properties ,d dk . Observations from these results include: 

 Increasing deposit thermal conductivity results in a better heat transfer and 

larger temperature gradients at the wall a small increase in deposition due 

to thermophoresis.  

 Increasing deposit layer density means a smaller thickness for the same 

deposited mass and a smaller conduction thermal resistance (slightly 

larger temperature gradient at the wall). So, larger deposit layer density 
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delivers slightly larger deposition and that is the reason the PRCC is 

positive.  

 Inlet temperature, particle concentration, and gas mass flow rate are 

positively correlated and have larger effects on the deposited mass gain 

while gas pressure is negatively correlated as discussed before. Inlet 

temperature shows the most effect on deposited mass gain. 

 

 

Figure 3.7 – PRCC values for different parameters 


mCPTk dd ,,,,, 000 effect on 

deposited mass gain 

Similar analysis is done (Figure 3.8) for the effectiveness reduction of the tube 

after 3 hours exposure. It can be seen from the graph that inlet gas temperature, gas mass 

flow rate, and inlet particle mass fraction are positively correlated with the effectiveness 

reduction as expected. Increasing the deposited mass gain reduces the overall heat 

transfer coefficient and increases the effectiveness reduction. Gas pressure is negatively 

correlated with the effectiveness reduction of the tube as expected from Figure 3.7. The 

critical message on these graphs is that the deposited layer properties do not have a 
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significant impact on the mass gain prediction while they have a noticeable impact on the 

heat transfer. Deposit thermal conductivity is negatively correlated with the effectiveness 

drop because increasing it results in a better heat transfer and a lower drop in 

effectiveness. Also, deposit layer density is negatively correlated with effectiveness 

reduction since increasing the layer density reduces  the thermal resistance and increases 

the overall heat transfer (lowers effectiveness drop). 

 

 

Figure 3.8 – PRCC values for different parameters 


mCPTk dd ,,,,, 000 effect on 

effectiveness drop of the tube 

3.6.3 Comparison with Experimental Data  

To verify the solution, a comparison is also made with experimental 

measurements of Oak Ridge National Laboratory researchers at different boundary 

conditions, as listed in Table 3.3. One set of boundary conditions (Experiment No. 8 in 

Table 3.3) is selected for presenting the results. In the end, a comparison between the 

current model and experiments at various boundary conditions is made. 
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Figure 3.9 shows the diameter reduction of the tube due to soot deposition and the 

deposit layer thickness for the selected experiment (No. 8). It can be seen that the layer 

thickness reaches approximately m150 which is quite a noticeable value.  

 

 
Figure 3.9 – Tube diameter reduction due to soot deposition and deposited layer 
thickness. KpaPmmgCCTCT wt 196,/30,90,380,8000Re 0

3
000 

  

A comparison between the analytical solution and experimental results (No. 8) for 

the effectiveness of the surrogate tube is shown in Figure 3.10. The experiments were run 

twice for the statistical confidence. The differences between the experiments (especially 

at t=0) is due to errors in measurements, specifically the exhaust mass flow rate or 

temperature differential. In the first 5 minutes of the experiments, the effectiveness curve 

shows an increasing pattern because the fixture was not completely warmed up. The 

analytical solution predicts the effectiveness drop of the surrogate tube reasonably well in 

term of both magnitude and slope. That is, the rate of heat transfer reduction of the tube 

over time is predicted reasonably well by the equations. The effectiveness of the cooler 

degrades 17% as a result of deposit formation. Although this case is the worst case for 
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deposition since it has the highest inlet temperature and inlet soot concentration with a 

high initial Reynolds number, this amount of degradation is quite significant. This is the 

reason that this problem is getting more attention in industrial applications especially in 

the automotive industry. Soot particle mass deposited for each experiment and the 

analytical solution are also shown in Figure 3.10. The numbers show a reasonable 

consistency between the experimental measurements. 

 

 
Figure 3.10 – Comparison of effectiveness vs. time. 

KpaPmmgCCTCT wt 196,/30,90,380,8000Re 0
3

000 
  

Figure 3.11 shows the deposited soot mass predicted by the analytical solution 

versus the deposited soot mass measured experimentally for all 8 cases. The values 

plotted for the experimental results represent the average recorded between the two runs 

that are almost identical in most cases. If the analytical method predicted the mass gain 

exactly the same as the experimental results, the “ideal regression line” would have been 

achieved; however, the other regression line is what the current analytical solution 

predicts.  
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Figure 3.12 demonstrates the same comparison for the effectiveness drop. Four 

experiments (No. 1 to 4 in Table 3.3) have initial Reynolds numbers ( 0Re t ) between 

4000 and 4500; however, the last four experiments (No. 5 to 8 in Table 3.3) are 

conducted for initial Reynolds number between 8000 and 9000. The results of the 

analytical solution in the graph are labeled with the corresponding experiment number.  

 

 
Figure 3.11 – Deposited soot mass gain – model results vs. experimental measurements.  

Numbers on the data points indicate experimental conditions from Table 
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Figure 3.12 – Effectiveness drop – model results vs. experimental measurements.  

Numbers on the data points indicate experimental conditions from Table 1. 

The results show an acceptable agreement (slope and magnitude of predicted 

curves compared to the  measured experimental data in Figure 3.11and Figure 3.12) 

between the analytical method and experiments for a short exposure time (~3hours). We 

also learned the effect of different boundary conditions on the deposited mass based on 

this method. We can improve the analytical method by employing numerical techniques 

to solve governing equations more accurately. The deposit layer properties, including 

thermal conductivity and density, are important parameters that affect the results 

significantly. When the deposit layer grows, the interface temperature is hotter and the 

layer properties may be a function of the interface temperature and the layer thickness. In 

this model, the deposit layer properties are non-varying with temperature. The deposit 

layer is a highly porous medium with a 98% of porosity [32]. There could also be a 

convective heat transfer mechanism occurring inside the layer at such high porosity. This 

cannot be accommodated in the analytical method and requires numerical models. CFD 
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models will improve the results especially for longer exposure times when the analytical 

methods’ prediction in estimating the diameter is not very accurate.  

3.7 Concluding Remarks  

An analytical solution for thermophoretic deposition of submicron particles in 

transition and turbulent flow regimes is proposed. An explicit function is offered for the 

deposited layer thickness (the transient tube diameter).  

A parametric study is conducted to investigate the effect of boundary conditions 

on the amount of particulate mass deposited. It was shown that larger gas inlet 

temperature, inlet particulate concentration, and initial Reynolds number result in larger 

particulate mass deposited, while larger gas inlet pressure reduces it when all other 

boundary conditions are kept constant. A sensitivity analysis is also performed to show 

how the variables are correlated to the model output (deposit mass gain and effectiveness 

drop of tubes) after 3 hours exposure time. The sensitivity analysis shows that deposit 

layer thermal properties are weakly correlated to the deposited mass gain although they 

have a strong correlation to the effectiveness drop of tubes.  

The heat transfer coefficient degradation of the tube over time due to particulate 

deposition is also predicted as a consequence of the diameter estimation. Particulate 

deposition can degrade heat transfer effectiveness of a surrogate tube significantly even 

in a short exposure time (3 hours). Also, the proposed correlation for the particle 

deposition efficiency shows that it is a function of the transient tube diameter and varies 

as the layer grows.  

Predicted effectiveness drop and soot mass deposited have been compared with 

data from experiments run at Oak Ridge National Laboratory for particle-laden engine 

exhaust flowing through a heat exchanger with controlled conditions. The results of the 

analytical approach are in reasonable agreement with experimental measurements.  
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The analytical method is developed to find explicit correlations of different 

variables and it is good for the parametric study of the problem. To incorporate more 

physics including gas flow and the deposit layer properties variation as a function of 

temperature along the tube, axial variation of tube diameter as a function of local 

thermophretic force, and to more accurately solve this complex problem, we need to 

analyze it numerically. Chapter 4 describes our developed CFD models that are more 

accurate and complete.   
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3.8 Nomenclature 

C  Mean particle concentration ( 3/mkg ) 

0C  Inlet particle concentration ( 3/mkg ) 

LC  Outlet particle concentration ( 3/mkg ) 

pC   Specific heat of the gas flow ( KkgJ ) 

D   Transient tube diameter (m ) 

pd   Particle diameter (m ) 
f   Friction factor 
h   Convection heat transfer coefficient ( KmW 2 ) 

ID  Inner diameter of a clean tube (m ) 

Kn   Knudsen number (= pd2 ) 

thK   Thermophoretic coefficient 

dk    Deposit layer thermal conductivity ( mKW ) 

gk    Gas thermal conductivity ( mKW ) 

pk    Particle thermal conductivity ( mKW ) 

L  Tube Length 

gMW
 Gas molar mass 



m  
Mass flow rate ( secKg ) 

Nu   Nusselt number 
Pr   Prandtl number 


Q   
Heat transfer to the tube wall (W ) 

R  Gas constant (8.3143 KmolJ ) 

gR  Specific gas constant ( KkgJ ) 

conductionR  Deposit conduction thermal resistance ( WK ) 

convectionR   Gas convection thermal resistance ( WK ) 
Re  Reynolds number 

0Re t  Initial Reynolds number for a clean tube 
T   Gas temperature (K ) 

0T  Gas inlet temperature (K ) 

avgT
 The average of inlet gas and the tube wall temperatures (K ) 

erfaceTint  Deposit-gas interface temperature (K ) 

LT   Gas outlet temperature (K ) 

wT   Tube wall temperature (K ) 

t  Time ( sec ) 

U   Mean gas velocity ( sm ) 

thV   Thermophoretic velocity ( sm ) 
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Greek 
  Deposit layer thickness (m ) 
  Tube effectiveness 

d  Particulate deposition efficiency 
  Mean free path of a gas molecule (m ) 
   Viscosity of the gas flow ( smkg ) 
   Density of the gas flow ( 3mkg ) 

d   Deposit layer density ( 3mkg ) 

p   Particle density ( 3mkg ) 

   Gas kinematic viscosity ( sm 2 ) 
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CHAPTER 4 

COMPUTATIONAL STUDY OF THERMOPHORETIC PARTICLE 

DEPOSITION  

An analytical method was proposed in chapter 3 for nano-particulate transport in 

non-isothermal tube flows. Analytical solution was the best method to conduct a 

parametric study and a sensitivity analysis of the important variables for the problem but 

it was limited to many assumptions including constant gas properties (incompressible 

flow assumption). In this chapter, two approaches are used to analyze the problem, a one 

dimensional model in which the variables are assumed to be uniform in each cross 

section perpendicular to the tube axis; and an axi-symmetric model with moving 

boundaries. In the one dimensional model, MATLAB is used via implementing a finite 

difference scheme. In the axi-symmetric approach, the CFD software ANSYS-FLUENT 

is employed. In the software environment, a collection of C subroutines are developed to 

include the thermophoretic transport and the evolution of the boundaries due to the soot 

deposition. The variation of gas properties in the tube and accurate gas temperature and 

particle mass fraction gradients are critical factors that were not accommodated in the 

proposed analytical solution for the sake of simplifying the equations. In the 1D model, 

we employed empirical correlations for calculating the heat transfer rate to the tube wall 

exposed to the coolant; however, we solved the Navier-Stokes and energy equations to do 

so in the axi-symmetric model. We also solved the particulate mass conservation 



92 

equation more accurately in the axi-symmetric model. We compared the developed 

models against experiments conducted at Oak Ridge National Laboratory by comparison 

of the particulate mass deposited along the tube and the overall heat transfer reduction 

(effectiveness). Both models show a satisfactory agreement to the experimental results 

although the axi-symmetric model shows a significantly better estimation of the deposit 

mass gain in time. That is because of the more accurate estimation of deposition flux in 

the axi-symmetric model rather than the inaccurate conventional deposition flux in the 

one dimensional model.   

4.1 Introduction 

Our proposed analytical correlation for thermophoretic deposition of particles in 

tube flows is in a reasonably good agreement with experiments but it suffers from many 

ad-hoc assumptions that we made to simplify the problem. Hence, the current numerical 

methods are proposed to give a higher level of accuracy with more physics that were not 

included in the analytical solution. 

Several research studies are performed to investigate the particulate deposition 

and fouling phenomenon in laminar and turbulent flow regimes numerically or 

experimentally. Thermophoretic particle deposition in tube flows is measured 

experimentally by Tsai et. al. [1] by using monodisperse NaCl particles under laminar 

and turbulent flow conditions. The previous empirical equations for thermophoretic 

deposition are in a good agreement with their experimental measurement. Also, they 

showed that Talbot’s formula [2] for thermophoretic deposition is accurate compared to 

Waldmann’s free molecular formula. Schmidt and Sager [3] studied deposition of 

particles in turbulent pipe flows numerically. 

Messerer et. al. ([4],[5]) investigated thermophoretic submicron soot particles 

deposition under flow and temperature conditions relevant to heavy duty diesel exhaust 
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gas. A plate-to-plate thermal precipitation system has been used to investigate the 

deposition of agglomerate submicron soot aerosol particles in their work. Their 

experimental results were compared to a recent theoretical study by Rosner and Khalil [6] 

and showed a good compatibility. In the theoretical study, they proposed a correlation on 

how total mass deposition rates from a dilute flow stream can be predicted by thermal 

conductivity ratio, Reynolds number, particle mass loading, and temperature differences. 

Epstein studied particle deposition from a suspension flowing parallel to 

nonporous smooth and rough surfaces in terms of particle attachment, transport, and 

reentrainment. He also investigated sticking probability of particles to the wall for 

isothermal and nonisothermal conditions. Referring to the literature, he offered a sticking 

probability as a ratio of adhesive bond force between particles to average shear force on 

particles at the surface [7].  

Chein and Liao [8] studied diffusion and thermophoretic effects on nano-particle 

deposition in channel flow numerically. They examined two types of thermal conditions 

for different nano size particles and calculated particle deposition velocities for various 

wall temperatures and different inlet temperatures. Lee et. al. [9] simulated the 

thermophoretic deposition of ultrafine particles in an automobile exhaust pipe. In their 

study, the experimental data and the numerical simulation reflect the necessity of a new 

formula for thermophoretic deposition for high concentration polydisperse ultrafine 

particles in a pipe flow.  

Tsai and Liang [10] studied thermophoretic deposition of aerosol particles on a 

flat cold plate in a laminar flow. The results were correlated from the numerical solutions 

for similar boundary flows and provided a possible error less than 3% when the mean to 

wall temperature ratio was between 0.2 and 1. Chomiak and Gupta [11] studied particles 

behavior in viscous and thermal boundary layer. They showed that the thermophoretic 

forces on particles with Knudsen numbers smaller than 1 decrease due to the rotations of 
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particles since the rotation results in a fraction of the particles being in thermal non-

equilibrium with the gas flow. 

Shams et. al. [12] studied deposition of particles from 10 nm to 50  m in 

turbulent duct flows. They developed a sublayer model for the turbulent deposition 

process that includes the effects of gravity, Brownian, and lift forces. The deposition 

velocity for a range of particle relaxation times and flow conditions are presented in their 

work. Shear velocity effects on the deposition rates of various size particles are also 

investigated in their study. 

There is also some recent work done on the modeling of the fouling processe in 

heat exchangers including EGR coolers ([13]-[18]). Florea et. al. simulated a transient 

fluid flow and heat transfer in the EGR cooler by using the CFD code FIRE (AVL) and 

presented temperature gradient and pressure field across the cooler. They then verified 

their 3D model with experimental measurements and showed the results are comparable 

in most cases but they did not take into account the effect of fouling in the model 

explicitly [19].  

The novelties of this work compared to numerical models in literature are listed: 

 Tube diameter reduction due to the deposited layer, and thermal resistance 

of the deposited layer are taken into account in the model. In the axi-

symmetric model a dynamic subroutine is developed through a collection 

of user defined functions (UDFs) in ANSYS-Fluent to do this task 

 The deposit layer is not considered uniform along the length and its 

thickness can vary due to the local thermophoretic force (not included in 

the analytical correlation)  

 Accurate calculation of gas temperature and particle mass fraction 

gradients near the wall for steady state and transient axi-symmetric cases 

So, we developed two models for solving mass, momentum, particle mass 

fraction, and energy equations of gas flow in a tube flow with different boundary 
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conditions including the inlet temperature, mass flow rate, and inlet particulate mass 

fraction. To verify the model, data was taken from a controlled test setup with similar 

tube geometry and boundary conditions [20] as shown in previous chapter.  

4.2 One Dimensional Model Description and Governing Equations 

In this section, the developed 1D model is described for the particulate transport 

in non-isothermal turbulent tube flows. Hot gas including solid particles enters into a tube 

with a lower wall temperature. As the gas passes through the tube, the solid particles are 

deposited on the wall, forming a solid layer. The thickness of this layer varies along the 

tube length due the variation in the deposition rate. A schematic of the model is shown in 

Figure 4.1 where the tube length (L), the inner diameter of a clean tube (ID), the effective 

inner diameter due to particulate deposition (D ), the inlet temperature ( 0T ), the inlet 

mass fraction of particles ( 0Y ), the interface temperature at the gas-deposit interface 

( intT ), and the wall temperature ( wT ) are depicted.   

 

 
Figure 4.1 – Schematic of the model and the tube geometry 

The gas flow and particulate transport are computed through an Eulerian approach 

to predict particle deposition where the governing equations are as follows. It is also 

noted that a quasi steady assumption is made in the 1D model to facilitate numerical 

difficulties. Boundary conditions are time varying and makes the problem a function of 

time. 
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4.2.1 Governing Equations 

Figure 4.2 shows a schematic of a fluid element in the quasi 1D model. Area 

variation along the tube forces the problem to be two dimensional in nature but a quasi 

1D assumption is made to simplify the equations.  

 
Figure 4.2 – A schematic of a fluid element in the 1D model 

Continuity 

Deposit layer makes some changes in the cross sectional area of the tube. Also, 

flow properties vary as a function of mean temperature. As there is a large drop in 

temperature of bulk gas, the properties variation along the tube length is not negligible. 

So, the mass conservation equation of the bulk gas flow becomes: 
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Neglecting the transient term and particle mass deposition (source term) that is 

reduced from the main flow, and simplifying the equation yields : 
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Momentum 

In writing the momentum equation, the sum of the pressure forces and shear 

forces acting on the surface of the control volume must be equal to summation of the rate 

of change of momentum inside the control volume. Writing the momentum equation of 

the bulk flow for a unit length of the tube, one obtains: 
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Neglecting the transient term (quasi steady) and considering the friction on the 

element surface area as the source term yields: 

2
2( ) 1

8


      g
g

d u A dP
x A x f u D x

dx dx
  (4.4) 

Combining above equation with mass conservation equation and simplifying the 

equation results in:  
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Energy 

Energy equation for the element of the fluid also yields: 
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Where 


Q  acts as a source term and is the heat transfer to the tube wall. Axial 

conduction in the gas phase is neglected in equation due to the large Peclet number. 

Neglecting the transient term (quasi steady) and considering the convection heat transfer 

as the source terms in the equation, one can find: 
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where the total gas enthalpy is TCh p , we obtain: 



 Qx
dx

Aud
x

dx

TAucd gpg )2()( 3
   (4.8) 

Figure 4.3 shows a cross section of a tube with the deposit layer and thermal 

resistances for an element with the length of x . Thermal resistances include conduction 

resistance of the tube metal, conduction resistance of the deposited layer, and convection 

resistance between the mean flow and the deposited layer.  

 

 
Figure 4.3 – A cross section of a tube with deposit, thermal resistances, and temperatures 

So, we can write a simplified form of the energy equation as:  
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Conservation of Mass for Particle 

By writing mass conservation for soot particles at a segment of the tube, one can 

balance the changes in particle mass of the mean flow per time step with the amount of 

deposited particles and the amount of particle mass that re-entrain to the main flow by 

any possible removal mechanism per time step.  
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The transient term is neglected (quasi steady), and the total deposition flux due to 

thermophoresis and diffusion (J) at the wall is considered as the source term: 
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Although deposition due to diffusion is not comparable with thermophoretic 

deposition for small particles based on our scaling analysis, we included the two terms to 

show their ratio in this model. We neglected the re-entrainment of particles to the main 

flow in this study since there is not a confirmed experimental evidence behind it for 

submicron particles. Experimental study of particle removal mechanism is the subject of 

the next chapter. So, balancing the changes in the particulate mass in the mean flow per 

time with the amount of deposited particles yields:   

/ 2

( )  
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


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g B g th
r D

dY Y
m D D YV
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(4.12) 

The particle Schmidt number is much greater than unity ( 1pSc ) for submicron 

particulates [21]. Therefore, the concentration boundary layer of submicron particles is 

significantly thinner than the hydraulic or thermal boundary layer thickness over the tube 

surface. So, it is a close estimation in the one dimensional model to use the centerline 

particulate mass fraction in order to calculate the deposition flux near the wall. The 

Brownian diffusivity in above equation is defined by [22]: 

p

cb
B d

TCk
D

3
   

(4.13) 

where bk  is the Boltzmann constant and cC  is the correction factor that was 

defined before. 
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We start defining the thermophoretic term first. The thermophoretic drift velocity 

of a small particle is defined by: 

T
T

KV thth






  (4.14) 

To calculate the thermophoretic velocity, we estimated the temperature gradient 

in the radial direction at the gas-deposit interface as: 

int int
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(4.15) 

where the difference between the gas and gas-deposit interface temperatures, 

Nusselt number (Nu) and tube diameter are taken into account to calculate the 

temperature gradient. Churcill [23] combined the correlations for laminar and turbulent 

Nusselt numbers and proposed a Nusselt number (employed in this model) for a wide 

range of Reynolds numbers in transition and turbulent flows:  
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Developing laminar and turbulent Nusselt numbers for constant wall temperature 

tube flows are: 
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D
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  (4.19) 

lcNu  is the Nusselt number evaluated at critical Reynolds number of 2100. 

Reynolds number and Darcy friction factor [23] in the tube are: 
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(4.21) 

Tube effectiveness of the tube is defined as: 
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 To calculate the particle mass fraction gradient in the radial direction, the 

Sherwood number ( Sh ) is employed: 

int int
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Particle mass fraction at the wall of gas-deposit interface is zero and the empirical 

correlation of Berger and Hau [24] for the turbulent mass transfer in pipe flows is used to 

calculate the Sherwood number: 

 0.86 1/30.0165Re pSh Sc   (4.24) 

The Schmidt number of particles is defined as the ratio of gas kinematic viscosity 

to the particles Brownian diffusion coefficient. Having temperature and particle mass 

fraction gradients, we are able to find the total deposition due to thermophoresis and 

diffusion in this model.  

Another important correlation in this study is particulate deposition efficiency: 

  1001%
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Y
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(4.25) 
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We refer to this parameter in next sections. In correlations (4.22) and (4.25), the 

outlet temperature and particulate mass fraction are the results of solving the governing 

equations. 

4.2.2 Boundary Conditions 

There is a constant mass flow rate, temperature, pressure, and particle mass 

fraction at the inlet of the tube along with a constant tube wall temperature. Also, particle 

mass fraction at the gas-deposit interface is zero. We introduce the utilized boundary 

conditions as it follows: 

Inlet 
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4.2.3 Solving Methodology 

A second order backward differencing method (first order for the first node) is 

employed for the space in governing equations.  
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The key point in this model is that the deposit layer decreases the effective 

diameter of the tube and changes the gas-deposit interface temperature and overall heat 

transfer rate. We take into account this diameter reduction in the consequent time step in 

order to solve the governing equations as ("n" represents the time step and "i" represents 

the segment number): 
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A total number of 150 segments are selected in the one dimensional model. It 

shows an acceptable mesh independent result. With a 125 segments, the error in 

calculating the model outputs (mass gain and effectiveness drop) is less than 0.1% 

(compared to the outputs with 150 segments). 

4.3 Axi-symmetric Model Description and Governing Equations 

In this model, we employed the CFD software ANSYS-FLUENT (v.12.1, 

ANSYS, Inc.)to solve Navier-Stokes and the energy equations in an axi-symmetric tube. 

We defined two zones for the gas (Fluid) and the particulate deposit layer (Solid). The 

interface boundary splits the zones and it moves when the deposit layer grows. In 
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following sections, we will describe how the mesh dynamically moves. Figure 4.4 shows 

a schematic of the domain, zones, and the mesh.  

 

 
Figure 4.4 – A schematic of the mesh, zones, and boundary conditions in the axi-

symmetric model developed in ANSYS-FLUENT 

4.3.1 Governing Equations 

The Reynolds-average Navier-Stokes (RANS) turbulence model is employed to 

solve the mean flow. For variable density flows, the averaging process leads to products 

of density and other variables. To include density variations, a density-weighted Favre 

averaging is usually used. In classical time averaging, instantaneous flow variables are 

decomposed into the mean and fluctuating components. As an example for a variable φ , 

we have φ = φ +φ . In Favre time averaging, the variable are decompose as (i.e. 

φ = φ +φ ) where φ = φ  . Substituting flow variables in Navier-Stokes equations 

and a Favre time average result in the averaged equations as: 
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Reynolds stresses 
g v v    representing turbulence are modeled by the Reynolds 

Stress model (RSM). 

The Favre time averaged energy equation can also be written as: 
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  (4.35) 

If particle transport is due to convection, Brownian diffusion, turbulence, and 

thermophoresis, we can write the particle transport equation as: 
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Thermophoretic term is included in the advective term on the left hand side of the 

equation. The second term  . Yvg     in particle mass fraction equation representing 

variable fluctuations can be modeled as D Yg T . Turbulent diffusivity ( TD ) is the 

mean effect of velocity and particle mass fraction fluctuations in turbulent flows. 

Turbulent diffusivity is estimated by the turbulence kinematic viscosity ( T ) in this 

study. In such a case, the turbulent Schmidt number is one. Turbulent viscosity is a 

function of turbulence dissipation rate and turbulence kinetic energy. The last term 
    th. Y . k ln T YthVg g           is neglected compared to the other terms. 

4.3.2 Boundary Conditions 

Boundary conditions for governing equations in two phases are listed as: 

Gas phase inlet: 
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Gas phase outlet: 
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Coolant wall: 
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We wrote a C user defined subroutine in ANSYS-Fluent to define the new 

advective term     Yv thg V   and solve a new user defined scalar (UDS) as the 

particle mass fraction (Y). The deposition flux in both laminar and turbulent flows near 

the wall can be calculated as (just radial component is taken into account): 
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(4.37) 

Deposition occurs in a very thin layer near the wall and turbulent diffusivity does 

not play any role in deposition because turbulent properties are zero there (gas-deposit 

interface).  

It should be noted that the correlation between particle concentration and particle 

mass fraction is defined by: 
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4.3.3 Solving Methodology  

We used a second order upwinding method to discretize the equations spatially. 

The calculations were carried out using a dynamic grid. Equations (4.33) to (4.36) for the 

exhaust and the deposit layer were solved using the commercial software Ansys-Fluent 

12. The momentum and energy equations are discretized with a second-order upwind 

method, and the SIMPLE algorithm [25] was used for the pressure correction. The 

resulting algebraic equations were solved using an iterative-segregated method to reduce 

the memory allocation. 

We also activated the enhanced wall treatments to match the initial effectiveness 

of tubes with experimental data that will be discussed. The enhanced wall treatment is 

designed to extend the validity of near-wall modeling beyond the viscous sub-layer. This 

method is employed in general to resolve the laminar sub-layer. There is a requirement to 

have at least 10 cells within the viscosity-affected near-wall region to be able to resolve 

the mean velocity and turbulent quantities in that region. More details are explained in 

the software user manual. Turbulent intensity is the ratio of the root mean square of the 

velocity ( rmsu  ) fluctuations to the mean flow velocity. We chose the inlet boundary 

condition for the turbulence model to be a turbulent intensity of 10%. This number is 

used in CFD simulations [26] of turbulence in after-treatment systems (diesel particulate 

filters and diesel oxidation catalyst) that are close to our work. 

4.3.4 Dynamic Mesh in the Axi-Symmetric Model 

A collection of C subroutines are written to dynamically move the gas-deposit 

interface and reconstruct the mesh when the deposit layer grows. The technique was 
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previously used in a numerical study on fabrication of fiber-optics [27]. To initiate the 

solution and solve the steady state equations for a two zone model, we considered a layer 

of 10 microns for the deposit layer before deposition starts in a clean tube. This is 

because 10 micron was the minimum distance recognized as a line by the mesh generator 

software. We did not include this initial layer in the final deposit mass gain results but it 

causes a very small error (less than 2%) in predicting the initial effectiveness of a clean 

tube in the steady state solution. Figure 4.4 shows a schematic of the mesh constructed in 

ANSYS-Gambit (version 2.4.6, ANSYS, Inc.). 

A total number of 140 nodes in the radial direction for the fluid zone (with a 

successive ratio of 0.95) and 11 nodes in the radial direction for the solid zone are used 

along with a total number of 601 nodes in the axial direction to generate the initial mesh. 

Above numbers showed an acceptable mesh independency without causing numerical 

instabilities in calculating gradients near the gas-deposit interface. Then, the new mesh is 

constructed with the same number of nodes in axial and radial directions. A quasi-steady 

variation of the interface is assumed for the mesh motion. The distance between nodes in 

axial direction always remains constant. In both zones, the ratio of the radial coordinate 

of nodes to the effective diameter is always kept constant while reconstructing the mesh 

at each time step. A schematic of how the mesh moves in radial direction is shown in 

Figure 4.5 at two consequent time steps. The wall and axis boundaries stay stationary 

while the interface moves.  
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Figure 4.5 – A schematic of the mesh reconstruction when the deposit layer grows 

4.3.5 Validation of the Steady State Axi-Symmetric Model 

To validate our steady state models with current literature, we compared our 

results with the results presented in [28]. In their work, they proposed a theoretical 

correlation for particle deposition in laminar and turbulent flows and conducted 

experiments and performed several experiments for a various range of particle diameters. 

We took their data for 100 nm NaCl particles for validation. Figure 4.6 is a comparison 

between their experiments (figure 8 in their work) and our proposed one dimensional and 

axi-symmetric models for a flow rate of 20 L/min and a wall temperature of 293 K. The 

tube length in their tests was 0.965 m with a diameter of 4.9 mm. 

Figure 4.7 depicts the same comparison for particle deposition efficiency for a 

different gas flow rate of 35 L/min and a wall temperature of 293 K. We see a 

satisfactory agreement between our models and Romay et. al. experiments.  
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Figure 4.6 – Comparison of deposition efficiency between our models and Romay et. 

al.[28] mLmmIDkPaPKTLQ w 965.0,9.4,101,293min,/20 0   

 

 
Figure 4.7 – Comparison of deposition efficiency between our models and Romay et. al. 

[28] mLmmIDkPaPKTLQ w 965.0,9.4,101,293min,/35 0   
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It is claimed that thermophoresis is the dominant deposition mechanism for 

submicron particles compared to other deposition mechanism including diffusion. To 

verify this in our model, we compared the particle mass fraction where thermophoresis 

exists (new advective term) and when it is not present in the model. Figure 4.8 

demonstrates the two profiles at the half length (x=L/2) of a tube (geometry in Figure 4.1) 

where the boundary conditions are:  

skgm /109 4


 , KT 6530  , KTw 363 , KpaP 1960  , 6
0 109.28 Y .  

 

 
Figure 4.8 – Left: Comparison of particle mass fraction gradient in presence and absence 
of thermophoresis at x=L/2 at the given set of boundary condition, right: the magnified 

version of the left figure at 500 nm from the wall 
6

000
4 109.28,196,363,653,/109 



 YkPaPKTKTskgm w  

When thermophoresis is not included in the model, the centerline mass fraction is 

very close to the inlet mass fraction ( 6
0 109.28 Y ) since deposition efficiency is 

nearly zero (less than 1%). When thermophoresis is present, the centerline mass fraction 

(also averaged mass fraction) drops due to deposition upstream. In the zoomed graph 

(right side of Figure 4.8), it is demonstrated that the particle mass fraction gradient is 56 

times larger when thermophoresis is introduced to the model through user defined 
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functions (UDFs). It implies that thermophoresis enhances the particle mass fraction 

gradients (deposition flux) by carrying them very close to the wall. The same comparison 

for the one dimensional model (at the same boundary conditions and axial location 

(x=L/2)) resulted in: 
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(4.39) 

After validation of our model for steady state cases, we proceeded with the 

transient tests that were performed in Oak Ridge National Laboratory. Then, we activated 

the dynamic mesh subroutines to address the deposit layer growth and its effect on heat 

transfer drop of the surrogate tubes in our models.  

4.4 Oak Ridge National Laboratory Experiments 

To verify the models, the Oak Ridge National Laboratory tests are selected as it 

was discussed thoroughly in chapter 2. Tests were done in a controlled engine test set up. 

Details of the test set up and measurement procedures are fully described before. The 

exhaust gas was divided to a few tubes and different designed boundary conditions 

selected to specify the range of practical conditions for diesel EGR coolers (Table 4.1). In 

all performed experiments, the gas inlet absolute pressure was kept at 196 KPa. 

Experiments ran at normal engine coolant temperature (90

C). At this temperature, there 

is no water condensation in the tube.  
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Table 4.1 – Boundary conditions 

Experiment 

NO. 

Coolant 

temperature 

(  C) 

Flow rate 

(kg/sec) 

Inlet particles 

concentration 

(mg/m3) 

Inlet particles mass 

fraction 

Inlet gas 

temperature 

(  C) 

1 90 
4105.4   7.5 

6105.5   220 

2 90 
4105.4   7.5 

6102.7   380 

3 90 
4105.4   30 

6108.21   220 

4 90 
4105.4   30 

6109.28   380 

5 90 
4109   7.5 

6105.5   220 

6 90 
4109   7.5 

6102.7   380 

7 90 
4109   30 

6108.21   220 

8 90 
4109   30 

6109.28   380 

There is also another long exposure time experiment that will be presented in later 

sections.  

4.5 Exhaust Gas and Deposit Layer Properties 

A detail explanation on calculating the exhaust gas properties is given in chapter 3 

and is repeated here. The correlations are listed as: 

mol

g
MW

MW

R
R g

g
g 89.28,    

(4.40) 

TR

P

g
g    

(4.41) 

7126.071007.3 T   (4.42) 

49.9602168.0  TCp   (4.43) 
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01084.01043.5 5   Tkg   (4.44) 

The porosity of deposits layer is measured by Oak Ridge National Lab researchers 

and determined to be 98%. It shows that the layer is a high porous media. In the first look 

at the literature for turbulent boundary layer over permeable or rough surfaces ([29]-

[35]), we notice that “no slip condition” is not valid anymore at the interface. But it is 

claimed that for Darcy numbers of less than 10-5, the flow in the porous medium is very 

weak and can be neglected without considerable loss of accuracy [36]. This conclusion is 

made for a laminar flow inside a circular duct partially filled with a porous material. 

Overall, no slip condition is considered at the gas-deposit interface in this study as an 

assumption. 

The thermal conductivity of the deposit layer (solid zone in axi-symmetric model) 

as a highly porous medium consisting of a solid (graphite) and a fluid phase (trapped gas) 

is calculated here. Thermal conductivity of each phase of the layer is calculated at the 

local cell temperature in the axi-symmetric model and at the averaged temperature of the 

interface and tube wall in the one dimensional model. The correlation for thermal 

conductivity of the gas phase comes from (4.44). So, we calculated the thermal 

conductivity of the deposit layer as [37]: 

1.5 0.25(1 )   d Graphite EGR T
k k k   (4.45) 

3825 1048.11082.303495.00839.13 TTTkGraphite
 

  (4.46) 

Figure 4.9 shows the deposit layer thermal conductivity as a function of 

temperature and the layer porosity. Calculations for 98% porosity line up with Oak Ridge 

National Lab (ORNL) measurements of the deposit thermal conductivity at room 

temperature (0.041 mKW ) [38]. The deposit layer density is 35.4 3/mkg [38].  
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Figure 4.9 – Deposit thermal conductivity as a function of temperature and layer porosity 

4.6 Results and Discussion 

In chapter 3, we described in detail how different boundary conditions can affect 

the particle deposited mass and the overall heat transfer reduction in a tube flow. Here, 

we discuss the results of the developed models and compare them with experimental 

measurements at different selected conditions. We made a comparison for the 

effectiveness drop of the tube flow at the given boundary condition (Experiment No. 4 in 

Table 4.1) in Figure 4.10. Each experiment ran twice to improve statistical confidence. 

The effectiveness of the cooler degrades as a result of the deposit formation. It is seen 

that models predict the initial effectiveness (better prediction by axi-symmetric model) 

and the effectiveness drop of the tube quite well.  
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Figure 4.10 – Comparison of effectiveness vs. time (Experiment No. 4 in Table 4.1) -

6
000

4 109.28,196,363,653,/105.4 


 YkPaPKTKTskgm w  

 
Figure 4.11 – Comparison of effectiveness vs. time (Experiment No. 8 in Table 4.1) -

6
000

4 109.28,196,363,653,/109 


 YkPaPKTKTskgm w  
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Figure 4.11 shows the same comparison for Experiment No. 8. The initial 

effectiveness for this experiment is lower compared to experiment No. 4 because the flow 

rate is larger and there is a smaller residence time for gas molecules in the tube to transfer 

heat. In the first 5 minutes of the experiments, the effectiveness curve shows an 

increasing pattern because the fixture was not completely warmed up. The discrepancy 

between the experiments in Figure 4.11 comes from experimental sources of error 

including the location of thermocouples in the gas flow, or error in the mass flow rate 

measurement.  

Figure 4.12 shows the soot particle mass gain predicted by the models versus 

mass gain measured experimentally for all eight experiments in Table 4.1. If the model 

predicted the mass gain exactly as the experimental results, the ideal regression line 

would have been achieved. It is seen that in most cases, the axi-symmetric model delivers 

a closer prediction of mass gain and its predicted results are within the experimental error 

bars.  

The better prediction of mass gain by the axi-symmetric model arises from the 

calculation of the deposition flux in each model. In the one dimensional model, the 

thermophoretic flux in (4.12) is computed from the centerline particle mass fraction 

( thgYV ); however, particle mass fraction near the wall is zero. Also, thermophoretic 

velocity is calculated from empirical correlations for Nusselt number. In the axi-

symmetric model, the total deposition flux (diffusion and thermophoretic) in (4.37) is 

calculated accurately by computing the near wall particle mass fraction. This is the reason 

for a better prediction of deposited mass gain by the axi-symmetric model.  

Overall, the axi-symmetric model shows a 52% improvement in predicting the 

deposited mass gain compared to the proposed analytical solution (discussed in chapter 3) 

and a 14% improvement compared to the one dimensional model. 
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Figure 4.12 – Deposited soot mass gain – models vs. experimental measurements.  

Numbers on the data points indicate experimental conditions from Table 4.1 

Figure 4.13 demonstrates a similar comparison for the effectiveness drop. The 

average value of two sets of experiment at the end of 3 hours exposure is used for each 

case to show the experimental results in Figure 4.12 and Figure 4.13. Hence, the error 

bars in these graphs are calculated based on the deviation of each test from the average 

value. Overall, the axi-symmetric model gives a better estimation of the heat transfer 

reduction in tubes compared to the one dimensional model (3%). Comparing the two 

models, we notice that the results of the axi-symmetric model in four cases (mostly high 

flow rate flows experiments 6-8 and experiment 4) are within the error bar range of 

experiments while in only two cases the one dimensional model prediction is within the 
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range of experimental data. Overall, the axi-symmetric model prediction is closer to 

experiments especially for the experiments with high gas mass flow rates.  

 

 
Figure 4.13 – Effectiveness drop – models vs. experimental measurements.  Numbers on 

the data points indicate experimental conditions from Table 4.1. 

The above experiments ran for a relatively short exposure time (3 hours). 

Experimental measurements for a longer period of time will help to improve the 

understanding of layer property variation or possible removal mechanisms of the 

deposited layer. Figure 4.14 shows the effectiveness comparison for a longer time 

exposure of 12 hours (Experiment No. 8 in Table 4.1). It is seen that the effectiveness is 

predicted well by models but experiment shows a sharper slope change over time 

compared to the models prediction. There can be following reasons for this small 
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discrepancy in the slope. The deposited layer properties including thermal conductivity 

and density are important parameters affecting the results significantly. Our correlation is 

based on what is in literature. In-situ measurements of deposit thermal conductivity and 

density will help to investigate how the layer properties vary when it builds up. Also, 

experimental evidences and microscope images show a higher layer density in the bottom 

than in the top of the deposited layer (as discussed in chapter 2) [39]. More experimental 

measurements are required to clear these ambiguities although current prediction is quite 

good. We describe in the next chapter how we approached to study the deposit 

stabilization mechanism(s) for long exposures through a visualization test rig that we 

designed and built at the University of Michigan. 

 

 
Figure 4.14 –  Comparison of effectiveness vs. time (long exposure experiment) -

6
000

4 109.28,196,363,653,/109 


 YkPaPKTKTskgm w  

Figure 4.15 shows the particulate deposition efficiency predicted by the two 

models. There is a significant reduction in deposition efficiency when the deposit layer 

forms.  
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Figure 4.15 – Particulate deposition efficiency vs. time (long exposure experiment) -

6
000

4 109.28,196,363,653,/109 


 YkPaPKTKTskgm w  

Figure 4.16 depicts the comparison between the deposited soot mass gain in long 

exposure experiment over time. The axi-symmetric model shows a significantly better 

prediction in this graph for longer exposures (8 and 12 hours). There is a 4% error in the 

axi-symmetric prediction after 12 hours exposure when the error of the 1D model is 17%.   

Figure 4.17 also shows the deposit thickness comparison predicted by models. As 

expected from Figure 4.16, the one dimensional model predicts a thicker deposit layer at 

the end of 12 hours especially at the inlet but the axi-symmetric model shows a lower 

thickness with a more uniform axial distribution that is closer to ORNL microscope 

images in general. 
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Figure 4.16 – Comparison of deposited soot mass vs. time (long exposure experiment) -

6
000

4 109.28,196,363,653,/109 


 YkPaPKTKTskgm w  

 
Figure 4.17 – Comparison of deposited soot thickness vs. tube length (long exposure 

experiment) - 6
000

4 109.28,196,363,653,/109 


 YkPaPKTKTskgm w  
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We do not have the experimental data to support the predicted thickness for the 

experimental condition in Figure 4.16 but it is worth looking at the available 

measurement (courtesy of Michael Lance at ORNL) that were conducted for a square 

tube, 1/4" across. Shown data in Figure 4.18 summarizes the average data for the deposit 

thickness in the entire length of tubes at various tests where exposure time, HC level, and 

fuel type were varied. The error bars in this figure represent the minimum and maximum 

values for the four tube samples in each experiment.  

 

 
Figure 4.18 – Average deposit layer thickness in entire tube length for various exposure 

times (courtesy of Michael Lance, ORNL) 

Figure 4.19 shows the deviation from the tube average value for deposit thickness 

(closed circles) and mass (open circles) for 17 model cooler tubes (0: is the inlet). The 

thickness was measured at six cross-sections along the length of the tube and the mass 

was measured along 4 1-inch sections of tube. In y axis, 1 is a reference point that 

corresponds to the average value for the thickness (mass) in entire length of the tube at 

various experiments (boundary conditions). Then, for each point (for thickness) and 
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segment (for mass) along the length, the deviation from this average value is calculated. 

Thereafter, an average value of the deviations is calculated and presented in Figure 4.19. 

The results in this graph show that there is not a significant deviation from the average 

from the inlet to the outlet.  

 

 
Figure 4.19 – The deviation from the tube average value for deposit thickness (closed 
circles) and mass (open circles) for 17 model cooler tubes (courtesy of Michael Lance, 

ORNL) 

Although our modeling study was performed for tube flows, in reality EGR 

coolers have turbulent generator functions like wavy channels with/without winglets. One 

dimensional model cannot accurately predict the flow fields inside the complex 

geometries. The developed axi-symmetric model is most comprehensive solution in 

current literature and is the only way to predict the effect of geometrical designs on the 

dynamics of particle deposition in real EGR coolers with wavy channels and winglets.  
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4.7 Concluding Remarks  

We developed a one dimensional model in MATLAB and an axi-symmetric 

Eulerian model in ANSYS-FLUENT to study the particle transport in tube flows under 

influence of thermophoretic forces. They are the most complete models in literature 

taking into account the cross section area variation of the tube due to deposition, gas and 

deposit properties variation as a function of temperature, axial conduction in the deposit 

layer, and accurately calculated near wall gradients.  

A comparison between isothermal and non-isothermal (when thermophoresis is 

present) flow conditions in tube flows (Figure 4.8) shows that in the non-isothermal 

condition, the deposition flux is 1-2 order of magnitude larger than that of isothermal 

cases by comparing the mass fraction gradients near the wall.  

Engine exhaust is selected as a particle-laden flow to verify the developed 

models. Eight experiments are designed and conducted in a controlled engine test set up 

in Oak Ridge National Laboratory to vary the exhaust gas inlet temperature, particle mass 

fraction, and the gas mass flow rate. Exhaust gas was passed in surrogate tubes for a 

certain time exposure. Effectiveness drop of surrogate tubes and deposited soot mass gain 

in tubes are the variables employed for verification.  

Both models show acceptable agreement with experimental measurements but the 

axi-symmetric model gives a closer prediction of deposited mass gain, the deposit 

thickness, and heat transfer reduction in tubes. Better prediction of deposited mass gain 

by the axi-symmetric model arises from the fact that the deposition flux in the axi-

symmetric model is accurately computed through calculation of gas temperature and 

particle mass fraction gradients near the wall while in the 1D model the deposition flux is 

approximately calculated by empirical correlations. Axi-symmetric model is the only way 

to approach time evolution of the deposition process in real heat exchangers simulations 

with wavy channels and a more complex geometry than simple tubes.   
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4.8 Nomenclature 

Symbols 
A  Tube cross sectional area ( 2m ) 
C  Particle concentration ( 3mkg ) 

CC   Correction factor 

pC   Gas specific heat ( KkgJ ) 

D   Transient tube diameter (m ) 

BD  Browonian diffusivity ( sec/2m ) 

TD  Turbulent diffusivity ( sec/2m ) 

pd   Particle diameter (m ) 
f   Friction factor 
h   Gas enthalpy ( kgKJ ) 

ch   Convection heat transfer coefficient ( KmW 2 ) 

ID  Inner diameter of a clean tube (m ) 
J  Deposition flux ( smkg 2 ) 

bk  Boltzmann’s constant 

k    Thermal conductivity ( KmW ) 

thK   Thermophoretic coefficient 
K   Mass transfer coefficient ( / secm ) 
Kn   Knudsen number 
L  Tube Length 

gMW   Gas molecular weight 


m  Gas mass flow rate ( seckg ) 

Nu   Nusselt number 
OD  Outer tube diameter (m ) 
P  Gas pressure ( 2mN ) 
Pr   Prandtl number 


Q   Heat transfer to the tube wall (W ) 

R    Gas constant ( KmolJ ) 

conductionR  Deposit conduction thermal resistance ( WK ) 

convectionR   Convection thermal resistance ( WK ) 

metalR   Metal conduction thermal resistance ( WK ) 

Re  Reynolds number 
r  Radial direction 

pSc  Particles Schmidt number 
Sh  Sherwood number 
T     Absolute temperature (K ) 
t  Time ( sec ) 
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v   Gas velocity vector ( sm ) 

thV   Thermophoretic velocity ( sm ) 
x  Axial direction 
Y  Particle mass fraction  

Greek 
x  Tube segment length (m ) 
t  Time step (sec) 

  Deposited layer thickness (m ) 
  Surrogate tube effectiveness (%) 

d  Deposition efficiency (%) 
  Mean free path of a gas molecule (m ) 
   Gas viscosity ( smkg ) 
   Density ( 3mkg ) 
   Gas kinematic viscosity ( sm 2 ) 
   Deposited layer porosity 

Superscript 
n  Time step 

Subscripts 
0  Inlet 
d  Deposit 
i Segment number 
int interface 
g  Gas 
L  Outlet 
p  Particle 
T  Turbulent 
w  Wall 
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CHAPTER 5 

IN-SITU MONITORING OF PARTICLE TRANSPORT IN CHANNEL FLOW 

It is shown in previous publications that the formed layer due to particulate 

deposition in duct flows tends to stabilize after a long exposure time ([1]-[3]). The 

mechanisms leading to this stabilization are not clearly understood and there is no 

published article discussing deposit removal of sub-micron particles in the sub-sonic flow 

range. There may be deposit removal mechanisms, or it may be that the rate of deposition 

decreases as deposits build (or both). It can also be the deposit layer thermal properties 

variation when the layer grows. The lack of literature on this subject and many 

uncertainties in this complex problem led us towards this fundamental experimental 

investigation.  

Our developed CFD models are in a good agreement with Oak Ridge National 

Laboratory experiments for short exposure times. Despite the good agreement for short 

exposures, the results of developed models show a deviational trend for longer exposure 

times. Therefore, we decided to investigate the physics of long exposure experiments and 

deposit stabilization mechanism(s) by monitoring the deposit layer in-situ. The aim of 

this experimental study is to find enhancing mechanisms for deposit removal and 

effectiveness recoveries in EGR coolers by visualizing the events happening at different 

conditions. In the following section the experimental test fixture and the tests are 

described. 
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Little experimental study of fouling (particle deposition) phenomenon in EGR 

coolers exists in literature for different aspects including effectiveness reduction and 

pressure increment due to fouling ([4]-[6]). Most of these experiments were blind tests in 

which the inlet and outlet temperature and pressure of real EGR coolers were measured at 

different boundary conditions. Despite the good quality of these studies, the dynamics of 

the fouling process is not clear in them. Also, there have been a few attempts in 

simulation, prediction, and measurement of deposit growth in a combustion chamber by 

extensive micrographic study ([7]-[9]) but current novel investigation is done to observe 

the dynamics of particle deposition and removal in-situ.    

5.1 Experimental Apparatus 

A unique experimental apparatus is designed and built for in-situ monitoring of 

deposition formation and removal of diesel engine exhaust particulates in a channel flow. 

A 2008 model year 6.4L Ford PowerStroke® diesel engine is used to generate exhaust 

for the visualization test fixture. Hot engine exhaust carrying particles flows through a 

rectangular channel with one wall made of Pyrex and the other of stainless steel. The 

Pyrex wall gives an opportunity to monitor the deposit growth on the opposite wall made 

of stainless steel. 

If thermophoresis is the only deposition mechanism for submicron particles, then 

imposing a zero temperature gradient (in the radial direction) on the Pyrex wall should 

result in no deposition. A Ford proprietary method is used to heat the glass. Figure 5.1 

depicts a schematic of the surrogate channel carrying exhaust flow and Figure 5.2 shows 

a real image of the experimental setup. As shown, coolant is circulated below the metallic 

wall to cause thermophoretic deposition due to the temperature gradient. Although our 

main target is to study real EGR coolers, this study is limited to a surrogate channel. 

Moreover, the heated air stream transfers the heat to the exhaust flow and does not let the 
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metallic channel act as a cooler. Therefore, the focus is to visualize and record the 

deposition/removal events and not the effectiveness measurement of the channel. 

 

 
Figure 5.1 – Principle of the visualization test rig – Metallic channel caries exhaust (or 

compressed air) and glass window allows visualization 

 

 
Figure 5.2 – A picture of the experimental setup – digital microscope, metallic channel, 

thermocouples below the specimen, coolant and gas inlets and outlets. Exhaust flow 
direction is from right to left.   

A digital microscope (Keyence, VHX-1000E) is located on the top of the Pyrex 

wall and tracks the deposit growth caused by thermophoresis on the opposite wall. The 
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camera can record individual pictures or videos; we typically recorded time lapse videos 

with one image captured per minute. Monitoring the deposit layer over the time exposure 

of the experiments and recording the events on the surface with the digital microscope 

shows that there can be a removal mechanism in the form of deposit flaking. There are 

four thermocouples to measure the metal temperature below the specimen (opposite wall) 

in which deposition occurs. Since the metal deposit surface is thin (~1 mm stainless steel) 

we expect the deposit-side metal temperature to be very close to the temperature 

measured by these thermocouples. 

Besides the exhaust gas stream in the metallic channel, we also designed another 

gas line for compressed air that can replace exhaust as needed. Figure 5.3 shows 

schematics of how these two lines switch and how pressure transducers, thermocouples, 

flow meters, and heaters are controlled by a computer program. A Labview® program is 

written to control the flows at the desired temperature, pressure, and flow rate. The 

exhaust flow is filtered and the flow measured by a Siemens flow meter (SITRAN F C 

MASSFLOW 2100 DI 6). Also, the compressed air line flow rate is measured by a MKS 

mass controller (1579A00832LR1BV). The purpose of compressed air line in our design 

is to 1) warm up the system before flowing exhaust in order to avoid any possible 

condensation of water and hydrocarbons if not needed, 2) to investigate removal 

mechanisms caused by shear forces at higher flow rates, 3) to cool down the system with 

no water condensation at low temperatures (the compressed air has a dryer and filter 

upstream of the fixture). Using hot air at an almost identical condition as exhaust 

(temperature, pressure, and flow rate) lets us study the effect of shear force on removal 

enhancement with no deposition (no particulate in compressed air). 
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Figure 5.3 – Schematics of gas lines and wires – Exhaust mode on top and compressed 

air mode in bottom 

Engine exhaust is sampled from the engine high pressure EGR pipe upstream of 

the EGR catalyst and cooler. This pipe is at exhaust pressure upstream of the 

turbocharger turbine. This pressure drives the exhaust flow through the system without 

need for a sampling pump. A heated line is used between the engine and the fixture to 

keep the exhaust temperature high enough (190oC). The purpose of this heated line is to 

1) prevent hydrocarbons condensation in the path 2) Prevent heat loss from the exhaust 

flow to the ambient 3) prevent thermophoretic PM deposition in the line. 
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5.2 Long Deposition Test 

A series of experiments was performed to visualize the soot particle deposition 

and removal at various boundary conditions. First, the deposition tests are described and 

thereafter different designed experiments for removal observation are discussed. 

Although a few removal tests were successful and just one was practical for real EGR 

coolers recovery, this apparatus can be used for further investigations on this field.  

5.2.1 Long Deposition Test 

A steady state load/speed condition (1200 RPM, 7.5 BMEP with post injection, 

1.57 bar pressure at turbine inlet, air fuel ratio 20) of the diesel engine representative of a 

highly loaded cruise is selected for the deposition test. This point is selected to produce a 

higher particulate level of FSN=1.1 (20.4 mg/m3) as PM is known to be the significant 

exhaust constituent that degrade EGR cooler performance. A series of long runs (with the 

maximum of 18 hours continuous run) were conducted to observe possible obvious 

removal mechanism with the deposition is occurring. Some tests were performed in 

different days and some were conducted continuously in one day to make sure the 

observed results are not affected by deposit aging over time. If the tests were continued in 

different days, we made sure to have an initial warm up time with hot compressed air and 

a cool down period with hot air at a similar condition after each test. This is to avoid 

possible water or hydrocarbon condensation and keep the layer unaffected by condensed 

species. 

In deposition tests, exhaust gas passed through the metallic channel at the given 

boundary condition in Table 5.1 (properties in estimating Reynolds number are calculated 

at the average temperature of the coolant and inlet exhaust temperature).  
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Table 5.1 – Channel geometry and boundary condition  

Channel width (mm) 21.5  

Channel height (mm) 12 

Channel length (mm) 300 

Exhaust inlet pressure (bar) 1.25  

Exhaust inlet temperature (oC) 350  

Coolant temperature (oC) 80  

Mass flow rate (kg/hr) 3 

Re 2800 

A 1/16" thermocouple is used to measure temperature near the surface of the 

Pyrex window at the glass channel outlet. This temperature of the heated glass was kept 

larger than the inlet temperature of exhaust in the metallic channel.  

Gas lines are round ½” Swagelok tubes and fitting and the channel is rectangular 

(Table 5.1). The channel inlet and outlet adaptors are designed so that recirculation at the 

inlet and outlet is minimized. 

The significant observation from deposition tests is that we were quite successful 

in keeping the Pyrex window clean and could observe the opposite wall. The fact that the 

glass remains clear apparently shows that as the only expected deposition mechanism for 

small soot particles in exhaust is thermophoresis and other mechanisms do not play an 

important role. This trend was expected from literature and our aforementioned scaling 

work discussed before.  

Figure 5.4 shows a clean surface at half-length of the channel before deposition 

and after 2 hours of soot particle deposition at the aforementioned engine condition. It is 

clearly seen that in a course of two hours, soot particles completely covered the metallic 

surface where the camera was recording images (magnification of 50 – Image size is 

6.88mm5.16 mm). 
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Figure 5.4 – Two images taken from the surface before and after deposition within a two 

hour interval – (magnification 50) 

In another deposition test, we used the microscope to measure the deposit 

thickness. To do so, we made a scratch mark on the surface to have a reference (clean 

metal surface) for this measurement. After 2 hours of soot deposition a 3D image of the 

deposit layer was taken. Figure 5.5 depicts a real image of the layer and its 3D images 

from two different views. The deposit thickness was measured to be 69.3 micron. The 

thickness was also measured by a commercial thickness measurement probe and the 

results were quite close (65 micron). 
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Figure 5.5 – A real image of the deposit layer with a scratch mark for the reference – 3D 

images of the layer (150x  magnification) 
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During the long steady state tests, no significant removal in the form of flaking 

occurred but the morphology of the layer changed once when the deposit sat in ambient 

condition for two days. We hypothesize that it can be either due to chemical reactions in 

the layer or hydrocarbon evaporation from the deposit layer. Further investigation of this 

phenomenon is planned as future work. 

To make sure that the observations are consistent, we repeated the deposition tests 

several times at the same conditions. The deposition tests were always the same and no 

obvious removal or recovery was observed except a few small random flakes ranging 

from a few to a hundred micron. These flakes occurred (along the tube length including 

where the camera was looking) just a few times over a long test and the resulting spot 

was covered in about an hour. We do not consider these types of flakes as a removal 

mechanism. In addition, there were seen a few big particles with the maximum diameter 

of a few hundred microns landing on the layer (see Figure 5.4). These particles may be 

flakes of deposits from the cylinder or exhaust system, and are not normally measured by 

typical particulate measuring instruments. We hypothesize that small flakes discussed 

above were also caused by these big particles that are not in the range of exhaust soot 

particles reported in literature.  

Besides random big particles flowing in the exhaust flow, we observed small 

flakes when we switched the line. Due to the fact that there is a tee connection between 

the exhaust and the air line and particles can be trapped in the tee fitting, once in awhile 

removal was observed in the form of small flakes when we switched the lines. We 

hypothesize those particles hitting the surface (when switching the lines) come from the 

tee fitting upstream of the channel and not from the engine. 

A collection of big particles were observed either when switching the lines or 

randomly in the exhaust flow. Therefore, we studied the existence of big particles in the 

exhaust flow. The conventional understanding is that soot particles range from 10 to 300 
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nm [10] but our study show that there are big particles in the flow and those are the ones 

filtered in the cyclones of devices in which distribution analysis is done.  

We passed the exhaust gas through a fiberglass filter of 2.7 micron pore size and 

60 mm diameter at different locations; at the sample tap in the EGR line, through 20 feet 

of heated sample line just before the test fixture inlet, and in the air line which is used to 

pre heat the test fixture. We exposed the filter to exhaust for two minutes in each test. 

This data demonstrates the presence of large particles not previously documented. Figure 

5.6 demonstrates the filter-holder used in this study and Figure 5.7 shows a sample filter 

exposed to the exhaust flow for two minutes. 

 

 
Figure 5.6 – Filter holder for the particle distribution study 

 

 
Figure 5.7 – A sample filter that is exposed to exhaust for two minutes  
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Many filters were used to sample the particles at different engine conditions. 

Interestingly, those big particles were observed under the microscope in most of the 

sample filters. Figure 5.8 shows a filter at the magnification of 200. Big particles are 

clearly seen in this image.  

 

 
Figure 5.8 – Large trapped particles in the filter – Image taken by the microscope - Image 

size 1.74mm1.29 (200x magnification) 

5.2.2 Thermal Cycling Test 

One hypothesis for removal is potential thermal stress cracking of the deposit. To 

experiment this, we performed a thermal cycling test. After the deposition period for 18 

hours, this test was conducted with hot compressed air to avoid the chance for water 

condensation. We monitored the effect of temperature variation of the layer by reducing 

the coolant temperature (turning off the water heater). Consequently, the specimen 

temperature gradually dropped to 40oC over 26 minutes. We heated up the coolant again 

to 80oC and repeated this experiment once more. We did not observe any flakes or 
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significant change in the layer because of thermal cycling. Either thermal cycling does 

not have a significant impact on deposit removal or the temperature variation range was 

not sufficient or fast enough due to large heat capacity of the fixture.  

5.2.3 Water Condensation Test 

The criterion for water condensation to occur is that the mole fraction of water in 

the main flow is equal or larger than the mole fraction at the wall surface and that the 

surface is below the dew point temperature. Water mole fraction in the flow is defined 

by:  

P

P
y v
w 

  (5.1) 

where water vapor pressure can be calculated by using its Antoine coefficients (A, 

B, C) as: 

235,1750,23.10,10 


 CBA
CT

B
APLog

C
v

  
(5.2) 

Pressure is in Pascal and the surface temperature is in Celsius in above equations. 

Water mole fraction in the exhaust flow can be estimated from the ideal diesel fuel 

combustion (H:C ratio CH = 1.809) when the air fuel ratio is 20 in our experiment: 

222222809.1 548.0521.79045.0)76.3(2 ONOHCONOCH   

Having water mole fraction in the flow (0.091) and the exhaust pressure (1.25 

bar), one can calculate the dew point for water condensation in the fixture to be 47oC. 

The system ran a total of 18 hours of deposit accumulation with engine operating 

conditions as described above.  This total accumulation was done over a period of five 

days.  At each shut down the flow was switched from exhaust to heated air.  On the initial 

start and subsequent restarts, the system was preheated with hot air before exhaust flow 

was routed through the test fixture.  
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After 18 hours of the deposition test, we gradually reduced the coolant 

temperature from 80oC to 40oC over 16 minutes while flowing exhaust gas. Soon after 

the temperature below the specimen reached 42oC (approximately the dew point) over 31 

minutes, we observed a fracture in the deposit and its growth. Image of the fracture 

growth are presented in Figure 5.9. There is a 5 minute interval between each from image 

(a) to image (d). The real size of each image is 6.88mm5.16mm and the magnification 

is 50.  

 

 
Figure 5.9 – Fracture in deposit when coolant reached the critical temperature (42oC). 
There is 5 minutes interval between successive images. The real size of each image is 

6.88mm5.16mm (50x magnification). Gas flows from bottom to top. 

In the next test, we circulated very low coolant temperature (9oC) while flowing 

compressed air. No further changes were observed. Then, we switched the flow from 

compressed air to exhaust gas through the channel. Immediately after exposing the 
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channel to exhaust flow (containing water molecules), significant deposit flakes were 

observed so that a clean metal surface was easily seen. In other words, water droplet 

formation below the deposit layer weakened the bond forces and caused the deposit layer 

to float until they were removed by gas flow in the form of flakes. The consequence of 

this process can be seen in Figure 5.10. It is seen that there are no droplets on top of the 

deposit. Condensed water diffuses through the porous layer and forms droplets 

underneath. 

 

 
Figure 5.10 – Deposit flakes when specimen temperature was really low (20oC). There is 

1 minute interval between successive images. The real size of each image is 
6.88mm5.16mm (50x magnification). Gas flows from bottom to top.  

This test was repeated twice; in the second test, the deposition part was shorter (6 

hours) and the formed layer in 6 hours was exposed to low coolant temperature. Similar 

results for recoveries were observed. 
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The only ex-situ investigation on removal of exhaust soot particles are conducted 

by Kalghatgi in [11] to [13]. He investigated the effect of water drops on combustion 

chamber deposits. Although his research was not directly related to the EGR cooler 

deposits, one can find it really helpful in understanding the flake off mechanism. He 

observed that cylinder deposits flake when exposed to water droplets.  

5.3 Discussion 

In these experiments, long tests ran for forming a deposit layer in a channel. In 

deposition tests, small random flakes were observed because of large particles landing on 

and hitting the deposit layer. These big particles can be deposit flakes formed in the 

engine. Our qualitative study showed that big particles (micrometer) exist in the exhaust 

flow; they are not captured in distribution analysis instruments. It is hypothesized that 

these big particles cause random small flakes.  

A thermal cycling test was performed in air flow. No significant removal was 

observed. It can be because thermal cycling does not have an effect on removal or it was 

not done fast enough in our fixture due to the large heat capacity of the rig. 

We observe that deposits can be removed from the surface by operation at low 

coolant temperature with water condensation.  It may be difficult to do this in real vehicle 

systems, since engines have limited EGR tolerance when cold. Also, coolant 

temperatures increase rapidly on engine start. In our experiment, as water condensed on 

the surface the deposit layer appeared dry as observed by the camera, but we saw water 

droplets on the surface when the flakes blew away.  This seems to indicate that water 

diffuses through the porous deposit layer and condenses on the relatively colder metal 

surface. The deposits seem to be hydrophobic. It is believed that small particles are held 

on the surface by Van der Waals forces. It may be that the condensation of water creates 
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an environment where those forces are reduced, so that the deposit layer can crack and 

blow away. 

It is also noted that the deposit layer acts as a porous solid, rather than as either 

fluffy dry carbon soot or liquid condensed hydrocarbons. This seems to imply some 

chemical reaction in the deposit layer over time and is probably related to the reason why 

similar effects may not be present on early deposit layers. Kalghatgi ([11]-[13]) similarly 

noted that flaking occurs only on aged deposits. 

The fixture is not designed for large gas velocities due to the large channel size. 

Therefore, shear force test at the highest velocity possible in the test fixture (5 m/s) did 

not result in any removal of particles.  

5.4 Concluding Remarks  

An apparatus is designed and built to monitor soot particle deposition and 

removal in channel flows. This novel experimental study is a unique method that has not 

been conducted before and can provide significant physical insight into the 

removal/flaking mechanisms of submicron particle.  

An exhaust stream is sampled from a 2008 model year medium duty diesel engine 

to resemble particle-laden channel flows. This test rig has the capability to vary boundary 

conditions and observe its effect on deposit. Coolant temperature, gas temperature, 

pressure, and flow rate, engine condition (i.e. load, speed) are the parameters that can be 

controlled in our fixture. Each of the aforementioned parameters might have a significant 

impact on the enhancement of deposit removal and must be studied thoroughly in our 

future tests. 

Long deposition tests were performed with the hope of observing removal, flakes, 

or fractures in the layer. It was occasionally observed in deposition tests that large 

particles (a few hundred microns) hit the layer and caused flakes. 
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Then, a thermal cycling test was done and no removal was observed during the 

test. It can be because of the large heat capacity of the fixture that does not let fast 

temperature change inside the layer or thermal cycling does not have a significant effect 

on removal of young deposit. 

Deposit removal in the form of flakes was observed when an aged (18 hours of 

deposition) deposit layer was exposed to exhaust flow at a low coolant temperature. We 

were quite successful in preventing deposition on one wall (Pyrex) and observing deposit 

formation and removal of particles on the channel wall. We repeated our test with a 

shorter deposition period (6 hours) and made sure that water condensation is responsible 

for deposit removal in the form of flakes.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Summary and Concluding Remarks 

In chapter 1, the problem of EGR cooler fouling was introduced and the research 

studies in the field were discussed. Deposit in EGR coolers mainly consists of soot, 

condensed hydrocarbons and acids. It was shown that the majority of deposit is soot 

particles. Therefore, we limited our modeling work to particulate transport in particulate-

laden flows to understand the dominant deposition mechanisms in EGR coolers. EGR 

cooler deposit is shown to have a stabilization trend after a long running time. The reason 

for the stabilization might be that the rate of deposition decreases when the layer builds 

up, or possible removal mechanisms that balance with deposition mechanisms, or thermal 

properties of deposit varies as a function of layer growth.  

In chapter 2, a scaling analysis of various deposition and removal models in 

literature were discussed and it was shown that thermophoresis is the dominant 

deposition mechanisms of submicron soot particles in exhaust flow. We showed that 

removal mechanisms (for larger particles) proposed in literature does not seem to be 

responsible for stabilization of EGR coolers deposit. A simple calculation on forces 

acting on an attached particle to a surface shows that Van der Waals forces are strong 

enough for submicron particles so that they cannot be easily re-entrained by shear force, 

turbulent bursts or the lift force. This scaling analysis led us towards modeling of 

thermophoretic deposition of particles by using analytical correlations. Since most EGR 
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coolers are shell-and-tube heat exchangers, we limited our study to surrogate tubes to 

resemble real EGR coolers. This reduced the complexity of problem and helped us 

understand the physics of the fouling dynamic. 

In chapter 3, particulate deposition under thermophoretic forces in tube flows is 

studied analytically by solving the energy equation for the gas and particle mass 

conservation. The flow regimes are either turbulent or in the transition. For various 

boundary conditions including inlet gas temperature and pressure, wall temperature, inlet 

particle concentration and gas mass flow rate, the problem was solved by using the 

proposed analytical correlations. The deposited layer was treated as a solid layer with a 

constant thermal conductivity and density. A parametric study was done and showed that 

larger particle concentration, larger inlet temperature, and larger gas mass flow rates 

increases the deposited mass along the tube while increasing pressure reduces the 

deposited mass. We compared the results of the analytical method with experiments 

conducted in Oak Ridge National Laboratory (ORNL) and the results are in a satisfactory 

agreement. Although proposed analytical correlations predict the mass deposited and heat 

transfer drop of the tube flows for a relatively short exposure time (3 hours) quite well, it 

cannot predict the stabilization of the deposit for longer exposure times due to the fact 

that no removal term in the governing equations was included and the layer properties 

were constant. At this point, we moved one step forward to CFD modeling of the 

problem. 

In chapter 4, we used two approaches to analyze the problem, a one dimensional 

model in which the variables are assumed to be uniform in each cross section 

perpendicular to the tube axis; and an axi-symmetric model with moving boundaries. In 

the one dimensional model, MATLAB is used via implementing a finite difference 

scheme. In the axi-symmetric approach, the CFD software ANSYS-FLUENT is 

employed. In the software environment, a collection of C subroutines are developed to 

include the thermophoretic transport and the evolution of the boundaries due to the soot 
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deposition. The variation of gas properties in the tube and accurate gas temperature and 

particle mass fraction gradients are critical factors that were not accommodated in the 

proposed analytical solution for the sake of simplifying the equations. We compared the 

developed models against experiments conducted at Oak Ridge National Laboratory by 

comparison of the particulate mass deposited along the tube and the overall heat transfer 

reduction (effectiveness) for a short exposure time (3 hours). Both models show a 

satisfactory agreement to the experimental results although the axi-symmetric model 

shows a better estimation of the deposited mass gain in time. It is because the deposition 

flux is computed more accurately in the axi-symmetric model. Also, both models were 

examined for a longer exposure time (12 hours). The axi-symmetric model showed a 

significantly closer prediction of the deposited mass gain at the end of 12 hour exposure 

compared to the 1D prediction. Furthermore, Both models showed a good prediction of 

the heat transfer reduction for long exposure times. Despite of the good prediction for 

short exposures, there was a slight deviation in the effectiveness slope prediction by 

models starting after 4 hours. It shows that either there must be a removal source term in 

governing equations (not yet understood) or the deposit properties correlations based on 

literature are not well matched with real properties of EGR cooler deposit. At this point, 

we decided to study possible removal mechanisms or recovery methods experimentally. 

So, we developed an experimental apparatus for visualization of the growing layer over 

time under various boundary conditions. It is noted that the axi-symmetric model is the 

most comprehensive model in current literature and is the only way to predict the flow 

field and dynamics of particle deposition in real EGR coolers with complex geometries 

(wavy channel and winglets). 

In chapter 5, an experimental study is performed to visualize the dynamics of 

fouling process in-situ. Exhaust gas was passed through a rectangular channel with a wall 

made of Pyrex for visualization purposes. The deposition and removal of deposit is 

monitored by a digital microscope that can record time lapse images or high quality 
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movies at various magnifications ranging from 50 to 500. Long deposition tests were 

performed with the hope of observing removal, flakes, or fractures in the layer. It was 

occasionally observed in deposition tests that large particles (a few hundred microns) hit 

the layer and caused flakes. This led us towards a series of tests to capture possible big 

particles. It was seen that large particles on the order of micron exist in the exhaust flow 

and they can cause flakes in deposit randomly over deposition tests. Then, a thermal 

cycling test was done and no removal was observed during the test. It can be because of 

the large heat capacity of the fixture that does not let fast temperature change inside the 

layer or thermal cycling does not have a significant effect on removal of young deposit. 

The formed deposit was not exposed to ambient air or hydrocarbon condensation and it 

did not go through aging process. It is the reason we call it a young deposit. By passing a 

low coolant temperature (40  C), fractures were observed in the layer. At even lower 

coolant temperatures (20  C), already fractured deposit was totally removed due to 

formation of water droplets underneath of the layer. The layer is hydrophobic and water 

droplets were always formed below the deposit layer. Water droplets loosen the bond 

forces of the deposit and made the layer prone to removal by the gas flow. In another test, 

we found a recovery method that seems very promising for real EGR coolers. It resulted 

in a significant removal of the already formed layer. This method remains confidential to 

Ford Motor Company at this point. We plan to disclose this practical recovery method for 

a potential patent. 

6.2 Recommendations for Future Work 

 By installing an IR camera on the top of the window and looking at the 

same area that digital microscope is adjusted for, the layer surface 

temperature can be tracked as the layer builds up. Having surface 

temperature (measured by IR camera) and the layer thickness 
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measured by the digital microscope, and knowing the coolant 

temperature and the heat flux (using thermocouples and heat flux 

probes underneath of the specimen), gives us the ability to quantify the 

thermal conductivity of the deposit layer over the exposure time of an 

experiment. This is a novel study with a significant impact on this field 

that helps understanding if the stabilization of the deposit layer is 

related to the thermal properties variation of the layer over time. 

Having the surface temperature, we can prove or disprove our 

hypothesis on higher kinetic energy of the top layer. 

 Deposit mechanical properties measurement would be beneficial in 

investigation of deposit removal theories including spalling, spadering, 

and fractures in the deposit layer due to the thermal stress.   

 We hypothesized that the gas-deposit interface temperature might 

reach a critical value in which removal occurs. The possible reason for 

removal might be that high kinetic energy of particles at the interface 

possibly overcomes Van der Waals potential energy and results in 

removal of particles. This theory can be investigated by measuring the 

gas-deposit interface temperature and the deposit thickness over a long 

exposure test. 

 Various engine conditions including different load and speed and post 

injection with different level of hydrocarbon helps us understand the 

effect of wetting by hydrocarbon or possible chemical reactions with 

soot.  

 Proposing a fouling map based on the engine load/speed curves and 

highlighting the high and low risk regions for fouling depending on the 

engine operating condition would be an interesting and useful task for 

the auto industry. 
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 Pulsation may have a huge impact on the flow and the deposited layer. 

In our long heated line, the pulsation is somewhat damped. Installing a 

pulsation driver at the inlet or outlet of the fixture and making 

pulsation at various frequencies can lead towards finding more 

practical ways to mitigate or prevent deposition. 

 Shaking the fixture at different high frequencies with the purpose of 

finding the natural frequency of the deposit layer can be another 

significant investigation in this field. Using the natural frequency may 

prohibit the layer growth or may remove the layer after certain time 

exposures in real engines. 

 Effect of different fuels can be investigated and the deposit layer can 

be analyzed using TGA techniques to see if the layer thickness, 

morphology, and constituents are a function of the fuel used. 

 Another task can be measurement of the inlet and outlet particulate 

concentration for the modeling validation. Oak Ridge National 

Laboratory experiments did not have the outlet concentration of 

particles. This number can significantly help the model validation. It 

also shows how deposition efficiency reduces over time when the layer 

builds up.  

 In the models, the layer is treated as a highly porous zone that no-slip 

condition is valid at the gas-deposit interface. Treating the deposit 

layer as a permeable zone that can include a convective form of heat 

transfer inside is another subject for future work. 

 After understanding the layer thermal properties as a function of the 

gas-deposit interface developed CFD models can be revisited for 

improvements. 
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 Employing the developed model in ANSYS-FLUENT to investigate 

the effect of winglets in tubes or wavy tubes is another task that can be 

done. Experimental results for comparison exist (from ORNL) for the 

thickness measurement of these cases. In the next step actual EGR 

cooler geometries can be modeled.  
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APPENDIX A 

CONDENSATION MODEL FOR SPECIES IN INTERNAL FLOWS 

A.1      Hydrocarbon and Acids Condensation Model 

Diesel exhaust contains a wide range of hydrocarbon and hydrocarbon-derived 

species.  These include unburned and partially burned fuel and lube oil.  Some of these 

compounds can condense on cooler surfaces.  Condensation occurs when the surface of 

the cooler is below the dew point for the partial pressure of the compound.  Thus, heavier 

species and higher concentration species will condense most. 

In addition, acids are known to contribute to chemical reactions with 

hydrocarbons, leading to hard deposits.  It is possible that acids play a role in aging of 

deposits, although there does not seem to be any literature confirming this mechanism. 

In a free stream of a gas at (P,T) containing some different species and flowing 

over a surface (below the dew point of the species), a condensate film forms on the 

surface as shown in Figure A.1. 

 

 
Figure A.1 – Condensation film forms on a surface 
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The phenomenon of interface mass transfer can be seen from the point of kinetic 

theory as a difference between two quantities: a rate of arrival of molecules from the 

vapor phase to the interface and a rate of departure of molecules from the liquid surface 

towards the vapor phase. When condensation occurs, the arrival rate is larger than 

departure rate [1]. During evaporation, the departure rate is larger than arrival rate. It is 

obvious that during equilibrium the two rates are the same. In case of condensation, mass 

condensation flux from the gas stream to the surface is defined by [1]: 
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Where K  is a mass transfer coefficient defined by analogy between heat and 

mass transfer as: 
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By employing the above definitions, Equation A.1can be rewritten as: 




























og

ig
ig y

y

DSc

f
j

,

,

312

32, 1

1
ln

Pr

)0.1(Pr8f12.71.0

8)1000(Re 
  (A.4) 

The mass flux is a function of the species mole fraction in the main flow and that 

of at the interface. The total mole fraction of all hydrocarbons (C1 based) in the exhaust 

flow is measured by ORNL. The total count of each species is also given in Figure A.2. 

So, one is able to calculate the mass fraction of each species as described step by step in 

the next section.  
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Figure A.2 – Hydrocarbon speciation in EGR flows 

 There is a wide range of hydrocarbons in the exhaust and it is not really 

necessary to model every single species of them. C22 represents C21 to C24; C18 

represents C17 to C20; and C15 represents C13 to C15 in the model. The model shows 

that there is no condensation for hydrocarbons lighter than C12 in the range of coolant 

temperature (313 K-363 K). So, only heavy hydrocarbons (>C12) are taken into account 

in the model. 

It should be noted that the mole fraction of each species at the interface of liquid 

and gas can be calculated as the ratio of the partial pressure of the compound at the 

interface to the total pressure of the mean flow: 

mtotal

ig
ig P

P
y

,

,
,    (A.5) 

Partial pressure can be calculated by utilizing the Antoine coefficients of the 

species as: 
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CT
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APLog
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
int

,10   (A.6) 

where A, B, and C are the Antoine coefficients of each species. Pressure in above 

equation is in mm-Hg and temperature is in  C in equation. 

It is assumed when HC condenses on the wall, it diffuses through the porous 

fouled layer and stays near the cold wall. Cold wall temperature does not let HC 

molecules evaporate. However, the interface temperature is the critical factor in 

calculating HCs condensed mass, it does not play a role in evaporating HC molecules. It 

is an assumption in the model and it is compatible with experimental observations. Also, 

there is no evaporation since the HC molecules have diffused through the porous layer 

and sit near the cold wall. 

A.2      Calculating Mole Fraction of Each HC Species in the Gas Flow 

222222809.1 667.2491.159045.0)76.3(12.4 ONOHCONOCH 
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Inlet PPM – C1 Based 
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Number of carbon in the species 
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Mole fraction of all HC species in the bulk gas flow

 

ix
       

Mass fraction of each species in the fuel 

iMW
     

Molecular weight of each species 

FlowMW
    

Molecular weight of the bulk flow 
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Flowtotalflow MWnm
..

    Mass of flow per unit time step 

FueltotalHC MWnppmXm
..

)(   Mass of hydrocarbons (fuel) per unit time step 

Fueltotalii MWnppmXxm
..

)(
 
 Mass of each species per unit time step 
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   Total mole of each species per unit time step 
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Species mole fraction in the flow 
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