
Algorithms and Dynamic Data Structures for
Basic Graph Optimization Problems

by

Ran Duan

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2011

Doctoral Committee:

Assistant Professor Seth Pettie, Chair
Professor Anna C. Gilbert
Professor Quentin F. Stout
Associate Professor Martin Strauss



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Basic Concepts and Notations . . . . . . . . . . . . . . . . . . 2
1.2 Overview of the Results . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Shortest Path and Bottleneck Path . . . . . . . . . 3
1.2.2 Dynamic Connectivity . . . . . . . . . . . . . . . . 7
1.2.3 Matching . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Publications Arising from this Thesis . . . . . . . . . . . . . . 11

II. Approximate Maximum Weighted Matching in Linear Time 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Definitions and Preliminaries . . . . . . . . . . . . . . . . . . 13
2.3 Weighted Matching and Its LP Formulation . . . . . . . . . . 14
2.4 A Scaling Algorithm for Approximate MWM . . . . . . . . . 18

2.4.1 The Scaling Algorithm . . . . . . . . . . . . . . . . 20
2.4.2 Analysis and Correctness . . . . . . . . . . . . . . . 23
2.4.3 A Linear Time Algorithm . . . . . . . . . . . . . . . 27
2.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 31

III. Connectivity Oracle for Failure-Prone Graphs . . . . . . . . . 32

3.1 The Euler Tour Structure . . . . . . . . . . . . . . . . . . . . 33
3.2 Constructing the High-Degree Hierarchy . . . . . . . . . . . . 37

3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 The Hierarchy Tree and Its Properties . . . . . . . . 38

3.3 Inside the Hierarchy Tree . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Stocking the Hierarchy Tree with ET-Structures . . 44

ii



3.4 Recovery From Failures . . . . . . . . . . . . . . . . . . . . . 52
3.4.1 Deleting Failed Vertices . . . . . . . . . . . . . . . . 52
3.4.2 Answering a Connectivity Query . . . . . . . . . . . 54

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

IV. All-Pair Bottleneck Paths and Bottleneck Shortest Paths . . 57

4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.1 Row-Balancing and Column-Balancing . . . . . . . 58
4.1.2 Matrix Products . . . . . . . . . . . . . . . . . . . . 59

4.2 Dominance and APBP . . . . . . . . . . . . . . . . . . . . . . 60
4.2.1 Max-Min Product . . . . . . . . . . . . . . . . . . . 62
4.2.2 Explicit Maximum Bottleneck Paths . . . . . . . . . 64

4.3 Bottleneck Shortest Paths . . . . . . . . . . . . . . . . . . . . 65
4.3.1 Rectangular Matrix Multiplication . . . . . . . . . . 66
4.3.2 Hybrid Products . . . . . . . . . . . . . . . . . . . . 66
4.3.3 APBSP with Edge Capacities . . . . . . . . . . . . 71
4.3.4 APBSP with Vertex Capacities . . . . . . . . . . . . 72

V. Dual-Failure Distance Oracle . . . . . . . . . . . . . . . . . . . . 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Notations: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Review of the One-Failure Distance Oracle . . . . . . . . . . 78

5.3.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.2 Query Algorithm . . . . . . . . . . . . . . . . . . . 79

5.4 Case I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.1 Structures . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.2 The detour from x to y avoiding u . . . . . . . . . . 83

5.5 Case II: One failed vertex on xy . . . . . . . . . . . . . . . . 88
5.5.1 Data Structures . . . . . . . . . . . . . . . . . . . . 89
5.5.2 Query Algorithm . . . . . . . . . . . . . . . . . . . 92

5.6 Case III: Two failed vertices on xy . . . . . . . . . . . . . . . 100
5.6.1 If |xu| or |vy| is a power of 2 . . . . . . . . . . . . . 100
5.6.2 The binary partition structure . . . . . . . . . . . . 100
5.6.3 General Cases . . . . . . . . . . . . . . . . . . . . . 104

VI. Dynamic Subgraph Connectivity Oracles . . . . . . . . . . . . 108

6.1 Basic Structures . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.1.1 Euler Tour List . . . . . . . . . . . . . . . . . . . . 109
6.1.2 Adjacency Graph . . . . . . . . . . . . . . . . . . . 110
6.1.3 ET-list for adjacency . . . . . . . . . . . . . . . . . 111

6.2 Dynamic Subgraph Connectivity with Sublinear Worst-case
Update Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

iii



6.2.1 The structure . . . . . . . . . . . . . . . . . . . . . 113
6.2.2 Switching a vertex . . . . . . . . . . . . . . . . . . . 117
6.2.3 Answering a query . . . . . . . . . . . . . . . . . . . 120

6.3 Dynamic Subgraph Connectivity with Õ(m2/3) Amortized Up-
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ABSTRACT

Algorithms and Dynamic Data Structures for Basic Graph Optimization Problems

by

Ran Duan

Chair: Seth Pettie

Graph optimization plays an important role in a wide range of areas such as com-

puter graphics, computational biology, networking applications and machine learning.

Among numerous graph optimization problems, some basic problems, such as shortest

paths, minimum spanning tree, and maximum matching, are the most fundamental

ones. They have practical applications in various fields, and are also building blocks

of many other algorithms. Improvements in algorithms for these problems can thus

have a great impact both in practice and in theory.

In this thesis, we study a number of graph optimization problems. The results are

mostly about approximation algorithms solving graph problems, or efficient dynamic

data structures which can answer graph queries when a number of changes occur.

There are several different models of dynamic graphs. Much of my work focuses on

the dynamic subgraph model in which there is a fixed underlying graph and every

vertex can be flipped “on” or “off”. The queries are based on the subgraph induced

by the “on” vertices. Our results make significant improvements to the previous

algorithms or structures of these problems.

The major results are listed below.
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• Approximate Matching. We give the first linear time algorithm for computing

approximate maximum weighted matching for arbitrarily small approximation

ratio.

• d-failure Connectivity Oracle. For an undirected graph, we give the first space-

efficient data structure that can answer connectivity queries between any pair

of vertices avoiding d other failed vertices in time polynomial in d log n.

• (Max, Min)-Matrix Multiplication We give a faster algorithm for the (max,

min)-matrix multiplication problem, which has a direct application to the all-

pairs bottleneck paths (APBP) problem. Given a directed graph with a capacity

on each edge, the APBP problem is to determine, for all pairs of vertices s and

t, the path from s to t with maximum flow.

• Dual-failure Distance Oracle. For a given directed graph, we construct a data

structure of size Õ(n2) which can efficiently answer distance and shortest path

queries in the presence of two node or link failures.

• Dynamic Subgraph Connectivity. We give the first subgraph connectivity struc-

ture with worst-case sublinear time bounds for both updates and queries.

• Bounded-leg Shortest Path. In a weighted, directed graph an L-bounded leg path

is one whose constituent edges have length at most L. We give an algorithm for

preprocessing a directed graph in Õ(n3) time in order to answer approximate

bounded leg distance and bounded leg shortest path queries in merely sub-

logarithmic time.
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CHAPTER I

Introduction

This thesis studies several graph optimization problems. Graph optimization plays

an important role in a wide range of areas such as computer graphics, computational

biology, networking applications and machine learning. Among numerous graph opti-

mization problems, some basic problems, such as shortest paths, minimum spanning

tree, and maximum matching, are the most fundamental ones. They have practical

applications in various fields, and are also building blocks of many other algorithms.

Much of my research concerns computing shortest paths and maximum matching.

The shortest path problem is essential in web mapping and network routing appli-

cations, while the maximum matching problem has applications to assignment prob-

lems. They are also important in solving other graph optimization problems like the

min-cost maximum flow problem or edge disjoint paths problem. Improvements in

algorithms for these problems can thus have a great impact both in practice and in

theory.

As we see in the example of web mapping applications, the maps in real world

are vulnerable to changes caused by traffic congestions, road failures, or construction

of new roads. Instead of re-computing all the information when a change occurs, we

may keep as much information of the previous graph as possible in order to improve

the running time. A common way to deal with this is building data structures on such
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dynamic graphs, which have fast algorithms for updating the structure and answering

queries about some graph optimization problem. The running times for updates and

queries are usually faster than the original static algorithm on the same problem.

In this thesis we study different variations of several basic graph optimization

problems, including bounded-leg shortest paths, data structures maintaining short-

est paths or connectivity for failure-prone graphs, worst-case dynamic structure for

connectivity, and also algorithms to find all-pair bottleneck paths and approximate

maximum weighted matching.

1.1 Basic Concepts and Notations

In this thesis, we denote the primary graph we are working on by G = (V,E),

where V is the set of vertices and E is the set of edges in G. Let n = |V | and m = |E|.

The graph can be directed or undirected. A path p is a sequence of consecutive edges.

In a graph with weight function w : E → R on edges, the shortest path problem

considers the path minimizing
∑

e∈pw(e) between two vertices, while the connectivity

problem only considers whether there is a path connecting two vertices. In this thesis,

all the connectivity problems are in undirected graphs, whereas shortest paths and

bottleneck paths are in directed graphs.

A matching M in a graph G is a set of edges without common vertices. A ver-

tex associated with an edge in the matching is called matched, otherwise it is un-

matched. A matching in which all vertices are matched is called a perfect matching.

In a weighted graph, the maximum weighted matching is the matching maximizing∑
e∈M w(e). Note that it is not necessarily perfect.

Usually there are several types of dynamic graph models. In a fully dynamic

model we can add or delete edges/vertices arbitrarily. There are also incremental

and decremental graphs in which we can only insert or delete edges/vertices, respec-

tively. However, in this thesis we consider a dynamic graph model called the dynamic
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subgraph model in which there is a fixed underlying graph, and every vertex in that

graph can be “active” or “inactive”. The distance/connectivity queries are based

on the subgraph induced by the active vertices. We also study two types of this

model based on whether there is a restriction on the number of inactive vertices.

The structures in Chapter VI do not have such a restriction, that is, any vertex can

change its status at any time. However, the results in Chapter III and V consider

the dynamic subgraph model in which the number of inactive vertices is bounded by

some number d. We can see this type of structure as static, which can preprocess the

entire graph and answer the distance/connectivity queries given with several “failed”

vertices. This is the “d-failure model”. In the connectivity structure of Chapter III,

d can be an arbitrary integer, while in the shortest path structure of Chapter V, d is

at most 2.

In this paper, Õ(·) hides poly-logarithmic factors. For example O(n1/2 log n) can

be written as Õ(n1/2).

1.2 Overview of the Results

1.2.1 Shortest Path and Bottleneck Path

The all-pair shortest path problem is one of the most fundamental and most

studied optimization problems in graph theory. It can be solved by applying the

Dijkstra’s algorithm from every vertex in the graph, which has a total running time

of O(mn + n2 log n). (See [17].) A faster running time of O(mn + n2 log log n) was

achieved by Pettie [50]. For dense graphs, the Floyd-Warshall algorithm [13] provides

a clearer way to achieve the time bound of O(n3). We can also see the all-pair shortest

path problem as the transitive closure of the (min,+) matrix product. However, since

(min,+) is not a ring, the fast matrix multiplication algorithms like [12] cannot be

directly applied to it. However, Shoshan and Zwick [58, 69] gave algorithms of o(n3)
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running time for computing all-pair shortest paths in unweighted or small integer

weighted graphs by fast matrix multiplication. The current best algorithm for real-

weighted graph is given by Chan [9], which has a running time of about O(n3/ log2 n).

In this thesis, we consider several variations of the all-pair shortest path problem:

dynamic shortest path, bounded-leg shortest path and all-pair bottleneck path, which

are discussed in the following.

1.2.1.1 Dual-failure Shortest Path Structure

In this problem we consider a data structure answering distance queries in a

weighted directed graph G = (V,E,w), where one or more nodes or edges are un-

available due to failure or other causes. Specifically, given source and target vertices

x, y and a set F ⊂ V , the problem is to report δG−F (x, y), where δG′ is the distance

function w.r.t. a subgraph G′ of G. In the absence of failure, the best oracle for

answering distance queries in O(1) time is a trivial n× n lookup table. Thus, a dis-

tance oracle that is sensitive to node failures should be considered (nearly) optimal

if it occupies (nearly) quadratic space and answers queries in (nearly) constant time.

Demetrescu et al. [16] showed that single-failure distance queries can be answered in

constant time by an oracle occupying O(n2 log n) space. Very recently Bernstein and

Karger improved the construction time of [16] from Õ(mn2) to Õ(nm) [6]. They also

highlighted the problem of finding distance oracles capable of dealing with more than

one failure.

In Chapter V we show that dual-failure distance queries can be answered in

O(log n) time using O(n2 log3 n) space. This data structure and query algorithm

are considerably more complicated than those of [16, 5] due to multiple possibili-

ties of intersection of the “detour” avoiding the two failed vertices and the original

shortest path. As a special case, this structure also allows one to answer dual-failure

connectivity queries in O(log n) time.

4



1.2.1.2 Bounded-leg Shortest Path

In this problem, our input is a weighted directed graph G = (V,E,w), where

|V | = n, |E| = m, and w : E → R+. An L-bounded leg shortest path is a shortest

path in the graph restricted to edges with length at most L. If we wanted to com-

pute point-to-point or all-pairs shortest paths and L is known the problem would be

very simple: just discard all unavailable edges and solve the problem as usual. We

consider the more realistic situation where the graph G is fixed and L-bounded leg

distance/shortest path queries must be answered online. In other words, we need a

data structure that can answer queries for any given leg bound L. Our goals are to

minimize the construction time of the data structure, its space, its query time, and the

quality of the estimates returned. We say that a distance estimate is α-approximate

if it is within a factor of α of the actual distance.

The bounded-leg shortest path problem (BLSP) was studied most recently by

Roditty and Segal [53]. (See also [7].) They showed that an Õ(n2.5)-space data

structure could be built in O(n4) time that answers (1 + ε)-approximate bounded leg

shortest path queries. They also showed that when the graph is induced by points in

a d-dimensional lp metric that a more time and space-efficient data structure could be

built for answering (1 + ε)-approximate BLSP queries. Specifically, the construction

time and space are O(n3(log3 n+ε−d log2 n)) and O(n2ε−1 log n), respectively. Roditty

and Segal’s construction made use of complicated algorithms for computing sparse

geometric spanners.

In Chapter VII, we give a new, efficiently constructible (1 + ε)-approximate BLSP

data structure for arbitrary directed graphs. The construction time and space of our

data structure improve significantly on Roditty and Segal’s structure for arbitrary

directed graphs and basically match the time and space usage of their structure

for ldp metrics. In O(n3ε−1 log3 n) time we can build a O(n2ε−1 log n)-space data

structure that answers distance queries in O(log(ε−1 log n)) time and BLSP queries
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in O(log(ε−1 log n)) per edge. One of the main advantages of our algorithm is its

simplicity. It is based on a generalized version of the Floyd-Warshall algorithm and

retains its streamlined efficiency.

1.2.1.3 All-pair Bottleneck Path

Besides the shortest path problem, we also study another fundamental type of

path: the bottleneck path. Given a directed graph with a capacity on each edge, the

all-pairs bottleneck paths (APBP) problem is to determine, for all vertices s and t, the

path with maximum flow that can be routed from s to t. Note that it is essentially

different from the traditional maximum flow problem, where the flow can be composed

of multiple paths. For dense graphs this problem is equivalent to that of computing

the (max,min)-transitive closure of a real-valued matrix. It is shown that APBP

can be computed in O(n2+µ) = O(n2.575) time on vertex capacitated-graphs [57] and

O(n2+ω/3) = O(n2.792) time on edge capacitated graphs [65]. (Here ω = 2.376 is the

exponent of binary matrix multiplication [12] and µ ≥ 1/2 is a constant related to

rectangular matrix multiplication.)

Shapira et al. [57] and Vassilevska et al. [65] generalized APBP to the all pairs

bottleneck shortest paths problem (APBSP, also known as the maximum capacity

paths problem) in graphs with real capacities assigned to edges/vertices. In APBSP,

one asks for the maximum capacity path among shortest paths. Shapira et al. [57]

gave an APBSP algorithm running in O(n(8+µ)/3) = O(n2.859) time. An unpub-

lished algorithm of Vassilevska [63] computes APBSP on edge-capacitated graphs in

O(n(15+ω)/6) = O(n2.896) time.

In Chapter IV we develop faster algorithms for (max,min)-product, APBP in

edge-capacitated graphs, and all-pairs bottleneck shortest paths in both vertex and

edge-capacitated graphs. We introduce a simple technique called row balancing (or

column balancing) that decomposes a matrix into a sparse component and a dense
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component with uniform row (or column) density. Using this technique we exhibit

an extremely simple algorithm for computing the dominance product on sufficiently

sparse matrices in O(nω) time, as well as an algorithm for somewhat denser matrices

that runs in time O(
√
mm′n(ω−1)/2). (This last bound was claimed earlier in [65];

it was based on a more complicated algorithm [64].) Using the sparse dominance

product and row balancing we show how to compute the (max,min)-product (and,

therefore, APBP) in O(n(3+ω)/2) = O(n2.688) time. This improves on the previous

O(n2+ω/3) = O(n2.792) time algorithm [65]. We also give algorithms to compute

APBSP in O(n(3+ω)/2) time on edge-capacitated graphs and O(n2.657) time on vertex-

capacitated graphs, which are significant improvements over [63, 57], which run in

O(n(15+ω)/6) = O(n2.896) and O(n(8+µ)/3) = O(n2.859) time, respectively.

1.2.2 Dynamic Connectivity

Dynamic connectivity and shortest path problems have been studied for a long

time. Most of the previous research on this topic focused on the “general model” of

dynamic graph, that is, one can delete vertices and edges or insert new ones in an

arbitrary way. However, the dynamic connectivity model considered in this thesis is

based on what is called the dynamic subgraph model, in which we assume that there

is some fixed underlying graph and that updates consist solely of making vertices

and edges active or inactive. The model in Chapter III also restricts the number of

inactive vertices at any time. In this model, we can preprocess the underlying graph

to obtain more efficient updates and queries.

Dynamic connectivity with edge updates is the most basic problem among these

kinds of dynamic structures and is well studied. Holm, Lichtenberg, and Thorup have

introduced a linear space structure supporting O(log2 n) amortized update time [38,

59]. With this structure, we can get a trivial dynamic subgraph connectivity structure

with amortized vertex update time Õ(n). Then two hard directions related to this
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problem arise: dynamic subgraph connectivity with sublinear vertex update time,

and dynamic structures with worst-case edge/vertex update time bounds.

For the fully dynamic subgraph model, in which we can flip a vertex at any time,

Frigioni and Italiano [32] gave a dynamic subgraph connectivity structure having

amortized polylogarithmic vertex update time in planar graphs. Recently, Chan,

Pǎtraşcu and Roditty [10] gave a subgraph connectivity structure for general graphs

supporting Õ(m2/3) vertex update time with Õ(m4/3) space, which improves the result

given by Chan [8] having Õ(m0.94) update time and linear space.

However, the dynamic structures mentioned above all have amortized update

time. In general, worst-case dynamic structures have much worse time bounds than

amortized structures. The best dynamic edge-update connectivity structure in the

worst-case scenario has update time O(n1/2) [29, 28]. Improving this time bound is

still a major challenge in dynamic graph algorithms. For the d edge failure model,

Pǎtraşcu and Thorup [49] gave a data structure that can process any d edge deletions

in O(d log2 n log log n) time and then answer connectivity queries in O(log log n) time.

Using those worst-case edge update structures, we give two natural generalizations

in this thesis: the first efficient d-vertex failure connectivity oracle with update and

query time polynomial of log n and d, and the first dynamic subgraph connectivity

structure with sublinear vertex update time in the worst-case scenario.

For a survey of recent fully dynamic graph algorithms (i.e., not dynamic subgraph

algorithms), refer to [38, 54, 61, 55, 15, 60].

Our Results In Chapter III, we present a new, space efficient data structure that

can quickly answer connectivity queries after recovering from d vertex failures. The

recovery time is polynomial in d and log n but otherwise independent of the size of the

graph. After processing the failed vertices, connectivity queries are answered in O(d)

time. There is a tradeoff in our oracle between the space, which is roughly mnε, for

8



0 < ε ≤ 1, and the polynomial query time, which depends on ε. Our data structure is

the first of its type. To achieve comparable query times using existing data structures

we would need either Ω(nd) space [19] or Ω(dn) recovery time [49]. As a byproduct,

we also give a new d edge failure oracle with O(d2 log log n) processing time, which is

much simpler than Pǎtraşcu and Thorup’s structure. [49]

In Chapter VI, we study the fully dynamic subgraph connectivity problem for

undirected graphs. We give the first subgraph connectivity structure with worst-

case sublinear time bounds for both updates and queries. Our worst-case subgraph

connectivity structure supports Õ(m4/5) update time, Õ(m1/5) query time and oc-

cupies Õ(m) space. We also give another dynamic subgraph connectivity structure

with amortized Õ(m2/3) update time, Õ(m1/3) query time and linear space, which

improves the structure introduced by Chan, Pǎtraşcu, and Roditty [10] that takes

Õ(m4/3) space.

1.2.3 Matching

Although the maximum matching problem has been studied for decades, the com-

putational complexity of finding an optimal matching remains quite open. In 1965 Ed-

monds presented elegant polynomial time algorithms for finding matchings in general

graphs with maximum cardinality (MCM) [27] and maximum weight (MWM) [26].

Early implementations of Edmonds’s algorithm required O(n3) time [41, 36, 43] using

elementary data structures. Following the approach of Hopcroft and Karp’s MCM

algorithm for bipartite graphs [39], Micali and Vazirani [47] presented an MCM algo-

rithm for general graphs running in O(m
√
n) time.

For maximum weighted matching, the implementation of the Hungarian algo-

rithm [42] using Fibonacci heaps [30] runs in O(mn+n2 log n) time in bipartite graphs,

a bound that is matched in general graphs by Gabow [33] using more complex data

structures. Faster algorithms are known when the edge weights are bounded inte-
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gers in [−N, . . . , N ], where a word RAM model is assumed, with log(max{N, n})-bit

words. Gabow and Tarjan [34, 35] gave bit-scaling algorithms for MWM running in

O(m
√
n log(nN)) time in bipartite graphs and O(m

√
n log n log(nN)) time in general

graphs.

Approximation Algorithms Let a δ-MWM be a matching whose weight is at

least a δ fraction of the maximum weight matching, where 0 < δ ≤ 1, and let δ-MCM

be defined analogously. There are simple ways to find (1 − 1/k)-MCM in O(km)

time. [39, 47] However, the best approximate MWM algorithms do not achieve sim-

ilar approximation and time bounds. On real weighted graphs the Gabow-Tarjan

algorithm [35] gives a (1−n−Θ(1))-MWM in O(m
√
n log3/2 n) time, simply by retain-

ing the O(log n) high order bits in each edge weight, treating them as polynomial size

integers. It is well known that the greedy algorithm—iteratively choose the maximum

weight edge not incident to previously chosen edges—produces a 1
2
-MWM. A straight-

forward implementation of this algorithm takes O(m log n) time. Preis [52, 18] gave a

1
2
-MWM algorithm running in linear time. Vinkemeier and Hougardy [67] and Pettie

and Sanders [51] proposed several (2
3
− ε)-MWM algorithms (see also [46]) running in

O(m log ε−1) time; each is based on iteratively improving a matching by identifying

sets of short weight-augmenting paths and cycles. No linear time algorithms with

approximation ratio better than 2
3

were known.

Our Results In Chapter II, we present the first near-linear time algorithm for

computing (1− ε)-approximate MWMs. Specifically, given an arbitrary real-weighted

graph and ε > 0, our algorithm computes such a matching in O(mε−1 log ε−1) time,

which improves our preliminary result appearing in FOCS 2010 of running time

O(mε−2 log3 n).
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1.3 Publications Arising from this Thesis

Approximating Maximum Weight Matching in Near-linear Time. FOCS 2010

(IEEE Symposium on Foundations of Computer Science)

New Data Structures for Subgraph Connectivity. ICALP 2010 (International Col-

loquium on Automata, Languages and Programming)

Connectivity Oracles for Failure Prone Graphs. STOC 2010 (ACM Symposium

on Theory of Computing)

Dual-Failure Distance and Connectivity Oracles. SODA 2009 (ACM-SIAM Sym-

posium on Discrete Algorithms)

Fast Algorithms for (Max, Min)-Matrix Multiplication and Bottleneck Shortest

Paths. SODA 2009 (ACM-SIAM Symposium on Discrete Algorithms)

Bounded-leg Distance and Reachability Oracles. SODA 2008 (ACM-SIAM Sym-

posium on Discrete Algorithms)
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CHAPTER II

Approximate Maximum Weighted Matching in

Linear Time

2.1 Introduction

Our main result in this chapter is the first (1− ε)-MWM algorithm for arbitrary

weighted graphs whose running time is linear. In particular, we show that such a

matching can be found in O(mε−1 log ε−1) time, 1 leaving little room for improvement.

This new result will be published in a journal article.

Technical Challenges The easiest among linear time approximate MWM algo-

rithms is the greedy algorithm for 1/2-MWM, in which we choose the maximum

weight edge not incident to previously chosen edges every time. Preis [52, 18] gave an

algorithm achieving this approximation in linear time. There are two natural ways to

extend the approximation ratio. The first one is to find longer alternating paths and

cycles which can increase the total weights. The algorithms for 2/3-MWM in [51, 67]

follow this approach, which are able to handle alternating cycles of length 4. However,

since directly finding long weight-augmenting alternating paths or cycles is hard to

achieve in almost linear time, we need alternative ways to achieve the approximation

1A preliminary result of O(mε−2 log3 n) running time appears in Duan and Pettie’s paper “Ap-
proximating Maximum Weight Matching in Near-linear Time” [24] in FOCS 2010.
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ratio of 1 − ε for arbitrarily small ε. The other approach is to follow the scaling

algorithms of Gabow and Tarjan [35], which solve the MWM problem at about logN

scales. In each scale they follow a primal-dual relaxation on the linear programming

formulation of MWM. This relaxed complementary slackness approach relaxes the

constraint of the dual variables by a small amount, so that the iterative process of

the dual problem will converge to an approximate solution much more quickly. While

their algorithm takes O(
√
n) iterations of augmenting to achieve a perfect matching,

we proved that we only need O(logN/ε) iterations to achieve a (1−ε)-approximation,

where we can assume N ≤ n2. Also we make the relaxation “dynamic” by tighten-

ing the relaxation when the dual variables decrease by one half, so that finally the

relaxation is at most ε times the edge weight on each matching edge and very small

on each non-matching edge, which gives an approximate solution.

2.2 Definitions and Preliminaries

The input is a graph G = (V,E,w) where |V | = n, |E| = m, and w : E → R. We

use E(H) and V (H) to refer to the edge and vertex sets of H or the graph induced

by H, that is, V (E ′) is the set of endpoints of E ′ ⊆ E and E(V ′) is the edge set

of the graph induced by V ′ ⊆ V . A matching M is a set of vertex-disjoint edges.

Vertices not incident to an M edge are free. An alternating path (or cycle) is one

whose edges alternate between M and E\M . An alternating path P is augmenting if

P begins and ends at free vertices, that is, M ⊕ P def
= (M\P )∪ (P\M) is a matching

with cardinality |M ⊕ P | = |M |+ 1.

Since we only need (1−ε) approximate solutions, we can afford to scale and round

edge weights to small integers. To see this, observe that the weight of the MWM is

at least wmax = max{w(e) | e ∈ E(G)}. It suffices to find a (1− ε/2)-MWM M with

respect to the weight function w̃(e) = bw(e)/γc where γ = ε · wmax/n. Note that

13



w(e)− γ < γ · w̃(e) ≤ w(e) for any e. It follows from the definitions that:

w(M) ≥ γ · w̃(M) Defn. of w̃

≥ γ · (1− ε/2)w̃(M∗) Defn. of M , M∗ is the MWM

> (1− ε/2)(w(M∗)− γn/2) Defn. of w̃, |M∗| ≤ n/2

= (1− ε/2)(w(M∗)− ε · wmax/2) Defn. of γ

> (1− ε)w(M∗) Since w(M∗) ≥ wmax

Since it is better to use an exact MWM algorithm when ε < 1/n, we assume, hence-

forth, that w : E → {1, 2, . . . , N}, where N ≤ n2 is the maximum integer edge

weight.

2.3 Weighted Matching and Its LP Formulation

The maximum weight matching problem can be expressed as the following integer

linear program, where x represents the incidence vector of a matching.

maximize
∑

e∈E(G)

w(e)x(e)

subject to 0 ≤ x(e) ≤ 1, x(e) an integer ∀e ∈ E(G) (2.1)∑
e=(u,u′)∈E(G)

x(e) ≤ 1 ∀u ∈ V (G)

Let Vodd be the set of all odd subsets of V (G) with at least three vertices. Clearly all

solutions to (2.1) also satisfy (2.2).

∑
e∈E(B)

x(e) ≤ (|B| − 1)/2 ∀B ∈ Vodd (2.2)
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Edmonds proved that if we substitute (2.2) for the integrality requirement of (2.1),

the basic feasible solutions to the resulting linear program are nonetheless integral.

The dual of this linear program is as follows.

minimize
∑

u∈V (G)

y(u) +
∑

B∈Vodd

|B| − 1

2
· z(B)

subject to yz(e) ≥ w(e) ∀e ∈ E(G)

y(u) ≥ 0, z(B) ≥ 0 ∀u ∈ V (G),∀B ∈ Vodd

where, by definition, yz(u, v)
def
= y(u) + y(v) +

∑
B∈Vodd,

(u,v)∈E(B)

z(B)

Despite the exponential number of primal constraints and dual z-variables, Ed-

monds showed that an optimum matching2 could be found in polynomial time without

maintaining information (z-values) on more than n/2 elements of Vodd at any given

time. At intermediate stages of Edmonds’s algorithm there is a matching M and a

laminar (hierarchically nested) subset Ω ⊆ Vodd, where each element of Ω is identified

with a blossom. Blossoms are formed inductively as follows. If v ∈ V then the set {v}

is a trivial blossom. An odd length sequence (A0, A1, . . . , A`) forms a nontrivial blos-

som B =
⋃
iAi if the {Ai} are blossoms and there is a sequence of edges e0, . . . , e`

where ei ∈ Ai × Ai+1 (modulo ` + 1) and ei ∈ M if and only if i is odd, that is,

A0 is incident to unmatched edges e0, e`. See Figure 2.1. The base of blossom B is

the base of A0; the base of a trivial blossom is its only vertex. The set of blossom

edges EB are {e0, . . . , e`} and those used in the formation of A0, . . . , A`. The set

E(B) = E ∩ (B×B) may, of course, include many non-blossom edges. A short proof

by induction shows that |B| is odd and that the base of B is the only unmatched

2Much of the literature deals with maximum (or minimum) weight perfect matchings, which
requires the following modifications to the LP:

∑
e=(u,u′)∈E(G) x(e) = 1 holds with equality, for

u ∈ V (G), and y is unconstrained in the dual.
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(a) (b)

Figure 2.1:
Thick edges are matched, thin unmatched. (a) A blossom B1 =
(u1, u2, B2, u8, u9, u10, B3) with base u1 containing non-trivial sub-
blossoms B2 = (u3, u4, u5, u6, u7) with base u3 and B3 = (u11, u12, u13)
with base u11. Vertices u15, u16, and u17 are free. The path
(u16, u2, u3, u7, u6, u5, u4, u17) is an example of an augmenting path that
exists in G but not G/B1, the graph obtained by contracting B1. (b)
The situation after augmenting along (u15, u14, B1, u17) in G/B1, which
corresponds to augmenting along (u15, u14, u1, u2, u3, u7, u6, u5, u4, u17) in
G. After augmentation B1 and B2 have their base at u4.

vertex in the subgraph induced by B.

The set Ω of active blossoms is represented by rooted trees in our algorithm,

where leaves represent vertices and internal nodes represent nontrivial blossoms. A

root blossom is one not contained in any other blossom. The children of an internal

node representing a blossom B are ordered by the odd cycle that formed B, where the

child containing the base of B is ordered first. As we can see, it is often possible to

treat blossoms as if they were single vertices. The contracted graph G/Ω is obtained by

contracting all root blossoms and removing the edges in those blossoms. To dissolve a

root blossom B means to delete its node in the blossom forest and, in the contracted

graph, to replace B with individual vertices A0, . . . , A`. Lemma 2.1 summarizes some

useful properties of the contracted graph.
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Lemma 2.1. Let Ω be a set of blossoms with respect to a matching M .

(i) If M is a matching in G then M/Ω is a matching in G/Ω.

(ii) Every augmenting path P̂ relative to M/Ω in G/Ω extends to an augmenting

path P relative to M in G. (That is, P is obtained from P̂ by substituting for

each non-trivial blossom vertex B in P̂ a path through EB. See Figure 2.1(a,b).)

(iii) If P is an augmenting path and P/Ω is also an augmenting path relative to

M/Ω, then Ω remains a valid set of blossoms (possibly with different bases) for

the augmented matching M ⊕ P . See Figure 2.1(a,b).

(iv) The base u of a blossom B ∈ Ω uniquely determines a maximum cardinality

matching of EB, having size (|B| − 1)/2. See Figure 2.1(a,b).

Implementations of Edmonds algorithm grow a matching M while maintaining

Property 2.2, which controls the relationship between M , Ω and the dual variables.

Property 2.2. (Complementary Slackness)

(i) (Nonnegativity of y, z) z(B) ≥ 0 for all B ∈ Vodd and y(u) ≥ 0 for all

u ∈ V (G).

(ii) (Active Blossoms) Ω contains all B with z(B) > 0 and all root blossoms B

have z(B) > 0. (Non-root blossoms may have zero z-values.)

(iii) (Domination) yz(e) ≥ w(e) for all e ∈ E.

(iv) (Tightness) yz(e) = w(e) when e ∈M or e ∈ EB for some B ∈ Ω.

If the y-values of free vertices become zero, it follows from domination and tight-

ness that M is a maximum weight matching, as we can see from the following proof.

Here M∗ is any maximum weight matching.
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w(M) =
∑
e∈M

w(e)

=
∑
e∈M

yz(e) tightness

=
∑

u∈V (G)

y(u) +
∑
B∈Ω

|B| − 1

2
· z(B) Note

∑
u∈V (G)

y(u) =
∑

u∈V (M)

y(u)

≥
∑

u∈V (M∗)

+
∑
B∈Ω

|E(B) ∩M∗| · z(B) y, z non-negative

=
∑
e∈M∗

yz(e) ≥ w(M∗) domination

2.4 A Scaling Algorithm for Approximate MWM

The algorithm maintains a dynamic relaxation of complementary slackness. In

the beginning domination is weak but it becomes progressively tighter at each scale

whereas tightness is weakened at each scale, though not uniformly. The degree to

which a matched edge or blossom edge may violate tightness depends on when it last

entered the blossom or matching. Define δ0 = 2blog(ε′N)c and δi = δ0/2
i, where ε′ will

be fixed later so that the final matching is a (1 − ε)-MWM. At scale i we use the

weight function wi(e) = δibw(e)/δic. Note that wi+1(e) = wi(e) or wi(e) + δi+1 and

that ε′N/2i+1 < δi ≤ ε′N/2i.

Property 2.3. (Relaxed Complementary Slackness) There are L+1 scales numbered

0, . . . , L, where L
def
= dlogNe. Let i ∈ [0, L] be the current scale.

(i) (Granularity of y, z) z(B) is a nonnegative multiple of δi, for all B ∈ Vodd,

and y(u) is a nonnegative multiple of δi/2, for all u ∈ V (G).

(ii) (Active Blossoms) Ω contains all B with z(B) > 0 and all root blossoms B

have z(B) > 0. (Non-root blossoms may have zero z-values.)
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(iii) (Near Domination) yz(e) ≥ wi(e)− δi for all e ∈ E.

(iv) (Near Tightness) Call a matched or blossom edge type j if it was last made a

matched or blossom edge in scale j ≤ i. (That is, it entered the set M∪
⋃
B∈ΩEB

in scale j and has remained in that set, even as M and Ω change as augmenting

paths are found and blossoms are created or destroyed.) If e is such a type j

edge then yz(e) ≤ wi(e) + 2(δj − δi).

(v) (Free Vertex Duals) The y-values of free vertices are equal and strictly less

than the y-values of matched vertices.

Lemma 2.4 allows us to measure the quality of a matching M , given duals y and

z satisfying Property 2.3.

Lemma 2.4. Let M be a matching satisfying Property 2.3 at scale i and let M∗

be a maximum weight matching. Let f be the number of free vertices, each having

y-value φ, and let ε̂ be such that yz(e) − w(e) ≤ ε̂ · w(e) for all e ∈ M . Then

w(M) ≥ (1 + ε̂)−1(w(M∗) − 2δi|M∗| − fφ). If i = L and φ = 0 then M is a

(1− ε′ − ε̂)-MWM.
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Proof. The claim follows from Property 2.3.

w(M) =
∑
e∈M

w(e) defn. of w(M)

≥ (1 + ε̂)−1
∑
e∈M

yz(e) near tightness, defn. of ε̂

= (1 + ε̂)−1

 ∑
u∈V (M)

y(u) +
∑
B∈Ω

|B| − 1

2
· z(B)

 defn. of yz

≥ (1 + ε̂)−1

 ∑
u∈V (M∗)

y(u) +
∑
B∈Ω

|E(B) ∩M∗| · z(B)− fφ

 (2.3)

≥ (1 + ε̂)−1

(∑
e∈M∗

yz(e)− fφ

)
defn. of yz

≥ (1 + ε̂)−1 (wi(M
∗)− fφ− δi · |M∗|) near domination

> (1 + ε̂)−1 (w(M∗)− fφ− 2δi · |M∗|) defn. of wi

Inequality 2.3 follows from several facts: first, no matching can contain more than

(|B|−1)/2 edges in B; second, V (M∗)\V (M) contains only free vertices (with respect

to M), whose y-values are φ; and third, y- and z-values are nonnegative. Note that

the last inequality is loose by δi|M∗| if i = L since in that case wL = w.

The integrality of edge weights implies that w(M∗) ≥ |M∗|. If i = L and φ = 0

then δL = 2blog(ε′N)c−dlogNe ≤ ε′ and w(M) ≥ (1 + ε̂)−1(w(M∗) − δL|M∗|) ≥ (1 +

ε̂)−1(1− ε′)w(M∗) > (1− ε′ − ε̂)w(M∗), that is, M is a (1− ε′ − ε̂)-MWM.

2.4.1 The Scaling Algorithm

Initially M = ∅,Ω = ∅, and y(u) = N/2−δ0/2 for all u ∈ V , which clearly satisfies

Property 2.3 for scale i = 0.

The algorithm repeatedly finds sets of augmenting paths of eligible edges, creates

and destroys blossoms, and performs dual adjustments on y, z in order to maintain

Property 2.3 and increase the number of eligible edges.
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Definition 2.5. At scale i, an edge e is eligible if at least one of the following hold:

(i) e ∈ EB for some B ∈ Ω.

(ii) e 6∈M and yz(e) = wi(e)− δi.

(iii) e ∈M and yz(e)− wi(e) is a nonnegative integer multiple of δi.

Let Eelig be the set of eligible edges and let Gelig = (V,Eelig)/Ω be the unweighted

graph obtained by discarding ineligible edges and contracting root blossoms.

Criterion (i) for eligibility simply ensures that an augmenting path in Gelig ex-

tends to an augmenting path of eligible edges in G. A key implication of Criteria

(ii) and (iii) is that if P is an augmenting path in Gelig, every edge in P becomes

ineligible in (M/Ω)⊕P . This follows from the fact that unmatched edges must have

yz(e) − wi(e) < 0 whereas matched edges must have yz(e) − wi(e) ≥ 0. Regarding

Criterion (iii), note that Property 2.3 (granularity and near domination) implies that

wi(e)− yz(e) is at least −δi and an integer multiple of δi/2.

The algorithm contains dlogNe+ 1 scales, and in each scale the step size δi of the

dual adjustments shrinks by one half. In each scale, the following steps are repeated

until the y-value of free vertices shrinks by about one half comparing to its value

at the beginning of this scale. (The full description of this algorithm is shown in

Figure 2.2.)

• First find a maximal set of augmenting paths in Gelig.

• Then find and shrink new blossoms. Update Ω and Gelig.

• Perform dual adjustments and dissolve root blossoms with zero z-values.
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Initialization:

M ← ∅ no matched edges
Ω← ∅ no blossoms

δ0 ← 2blog(ε′N)c ε′ = Θ(ε) a parameter

y(u)← N

2
− δ0

2
, for all u ∈ V (G) satisfies Property 2.3(iii)

Execute scales i = 0 . . . , L = dlogNe and return the matching M .

Scale i:

– Repeat the following steps until y-values of free vertices reachN/2i+2−δi/2,
if i ∈ [0, L), or until they reach zero, if i = L.

∗ Augmentation:
Find a maximal set Ψ of augmenting paths in Gelig and set
M ←M ⊕ (

⋃
P∈Ψ P ). Update Gelig.

∗ Blossom Shrinking:
Let Vout ⊆ V (Gelig) be the vertices (that is, root blossoms) reachable
from free vertices by even-length alternating paths; let Ω′ be a maxi-
mal set of (nested) blossoms on Vout. (That is, if (u, v) ∈ E(Gelig)\M
and u, v ∈ Vout, then u and v must be in a common blossom.) Let
Vin ⊆ V (Gelig)\Vout be those vertices reachable from free vertices
by odd-length alternating paths. Set z(B) ← 0 for B ∈ Ω′ and set
Ω← Ω ∪ Ω′. Update Gelig.

∗ Dual Adjustment:
Let V̂in, V̂out ⊆ V be original vertices represented by vertices in Vin
and Vout. The y- and z-values for some vertices and root blossoms are
adjusted:

y(u)← y(u)− δi/2, for all u ∈ V̂out.
y(u)← y(u) + δi/2, for all u ∈ V̂in.

z(B)← z(B) + δi, if B ∈ Ω is a root blossom with B ⊆ V̂out.
z(B)← z(B)− δi, if B ∈ Ω is a root blossom with B ⊆ V̂in.

After dual adjustments some root blossoms may have zero z-values.
Dissolve such blossoms (remove them from Ω) as long as they exist.
Note that non-root blossoms are allowed to have zero z-values. Update
Gelig by the new Ω.

– Prepare for the next scale, if i ∈ [0, L):

δi+1 ← δi/2
y(u)← y(u) + δi+1, for all u ∈ V (G).

Figure 2.2: The Scaling Algorithm
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2.4.2 Analysis and Correctness

Lemma 2.6. After the Augmentation and Blossom Shrinking steps Gelig contains no

augmenting path, nor is there a path from a free vertex to a blossom.

Proof. Suppose there is an augmenting path P in Gelig after augmenting along paths

in Ψ. Since Ψ is maximal, P must intersect some P ′ ∈ Ψ at a vertex v. However,

after the Augmentation step every edge in P ′ will become ineligible, so the matching

edge (v, v′) ∈M is no longer in Gelig, contradicting the fact that P consists of eligible

edges. Since Ω′ is maximal there can be no blossom reachable from a free vertex in

Gelig after the Blossom Shrinking step.

Lemma 2.7. (Parity of y-values) Let R ⊆ V (Gelig) be the set of vertices reachable

from free vertices by eligible alternating paths, at any point in scale i. Let R̂ ⊆ V (G)

be the set of original vertices represented by those in R. Then the y-values of R̂-

vertices have the same parity, as a multiple of δi/2.

Proof. Assume, inductively, that before the Blossom Shrinking step, all vertices in

a common blossom have the same parity, as a multiple of δi/2. Consider an eligible

path P = (B0, B1, . . . , Bk) in Gelig, where the {Bj} are either vertices or blossoms

in Ω and B0 is unmatched in Gelig. Let (u0, v1), (u1, v2), . . . , (uk−1, vk) be the G-

edges corresponding to P , where uj, vj ∈ Bj. By the inductive hypothesis, uj and vj

have the same parity, and whether (uj, vj+1) is matched or unmatched, Definition 2.5

implies that yz(uj, vj+1)/δi is an integer, which implies y(uj) and y(vj+1) have the

same parity as a multiple of δi/2. Thus, the y-values of all vertices in B0 ∪ · · · ∪ Bk

have the same parity as a free vertex in B0, whose y-value is equal to every other

free vertex, by Property 2.3(v). Since new blossoms are formed by eligible edges,

the inductive hypothesis is maintained after the Blossom Shrinking step. It is also

maintained after the Dual Adjustment step since the y-values of vertices in a common

blossom are incremented or decremented together. This concludes the induction.
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Lemma 2.8. The algorithm preserves Property 2.3.

Proof. Property 2.3(v) (free vertex duals) is obviously maintained since only free ver-

tices have their y-values decremented in each Dual Adjustment step. Property 2.3(ii)

(active blossoms) is also maintained since all the new root blossoms found in the

Blossom Shrinking step are contained in Vout and will have positive z-values after ad-

justment. Furthermore, each root blossom whose z-value drops to zero is dissolved,

after Dual Adjustment. At the beginning of scale i all y- and z-values are integer

multiples of δi/2 and δi, respectively, satisfying Property 2.3(i) (granularity). This

property is clearly maintained in each Dual Adjustment step.

It remains to show that the algorithm maintains Property 2.3(iii),(iv) (near dom-

ination, near tightness). Let e = (u, v) be an arbitrary edge and i be the scale. First

consider the dual adjustments made at the end of the scale; let yz and yz′ be the

function before and after adjustment. At the end of scale i we have yz(e) ≥ wi(e)−δi.

Each y-value is incremented by δi+1 and wi+1(e) ≤ wi(e)+δi+1, hence yz′(e) = yz(e)+

2δi+1 ≥ wi(e) ≥ wi+1(e)−δi+1, which preserves Property 2.3(iii). If e ∈M ∪
⋃
B∈ΩEB

is a type j edge, then at the end of the scale yz(e) ≤ wi(e) + 2(δj − δi). By the same

reasoning as above, yz′(e) = yz(e) + 2δi+1 ≤ wi(e) + 2δj − δi ≤ wi+1(e) + 2(δj − δi+1),

preserving Property 2.3(iv).

If e is placed in M during an Augmentation step or it is a non-M edge placed in⋃
B∈ΩEB during a Blossom Shrinking step then e has type i and yz(e) = wi(e)− δi,

which satisfies Property 2.3(iv). Now consider a Dual Adjustment step. If neither

u nor v is in V̂in ∪ V̂out or if u, v are in the same root blossom B ∈ Ω, then yz(e) is

unchanged, preserving Property 2.3. The remaining cases depend on whether (u, v)

is in M or not, whether (u, v) is eligible or not, and whether both u, v ∈ V̂in ∪ V̂out or

not.

24



Case 1: e 6∈M, u, v ∈ V̂in ∪ V̂out If e is ineligible then yz(e) > wi(e)− δi. However,

by Lemma 2.7 (parity of y-values) we know (yz(e)−wi(e))/δi is an integer, so yz(e) ≥

wi(e) before adjustment and yz(e) ≥ wi(e)− δi after adjustment (if both u, v ∈ V̂out),

which preserves Property 2.3(iii). If e is eligible then at least one of u, v is in V̂in,

otherwise another blossom or augmenting path would have been formed, so yz(e)

cannot be reduced, which also preserves Property 2.3(iii).

Case 2: e ∈ M, u, v ∈ V̂in ∪ V̂out Since u, v ∈ V̂in ∪ V̂out, Lemma 2.7 (parity of

y-values) guarantees that (yz(e) − wi(e))/δi is an integer. The only way e can be

ineligible is if yz(e) = wi(e) − δi and u, v ∈ V̂in, hence yz(e) = wi(e) after dual

adjustment, which preserves Property 2.3(iii),(iv). On the other hand, if e is eligible

then u ∈ V̂in and v ∈ V̂out. It cannot be that u, v ∈ V̂out, otherwise e would have been

included in an augmenting path or root blossom. In this case yz(e) is unchanged,

preserving Property 2.3(iii),(iv).

Case 3: e 6∈ M, v 6∈ V̂in ∪ V̂out If e is eligible then u ∈ V̂in and yz(e) will increase.

If it is ineligible then yz(e) ≥ wi(e)− δi/2 before adjustment and yz(e) ≥ wi(e)− δi

after adjustment. In both cases Property 2.3(iii) is preserved.

Case 4: e ∈ M, v 6∈ V̂in ∪ V̂out It must be that e is ineligible, so u ∈ V̂in and

yz(e) − wi(e) is either negative or an odd multiple of δi/2. If e is type j then, by

Property 2.3(i),(iv) (granularity and near tightness), yz(e) ≤ wi(e) + 2(δj − δi) −

δi/2 before adjustment and yz(e) ≤ wi(e) + 2(δj − δi) after adjustment, preserving

Property 2.3(iv).

Lemma 2.9. Let i ≤ L be the scale index. Then

(i) For i < L, all edges eligible at any time in scales 0 through i have weight at

least N/2i+1 + δi.
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(ii) For any i, if e ∈M then yz(e) ≤ (1 + 4ε′)w(e).

Proof. Part 1 The last search for augmenting paths in scale i begins when the y-

values of free vertices are N/2i+2, and strictly less than y-values of other vertices, by

Property 2.3(v). An unmatched edge e = (u, v) can only be eligible at this scale if

yz(e) = wi(e)− δi ≤ w(e)− δi. Hence w(e) ≥ y(u) + y(v) + δi ≥ N/2i+1 + δi.

Part 2 Let e be a type j edge in M during scale i. Property 2.3(iv) states that

yz(e) − wi(e) ≤ 2(δj − δi). Since wi(e) ≤ w(e) it also follows that yz(e) − w(e) ≤

2δj − 2δi < 2blog(ε′N)c−j+1 ≤ ε′N/2j−1. By part 1, a type j edge must have weight at

least N/2j+1 + δj, so yz(e)− w(e) < 4ε′ · w(e).

Lemma 2.10. After scale L = dlogNe, M is a (1− 5ε′)-MWM.

Proof. The final scale ends with free vertices having zero y-values. Property 2.3(iii)

holds w.r.t. δL = δ0/2
L ≤ ε′N/2L ≤ ε′ and Lemma 2.9 states that yz(e) ≤ (1 +

4ε′)w(e). By Lemma 2.4 w(M) ≥ (1− 5ε′)w(M∗).

Theorem 2.11. A (1− ε)-MWM can be computed in time O(mε−1 logN).

Proof. Each Augmentation and Blossom Shrinking step takes O(m) time [35, §8]

using a modified depth-first search. (Finding a maximal set of augmenting paths

is significantly simpler than finding a maximal set of minimum-length augmenting

paths, as is done in [47, 66].) Each Dual Adjustment step clearly takes linear time.

Scale i < L = dlogNe begins with free vertices’ y-values at N/2i+1 − δi and ends

with them at N/2i+2 − δi. Since y-values are decremented by δi/2 in each Dual

Adjustment step there are exactly (N/2i+2)/(δi/2) = N/(2δ0) < ε′−1 such steps. The

last inequality follows since δ0 = 2blog(ε′N)c > ε′N/2. The final scale begins with free

vertices’ y-values at N/2L+1 − δL and ends with them at zero, so there are fewer

than (N/2L+1)/(δL/2) = (N/2L+1)/2blog(ε′N)c−(L+1) = 2logN−blog(ε′N)c < 2ε′−1 Dual

Adjustment steps. Lemma 2.10 guarantees that the final matching is a (1− ε)-MWM

for ε′ = ε/5. Thus, the total running time is O(mε−1 logN).
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2.4.3 A Linear Time Algorithm

Our O(mε−1 logN)-time algorithm requires few modifications to run in linear

time, independent of N . In fact, the algorithm as it appears in Figure 2.2 requires no

modifications at all: we only need to change the definition of eligibility and, in each

scale, avoid scanning edges that cannot be eligible or part of augmenting paths or

blossoms. From Lemma 2.9(i) it is helpful to index edges according to the first scale

in which they may be eligible.

Definition 2.12. Define µi = N/2i+1 + δi, for i < L, and µL = 0. For any edge e,

define scale(e) = i such that w(e) ∈ [µi, µi−1).

Definition 2.13 redefines eligibility. The differences with Definition 2.5 are under-

lined.

Definition 2.13. At scale i, an edge e is eligible if at least one of the following hold:

(i) e ∈ EB for some B ∈ Ω.

(ii) e 6∈M and yz(e) = wi(e)− δi.

(iii) e ∈M , wi(e)− yz(e) is a nonnegative integer multiple of δi,

and scale(e) ≥ i− γ, where γ
def
= dlog ε′−1e.

Let Eelig be the set of eligible edges and let Gelig = (V,Eelig)/Ω be the unweighted

graph obtained by deleting ineligible edges and contracting root blossoms.

Lemma 2.14. Using Definition 2.13 of eligibility rather than Definition 2.5, Prop-

erty 2.3(i),(ii),(iii),(v) is maintained and Property 2.3(iv) (near tightness) holds in

the following weaker form. Let e ∈ M ∪
⋃
B∈Ω EB be a type j edge with scale(e) = i.

Then yz(e) ≤ wk(e) + 2(δj − δk) at any scale k ∈ [i, i + γ] and yz(e) ≤ wk(e) + (3 +

3ε′/2)δi < (1 + 7ε′)w(e) for k > i+ γ.
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Proof. In scales i through i+γ Property 2.3(iv) is maintained as the two definitions of

eligibility are the same. At the beginning of scale i+γ+1, e is no longer eligible and the

y-values of free vertices are N/2i+γ+2−δi+γ+1/2. From this moment on, the y-values of

free vertices are incremented by a total of
∑

l≥i+γ+2 δl (the dual adjustments following

scales i+ γ+ 1 through logN − 1) and decremented a total of N/2i+γ+2− δi+γ+1/2 +∑
l≥i+γ+2 δl (in the Dual Adjustment steps following searches for augmenting paths

and blossoms). Each adjustment to a free y-value by some quantity ∆ may cause

yz(e) to increase by 2∆. This clearly occurs in the dual adjustments following each

scale as y(u) and y(v) are incremented by ∆. Following a search for blossoms it may

be that u, v ∈ V̂in, which would also cause y(u) and y(v) to each be incremented by

∆. Note that y(u), y(v) cannot be decremented in scales i + γ + 1 forward; if either

were in V̂out after a search for blossoms then e would have been eligible, which is a

contradiction. Thus Property 2.3(iii) (near domination) is maintained for e. Putting

this all together, it follows that from scale k ≥ i+ γ + 1 forward,

yz(e) ≤ wk(e) + 2(δj − δk) + 2 ·

(
N/2i+γ+2 − δi+γ+1/2 + 2 ·

∑
l≥i+γ+2

δl

)

< wk(e) + 2δi + 2
(
ε′N/2i+2 + 3

2
δi+γ+1

)
j ≥ i, defn. of γ

< wk(e) + 2δi + 2
(
δi+1 + 3ε′

2
δi+1

)
ε′N/2i+2 < δi+1, defn. of γ.

= wk(e) + (3 + 3ε′/2)δi

≤ wk(e) + (3 + 3ε′/2)(ε′N/2i) δi ≤ ε′N/2i

< (1 + 7ε′)w(e) w(e) ≥ wk(e) > N/2i+1, ε′ < 1/3

Lemma 2.15. Let e1 = (u, v) be an edge with scale(e1) = i and let e0 = (u′, u) and

e2 = (v, v′) be the M-edges incident to u and v at some time after scale i. Then at

least one of e0 and e2 exists, and its scale is at most i+ 2.
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Proof. Following the last Dual Adjustment step in scale i the y-values of free ver-

tices are N/2i+2 − δi/2. It cannot be that both u and v are free at this time,

otherwise yz(e1) = y(u) + y(v) = N/2i+1 − δi = µi − 2δi < wi(e1) − δi, violat-

ing Property 2.3(iii) (near domination). Thus, either u or v is matched for the

remainder of the computation. If e1 is matched the claim is trivial, so, assuming

the claim is false, whenever e0, e2 exist we have scale(e0), scale(e2) ≥ i + 3. That is,

w(e0), w(e2) < µi+2 = N/2i+3 + δi+2.

e1 cannot be in a blossom without e0 or e2 also being in the blossom. Let Bl ⊂ Ω

be the blossoms containing el at a given time. The laminarity of blossoms ensures

that either B1 ⊆ B0 or B1 ⊆ B2. Suppose it is the former, that is, e0 exists and e2

may or may not exist. Then, if the current scale is k ≥ i + 3, by Property 2.3(iii)

(near domination) yz(e1) = y(u)+y(v)+
∑

B∈B1
z(B) ≥ wk(e1)− δk. By Lemma 2.14

(near tightness) y(u) +
∑

B∈B1
< yz(e0) ≤ wk(e0) + (3 + 3ε′/2)δi+3 and, if e2 exists,

y(v) < yz(e2) ≤ wk(e2)+(3+3ε′/2)δi+3. These inequalities follow from the definition

of yz, the containment B1 ⊆ B0 and the fact that e0 and e2 can only be at scale i+ 3

or higher. Without loss of generality we can assume y(u) +
∑

B∈B1
≥ y(v); note that

if e2 does not exist then y(v) < y(u) +
∑

B∈B1
, by Property 2.3(v). Putting these

inequalities together we have

wk(e1) ≤ y(u) + y(v) +
∑
B∈B1

z(B) + δk near domination

≤ 2

(
y(u) +

∑
B∈B1

z(B)

)
+ δk

< 2(wk(e0) + (3 + 3ε′/2)δi+3) + δk near tightness

< 2w(e0) + 8δi+3 k ≥ i+ 3, ε′ < 1/3
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and therefore

w(e0) ≥ 1
2
(wk(e1)− δi) 8δi+3 = δi

≥ N/2i+2 scale(e1) = i, wk(e1) ≥ µi = N/2i+1 + δi

> N/2i+3 + δi+2 = µi+2

This contradicts the fact that scale(e0) ≥ i + 3, since such edges have w(e0) < µi+2

by definition.

Theorem 2.16. A (1− ε)-MWM can be computed in time O(mε−1 log ε−1).

Proof. We execute the algorithm from Figure 2.2 where Gelig refers to the eligible

subgraph as defined in Definition 2.13. We need to prove several claims: (i) the

algorithm does return a (1− ε)-MWM for suitably chosen ε′ = Θ(ε), (ii) the number

of scales in which an edge could possibly participate in an augmenting path or blossom

is log ε−1 +O(1), and (iii) it is possible in linear time to compute the scales in which

each edge must participate. Part (i) follows from Lemmas 2.4 and 2.14. Since yz(e) ≤

(1 + 7ε′)w(e) for any e ∈ M (by Lemma 2.14) and δL ≤ ε′, Lemma 2.4 implies that

M is a (1− ε)-MWM when ε′ = ε/8.

Turning to part (ii), consider an edge e with scale(e) = i. By Lemma 2.9(i) e can

be ignored in scales 0 through i− 1. If e = (u, v) ∈ M , according to Definition 2.13,

e will be ineligible in scales i+ γ + 1 through logN . After scale i+ γ no augmenting

path or blossom can contain e, so we can put it in the final matching and remove

from consideration all edges incident to u or v. Now suppose that e 6∈ M at the end

of scale i + γ + 2. Lemma 2.15 states that either u or v is incident to a matched

edge e0 with scale(e0) ≤ i+ 2, which by the argument above, will be put in the final

matching. Therefore we can remove e from further consideration. Thus, to execute

the algorithm we only need to consider e in scales scale(e) through scale(e) + γ + 2,

that is, γ + 3 = dlog ε′−1e+ 3 ≤ log ε−1 + 7 scales in total.
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We have narrowed our problem to that of computing scale(e) for all e. This is

equivalent to computing the most significant bit (MSB(x) = blog2 xc) in the binary

representation of w(e). Once the MSB is known, scale(e) can be just one of two possi-

ble values. MSBs can be computed in a number of ways using standard instructions.

It is trivial to extract MSB(x) after converting x to floating point representation.

Fredman and Willard [31] gave an O(1) time algorithm using unit time multiplica-

tion. However, we do not need to rely on floating point conversion or multiplication.

In Section 2.2 we showed that without loss of generality logN ≤ 2 log n. Using a neg-

ligible O(nβ) space and preprocessing time we can tabulate the answers on β ·log n-bit

integers, where β ≤ 1, then compute MSBs with 2β−1 = O(1) table lookups.

2.4.4 Conclusion

We have given the first linear time (1 − ε)-approximate MWM algorithm for ar-

bitrarily small ε. Our result is a major improvement over the previous best linear

time algorithm, which guaranteed only (2/3 − ε)-approximations. [67, 51]. How-

ever, making our algorithm suitable for parallel computing is a major challenge. The

best efficient parallel/distributed approximate MWM algorithm guarantees only 1/2-

approximations. [44]. Improving the exact MWM algorithms is also a challenge for

us.
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CHAPTER III

Connectivity Oracle for Failure-Prone Graphs

The main result in this chapter is a new, space efficient data structure that can

quickly answer connectivity queries after recovering from d vertex failures.1 The

recovery time is polynomial in d and log n but otherwise independent of the size of

the graph. After processing the failed vertices, connectivity queries are answered in

O(d) time. The space used by the data structure is roughly mnε, for any fixed ε > 0,

where ε only affects the polynomial in the recovery time. The exact tradeoffs are given

in Theorem 3.1. Our data structure is the first of its type. To achieve comparable

query times using existing data structures we would need either Ω(nd) space [19] or

Ω(dn) recovery time [49].

It is easy to see that handling d vertex failures can be much harder than handling

only d edge failures, since a vertex failure can cause the failure of as many as n − 1

edges, which may have a large impact on the graph connectivity. First, we reduce the

problem of d-edge failure recovery on a spanning forest of G to 2D range searching,

that is, searching for edges reconnecting the split trees is equivalent to searching ele-

ments in rectangles in a 2D table. The time is quadratic of the number of deleted tree

edges. Then we perform a “sparsification” on the spanning forest of G which restricts

the degree bound of failed vertices in a set of forests when given any set of d failed

1This result appears in Duan and Pettie’s paper “Connectivity Oracles for Failure Prone
Graphs” [25] in STOC 2010.
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vertices. In the complexities, there is a positive parameter c controlling the tradeoff

between the space and the recovery time from vertex failures. When c becomes larger,

the space becomes smaller but the recovery time gets larger. Theorem 3.1 gives a

precise statement of the capabilities and time-space tradeoffs of our structure:

Theorem 3.1. Let G = (V,E) be a graph with m edges and n vertices and let c ≥ 1

be an integer. A data structure with size S = O(d1−2/cmn1/c−1/(c log(2d)) log2 n) can be

constructed in Õ(S) time that supports the following operations. Given a set D of

at most d failed vertices, D can be processed in O(d2c+4 log2 n log log n) time so that

connectivity queries w.r.t. the graph induced by V \D can be answered in O(d) time.

Overview. In Section 3.1 we present the Euler Tour Structure, which plays a key

role in our vertex-failure oracle and can be used independently as an edge-failure

oracle. In Sections 3.2 and 3.3 we define and analyze the redundant graph represen-

tation (called the high degree hierarchy) mentioned earlier. In Section 3.4 we provide

algorithms to recover from vertex failures and answer connectivity queries.

3.1 The Euler Tour Structure

In this section we describe the ET-structure for handling connectivity queries

avoiding multiple vertex and edge failures. When handling only d edge failures, the

performance of the ET-structure is incomparable to that of Pǎtraşcu and Thorup [49]

in nearly every respect.2 The strength of the ET-structure is that if the graph can be

covered by a low-degree tree T , the time to delete a vertex is a function of its degree

2The ET-structure is significantly faster in terms of construction time (near-linear vs. a large
polynomial or exponential time) though it uses slightly more space: O(m logε n) vs. O(m). It
handles d edge deletions exponentially faster for bounded d (O(log log n) vs. Ω(log2 n log log n))
but is slower as a function of d: O(d2 log log n) vs. O(d log2 n log log n) time. The query time is
the same for both structures, namely O(log log n). Whereas the ET-structure naturally maintains
a certificate of connectivity (a spanning tree), the Pǎtraşcu-Thorup structure requires modification
and an additional logarithmic factor in the update time to maintain a spanning tree.
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in T ; incident edges not in T are deleted implicitly. We prove Theorem 3.2 in the

remainder of this section.

Theorem 3.2. Let G = (V,E) be a graph, with m = |E| and n = |V |, and let F =

{T1, . . . , Tt} be a set of vertex disjoint trees in G. (The Ti’s do not necessarily span

a connected component of G.) There is a data structure ET(G,F) occupying space

O(m logε n) (for any fixed ε > 0) that supports the following operations. Suppose D is

a set of failed edges, of which d are tree edges in F and d′ are non-tree edges. Deleting

D splits some subset of the trees in F into at most 2d trees F ′ = {T ′1, . . . , T ′2d}. In

O(d2 log log n + d′) time we can report which pairs of trees in F ′ are connected by

an edge in E\D. In O(min{log log n, log d}) time we can determine which tree in F ′

contains a given vertex.

Our data structure uses as a subroutine Alstrup et al.’s data structure [2] for range

reporting on the integer grid [U ] × [U ]. They showed that given a set of N points,

there is a data structure with size O(N logεN), where ε > 0 is fixed, such that given

x, y, w, z ∈ [U ], the set of points in [x, y]× [w, z] can be reported in O(log logU + k)

time, where k is the number of reported points. Moreover, the structure can be built

in O(N logN) time.

For a tree T , let L(T ) be a list of its vertices encountered during an Euler tour

of T (an undirected edge is treated as two directed edges), where we only keep the

first occurrence of each vertex. One may easily verify that removing f edges from

T partitions it into f + 1 connected subtrees and splits L(T ) into at most 2f + 1

intervals, where the vertices of a connected subtree are the union of some subset

of the intervals. To build ET(G = (V,E),F) we build the following structure for

each pair of trees (T1, T2) ∈ F × F ; note that T1 and T2 may be the same. Let m′

be the number of edges connecting T1 and T2. Let L(T1) = (u1, . . . , u|T1|), L(T2) =

(v1, . . . , v|T2|), and let U = max{|T1|, |T2|}. We define the point set P ⊆ [U ] × [U ]

to be P = {(i, j) | (ui, vj) ∈ E}. Suppose D is a set of edge failures including
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d1 edges in T1, d2 in T2, and d′ non-tree edges. Removing D splits T1 and T2 into

d1 +d2 +2 connected subtrees and partitions L(T1) into a set I1 = {[xi, yi]}i of 2d1 +1

intervals and L(T2) into a set I2 = {[wi, zi]}i of 2d2 + 1 intervals. For each pair i, j

we query the 2D range reporting data structure for points in [xi, yi] × [wj, zj] ∩ P .

However, we stop the query the moment it reports some point corresponding to a

non-failed edge, i.e., one in E\D. Since there are (2d1 + 1) × (2d2 + 1) queries and

each failed edge in D can only be reported in one such query, the total query time is

O(d1d2 log logU + |D|) = O(d1d2 log log n+ d′). See Figure 3.1 for an illustration.

The space for the data structure (restricted to T1 and T2) is O(|T1| + |T2| +

m′ logε n). We can assume without loss of generality3 that |T1| + |T2| < 4m′, so the

space for the ET-structure on T1 and T2 is O(m′ logε n). Since each non-tree edge only

appears in one such structure the overall space for ET(G,F) is O(m logε n). For the

last claim of the Theorem, observe that if a vertex u lies in an original tree T1 ∈ F , we

can determine which tree in F ′ contains it by performing a predecessor search over the

left endpoints of intervals in I1. This can be accomplished in O(min{log log n, log d1})

query time using a van Emde Boas tree [62] or sorted list, whichever is faster.

Corollary 3.3 demonstrates how ET(G, ·) can be used to answer connectivity

queries avoiding edge and vertex failures.

Corollary 3.3. The data structure ET(G = (V,E), {T}), where T is a spanning tree

of G, supports the following operations. Given a set D ⊂ E of edge failures, D can be

processed in O(|D|2 log log n) time so that connectivity queries in the graph (V,E\D)

3The idea is to remove irrelevant vertices and contract long paths of degree-2 vertices. More
formally: let V1 ⊆ V (T1) be those vertices incident to one of the m′ non-tree edges. We can replace
T1 by an equivalent tree T̃1 with less than 2m′ vertices via the following steps: (1) Let T ′1 be the
minimal subtree of T1 in which V1 remains connected, then (2) Let Ṽ1 be the union of V1 and
all branching vertices, i.e., those with degree at least 3, in T ′1 (note |Ṽ1| < 2|V1|), then (3) Let
T̃1 = (Ṽ1, Ẽ1), where (u, v) ∈ Ẽ1 if there is a path (u, . . . , v) in T ′1, none of whose interior vertices
are in Ṽ1. The removal of an edge from T1 can clearly be simulated by removing an edge from T̃1.
To determine which edge in T̃1 we only need to perform a predecessor search over Ṽ1. Using a van
Emde Boas tree, such queries can be answered in O(log log |T1|) = O(log log n) time. We only need
to perform d1 + d2 such queries, the cost of which is dominated by the Ω(d1d2 log log n) time for 2D
range reporting.
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Figure 3.1:
(A) Here T1 and T2 are two trees and L(T1) = (u1, . . . , u12) and L(T2) =
(v1, . . . , v9) are their vertices, listed by their first appearance in some Euler
tours of T1 and T2. (It does not matter which Euler tour we pick.) There
are six non-tree edges connecting T1 and T2, marked by dashed curves. If
the edges (u2, u3) and (v1, v2) are removed, T1 and T2 are split into four sub-
trees, say T ′1, T

′
2, T

′
3, T

′
4, and both L(T1) and L(T2) are split into three intervals,

namely X1 = (u1, u2), X2 = (u3, . . . , u7), X3 = (u8, . . . , u12), Y1 = (v1), Y2 =
(v2, . . . , v7), and Y3 = (v8, v9). Each tree T ′i is identified with some subset of
the intervals: T ′1, . . . , T

′
4 are identified with {X1, X3}, {X2}, {Y1, Y3}, and {Y2}.

(B) The point (i, j) (marked by a diamond) is in our point set if (vi, uj) is a
non-tree edge. To determine if, for example, T ′1 and T ′4 are connected by an
edge, we perform two 2D range queries, X1 × Y2 and X3 × Y2, and keep at
most one point (i.e., a non-tree edge) for each query. In general, removing d1

edges from T1 and d2 edges from T2 necessitates (2d1 + 1)(2d2 + 1) 2D range
queries to determine incidences between all pairs of subtrees. In this example
we require nine 2D range queries, indicated by boxes in the point set diagram.
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can be answered in O(min{log log n, log |D|}) time. If D ⊂ V is a set of vertex

failures, the update time is O((
∑

v∈D degT (v))2 log log n) (note, this is independent of∑
v∈D deg(v)) and the query time is O(min{log log n, log(

∑
v∈D degT (v))}).

Proof. Let d be the number of failed edges in T (or edges in T incident to failed

vertices). Using ET(G, {T}) we split T into d + 1 subtrees and L(T ) into a set I of

2d+1 connected intervals, in which each connected subtree is made up of some subset

of the intervals. Using O(d2) 2D range queries, in O(d2 log log n + |D|) time we find

at most one edge connecting each pair in I × I. In O(d2) time we find the connected

components4 of V \D and store with each interval a representative vertex from its

component. To answer a query (u, v) we only need to determine which subtree u and

v are in, which involves two predecessor queries over the left endpoints of intervals in

I. This takes O(min{log log n, log d}) time.

3.2 Constructing the High-Degree Hierarchy

Theorem 3.2 and Corollary 3.3 demonstrate that given a spanning tree T with

maximum degree t, we can processes d vertex failures in time roughly (dt)2. However,

there is no way to bound t as a function of d. Our solution is to build a high-degree

hierarchy that represents the graph in a redundant fashion so that given d vertex

failures, in some representation of the graph all failed vertices have low (relevant)

degree.

3.2.1 Definitions

Let degH(v) be the degree of v in the graph H and let High(H) = {v ∈ V (H) |

degH(v) > s} be the set of high degree vertices in H, where s = Ω(d2) is a fixed

parameter of the construction and d is an upper bound on the number of vertex

4This involves performing a depth first search of the graph whose vertices correspond to intervals
in I.
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failures. Increasing s will increase the update time and decrease the space.

We assign arbitrary distinct weights to the edges of the input graph G = (V,E),

which guarantees that every subgraph has a unique minimum spanning forest. Let X

and Y be arbitrary subsets of vertices. We define FX to be the minimum spanning

forest of the graph G\X. (The notation G\X is short for “the graph induced by

V \X.”) Let FX(Y ) to be the subforest of FX that preserves the connectivity of

Y \X, i.e., an edge appears in FX(Y ) if it is on the path in FX between two vertices

in Y \X. If X is omitted it is ∅. Note that FX(Y ) may contain branching vertices

(having degree greater than 2) that are not in Y \X.

Lemma 3.4. For any vertex sets X, Y , |High(FX(Y ))| ≤ b |Y \X|−2
s−1

c.

Proof. Note that all leaves of FX(Y ) belong to Y \X. We prove by induction that the

maximum number of vertices with degree at least s+ 1 (the threshold for being high

degree) in a tree with l leaves is precisely b(l − 2)/(s− 1)c. This upper bound holds

whenever there is one internal vertex, and is clearly tight when l ≤ s + 1. Given a

tree with l > s+ 1 leaves and at least two internal vertices, select an internal vertex

v adjacent to exactly one internal vertex and a maximum number of leaves. If v is

incident to fewer than s leaves it can be spliced out without decreasing the number of

high-degree vertices, so assume the number of incident leaves is at least s. Trimming

the adjacent leaves of v leaves a tree with a net loss of s− 1 leaves and 1 high degree

vertex. The claim then follows from the inductive hypothesis.

3.2.2 The Hierarchy Tree and Its Properties

Definition 3.5 describes the hierarchy tree, and in fact shows that it is constructible

in roughly linear time per hierarchy node. See Figure 3.2 for an explanatory diagram.

Definition 3.5. The hierarchy tree is a rooted tree that is uniquely determined by

the graph G = (V,E), its artificial edge weights, and the parameters d and s. Nodes
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V

W1 W2 W3

X1 X2 X3 Y1 Y2 Y3

FY1 W2 FY3 W2

FW1 V FW2 V

FX1 W1 FX3 W1

Figure 3.2:
After W1,W2 and all their descendants have been constructed we con-
struct W3 as follows. First, include all members of W2 in W3. Second,
look at all hierarchy edges (X ′, U ′) where X ′ is in W2’s subtree and U ′ is
the parent of X ′ (i.e., all edges under the dashed curve), and include all
the high degree vertices in FX′(U

′) in W3. In this example W3 includes
High(FW2(V )),High(FY1(W2)),High(FY2(W2)),High(FY3(W2)), and so on.

in the tree are identified with subsets of V . The root is V and every internal node

has precisely d children. A (not necessarily spanning) forest of G is associated with

each node and each edge in the hierarchy tree. The tree is constructed as follows:

(i) Let W be a node with parent U . We associate the forest F (U) with U and

FW (U) with the edge (U,W ).

(ii) If F (U) has no high degree vertices then U is a leaf; otherwise it has children

W1, . . . ,Wd defined as follows. (Subtree(X) is the set of descendants of X in

the hierarchy, including X.)

W1 = High(F (U))

Wi = Wi−1 ∪

U ∩
 ⋃
W ′∈ Subtree(Wi−1)

U ′= parent of W ′

High(FW ′(U
′))




In other words, Wi inherits all the vertices from Wi−1 and adds all vertices that

are both in U and high-degree in some forest associated with an edge (W ′, U ′),
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where W ′ is a descendant of Wi−1. Note that this includes the forest FWi−1
(U).

It is regretful that Definition 3.5((ii)) is so stubbornly unintuitive. We do not have

a clean justification for it, except that it guarantees all the properties we require of

the hierarchy: that it is small, shallow, and effectively represents the graph in many

ways so that given d vertex failures, failed vertices have low degree in some graph

representation. After establishing Lemmas 3.6–3.8, Definition 3.5((ii)) does not play

any further role in the data structure whatsoever. Proofs of Lemmas 3.6 and 3.7

appear in the appendix.

Lemma 3.6. (Containment of Hierarchy Nodes) Let U be a node in the hierar-

chy tree with children W1, . . . ,Wd. Then High(F (U)) ⊆ U and W1 ⊆ · · · ⊆ Wd ⊆ U .

Proof. The second claim will be established in the course of proving the first claim.

We prove the first claim by induction on the preorder (depth first search traversal) of

the hierarchy tree. For the root node V , High(V ) is trivially a subset of V . Let Wi

be a node, U be its parent, and W1 be U ’s first child, which may be the same as Wi.

Suppose the claim is true for all nodes preceding Wi. If it is the case that Wi = W1,

we have that W1 = High(F (U)) (by Definition 3.5((ii))) and High(F (U)) ⊆ U (by

the inductive hypothesis). Since F (W1) is a subforest of F (U) (this follows from the

fact that for a vertex set Y we select F (Y ) to be the minimum forest spanning Y ),

every high degree node in F (W1) also has high degree in F (U), i.e., High(F (W1)) ⊆

High(F (U)) = W1, which establishes the claim when Wi = W1. Once we know that

W1 ⊆ U it follows from Definition 3.5((ii)) that W1 ⊆ · · · ⊆ Wd ⊆ U . By the same

reasoning as above, when Wi 6= W1, we have that Wi ⊆ U , implying that F (Wi) is a

subforest of F (U), which implies that High(F (Wi)) ⊆ High(F (U)) = W1 ⊆ Wi.

Lemma 3.7. (Hierarchy Size and Depth) Consider the hierarchy tree constructed

with high-degree threshold s = (2d)c+1 + 1, for some integer c ≥ 1. Then:

(i) The depth of the hierarchy is at most k = dlog(s−1)/2d ne ≤ d(log n)/(c log(2d))e.
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(ii) The number of nodes in the hierarchy is on the order of d−2/cn1/c−1/(c log 2d).

Proof. We prove Parts (1) and (2) by induction over the postorder of the hierarchy

tree. In the base case U is a leaf, (1) is vacuous and (2) is trivial, since there is

one summand, namely |High(FU(p(U)))|, which is at most (|p(U)| − 2)/(s − 1) by

Lemma 3.4. For Part (1), in the base case |W1| < |U |/(s− 1). For i ∈ [2, d] we have:

|Wi| ≤ |Wi−1|+
∑

X∈Subtree(Wi−1)

|High(FX(p(X)))|

≤ 2(i− 1)|U |
s− 1

+
2|U |
s− 1

{Ind. hyp. (1) and (2)}

=
2i|U |
s− 1

For Part (2) we have:

∑
X∈Subtree(U)

|High(FX(p(X)))|

= |High(FU(p(U)))|+
d∑
i=1

∑
X∈Subtree(Wi)

|High(FX(p(X)))| {Defn. of Subtree}

<
|p(U)|
s− 1

+
2d|U |
s− 1

{Lemma 3.4, Ind. hyp. (2)}

≤ |p(U)|
s− 1

+
2d[2d|p(U)|/(s− 1)]

s− 1
{Ind. hyp. (1)}

≤ 2|p(U)|
s− 1

{s ≥ 4d2 + 1}

We prove Part (3) for a slight modification of the hierarchy tree in which U is

forced to be a leaf if |U | ≤ 2ds. This change has no effect on the running time of the

algorithm.5 Consider the set of intervals {Bj} where Bj = [(2d)j, (2d)j+1), and let

lj be the maximum number of leaf descendants of a node U for which |U | ∈ Bj. If

|U | ≤ (2d)s then U is a leaf, i.e., lj = 1 for j ≤ c+1. Part (1) implies that if |U | lies in

5We only require that in a leaf node U , any set of d failed vertices are incident to a total of O(ds)
tree edges from F (U), i.e., that the average degree in F (U) is O(s). We do not require that every
failed vertex be low degree in F (U).
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Bj then each child lies in either Bj−c−1 or Bj−c. Hence, lj ≤ d ·lj−c, and, by induction,

lj ≤ db(j−2)/cc. Now suppose that n lies in the interval [(2d)cx+2, (2d)(c+1)x+2) =

Bcx+2 ∪ · · · ∪B(c+1)x+1. Then the number of leaf descendants of V , the hierarchy tree

root, is at most dc < n1/c2−xd−2/c ≤ n1/c−1/(c log(2d))d−2/c.

For the remainder of the chapter the variable k is fixed, as defined above. Aside

from bounds on its size and depth, the only other property we require from the

hierarchy tree is that, for any set of d vertex failures, all failures have low degree in

forests along some path in the hierarchy. More formally:

Lemma 3.8. (The Hierarchy’s Low-Degree Property) For any set D of at

most d failed vertices, there exists a path V = U0, U1, ..., Up in the hierarchy tree such

that all vertices in D have low degree in the forests FU1(U0), . . . , FUp(Up−1), F (Up).

Furthermore, this path can be found in O(d(p+ 1)) = O(dk) time.

Proof. We construct the path V = U0, U1, . . . one node at a time using the following

procedure.

1. U0 ← V

2. For i from 1 to ∞ : {

3. If Ui−1 is a leaf set p← i− 1 and HALT. (I.e., Ui−1 = Up is the last node on the path.)

4. Let W1, . . . ,Wd be the children of Ui−1 and artificially define W0 = ∅ and Wd+1 = Wd.

5. Let j ∈ [0, d] be minimal such that D ∩ (Wj+1\Wj) = ∅.

6. If j = 0 set p← i− 1 and HALT. (I.e., Ui−1 = Up is the last node on the path.)

7. Otherwise Ui ←Wj

8. }

First let us note that in Line 5 there always exists such a j, since we defined the

artificial set Wd+1 = Wd, and that this procedure eventually halts since the hierarchy

tree is finite. If, during the construction of the hierarchy, we record for each v ∈ Ui−1
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the first child of Ui−1 in which v appears, Line 5 can easily be implemented in O(d)

time, for a total of O((p+ 1)d) = O(dk) time.

Define Di = D ∩ Ui. It follows from Lemma 3.6 that U0 ⊇ · · · ⊇ Up and therefore

that D = D0 ⊇ · · · ⊇ Dp. In the remainder of the proof we will show that:

(A) When the procedure halts, in Line 3 or 6, D is disjoint from High(F (Up)).

(B) For each i ∈ [1, p], Di−1\Di is disjoint from High(FUi′ (Ui′−1)), for i′ ∈ [i, p].

Regarding (B), notice that for i′ ∈ [1, i), Di−1\Di is trivially disjoint from

High(FUi′ (Ui′−1)) because vertices in Di−1\Di ⊆ Ui−1 ⊆ Ui′ are specifically excluded

from FUi′ (Ui′−1). Thus, the lemma will follow directly from (A) and (B).

Proof of (A) Suppose the procedure halts at Line 3, i.e., Ui−1 = Up is a leaf. By

Definition 3.5((ii)), High(F (Up)) = ∅ and is trivially disjoint from D. The procedure

would halt at Line 6 if j = 0, meaning W1\W0 = W1 is disjoint from D, where W1 is

the first child of Ui−1 = Up. This implies High(F (Up)) is also disjoint from D since

W1 = High(F (Up)) by definition.

Proof of (B) Fix an i ∈ [1, p] and let Wj = Ui be the child of Ui−1 selected in Line

5. We first argue that if j = d there is nothing to prove, then deal with the case

j ∈ [1, d− 1]. If j = d that means the d disjoint sets W1,W2\W1, . . . ,Wd\Wd−1 each

intersect D, implying that Ui = Wd ⊇ D and therefore Di = D. Thus Di−1\Di = ∅

is disjoint from any set. Consider now the case when j < d, i.e., the node Wj+1 exists

and Wj+1\Wj is disjoint from D. By Definition 3.5((ii)) and the fact that Ui, . . . , Up

are descendants of Wj = Ui, we know that Wj+1 includes all the high-degree vertices

in FUi(Ui−1), . . . , FUp(Up−1) that are also in Ui−1. By definition, Di−1\Di is contained

in Ui−1 and disjoint from Ui, . . . , Up, implying that no vertex in Di−1\Di has high-

degree in FUi(Ui−1), . . . , FUp(Up−1). If one did, it would have been put in Wj+1 (as

dictated by Definition 3.5((ii))) and Wj+1\Wj would not have been disjoint from D,

contradicting the choice of j.
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3.3 Inside the Hierarchy Tree

Lemma 3.8 guarantees that for any set D of d vertex failures, there exists a path

of hierarchy nodes V = U0, . . . , Up such that all failures have low degree in the forests

FU1(U0), . . . , FUp(Up−1), F (Up). Using the ET-structure from Section 3.1 we can delete

the failed vertices and reconnect the disconnected trees in O(d2s2 log log n) time for

each of the p + 1 levels of forests. This will allow us to quickly answer connectivity

queries within one level, i.e., whether two vertices are connected in the subgraph

induced by V (FUi+1
(Ui))\D. However, to correctly answer connectivity queries we

must consider paths that traverse many levels.

Our solution, following an idea of Chan et al. [10], is to augment the graph with

artificial edges that capture the fact that vertices at one level (say in Ui\Ui+1) are

connected by a path whose intermediate vertices come from lower levels, in V \Ui.

We do not want to add too many artificial edges, for two reasons. First, they take

up space, which we want to conserve, and second, after deleting vertices from the

graph some artificial edges may become invalid and must be removed, which increases

the recovery time. (In other words, an artificial edge (u, v) between u, v ∈ Ui\Ui+1

indicates a u-to-v path via V \Ui. If V \Ui suffers vertex failures then this path may

no longer exist and the edge (u, v) is presumed invalid.) We add artificial edges so

that after d vertex failures, we only need to remove a polynomial (in d, s, and log n)

number of artificial edges.

3.3.1 Stocking the Hierarchy Tree with ET-Structures

The data structure described in this section (as well as all notation) are for a fixed

path V = U0, . . . , Up in the hierarchy tree. In other words, for each path from the

root to a descendant in the hierarchy we build a completely distinct data structure.

In order to have a uniform notation for the forests at each level we artificially define

Up+1 = ∅, so F (Up) = FUp+1(Up). For i > j we say vertices in Ui\Ui+1 are at a higher
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level than those in Uj\Uj+1 and say the trees in the forest FUi+1
(Ui) are at a higher

level than those in FUj+1
(Uj). Remember that FUi+1

(Ui) is the minimum spanning

forest connecting Ui \ Ui+1 in the graph G\Ui+1 and may contain vertices at lower

levels. (See Fig. 3.3) We distinguish these two types of vertices:

Definition 3.9. (Major Vertices) The major vertices in a tree T in FUi+1
(Ui) are

those that are also in Ui \Ui+1. Let T (u) be the unique tree in FU1(U0), . . . , FUp+1(Up)

in which u is a major vertex.

It is not clear, a priori, that the trees in FU1(U0), . . . , FUp+1(Up) have any coherent

organization. Lemma 3.11 shows that they naturally form a hierarchy, with trees

in FUp+1(Up) on top. Below we give the definition of ancestry between trees and

show each tree has exactly one ancestor at each higher level. See Figure 3.3 for an

illustration of Definitions 3.9 and 3.10.

Definition 3.10. (Ancestry Between Trees) Let 0 ≤ j ≤ i ≤ p and let T and

T ′ be trees in FUj+1
(Uj) and FUi+1

(Ui), respectively. Call T ′ an ancestor of T (and T

a descendant of T ′) if T and T ′ are in the same connected component in the graph

G\Ui+1. Notice that T is both an ancestor and descendant of itself.

Lemma 3.11. (Unique Ances.) Each tree T in FUj+1
(Uj) has at most one ancestor

in FUi+1
(Ui), for j ≤ i ≤ p.

Proof. Suppose T has two ancestors T1 and T2 in FUi+1
(Ui), i.e., T1 and T2 span

connected components in G\Ui+1. Since they are both connected to T in G\Ui+1

(which contains T since Ui+1 ⊆ Uj+1), T1 and T2 are connected in G\Ui+1 and cannot

be distinct trees in FUi+1
(Ui).

Observe that the ancestry relation between trees T in FUj+1
(Uj) and T ′ in FUi+1

(Ui)

is the reverse of the ancestry relation between the nodes Uj and Ui in the hierarchy

tree! That is, if j < i, T ′ is an ancestor of T but Uj is an ancestor of Ui in the

hierarchy tree.
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U1 U2

U0 U1

(A)

F U3

FU3
U2

FU2
U1

FU1
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(B)

F U3

FU3
U2

FU2
U1

FU1
U0

(C)

Figure 3.3:
(A) A path U0, . . . , U3 in the hierarchy tree (where V = U0 is the root) natu-
rally partitions the vertices into four levels U0\U1, U1\U2, U2\U3, and U3. (B)
The forest FUi+1(Ui) may contain “copies” of vertices from lower levels. (Hol-
low vertices are major vertices at their level; solid ones are copies from a lower
level. Thick arrows associate a copy with its original major vertex.) (C) A
tree T in FUj+1(Uj) is a descendant of T ′ in FUi+1(Ui) (where j ≤ i) if T and
T ′ are connected in G\Ui+1. The tree inscribed in the oval is a descendant of
those trees inscribed in rectangles.
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Definition 3.12. (Descendant Sets) Let ∆(T ) = {v | T (v) is a descendant of T}

be the descendent set of a tree T . Equivalently, if T is in, say, FUi+1
(Ui), then ∆(T )

is the set of vertices in the connected component of G\Ui+1 containing T .

Lemma 3.13 is a simple consequence of the definitions of ancestry and descendant

set, and one that will justify the way we augment the graph with artificial edges.

Lemma 3.13. (Paths and Unique Descendant Sets) Consider a path between

two vertices u and v and let w be an intermediate vertex (i.e., not u or v) with highest

level. Then all intermediate vertices are in ∆(T (w)) and each of T (u) and T (v) is

either an ancestor or descendant of T (w).

Proof. This follows immediately from the definition of ∆(·).

Now that we have notions of ancestry and descendent sets, we are almost ready

to describe exactly how we generate artificial edges. Recall that we are dealing with

a fixed path V = U0, . . . , Up in the hierarchy tree. We construct two graphs H1 and

H2 on the forests FU1(U0), . . . , FUp+1(Up), where the forests are regarded as having

disjoint vertex sets. In other words, each vertex from the original graph could have

p + 1 copies in H1 and H2, but only one copy is a major vertex in its forest. The

graph H1 includes the forests FU1(U0), . . . , FUp+1(Up) and all the original graph edges.

More precisely:

Definition 3.14. (The Graph H1) The vertex set of H1 is the union of the (disjoint)

vertex sets of FU1(U0), . . . , FUp+1(Up). The edge set of H1 consists of the tree edges

in FU1(U0), . . . , FUp+1(Up) and, for each edge (u, v) in the original graph, an edge

connecting the major copies of u and v.

Before defining H2 we need to introduce some additional concepts. A d-adjacency

list is essentially a path that is augmented to be resilient (in terms of connectivity)

to up to d vertex failures.
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Definition 3.15. (d-Adjacency List) Let L = (v1, v2, . . . , vr) be a list of vertices

and d ≥ 1 be an integer. The d-adjacency edges Λd(L) connect all vertices at distance

at most d+ 1 in the list L:

Λd(L) = {(vi, vj) | 1 ≤ i < j ≤ r and j − i ≤ d+ 1}

Before proceeding we state some simple properties of d-adjacency lists.

Lemma 3.16. (Properties of d-Adjacency Lists) The following properties hold

for any vertex list L:

(i) Λd(L) contains fewer than (d+ 1)|L| edges.

(ii) If a set D of at most d vertices are removed from L then the subgraph of Λd(L)

induced by L\D remains connected.

(iii) If L is split into lists L1 and L2, then we must remove O(d2) edges from Λd(L)

to obtain Λd(L1) and Λd(L2).

Proof. Part (1) is trivial, as is (2), since each pair of consecutive undeleted vertices is

at distance at most d+ 1, and therefore adjacent. Part (3) is also trivial: the number

edges connecting any prefix and suffix of L is at most (d+ 1)(d+ 2)/2.

Aside from the forests FU1(U0), . . . , FUp+1(Up), the edge set of H2 includes a set

of edges C(T ) (for each tree T in the forests) that represents connectivity between

major vertices in ancestors of T via paths through descendants of T , i.e., via vertices

in ∆(T ).

Definition 3.17. (The Graph H2) The graph H2 is on the same vertex set as

H1. The edge set of H2 includes the forests FU1(U0), . . . , FUp+1(Up) and
⋃
T C(T ),

where the union is over all trees T in the forests FU1(U0), . . . , FUp+1(Up), and C(T ) is

constructed as follows:
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• Let the strict ancestors of T be T1, T2, . . . , Tq.

• For 1 ≤ i ≤ q, let A(T, Ti) be a list of the major vertices in Ti that are

incident to some vertex in ∆(T ), ordered according to an Euler tour of Ti.

(This is done in exactly as in Section 3.1.) Let A(T ) be the concatenation of

A(T, T1), . . . , A(T, Tq).

• Define C(T ) to be the edge set Λd(A(T )).

See Figure 3.4 for an illustration of how C(T ) is constructed. Lemma 3.18 exhibits

the two salient properties of H2: that it encodes useful connectivity information and

that it is economical to effectively destroy C(T ) when it is no longer valid, often in

time sublinear in |C(T )|.

Lemma 3.18. (Disconnecting C(T )) Consider a C(T ) ⊆ E(H2), where T is a tree

in FU1(U0), . . . , FUp+1(Up).

(i) Suppose d vertices fail, none of which are in ∆(T ), and let u and v be major

vertices in ancestors of T that are adjacent to at least one vertex in ∆(T ). Then

u and v remain connected in the original graph and remain connected in H2.

(ii) Suppose the proper ancestors of T are T1, . . . , Tq and a total of f edges are

removed from these trees, breaking them into subtrees T ′1, . . . , T
′
q+f . Then at

most O(d2(q + f)) edges must be removed from C(T ) such that no remaining

edge in C(T ) connects distinct trees T ′i and T ′j.

Proof. For Part (1), the vertices u and v are connected in the original graph because

they are each adjacent to vertices in ∆(T ) and, absent any failures, all vertices in

∆(T ) are connected, by definition. By Definition 3.17, u and v appear in C(T )

and, by Lemma 3.16, C(T ) remains connected after the removal of any d vertices.

Turning to Part (2), recall from Definition 3.17 that A(T ) was the concatenation of

A(T, T1), . . . , A(T, Tq) and each A(T, Ti) was ordered according to an Euler tour of Ti.
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T

T1

T2

T3

T

T1

T2

T3

Figure 3.4:
Left: T is a tree in some forest among FU1(U0), . . . , FUp+1(Up) having
three strict descendants and three ancestors T1, T2, T3. Dashed curves
indicate edges connecting vertices from ∆(T ) (all vertices in descendants
of T ) to major vertices in strict ancestors of T , which are drawn as hollow.
Right: The set C(T ) consists of, first, linking up all hollow vertices in a
list that is consistent with Euler tours of T1, T2, T3 (indicated by dashed
curves), and second, adding edges between all hollow vertices at distance
at most d+ 1 in the list.
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Removing f edges from T1, . . . , Tq separates their Euler tours (and, hence, the lists

{A(T, Ti)}i) into at most 2f + q intervals. (This is exactly the same reasoning used

in Section 3.1.) By Lemma 3.16 we need to remove at most (2f + q− 1) ·O(d2) edges

from C(T ) to guarantee that all remaining edges are internal to one such interval, and

therefore internal to one of the trees T ′1, . . . , T
′
q+f . Note that C(T ) is now “logically”

deleted since remaining edges internal to some T ′i do not add any connectivity.

Finally, we generate ET-structures for graphs H1 and H2, as defined in Section 3.1.

Specifically, let F be the set of all trees in FU1(U0), . . . , FUp+1(Up). We associate with

the path U0, . . . , Up the two ET-structures ET(H1,F) and ET(H2,F). Lemma 3.19

bounds the space for the overall data structure.

Lemma 3.19. (Space Bounds) Given a graph G with m edges, n vertices, and

parameters d and s = (2d)c+1 + 1, where c ≥ 1, the space for a d-failure connectivity

oracle is O(d1−2/cmn1/c−1/(c log(2d)) log2 n).

Proof. Recall that k = log(s−1)/2d n < log n is the height of the hierarchy. Each of H1

and H2 has at most (p+1)n ≤ kn vertices. Clearly H1 has less than kn+m edges and

we claim that H2 has less than kn+ (d+ 1)km edges. Each edge (u, v) in the original

graph causes v to make an appearance in the list A(T, T (v)), whenever u ∈ ∆(T ),

and there are at most k such lists; moreover, v’s appearance in A(T, T (v)) (and hence

A(T )) contributes at most d + 1 edges to C(T ) = Λd(A(T )). By Theorem 3.2, each

edge in H1 or H2 contributes O(log n) space in the ET-tree structure in which it

appears, for a total of O((dkm + kn) log n) = O(dm log2 n) space for one hierarchy

node. By Lemma 3.7 there are d−2/cmn1/c−1/(c log(2d)) hierarchy tree nodes, which gives

the claimed bound.
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3.4 Recovery From Failures

In this section we describe how, given up to d failed vertices, the data structure

can be updated in time O((dsk)2 log log n) such that connectivity queries can be

answered in O(d) time. Section 3.4.1 gives the algorithm to delete failed vertices and

Section 3.4.2 gives the query algorithm.

3.4.1 Deleting Failed Vertices

Step 1. Given the set D of at most d failed vertices, we begin by identifying a path

V = U0, . . . , Up in the hierarchy in which D have low degree in the p + 1 levels of

forests FU1(U0), . . . , FUp+1(Up). By Lemma 3.8 this takes O(d log n) time.

In subsequent steps we delete all failed vertices in each of their appearances in

the forests, i.e., up to p+ 1 ≤ k copies for each failed vertex. Edges remaining in H1

(between vertices not in D) represent original graph edges and are obviously valid.

However, an edge in H2, say one in C(T ), represents connectivity via a path whose

intermediate vertices are in the descendant set ∆(T ). If ∆(T ) contains failed vertices

then that path may no longer exist, so all edges in C(T ) become suspect, and are

presumed invalid. Although C(T ) may contain many edges, Lemma 3.18(2) will imply

that C(T ) can be logically destroyed in time polynomial in d and s. Before describing

the next steps in detail we need to distinguish affected from unaffected trees.

Definition 3.20. (Affected Trees) If a tree T in FU1(U0), . . . , FUp+1(Up) intersects

the set of failed vertices D, T and all ancestors of T are affected. Equivalently, T is

affected if ∆(T ) contains a failed vertex. If T is affected, the connected subtrees of

T induced by V (T )\D (i.e., the subtrees remaining after vertices in D fail) are called

affected subtrees.

Lemma 3.21. (The Number of Affected Trees) The number of affected trees is

at most kd. The number of affected subtrees is at most kd(s+ 1).
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Proof. If u is a major vertex in T , u can only appear in ancestors of T . Thus, when u

fails it can cause at most k trees to become affected. Since, by choice of Up, all failed

vertices have low degree in the trees in which they appear, at most kds tree edges are

deleted, yielding kd(s+ 1) affected subtrees.

Step 2. We identify the affected trees in O(kd) time and mark as deleted the tree

edges incident to failed vertices in O(kds) time. Deleting O(kds) tree edges effectively

splits the Euler tours of the affected trees into O(kds) intervals, where each affected

subtree is the union of some subset of the intervals.

Step 3. Recall from the discussion above that if T is an affected tree then ∆(T )

contains failed vertices and the connectivity provided by C(T ) is presumed invalid.

By Lemma 3.18 we can logically delete C(T ) by removing O(d2) edges for each edge

removed from an ancestor tree of T i.e., O(d2 · kds) edges need to be removed to

destroy C(T ). (All remaining edges from C(T ) are internal to some affected subtree

and can therefore be ignored; they do not provide additional connectivity.) There are

at most dk affected trees T , so at most O(k2d4s) edges need to be removed from H2.

Let H ′2 be H2 with these edges removed.

Step 4. We now attempt to reconnect all affected subtrees using valid edges, i.e.,

those not deleted in Step 3. Let R be a graph whose vertices V (R) represent the

O(kds) affected subtrees such that (t1, t2) ∈ E(R) if t1 and t2 are connected by an

edge from either H1 or H ′2. Using the structures ET(H1,F) and ET(H2,F) (see

Section 3.1, Theorem 3.2), we populate the edge set in time O(|V (R)|2 log log n +

k2d4s), which is O((dsk)2 log log n) since s > d2. In O(|E(R)|) = O((dsk)2) time

we determine the connected components of R and store with each affected subtree a

representative vertex of its component.

This concludes the deletion algorithm. The running time is dominated by Step 4.
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3.4.2 Answering a Connectivity Query

The deletion algorithm has already identified the path U0, . . . , Up. To answer a

connectivity query between u and v we first check to see if there is a path between

them that avoids affected trees, then consider paths that intersect one or more affected

trees.

Step 1. We find T (u) and T (v) in O(1) time; recall that these are trees in which u

and v are major vertices. If T (u) is unaffected, let T1 be the most ancestral unaffected

ancestor of T (u), and let T2 be defined in the same way for T (v). If T1 = T2 then

∆(T1) contains u and v but no failed vertices; if this is the case we declare u and

v connected and stop. We can find T1 and T2 in O(log k) = O(log log n) time using

a binary search over the ancestors of T (u) and T (v), or in O(log d) time by the

complicated least common ancestor data structure by Bender and Farach-Colton [3],

in which the least common ancestor can be found in constant time.

Step 2. We now try to find vertices u′ and v′ in affected subtrees that are connected

to u and v respectively. If T (u) is affected then u′ = u clearly suffices, so we only need

to consider the case when T (u) is unaffected and T1 exists. Recall from Definition 3.17

that A(T1) is the list of major vertices in proper ancestors of T1 that are adjacent to

some vertex in ∆(T1). We scan A(T1) looking for any non-failed vertex u′ adjacent

to ∆(T1). Since ∆(T1) is unaffected, u is connected to u′, and since T1’s parent is

affected u′ must be in an affected subtree. Since there are at most d failed vertices

we must inspect at most d + 1 elements of A(T1). This takes O(d) time to find u′

and v′, if they exist. If one or both of u′ and v′ does not exist we declare u and v

disconnected and stop.

Step 3. Given u′ and v′, in O(min{log log n, log d}) time we find the affected sub-

trees t1 and t2 containing u′ and v′, respectively. Note that t1 and t2 are vertices in
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R, from Step 4 of the deletion algorithm. We declare u and v to be connected if and

only if t1 and t2 are in the same connected component of R. This takes O(1) time.

We now turn to the correctness of the query algorithm. If the algorithm replies

connected in Step 1 or disconnected in Step 2 it is clearly correct. (This follows directly

from the definitions of ∆(Ti) and A(Ti), for i ∈ {1, 2}.) If u′ and v′ are discovered

then u and v are clearly connected to u′ and v′, again, by definition of ∆(Ti) and

A(Ti). Thus, we may assume without loss of generality that the query vertices u = u′

and v = v′ lie in affected subtrees. The correctness of the procedure therefore hinges

on whether the graph R correctly represents connectivity between affected subtrees.

Lemma 3.22. (Query Algorithm Correctness) Let u and v be vertices in affected

subtrees tu and tv. Then there is a path from u to v avoiding failed vertices if and

only if tu and tv are connected in R.

Proof. Edges in R represent either original graph edges (not incident to failed vertices)

or paths whose intermediate vertices lie in some ∆(T ), for an unaffected T . Thus,

if there is a path in R from tu to tv then there is also a path from u to v avoiding

failed vertices. For the reverse direction, let P be a path from u to v in the original

graph avoiding failed vertices. If all intermediate vertices in P are from affected

subtrees then P clearly corresponds to a path in R, since all inter-affected-tree edges

in P are included in H1 and eligible to appear in R. For the last case, let P =

(u, . . . , x, x′, . . . , y′, y, . . . , v), where x′ is the first vertex not in an affected tree and

y is the first vertex following x′ in an affected tree. That is, the subpath (x′, . . . , y′)

lies entirely in ∆(T ) for some unaffected tree T , which implies that x and y appear

in A(T ). By Lemma 3.18, x and y remain connected in C(T ) even if d vertices are

removed, implying that x and y remain connected in H ′2. Since all edges from H ′2 are

eligible to appear in R, tx and ty must be connected in R. Thus, u lies in tu, which

is connected to tx in R, which is connected to ty in R. The claim then follows by

induction on the (shorter) path from y to v.
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3.5 Conclusion

We have given the first space/time-efficient data structure for one of most natural

fundamental graph problems: given that a set of vertices has failed, is there still a

path from point A to point B avoiding all failures? Our connectivity oracle recovers

from d vertex failures in time polynomial in d and answers connectivity queries in

time linear in d. However, the exponential of d in the update time is large. How to

improve this update time and the space to almost linear without making the structure

more complex is a major challenge.

In addition to our vertex-failure oracle we presented a new edge-failure oracle that

is incomparable to a previous structure of Pǎtraşcu and Thorup [49] in many ways.6

We note that it excels when the number of failures is small; for d = O(1) the oracle

recovers from failures in O(log log n) time and answers connectivity queries in O(1)

time. It would be very interesting if lower bounds on predecessor search [48] could

be strengthened to give non-trivial lower bounds on vertex- or edge-failure oracles.

These questions are still quite difficult even when d is assumed to be a (possibly large)

constant.

6The recovery time and query time in ours is O(d2 log log n) and O(min{log log n, log d}), versus
O(d log2 n log log n) and O(log log n) for the version of [49] constructible in exponential time.
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CHAPTER IV

All-Pair Bottleneck Paths and Bottleneck Shortest

Paths

In this chapter we consider the all-pair bottleneck paths (APBP) problem and all-

pair bottleneck shortest path (APBSP) problem. In APBP, for all pairs of vertices

s and t, we want to find the path with maximum flow that can be routed from s to

t, that is, to maximize the smallest weights of edges in the path. In [69, 65] they

show that finding APBP in edge capacitated graphs is equivalent to computing the

(max,min)-product of two real valued matrices, which is defined by (A 6 B)[i, j] =

maxk min{A[i, k], B[k, j]}. (See Definition 4.2.) In this Chapter we give a (max,min)-

matrix product algorithm running in time O(n(3+ω)/2) ≤ O(n2.688), where ω = 2.376

is the exponent of binary matrix multiplication. Our algorithm improves on a recent

O(n2+ω/3) ≤ O(n2.792)-time algorithm of Vassilevska, Williams, and Yuster [65].

In APBSP, which asks for the maximum flow that can be routed along a shortest

path, we give an algorithm for edge-capacitated graphs running in O(n(3+ω)/2) time

and a slightly faster O(n2.657)-time algorithm for vertex-capacitated graphs. The

second algorithm significantly improves on an O(n2.859)-time APBSP algorithm of

Shapira, Yuster, and Zwick. [57] 1

1These results appear in Duan and Pettie’s paper “Fast Algorithms for (Max, Min)-Matrix Mul-
tiplication and Bottleneck Shortest Paths” [23] in SODA 2009.
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In Section 4.2 we present our new algorithms for sparse dominance products and

(max,min)-products, which leads directly to a faster APBP algorithm. In Section 4.3

we define new products called dominance-distance and distance-max-min, both of

which operate on pairs of matrices. In Sections 4.3.3 and 4.3.4 we show how to

compute APBSP in edge- and vertex-capacitated graphs using the distance-max-min

product.

4.1 Definitions

In this chapter, we assume w.l.o.g. that the capacities for edges or vertices are real

numbers with the additional minimum and maximum elements −∞ and ∞.

4.1.1 Row-Balancing and Column-Balancing

Most algorithms in this chapter will use the concept of row-balancing (and column-

balancing) for sparse matrices, in which we partition the dense rows into parts and

reposition each part in a distinct row.

Definition 4.1. Let A be an n × p matrix with m finite elements. Depending on

context, the other elements will either all be∞ or all be −∞. We assume the former

below. The row-balancing of A, or rb(A), is a pair (A′, A′′) of n × p matrices, each

with at most k = dm/ne elements in each row. The row-balancing is obtained by the

following procedure: First, sort all the finite elements in the ith row of A in increasing

order, and divide this list into several parts T 1
i , T

2
i , ...T

ai
i such that all parts except

the last one contain k elements and the last part (T aii ) contains at most k elements.

Let A′ be the submatrix of A containing the last parts:

A′[i, j] =

 A[i, j] if A[i, j] ∈ T ai

∞ otherwise
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Since the remaining parts have exactly k elements, there can be at most m/k ≤ n

of them. We assign each part to a distinct row in A′′, i.e., we choose an arbitrary

mapping ρ : [n] × [p/k] → [n] such that ρ(i, q) = i′ if T qi is assigned row i′; it is

undefined if T qi doesn’t exist. Let A′′ be defined as:

A′′[i′, j] =

 A[i, j] if ρ−1(i′) = (i, q) and (i, j) ∈ T qi

∞ otherwise

Thus, every finite A[i, j] in A has a corresponding element in either A′ or A′′, which

is also in the jth column. The column-balancing of A, or cb(A), is similarly defined

as (A′T , A′′T ), where (A′, A′′) = rb(AT ).

4.1.2 Matrix Products

We use · to denote the standard (+, ·)-product on matrices and let 4,6, and ?

be the dominance, max-min, and distance products.

Definition 4.2. (Various Products) Let A and B be real-valued matrices. The

products ·,4,6, and ? are defined as

(A ·B)[i, j] =
∑
k

(A[i, k] ·B[k, j])

(A4B)[i, j] = |{k | A[i, k] ≤ B[k, j]}|

(A6B)[i, j] = max
k

min{A[i, k], B[k, j]}

(A ? B)[i, j] = min
k
{A[i, k] +B[k, j]}

In Section 4.3.2 we introduce hybrids of these called the dominance-distance and

distance-max-min products.

59



4.2 Dominance and APBP

Matoušek [45] showed that the dominance product of two n× n matrices can be

computed in O(n(3+ω)/2) = O(n2.688) time. Recently Yuster [68] has slightly improved

this to O(n2.684) by the rectangular matrix multiplication. However, in our algorithms

we need the dominance product only for relatively sparse matrices. Theorem 4.3 shows

that A 4 B can be computed in O(nω) time when the number of finite elements is

O(n(ω+1)/2). The algorithm behind this theorem is used directly in our APBP and

APBSP algorithms. Using Theorem 4.3 as a subroutine we give a faster dominance

product algorithm for somewhat denser matrices; however, these improvements have

no implications for APBP or related problems. Theorem 4.4 was originally claimed

by Vassilevska et al. [65]. Their algorithm, which does not appear in [65], is a bit

more involved.

Theorem 4.3. (Sparse Dominance Product) Let A and B be two n×n matrices

where the number of non-(∞) values in A is m1 and the number of non-(−∞) values

in B is m2. Then A4B can be computed in time O(m1m2/n+ nω).

Proof. Let (A′, A′′) = cb(A) be the column-balancing of A. We build two Boolean

matrices Â and B̂ and compute Â · B̂ in O(nω) time.

Â[i, k] = 1 if A′′[i, k] 6=∞

B̂[k, j] = 1 if B[k′, j] ≥ maxT q
′

k′ , (k′, q′) = ρ−1(k)

One may verify that Â[i, k] · B̂[k, j] = 1 if and only if B[k′, j] is greater or equal to

all the elements in the kth column of A′′, which is the q′th part in k′th column of A,

where q′ < ak′ is not the last part of column k′. What (Â · B̂)[i, j] does not count are

dominances A[i, k] ≤ B[k, j], where either A[i, k] ∈ T qk but B[k, j] dominates some

but not all elements in T qk , or A[i, k] ∈ T akk (the last part of column k) and B[k, j]
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does dominate all of T akk . We check these possibilities in O(m1m2/n) time. Each of

the m2 elements in B is compared against at most dm1/ne elements from A.

Using the procedure from Theorem 4.3 as a subroutine, we can compute A 4 B

faster for denser matrices. The resulting algorithm is somewhat simpler than that of

Vassilevska et al. [65].

Theorem 4.4. (Dense Dominance Product) Let A and B be two n × n ma-

trices where m1 is the number of non-(∞) elements in A and m2 the number of

non-(−∞) elements in B, where m1m2 ≥ n1+ω. Then A4B can be computed in time

O(
√
m1m2n

(ω−1)/2).

Proof. Let L be the sorted list of all the finite elements in A. We divide L into t

parts L1, L2, ..., Lt, for a t to be determined, so each part has at most dm1/te elements.

Then we build Boolean matrices Âp, B̂p, Ap, and Bp, for 1 ≤ p ≤ t as follows:

Âp[i, k] = 1 if A[i, k] ∈ Lp

B̂p[k, j] = 1 if B[k, j] ≥ maxLp

Ap[i, k] =

 A[i, k] if A[i, k] ∈ Lp

∞ otherwise

Bp[k, j] =

 B[k, j] if minLp ≤ B[k, j] < maxLp

−∞ otherwise

Notice that every finite element of B is in at most one Bp. One may verify that

A4B =
t∑

p=1

(Âp · B̂p + Ap 4Bp)

From Theorem 4.3, the computation of Ap 4 Bp takes time O((m1/t)|Bp|/n + nω),
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where |Bp| is the number of finite elements in Bp. Thus, the total time to compute

A4B is O(m1m2/tn+tnω). The theorem follows by setting t =
√
m1m2/n

(1+ω)/2.

4.2.1 Max-Min Product

In this section we give an efficient algorithm for solving the max-min product of

two matrices that uses the sparse dominance product as a key subroutine. One corol-

lary is that all-pairs bottleneck capacities can be found in the same time bound [1].

By incurring an additional log n factor, we can find all-pairs bottleneck paths using

existing techniques [69, 65]; see Appendix 4.2.2 for a review.

Theorem 4.5. (Max-Min Product) Given two real n×n matrices A and B, A6B

can be computed in O(n(3+ω)/2) ≤ O(n2.688) time.

Proof. It suffices to compute matrices C and C ′:

C[i, j] = max
k
{A[i, k] | A[i, k] ≤ B[k, j]}

C ′[i, j] = max
k
{B[k, j] | A[i, k] ≥ B[k, j]}

since (A 6 B)[i, j] = max{C[i, j], C ′[i, j]}. Below we compute C; the procedure for

C ′ is obviously symmetric.

Let L be the sorted list (in increasing order) of all the elements in A and B. We

evenly divide L into t parts L1, L2, ..., Lt, so each part has at most d2n2/te elements.

Let Ar and Br be the submatrices of A and B containing Lr:

Ar[i, j] =

 A[i, j] if A[i, j] ∈ Lr

∞ otherwise

Br[i, j] =

 B[i, j] if B[i, j] ∈ Lr

−∞ otherwise
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Let (A′r, A
′′
r) = rb(Ar) be the row-balancing of Ar. After we compute Ar4B, A′r4B,

and A′′r 4B, for all r, we may determine C[i, j] as follows:

(i) Find the largest r such that (Ar 4B)[i, j] > 0. Thus, C[i, j] must be in Ar.

(ii) Check whether (A′r 4 B)[i, j] > 0. If it is, since A′r contains the largest part of

each row in Ar, C[i, j] must be in the ith row of A′r. It follows that C[i, j] =

maxk{A′r[i, k] | A′r[i, k] ≤ B[k, j]}.

(iii) If (A′r 4 B)[i, j] = 0, find the largest q such that (A′′r 4 B)[ρ(i, q), j] > 0. It

follows that C[i, j] ∈ T qi . We determine C[i, j] be checking each element of T qi

one by one.

Steps 1–3 take O(n/t) time per element, for a total of O(n3/t) time. To compute

Ar 4B we begin by building two Boolean matrices Âr and B̂r for all r such that:

Âr[i, k] = 1 if A[i, k] ∈ Lr

B̂r[k, j] = 1 if B[k, j] ∈ Lr+1 ∪ · · · ∪ Lt

It is straightforward to see that Ar 4 B = Ar 4 Br + Âr · B̂r: the inter-part

comparisons are covered in Âr · B̂r and the intra-part comparisons in Ar 4 Br. The

products A′r 4B and A′′r 4B can be computed in a similar fashion.

By Theorem 4.3 the time to compute Ar 4 B,A′r 4 B, and A′′r 4 B, for all r, is

t ·O(n3/t2 +nω). In total the running time is O(n3/t+ tnω). The theorem follows by

setting t = n(3−ω)/2.

Theorem 4.5 leads immediately to an algorithm computing all-pairs bottleneck

capacities in O(n(3+ω)/2) time. We review Section 4.2.2 an existing algorithm [69, 65]

for finding explicit bottleneck paths.

Corollary 4.6. APBP can be computed in O(n(3+ω)/2) time.
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4.2.2 Explicit Maximum Bottleneck Paths

The algorithm from Theorem 4.6 calculates the capacities of all bottleneck paths

but does not return the paths as such. In this section we review some well known

algorithms for actually generating the paths.

Let A0 be the original capacity matrix of the graph (with ∞ along the diagonal)

and let Aq = Aq−1 6 Aq−1. Thus, Adlogne[i, j] is the capacity of the bottleneck path

between vertices i and j. Let Wq be the witness matrix for the qth iteration, i.e.:

Wq[i, j] = k s.t. Aq[i, j] = min{Aq−1[i, k], Aq−1[k, j]}

It is very simple to have our algorithms return the witness matrix. Let I[i, j] =

min{q | Aq[i, j] = Adlogne[i, j]} be the iteration that establishes the bottleneck ca-

pacity between i and j. If the bottleneck path from i to j is composed of l edges

we can return the path in O(l) time as follows. If I[i, j] = 0 return the edge (i, j);

otherwise, concatenate the paths from i to WI[i,j][i, j] and from WI[i,j][i, j] to j. The

procedure above gives each edge in amortized constant time. Zwick [69] and Vas-

silevska et al. [65] gave simple procedures for finding the successor matrix S, given

W, I, which allows us to generate the bottleneck path in O(1) worst case time per

edge. Let S[i, j] = k if (i, k) is the first edge on the path from i to j.

It is straightforward to show that the witness-to-successor algorithm is correct

and runs in O(n2) time; see [69, 65].

witness-to-successor(W, I)

S ← 0

For q from 0 to log n

Iq ← {(i, j) | I[i, j] = q}

For every (i, j) ∈ I0

S[i, j]← j
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For q from 1 to log n

For each (i, j) ∈ Iq

k ← Wq[i, j]

While S[i, j] = 0

S[i, j]← S[i, k]

i← S[i, k]

Return S

The procedure above can easily be adapted to work with our APBSP algorithms.

4.3 Bottleneck Shortest Paths

In this section, we consider the All-Pairs Bottleneck Shortest Paths problem

(APBSP) in both edge- and vertex-capacitated graphs. Let D(u, v) be the unweighted

distance from u to v and let sc(u, v) be the maximum capacity path from u to v with

length D(u, v).

When the graph is edge-capacitated we give an APBSP algorithm running in

Õ(n(3+ω)/2) time, matching the running time of our APBP algorithm. This is the first

published subcubic APBSP algorithm for edge-capacitated graphs. It improves on

an unpublished algorithm of Vassilevska [63], which runs in O(n(15+ω)/6) = O(n2.896)

time. For vertex-capacitated graphs our algorithm runs slightly faster, in O(n2.657)

time; this improves on a recent algorithm of Shapira et al. [57] running inO(n(8+µ)/3) =

O(n2.859) time.

In Section 4.3.1 we review some facts about rectangular matrix multiplication. In

Section 4.3.2 we present fast algorithms for certain hybrid products based on domi-

nance, distance, and max-min products. In Sections 4.3.3 and 4.3.4 we present our

APBSP algorithms for edge- and vertex-capacitated graphs.
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4.3.1 Rectangular Matrix Multiplication

In our algorithms we often use fast rectangular matrix multiplication algorithms [11,

40]. Let ω(r, s, t) to be the constant such that multiplying nr×ns and ns×nt matrices

takes O(nω(r,s,t)) time. We use the standard definitions of the constants α, β, and µ.

Definition 4.7. Let α be the maximum value satisfying ω(1, α, 1) = 2 and let β =

ω−2
1−α . Define µ to be the constant satisfying ω(1, µ, 1) = 1 + 2µ. If ω = 2 then

α = 1, β = 0, and µ = 1/2.

Then following bounds on α, β, and µ can be found in [11, 40]:

Lemma 4.8. α > 0.294, β > 0.533, and µ < 0.575. For s ≥ α, ω(1, s, 1) ≤

2 + β(s− α).

4.3.2 Hybrid Products

Our all-pairs bottleneck shortest path algorithms use products that are hybrids

of dominance, distance, and max-min products.

Definition 4.9. (Dominance-Distance) Let (A, Ã) and (B, B̃) be pairs of real

matrices. Their dominance-distance product is written C = (A, Ã)
4
? (B, B̃), where

C[i, j] = min
k:

Ã[i,k]≤B̃[k,j]

(A[i, k] +B[k, j])

In a similar fastion we define the distance-max-min product as a hybrid of distance

and max-min.

Definition 4.10. (Distance-Max-Min) Let (A, Ã) and (B, B̃) be pairs of real
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matrices. Their distance-max-min product is defined as:

(C, C̃) = (A, Ã)
?
6 (B, B̃)

where

C = A ? B

C̃[i, j] = max
k:

A[i,k]+B[k,j]=C[i,j]

min{Ã[i, k], B̃[k, j]}

Our algorithms make use of Zwick’s algorithm [69] for distance products in integer-

weighted matrices.

Theorem 4.11. (Distance Product) [69] Let A and B be n × ns and ns × n

matrices, respectively, whose elements are in {1, . . . ,M}. Then A?B can be computed

in O(min{n2+s,Mnω(1,s,1)}) time.

Theorem 4.12. (Dominance-Distance Product) Let A, Ã, B, B̃ be matrices such

that:

A ∈ {1, . . . ,M,∞}n×ns Ã ∈ (R ∪ {∞})n×ns

B ∈ {1, . . . ,M,∞}ns×n B̃ ∈ (R ∪ {−∞})ns×n

where M is an integer and s ≤ 1. If the number of finite elements in Ã and B̃ are

m1 and m2, resp., then (A, Ã)
4
? (B, B̃) can be computed in O(m1m2/n

s +Mnω(1,s,1))

time.

Proof. Let (Ã′, Ã′′) = cb(Ã) be the column-balancing of Ã. We build two matrices
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Â and B̂, defined below. Here (k′, q′) = ρ−1(k).

Â[i, k] =

 A[i, k′] if Ã′′[i, k] 6=∞

∞ otherwise

B̂[k, j] =

 B[k′, j] if B̃[k′, j] ≥ maxT q
′

k′

∞ otherwise

In other words, (Â ? B̂)[i, j] is the minimum A[i, k′] + B[k′, j] such that B̃[k′, j]

dominates all of T q
′

k′ , the part containing A[i, k′]. Furthermore, q′ < ak′ , i.e., T q
′

k′ is not

the last part that appears in Ã′. What we must consider now are sums A[i, k]+B[k, j]

which could be smaller than (Â?B̂)[i, j]. If Ã[i, k] ∈ T qk then we must examine B̃[k, j]

if it dominates some, but not all, elements of T qk , or if q = ak and B̃[k, j] dominates

all of T akk . Each of the m2 elements of B̃ participates in dm1/n
se such sums, requiring

O(m1m2/n
s) time. The product Â ? B̂ is computed in O(Mnω(1,s,1)) time.

Just as the max-min product may be applied directly to compute APBP, the

distance-max-min product will be useful in computing APBSP on both edge- and

vertex-capacitated graphs.

Theorem 4.13. (Distance-Max-Min Product) Let A, Ã, B, B̃ be matrices such

that:

A ∈ {1, . . . ,M,∞}n×ns Ã ∈ Rn×ns

B ∈ {1, . . . ,M,∞}ns×n B̃ ∈ Rns×n

where M is an integer and s ≤ 1. Then (A, Ã)
?
6 (B, B̃) can be computed in

O(min{n2+s,M1/2 · n1+s/2+ω(1,s,1)/2}) time.

Proof. Recall that (C, C̃) = (A, Ã)
?
6 (B, B̃), where C = A ? B and C̃[i, j] =

maxk min{Ã[i, k], B̃[k, j]} such that A[i, k] + B[k, j] = C[i, j]. (Note that we could
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always compute C and C̃ by the trivial algorithm in O(n2+s) time.) We begin by com-

puting C in O(Mnω(1,s,1)) time with Zwick’s algorithm [69], then compute matrices

C̃1, C̃2:

C̃1[i, j] = max
k
{Ã[i, k] | Ã[i, k] ≤ B̃[k, j] and A[i, k] +B[k, j] = C[i, j]}

C̃2[i, j] = max
k
{B̃[k, j] | Ã[i, k] ≥ B̃[k, j] and A[i, k] +B[k, j] = C[i, j]}

One can verify that C̃[i, j] = max{C̃1[i, j], C̃2[i, j]}. Below we describe how to com-

pute C̃1; computing C̃2 is symmetric.

Let L be the sorted list of all the elements in Ã and B̃. We divide L into t parts,

L1, L2, ..., Lt, so each part has 2n1+s/t elements. Define the matrices Ar and Br, for

1 ≤ r ≤ t, as:

Ãr[i, j] =

 Ã[i, j] if Ã[i, j] ∈ Lr

∞ otherwise

B̃r[i, j] =

 B̃[i, j] if B̃[i, j] ∈ Lr

−∞ otherwise

Let (Ã′r, Ã
′′
r) = rb(Ãr) be the row-balancing of Ãr. We compute the dominance-

distance products Gr, G
′
r, and G′′r , for 1 ≤ r ≤ t, defined as:

Gr = (A, Ãr)
4
? (B, B̃)

G′r = (A, Ã′r)
4
? (B, B̃)

G′′r = (A, Ã′′r)
4
? (B, B̃)
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For every pair i, j we determine C̃1[i, j] as follows:

(i) Find the largest r such that Gr[i, j] = C[i, j], then C̃1[i, j] must be in Ãr

(ii) Check whether G′r[i, j] = C[i, j]. If it is, C̃1[i, j] must be in the ith row of Ã′r.

Check all the finite elements in that row one by one.

(iii) If G′r[i, j] 6= C[i, j], find the largest q such that G′′r [ρ(i, q), j] = C[i, j]. Thus,

C̃1[i, j] must be in T qi , the qth part of the ith row of Ã. Check the elements in

T qi one by one.

Steps 1–3 take O(ns/t) time per pair, that is, O(n2+s/t) time in total. What

remains is to show that we can compute Gr, G
′
r, G

′′
r in the stated bounds. To find Gr,

we begin by constructing two matrices Âr and B̂r such that:

Âr[i, k] =

 A[i, k] if Ã[i, k] ∈ Lr

∞ otherwise

B̂r[k, j] =

 B[k, j] if B̃[k, j] ∈ Lr+1 ∪ · · · ∪ Lt

∞ otherwise

We compute Ĝr = Âr ? B̂r using Zwick’s algorithm [69] and G̃r = (A, Ãr)
4
? (B, B̃r)

using the algorithm from Theorem 4.12. One may verify that:

Gr[i, j] = min{Ĝr[i, j], G̃r[i, j]}

If Gr[i, j] = A[i, k] + B[k, j], the Ĝr matrix covers the case where A[i, k] and B[k, j]

come from different parts and G̃r covers the case where they are both in part Lr. The

matrices G′r and G′′r are computed in a similar fashion.

In total, the time required to find Gr, G
′
r, and G′′r , for 1 ≤ r ≤ t, is t·O(Mnω(1,s,1)+

n2+s/t2), where the first term comes from [69] and the second from Theorem 4.12.
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(Recall that Ãr and B̃r have at most 2n1+s/t finite elements.) We choose t to be

n1+s/2−ω(1,s,1)/2M−1/2, which makes the overall running time O(M1/2 ·n1+s/2+ω(1,s,1)/2).

4.3.3 APBSP with Edge Capacities

For the APBSP problem, we use the “bridging sets” technique; see Zwick [69]

and Shapira et al. [57]. A standard probabilistic argument shows that a small set of

randomly selected vertices will cover a set of relatively long paths.

Lemma 4.14. [69] Let S be a set of paths between distinct pairs of vertices, each of

length at least t, in a graph with n vertices. A set of O(t−1n log n) vertices selected

uniformly at random contains, with probability 1 − n−Ω(1), at least one vertex from

each path in S. Such a set is called a t-bridging set. A t-bridging set can be found

deterministically in O(tn2)-time.

Theorem 4.15. Given a real edge-capacitated graph on n vertices, APBSP can be

computed in O(n(3+ω)/2) = O(n2.688) time.

Proof. We begin by computing unweighted distances in O(n2+µ) = O(n2.575) time

[69]. Let D and C be the distance and edge capacity matrices, respectively. For

vertices at distance 1 or 2 it follows that:

sc(u, v) =

 C[u, v] if D[u, v] = 1

(C 6 C)[u, v] if D[u, v] = 2

In general, once sc(u, v) is computed for u, v with D[u, v] ≤ t, it can be computed for

all u, v with D[u, v] ≤ 3t/2 as follows. Let B be a bridging set for the set of bottleneck

shortest paths with length t/2. We compute such a set if t ≤
√
n and, if not, use the

last bridging set when t was at most
√
n. Thus, |B| = Õ(max{n/t,

√
n}). If D[u, v] is

between t and 3t/2 there must be some vertex b ∈ B that lies on the middle third of
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the bottleneck shortest path from u to v and, therefore, satisfies D[u, b], D[b, v] ≤ t.

In other words, sc(u, v) can be derived from sc(u, b) and sc(b, v), both of which have

already been computed. We have:

sc(u, v) = max
b∈B

D[u,b]+D[b,v]=D[u,v]

min{sc(u, b), sc(b, v)}

This is clearly an instance of the distance-max-min product of n × |B| and |B| × n

matrices. If B = Õ(
√
n) we use the trivial O(n2.5)-time algorithm. Otherwise, let

ns = |B| = Õ(n/t). By Theorem 4.13 this product can be computed in time:

O(t
1
2 · n1+

s+ω(1,s,1)
2 )

= O(n
3+ω(1,s,1)

2 ) t = n1−s

= O(n
5+β(s−α)

2 ω(1, s, 1) ≤ 2 + β(s− α)

= O(n(3+ω)/2) s ≤ 1, β(1− α) = ω − 2

By Lemma 4.14 B can be computed in O(tn2) = O(n5/2) = O(n(3+ω)/2) time. The

procedure above is obviously repeated just log3/2 n times, for a total running time of

O(n(3+ω)/2).

4.3.4 APBSP with Vertex Capacities

In this section, we consider the APBSP problem for vertex-capacitated graphs.

There are two variants of the problem: closed-APBSP, where the endpoints of a path

are taken into account, and open-APBSP, where they are not. However, Shapira

et al. [57] showed that open-APBSP is reducible to closed-APBSP in O(n2) time.

Thus we only consider the closed-APBSP problem in this chapter. The Shapira et

al. algorithm runs in time O(n(8+µ)/3) ≤ O(n2.859). Here we improve their result by
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the techniques introduced earlier.

Lemma 4.16 shows how bottleneck shortest paths can be found quickly for rela-

tively close pairs of vertices. The proof borrows extensively from [57].

Lemma 4.16. Given a vertex-capacitated graph on n vertices, the bottleneck shortest

paths can be computed for all pairs at distance at most nt, in time O(n(3+ω+t−3β)/(2−β)).

Proof. Number the vertices V = {v1, v2, ..., vn} in increasing order of capacity. We

begin by computing the distance matrix D in O(n2+µ) time [69]. For each s = 0, ..., nt,

we compute two n× n Boolean matrices Ps and Qs, where Ps[i, j] = 1 if and only if

there is a path from vi to vj, of length at most s, in which vj has minimum capacity,

Qs[i, j] = 1 if and only if there is a path from vi to vj, of length at most s, in which

vi has minimum capacity. From [57], the computation will take O(nt+ω) time, as

follows. Let E be the adjacency matrix of G and F be the Boolean matrix satisfying

F [i, j] = 1 iff i ≥ j. Then P0 = Q0 = I, Ps = EPs−1 ∧ F and Qs = Qs−1E ∧ F T .

We define two n× n matrices A and B:

A[i, j] =

 D[i, j] if PD[i,j][i, j] = 1

∞ otherwise

B[i, j] =

 D[i, j] if QD[i,j][i, j] = 1

∞ otherwise

Then we just need to compute the bottleneck capacity matrix C in which:

C[i, j] = min{k | A[i, k] +B[k, j] = D[i, j]}

By the definition of A and B, A[i, k] = D[i, k], B[k, j] = D[k, j], and vk has the

minimum capacity in both paths. Thus sc(vi, vj) is just the capacity of vC[i,j].

To compute C, as in [14], partition A into n × nr sub-matrices Ap and B into

nr × n sub-matrices Bp where Ap covers columns (p − 1)nr + 1 through pnr and
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Bp covers the rows (p − 1)nr + 1 through pnr. Then, for every p, we compute the

distance product Cp = Ap ? Bp, which will take O(n1−r · nω(1,r,1)+t) time. For r > α

we have ω(1, r, 1) ≤ 2 + β(r − α) = ω − (1 − r)β. Thus, the time for this phase is

O(nω+t+1+β(r−1)−r)

For every i, j, find the smallest p such that Cp[i, j] = D[i, j], i.e., C[i, j] will be in

the range [(p − 1)nr + 1, pnr]. We check all possibilities one by one. This will take

O(n2+r) time. To balance the two bounds we choose r = (ω + t − 1 − β)/(2 − β),

making the total running time O(n
ω+3+t−3β

2−β ).

Theorem 4.17. Given a vertex-capacitated graph with n vertices, APBSP can be

computed in O(n
3+ω

2
− β2(3−ω)

4+2β(2−β) ) = O(n2.657) time.

Proof. This algorithm has two phases. In the first phase we use Lemma 4.16 to

compute the bottleneck shortest paths for vertices at distance is at most nt, for

some properly selected t. In the second phase, we convert the vertex-capacitated

graph to an edge-capacitated graph by giving each edge the minimum capacity of

its endpoints. The algorithm from Theorem 4.15 will compute bottleneck shortest

paths for the remaining vertex pairs in O(n(3+ω−βt)/2) time. To balance the two

phases we choose t = β(3 − ω)/(2 + β(2 − β)), making the total running time:

O(n
3+ω

2
− β2(3−ω)

4+2β(2−β) ) = O(n2.657).
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CHAPTER V

Dual-Failure Distance Oracle

5.1 Introduction

This chapter considers the problem of answering distance queries between any two

vertices in a graph with the presence of several failed vertices. More precisely, given

source and target vertices x, y and a set F ⊂ V , the problem is to report δG−F (x, y),

where δG′ is the distance function w.r.t. the subgraph G′.1 Demetrescu et al. [16]

consider this type of structure for single-failure distance queries (either a vertex or

an edge), which can be answered in constant time by an oracle occupying O(n2 log n)

space. We extend this to two vertex failures with only more log n factors on space

and query time. The main result can be summarized by the following theorem: 2

Theorem 5.1. Given a weighted directed graph G = (V,E, `), where ` : E → R

assigns arbitrary real lengths, a data structure with size O(n2 log3 n) can be constructed

in polynomial time such that given vertices x, y ∈ V and two failed vertices or edges

u, v ∈ V ∪ E, δG−{u,v}(x, y) can be reported in O(log n) time. Furthermore, a path

with this length can be returned in O(log n) time per edge.

1The notation G− z refers to the graph G after removing z, where z is a vertex, edge, or set of
vertices or edges.

2This result appears in Duan and Pettie’s paper “Dual-Failure Distance and Connectivity Ora-
cles” [22] in SODA 2009.
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As a special case, Theorem 5.1 allows one to answer connectivity queries in

O(log n) time. We only prove Theorem 5.1 for two vertex failures. There is a sim-

ple reduction from an f -edge failure distance query to O(1) f -vertex failure queries,

for any fixed f . We can use Theorem 5.1 to answer distance queries involving an

arbitrary number of failures. For f ≥ 2 we can build an Õ(nf )-space data structure

answering f -failure distance queries in Õ(1) time. This compares favorably with the

trivial O(nf+2) space bound and the Õ(nf+1) bound implied by [16, 5].

Our data structure of dual-failure distance queries is much more complicated than

those of [16, 5], which can be seen from the number of cases caused by the second

failed vertex/edge. If p is a shortest path from x to y and u a failed vertex, the

shortest path avoiding u consists of a prefix of the original path p followed by a

“detour” avoiding p (and u), followed by a suffix of p. In the presence of 2 failures

(assumed to be u and v) it is no longer possible to create such a clean partition.

The shortest path avoiding two failed vertices on p may depart from and return to p

many times, because p can be directed and the detour can travel back on p. When

we first find the detour only avoiding u, then v may be on this detour, but if we

further find the detour avoiding v, the new detour may still pass through u. So we

will need much more complex structures and query algorithm to deal with this. With

3 (or more) failures the possible cases of the optimal detours becomes even more

complicated. The conclusion we draw from our results is that handling dual-failure

distance queries is possible but extending our structure to handle 3 or more failures

is practically infeasible.

Organization. In Section 5.2 we summarize the notation used throughout this

chapter. In Section 5.3, we review the one-failure distance structure similar to [16],

which gives us the basic idea of constructing oracles for more failures. In Sections 5.4–

5.6 we describe how the query algorithm works in part of Case I– III.
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5.2 Notations:

In this section we summarize the notation and conventions used throughout the

paper.

• The query asks for the shortest path from x to y avoiding vertices u and v. We

assume that at least one failed node, u, lies on the shortest path from x to y.

• We use pH(x, y) to denote the shortest path from x to y in the subgraph H

and use xy as shorthand for pG(x, y), where G is the whole graph. The length

and number of edges in a path p are denoted as ‖p‖ and |p|, respectively. The

concatenation of two paths p and p′ is p · p′. We use min to select the path

with minimum length, i.e., min{p1, . . . , pk} refers to the minimum length path

among {p1, . . . , pk}.

• We define the function ρs(pH(s, t)) to be the vertex c ∈ pH(s, t) such that

|pH(s, c)| = 2blog |pH(s,t)|c, i.e., ρs(pH(s, t)) is the farthest vertex from s in the

path pH(s, t), to whom the unweighted distance from s in H is a power of 2.

Symmetrically, the function ρt(pH(s, t)) is the vertex c ∈ pH(s, t) such that

|pH(c, t)| = 2blog |pH(s,t)|c. It is easy to see ρt(pH(s, t)) is before ρs(pH(s, t)) in

pH(s, t).

• Let pH(x, y)�A be short for pH−A(x, y). For example, our query is to determine

‖xy � {u, v}‖ : the length of the shortest x-y path avoiding u and v. Here A

can be a range of vertices if the range is clear from context. For example, if we

have established that s and t appear in xy � u then (xy � u) � [s, t] refers to the

shortest path from x to y avoiding u and the subpath from s to t within xy � u.

• We let s ⊕ i and s 	 i be the ith vertex after s and before s on some path

known from context. Typically the path we are considering is from x to y. For

brevity we use ⊕i and 	i as short for x⊕ i and y	 i, respectively. For example,
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(xy � u) � (	i) is the shortest path from x to y avoiding u and avoiding the ith

vertex before y on the path xy � u.

The following vertices are all with respect to some path pH(x, y) known from

context, e.g., pH(x, y) may be xy � u (which is PG−u(x, y)).

• ∆,∇: The vertex at which pH(x, y) and xy first diverge is called the divergence

point, denoted by ∆, and, symmetrically, the vertex where they converge is

called the convergence point, denoted by ∇.

• w,w′: Let w ∈ pH(x, y) be the first vertex such that wy = pH(w, y); i.e., wy

is a subpath of pH(x, y). So for every vertex before w, its shortest path to y in

G goes through some vertex in G\H. Symmetrically, w′ ∈ pH(x, y) is the last

vertex such that xw′ = pH(x,w′).

Throughout the paper we use the term detour to mean the shortest path avoiding

some set of vertices.

5.3 Review of the One-Failure Distance Oracle

As in [16], throughout the paper we assume that all shortest paths in any subgraph

of G are unique. Thus, we can determine if u is on the shortest path xy by checking

whether ‖xu‖+ ‖uy‖ = ‖xy‖.

Before delving into the description of our two-failure distance oracle, we first give

a simplified version of the one-failure oracle [5, 16] that uses a log-factor more space:

O(n2 log2 n).

5.3.1 Structure

• B0: For every pair of vertices x and y, B0(x, y) stores ‖xy‖, |xy|, i.e., the length

and the number of vertices of xy. We also preprocess the shortest path trees [3]
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so that, given x1, x2, y, the first common vertex of x1y and x2y can be answered

in constant time.

• B1: For every pair of vertices x and y, B1(x, y) stores the length and number

of vertices of the paths:

xy � {⊕2i} , ∀i < blog |xy|c

xy � {	2i} , ∀i < blog |xy|c

xy � [⊕2i,	2j] , ∀i, j < blog |xy|c

5.3.2 Query Algorithm

Let the only failed vertex on the path xy be u. If |xu| or |uy| is an integer power

of 2, then xy � u will be stored in B1(x, y), so we can get the distance avoiding u

immediately. Otherwise we will find ul = ρu(xu) and ur = ρu(uy) on xy, so |ulu| and

|uur| are powers of 2. There are 3 possible types of detours:

(i) The detour that reaches some point in [ul, u).

(ii) The detour that reaches some point in (u, ur].

(iii) The detour that avoids the range [ul, ur] in xy.

For the first and second types, the path will go through ul or ur. Since u is not

on xul and |ulu| is a power of 2, ‖xul‖ is stored in B0(x, ul) and ‖uly � u‖ is stored in

B1(ul, y). Then xul ·uly�u is just the shortest path of the first type. In this situation,

we say that the path xul · uly � u covers this type. Symmetrically, xur � u · ury can

cover the second type, where ‖xur �u‖ is in B1(x, ur) and ‖ury‖ is in B0(ur, y). When

we deal with the third type, we let x′ = ρx(xu) and y′ = ρy(uy), so |xx′| and |y′y| are

integer powers of two and xy � [x′, y′] is stored in B1(x, y). Since x′ is after ul and y′

is before ur on xy, the detour avoiding [ul, ur] must also avoid [x′, y′], so xy � [x′, y′]
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covers the third type. (See Figure 5.1.) Thus, the single failure distance can be found

in constant time.

Figure 5.1: One-failure case, where the thick line denotes a detour of the third type.

In the following parts of this paper, we will consider the dual failure data structure

in three cases. In Section 5.4, we will dicuss Case I, in which only u is on xy and

|xu| or |uy| is a power of 2. In Section 5.5, the general case of only u ∈ xy will be

discussed, we call it Case II. In Section 5.6, we will talk about Case III, where both

u and v are on xy.

5.4 Case I

The first case we consider is when only one of the failed vertices u is on the original

shortest path from x to y and |xu| (or, symmetrically, |uy|) is a power of 2.

In Section 5.4.1 we present the data structures used in Case I. In Section 5.4.2

we present the query algorithm and dispense with several relatively easy subcases.

Sections 5.4.2.1 and 5.4.2.2 cover the more complicated subcases of Case I.

5.4.1 Structures

First we will introduce the data structures used in Case I, which are

5.4.1.1 Common Structures

B0, B1: As described in the one-failure case.

B2: For every detour pH(x, y) ∈ B1(x, y) and every x̂ ∈ {x,∆, w}, ŷ ∈ {y,∇, w′},

when x̂ is before ŷ, B2(x, y) stores the length and number of vertices of the paths:

80



(The definitions of ∆,∇, w, w′ have been stated in Section 5.2.)

pH(x, y) � {x̂⊕ 2i}, ∀i < blog |pH(xy)|c

pH(x, y) � {ŷ 	 2i}, ∀i < blog |pH(xy)|c

pH(x, y) � [x̂⊕ 2i, x̂⊕ 2i+1], ∀i < blog |pH(xy)| − 1c

pH(x, y) � [ŷ 	 2j+1, ŷ 	 2j], ∀j < blog |pH(xy)| − 1c

We also store the length of pH(x, x̂ ⊕ 2i) and pH(ŷ 	 2j, y) for every “exponen-

tial of two” points on pH(x, y). One can see that the structures B0, B1, B2 occupy

O(n2 log3 n) space.

In this paper, ul usually means the vertex from which the number of vertices on

the shortest path to u is a power of 2, and ur usually means the vertex to which the

number of vertices on the shortest path from u is a power of 2. Similar as vl and vr.

5.4.1.2 The Tree Structure

In this section we introduce a specialized but useful data structure whose purpose

will only become clear once it is seen in action, in Section 5.4.2. For every pair of

vertices (u, y), define the sets S(u, y) and Ŝ(u, y) as:

S(u, y) = {x | u ∈ xy and |xu| is a power of 2}

Ŝ(u, y) = S(u, y) ∪ {z | ∃x1, x2 ∈ S(u, y)

s.t. z is the first common vertex of x1y � u and x2y � u}

In the tree formed by the shortest paths from the vertex set of S(u, y) to y in

the subgraph G− {u}, Ŝ(u, y) is the set of all leaves and branch vertices in the tree,

so |Ŝ(u, y)| ≤ 2|S(u, y)|. Given a vertex y, every other vertex x can only be in at
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most log n different S(u, y) since u must be on xy and |xu| is a power of 2. Thus∑
u |S(u, y)| = n log n, and

∑
u,y |S(u, y)| = n2 log n.

For every pair of vertices (u, y) we store the following tree structure T (u, y). For

a given x ∈ Ŝ(u, y), let z(i) be the 2ith vertex of Ŝ(u, y) on the path xy � u, i.e.,

|(xz(i)�u)∩Ŝ(u, y)| = 2i. For each x ∈ Ŝ(u, y) and i, j, we store ‖(xy�u)�[z(i),	2j]‖

in T (u, y), where 	2j is w.r.t. xy � u. We also preprocess T (u, y) to answer level

ancestor and least common ancestor queries [3, 4] in the tree induced by Ŝ(u, y)

in constant time; this allows us to identify z(i) and other vertices in O(1) time.

Obviously the size of T (u, y) is O(|S(u, y)| log2 n), and the total space for the T

structure is O(n2 log3 n).

Lemma 5.2. Given x1, x2 ∈ S(u, y) and an integer j, let z be the first common vertex

of x1y�u and x2y�u. Using the tree structure T (u, y) we can find ‖(x1y�u)� [z,	2j]‖

in constant time.

Proof. The vertex z can be identified in O(1) time with a least common ancestor

query. Let i =
⌊
log |(x1z � u) ∩ Ŝ(u, y)|

⌋
be the log of the number of Ŝ(u, y)-vertices

on the path x1z � u. Using two level ancestor queries we can identify zl and x′1 in

T (u, y) where |(zlz � u) ∩ Ŝ(u, y)| = 2i and |(x1x
′
1 � u) ∩ Ŝ(u, y)| = 2i. The shortest

detour (x1y � u) � [z,	2j] must be one of the following.

(i) The detour that avoids the range [zl,	2j] in xy � u.

(ii) The detour that reaches some point in [zl, z).

The lengths of both of the paths ‖(x1y�u)�[x′1,	2j]‖ and ‖x1zl ·(zly�u)�[z,	2j]‖

can be retrieved in O(1) time from T (u, y) and B0(x1, zl). These two paths cover both

of the possibilities for (x1y � u) � [z,	2j]. See Figure 5.2.
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u y

z
y⊖2 j x'1z l     

x1

x2

Figure 5.2: An illustration of the query (x1y�u)�[z,	2j], where we are given j, x1, x2,
and y, but not z.

5.4.2 The detour from x to y avoiding u

We begin with a simple observation:

Lemma 5.3. Suppose for some distinct vertices u, v, x and y, v is on the detour

xy � u. Then at least one of u and v is on xy.

Proof. Suppose u is not on xy, then xy � u = xy, so v ∈ xy.

Since |xu| is a power of 2, xy � u is stored in B1(x, y). We determine whether

v ∈ xy � u by checking whether ‖xv � u‖+ ‖vy � u‖ = ‖xy � u‖ in constant time using

the one-failure oracle. If v /∈ xy � u, the optimal detour is just xy � u. If v ∈ xy � u

and |xv �u| or |vy �u| is a power of 2, then we can return (xy �u) � v, which is stored

in B2(x, y). Otherwise, we proceed to find vl = ρv(xv � u) and vr = ρv(vy � u) in

O(log n) time as follows:

Since |xu| is a power of 2, if u ∈ xv then xv � u ∈ B1(x, v), otherwise xv � u =

xv ∈ B0(x, v). Thus the vertex vl whose unweighted distance to v in xv �u is a power

of 2 can be found in B2(x, v) or B1(x, v) in constant time.

However, since |uy| is not necessarily a power of 2, vr is not symmetrical to vl. To

locate vr, we analyze how the path vy � u was constructed in the one-failure query

algorithm. The only non-trivial case is when vy�u was composed of two parts (the first

or second types, from Section 5.3.2), i.e., it was of the form vu′l ·u′ly �u or vu′r �u ·u′ry,

where |uu′r| and |u′lu| are powers of 2. We find some vertex v′ that, depending on the

form of vy � u, is a maximal power of 2 from v, u′l, or u′r (in unweighted distance) but
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before vr. We then continue to search for vr on v′y � u. Since |v′y � u| < |vy � u|/2

this procedure terminates after O(log n) steps. If vr lies in vu′l or u′ry then v′ may be

retrieved from B1; if it lies in vu′r � u or u′ly � u then v′ is stored in B2.

The optimal detour avoiding u and v will belong to one of the following types:

(i) The detour that avoids u and the range [vl, vr] in xy � u.

The shortest detour of this kind must be no shorter than (xy�u)�[⊕2j,⊕2j+1] ∈

B2(x, y) or (xy � u) � [	2j
′+1,	2j

′
] ∈ B2(x, y) where j = blog |xv � u|c and

j′ = blog |vy � u|c. To see this, without loss of generality, assume j < j′. Then

vl is before x⊕ 2j in xy � u and |vvr| = 2j
′
> 2j, so vr is after x⊕ 2j+1 in xy � u.

Therefore, any detour avoiding [vl, vr] belongs to the set of detours avoiding

[⊕2j,⊕2j+1] when j < j′. (This is the same argument used in [16].)

(ii) The detour that reaches some points in (v, vr].

In this case, the detour must go through vr, so we need to find the path xvr �

{u, v} · vry � {u, v}. Since v /∈ vry � u, we only consider the path xvr � {u, v}.

When u ∈ xvr, since |xu| and |vvr � u| are powers of 2, we can immediately

return (xvr �u)� v ∈ B2(x, vr). When u 6∈ xvr (xvr �u = xvr), since v ∈ xvr �u,

by Lemma 5.3 only v is on xvr and |vvr| is a power of 2. Thus xvr�v ∈ B1(x, vr).

If u 6∈ xvr � v (which can be checked with the one-failure oracle) we are done.

If u ∈ xvr � v, since |xu � v| = |xu| is a power of 2, we just return (xvr � v) � u,

which is stored in B2(x, vr).

(iii) The detour that reaches some point in [vl, v), but does not reach (v, vr].

So now we only have to consider the last type of detour, which must go through

vl but not (v, vr]. So far we have only ascertained that v ∈ vly � u and |vlv � u| is a

power of 2. From Lemma 5.3, at least one of u and v is on vly. We break the analysis

into two main cases depending on whether v is in vly (Case I.1) or not (Case II.2).
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In both cases, we begin by locating the ul and ur relative to u on the path vly � v.

We consider further subcases depending on whether ul ∈ xy � u:

• I.1.a: v ∈ vly and ul ∈ xy � u

• I.1.b: v ∈ vly and ul /∈ xy � u

• I.2.a: v /∈ vly and ul /∈ xy � u

• I.2.b: v /∈ vly and ul ∈ xy � u

5.4.2.1 Case I.1: v is on vly

Since v is not on uy, u cannot be before v on vly. So u /∈ vlv and |vlv| is a power

of 2. We check whether u is in vly � v; if not, we are done. If u ∈ vly � v, define w as

the point w of the detour vly � v, i.e., the first vertex in vly � v which satisfies v /∈ wy.

Since v /∈ uy, u must be equal to or after w on vly � v. If u = w, then (vly � v) � w is

in B2(vl, y). Otherwise we can find ul = ρu(wu � v) and ur = ρu(uy � v) in O(log n)

time as in Section 5.4.2. So ul is after w on vly � v, and v /∈ uly. The possible types

of detours from vl to y are:

(i) The detour that avoids v and the range [ul, ur] in vly � v.

(ii) The detour that reaches some point in (u, ur].

(iii) The detour that reaches some point in [ul, u), but does not reach (u, ur].

Similar to the discussion in Section 5.4.2, the first case can be covered by the

paths (vly � v) � [w⊕ 2k, w⊕ 2k+1], (vly � v) � [	2k
′+1,	2k

′
] ∈ B2(vl, y) for some k, k′,

and the second case can also be handled in the same way. Thus we only have to

consider the third case, that is, the path from ul to y avoiding u and (v, vr]. Since

v /∈ uly and |ulu| is a power of 2, uly � u is in B1(ul, y). We check whether ul is on

xy � u in constant time and have the following subcases:

Case I.1.a When ul ∈ xy �u, we know that vl ∈ xy �u and u /∈ vlv. Furthermore,

ul is not in the range [vl, v) on xy � u. To see this, assume ul is on vlv � u = vlv
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(the range [vl, v) on xy � u). Since v ∈ vly, ul is before v on vly and v ∈ uly, which

contradicts the fact that v /∈ uly.

If ul is after v on xy � u, then v /∈ uly � u, so we just return uly � u. We do not

need to consider the case when ul is before vl on xy � u since any detour that goes

through vl then ul contains a cycle.

u y

z
v

x
Δ Δ

w ul

vl        

Figure 5.3: The usage of tree structure in Case I.1.b.

Case I.1.b When ul /∈ xy � u, since u ∈ xy, u ∈ uly and both |xu| and |ulu|

are powers of 2, x and ul are both in S(u, y). From Lemma 5.2, we can find the

least common ancestor z of x and ul in T (u, y) in constant time [56], i.e., z is the

first common vertex of the shortest paths xy � u and uly � u. (See Figure 5.3.) If

v /∈ uly � u, just return uly � u. If v ∈ uly � u, v must be after z in the path uly � u

because v ∈ xy � u.

Assume the shortest detour reaches ul then reaches some point in the common

range [z, v) of xy �u and uly �u. Since ul /∈ xy �u, the path from x through xy �u to

[z, v) must be shorter than that detour. Thus we do not need to consider the detours

that pass through ul then to some vertices in [z, v) of uly � u.

Since we are in the third type of Section 5.4.2, in which the range (v, vr] is avoided,

we just have to find (uly � u) � [z, vr], which can be covered by (uly � u) � [z,	2j
′
]

(where j′ = blog |vy � u|c) since vr = v⊕ 2j
′

is after y	 2j
′

on xy � u. By Lemma 5.2,

this can be achieved in constant time using the T (u, y) structure.
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Figure 5.4: Illustration of Case I.2.a

5.4.2.2 Case I.2: v is not on vly

Since v is on vly � u, by Lemma 5.3, u must be on vly. We find the vertices

ul = ρu(vlu) and ur = ρu(uy). There are two further possible cases:

Case I.2.a If ul is not on xy �u, this case is very similar to Case I.1.b. The three

possible types of detours are:

(i) The detour that avoids the range [ul, ur] in vly and the vertex v.

(ii) The detour that reaches some point in (u, ur].

(iii) The detour that reaches some point in [ul, u), but does not reach (u, ur].

The first type is clearly in B2(vl, y), since (vly � [ul, ur]) � v can be covered by

vly � [⊕2j,	2j
′
] � v (j = blog |vlu|c and j′ = blog |uy|c), and the number of vertices

between vl and v in that path is a power of 2 (see Figure 5.4). The second type is also

similar to Section 5.4.2. But for the third type, the detour must reach ul, so we have

to find the path uly avoiding u and v. Since ul and x are both in S(u, y), by the same

argument of Case I.1.b, we only need to find the path (uly �u) � [z, vr], where z is the

first common vertex of xy � u and uly � u. By utilizing the tree structure T (u, y), the

path (uly � u) � [z,	2j
′
] where j′ = blog |vy � u|c can be answered in constant time.

Case I.2.b If ul is on xy � u, there are two kinds of detours since our overall goal

is to find (xy � u) � (v, vr]:

(i) The detour (xy � u) � [ul, vr]

(ii) The detour that reaches some point in [ul, v)
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For the first kind, both x and ul are in S(u, y), so they are in the tree structure

T (u, y). We can find the detour (xy�u)� [ul,	2j
′
] where j′ = blog |vy�u|c in constant

time, which will cover the first kind.

u y

v

x
Δ Δ

ul
vl        

v'l        

powers of 2

Figure 5.5: The illustration of Case I.2.a(3), where v′l is the corresponding vl for the
path uly � u.

For the second kind, the detour will reach ul through xul � u. Since only u is on

uly and |ulu| is a power of 2, uly � {u, v} itself is in Case I, and we can deal with it

recursively by the procedure of Case I. When we try to find the detour from ul to y

avoiding u and v by the procedure in Section 5.4.2, the position of vr has not changed,

so we do not need another O(log n) time to locate it. Furthermore the new v′l found

must be such that |v′lv �u| is a smaller power of 2 than |vlv �u|; see Figure 5.5. Thus,

the number of recursive invocations of Case I is O(log n).

5.5 Case II: One failed vertex on xy

In Case II we deal with the situation where only one failed vertex is on xy. Our

strategy is to systematically reduce such a query to several Case I queries. The case

that |xu| or |uy| is a power of 2 has already been studied in Section 5.4.

For the general case, as in the one-failure algorithm, we find ul = ρu(xu) and

ur = ρu(uy) on xy. The 3 possible type of detours are:

(i) The detour that reaches some point in (u, ur].

(ii) The detour that reaches some point in [ul, u).

(iii) The detour that avoids the range [ul, ur] in xy.
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For the first and second types, the path will go through ur or ul. Since |ulu| and

|uur| are powers of 2, these types are reducible to Case I. When we deal with the

third type, we can see xy � [x′, y′] ∈ B1(xy), where x′ = ρx(xu) and y′ = ρy(uy).

The first thing we will face is checking whether v is in xy � [x′, y′]. We have to

consider two possibilities. First, if xy � [x′, y′] is xy � u, it is easy to check whether v

is in xy � [x′, y′]. If xy � [x′, y′] is not xy �u, the difficulty arises from the fact that the

subpath of xy � [x′, y′] from x to v could be different from xv � u, since xv could only

go through one part of [x′, y′] and the detour avoiding this part can also go through

the other part of [x′, y′]. However, we only need to consider whether v is in the union

of xy � [x′, y′] and xy � u, since it is trivial if v is not in xy � u.

This will need some extra data structures and different ideas from the previous

case. First we will introduce the data structures only used in Case II.

5.5.1 Data Structures

When a path xy � [x′, y′] is known from context, where x′, y′ are two points on

xy, we define the following c-vertices. (Here the subscripts and superscripts are

mnemonics, where l,r,b,F,L stand for left, right, both, first, last, respectively.)

• cl : Define cl to be the first vertex in the range (∆,∇) of the path xy � [x′, y′]

satisfying:

∃u′ ∈ [x′, y′], such that x′, cl ∈ xy � u′, and y′ /∈ xy � u′

and symmetrically, let cr be the last vertex in the range (∆,∇) of the path

xy � [x′, y′] satisfying:

∃u′ ∈ [x′, y′], such that y′, cr ∈ xy � u′ and x′ /∈ xy � u′
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In this structure we also store the u′ with cl or cr.

• Let cbl be the first vertex in the range (∆,∇) of the path xy � [x′, y′] satisfying:

∃u′ ∈ [x′, y′] such that x′, y′, cbl ∈ xy � u′

• Denote the set Ψl to be (xy � [x′, y′]) ∩ (x′y′ � u′), in which x′y′ � u′ must be a

subpath of xy � u′. So cbl is the first vertex on xy � [x′, y′] that is in Ψl. We also

define the following vertices in Ψl:

– Let cFbl be the first vertex of x′y′ � u′ on Ψl.

– Let cLbl be the last vertex of x′y′ � u′ on Ψl.

– Let crbl be the last vertex on xy � [x′, y′] that is in Ψl.

x yx' u' y'

x yx' u' y'

Figure 5.6: The illustration of the position of u′ and cbl, etc. There are two pos-
sibilities. The grey line is the path xy � [x′, y′], and the black line are
xy � u′.

On xy � [x′, y′], we have cbl is before cLbl and cFbl is before crbl. Since the range

[cFbl, c
L
bl] on xy � u′ is disjoint from x′y′, the ranges [cbl, c

L
bl] and [cFbl, c

r
bl] on the

path xy � [x′, y′] are also on the path xy � u′, thus they are in Ψl. See Figure

5.6.
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• In a symmetric fashion, define cbr to be the last vertex on the range (∆,∇) in

the path xy � [x′, y′] satisfying:

∃u′′ ∈ [x′, y′] such that x′, y′, cbr ∈ xy � u′′

• Also denote the set Ψr to be xy � [x′, y′] ∩ x′y′ � u′′, in which x′y′ � u′′ must be

a subpath of xy � u′′. So cbr is the last vertex on xy � [x′, y′] that is in Ψr. We

also define the following vertices in Ψr:

– Let cFbr be the first vertex of x′y′ � u′′ on Ψr.

– Let cLbr be the last vertex of x′y′ � u′′ on Ψr.

– Let clbr be the first vertex on xy � [x′, y′] that is in Ψr.

On xy � [x′, y′], we have clbr is before cLbr and also cFbr is before cbr. Thus the

ranges [clbr, c
L
br] and [cFbr, cbr] on the path xy � [x′, y′] are also on the path xy �u′′.

In order to simplify the description of the data structure from Section 5.4.1.1

we left out some pieces that are only used in Case II. The structure B2 contains

more paths than previously stated (the difference is that x̂ and ŷ can also be in

{cl, cbl, cFbl, cFbr, clbr} and {cr, cbr, cLbr, cLbl, crbl}, resp.) and we also use make use of a new

structure B2. They are defined as follows:

• B2: For every detour pH(x, y) ∈ B1(x, y) and every x̂ ∈ {x,∆, w, cl, cbl, cfbl, c
f
br, c

L
br}

and ŷ ∈ {y,∇, w′, cr, cbr, clbr, clbl, cRbl} (x̂ is before ŷ), B2(x, y) contains the dis-

tance and the number of vertices of the paths:

pH(x, y) � {x̂⊕ 2i} , ∀i < blog |pH(x, y)|c

pH(x, y) � {ŷ 	 2i} , ∀i < blog |pH(x, y)|c

pH(x, y) � [x̂⊕ 2i, x̂⊕ 2i+1] , ∀i < blog |pH(x, y)| − 1c

pH(x, y) � [ŷ 	 2j+1, ŷ 	 2j] , ∀j < blog |pH(x, y)| − 1c
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• For every vertex a on a path pH(x, y) in B1(x, y), if ay is not a subpath of

pH(x, y), define F (a) to be the first vertex at which ay and pH(x, y) diverge.

Symmetrically if xa is not a subpath of pH(x, y), define F ′(a) to be the first

vertex at which xa and pH(x, y) converge. See Figure 5.7. We clearly have the

following property:

• B2: In B2(x, y), for a path of the form pH(x, y) � [a, b] in B2(x, y) (pH(x, y) ∈

B1(x, y)), we store pH(x, y)�[F (a), b], pH(x, y)�[a, F ′(b)] and pH(x, y)�[F (a), F ′(b)].

x yx' y'

a
F(a)

b

F'(b)

Figure 5.7: The a and b represent vertices on the path xy � [x′, y′], and the black
line denotes the path ay and xb. So the vertices F (a) and F ′(b) are
determined.

5.5.2 Query Algorithm

Theorem 5.4. Suppose we have known that v ∈ xy � [x′, y′]. For any x̂ ∈ {x,∆, w, cl,

cbl, c
f
bl, c

f
br, c

L
br} and ŷ ∈ {y,∇, w′, cr, cbr, clbr, clbl, cRbl} on the path xy � [x′, y′], if x̂v � u

and vŷ�u are both subpaths of xy� [x′, y′], then we can find (xy� [x′, y′])�v in O(log n)

time.

Proof. First we find vl = ρv(x̂v � u) and vr = ρv(vŷ � u) in O(log n) time by the same

procedure in Section 5.4.2. By the condition of the theorem, vl and vr are both in

xy � [x′, y′]. Then there are three possibilities:

(i) The detour that reaches some point in [vl, v).

(ii) The detour that reaches some point in (v, vr].

(iii) The detour that avoids the range [vl, vr] in xy � [x′, y′].
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Since xy � [x′, y′] is in B1(xy), as before, let j = blog |xv � u|c, j′ = blog |vy � u|c

and find the following vertices on xy � u = xy � [x′, y′]:

a1 = x⊕ 2j (5.1)

b1 = x⊕ 2j+1 (5.2)

a2 = y 	 2j
′+1 (5.3)

b2 = y 	 2j
′

(5.4)

We can see (xy � [x′, y′]) � [a1, b1], (xy � [x′, y′]) � [a2, b2] ∈ B2(x, y), which can

covered the third type. However, due to the need of the analysis of the first type, we

further use F (ai) to replace ai (i = 1, 2) if v is not on aiF (ai), which is a subpath of

xy � [x′, y′]. Similarly, we replace bi with F ′(bi) if v is not on F ′(bi)bi. Then the path

xy � [x′, y′]) � [ai(F (ai)), bi(F (bi))] will be stored in B2. For example, if v is not on

a1F (a1) and F ′(b1)b1, then we use the path (xy � [x′, y′]) � [F (a1), F ′(b1)] which is in

B2. Clearly, they can also cover the third type since F (ai) is equal to or after ai and

F (bi) is equal to or before bi. The importance of the use of F (ai) and F ′(bi) is shown

in the subcase 2 of the first type discussed below.

We will only consider the path from vl to y to cover the first type as the path

from x to vr is symmetric to it.

When u /∈ vly, if vly also does not go through v, it is trivial. If it goes through v,

|vlv| = |vlv � u| is a power of 2 from the definition of vl, so this case is reducible to

Case I.

When u, v ∈ vly, since v /∈ uy, u is after v on vly. So |vlv| = |vlv � u| is a power

of 2, and this case is reducible to Case I, see Section 5.6.1.

When only u ∈ vly, then we find u′′l = ρu(vlu). There are 2 types of detours

needed to be considered: (The one that reaches (u, ur] have already been covered

(xur � u) � v, which is in the Case I.)
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(i) The detour from vl to y that avoids [u′′l , ur] and v.

(ii) The detour from vl to y that reaches some point in [u′′l , u).

For the second type, if we start at u′′l , since |u′′l u| is a power of 2, it is reducible

to Case I. But for the first type, there are two subcases. See Figure 5.8.

Subcase 1 u′′l /∈ vlv � u. Let v′l = ρvl(vlu), so v′l is after u′′l on vly and it is not

on vlv � u, so v′l /∈ vlv � u. Suppose v is on vly � [v′l, y
′], because v′ly

′ is disjoint with

the path vlv � u, the subpath of vly � [v′l, y
′] from vl to v must be the same as vlv � u,

which is a subpath of xy � [x′, y′], so v must be a “power of 2” vertex on the path

vly � [v′l, y
′].

Thus, in Subcase 1, first we check whether v is a “power of 2” point of vly � [v′l, y
′]

in B2(vl, y). If it is, (vly � [v′l, y
′]) � v can be covered by B2(vl, y). If it is not, we

can conclude that v is not on vly � [v′l, y
′], so just return vly � [v′l, y

′] for the first type

above.

Subcase 2 u′′l ∈ vlv � u. So u′′l is also on xy � [x′, y′]. Since u′′l is in vlu, u is not

in vlu
′′
l , so vlu

′′
l = vlu

′′
l � u is a subpath of xy � [x′, y′]. Thus u′′l is before or equal to

F (vl) on xy � [x′, y′], and F (vl) is before v since v /∈ vly in this case. We will see the

importance of B2 here. Consider the a1 and a2 defined above, we also consider two

possibilities:

• If u′′l is before or equal to ai (i = 1, 2), then the detour (xy � [x′, y′]) � [ai, b]

(Here b can be bi or F ′(bi)) in B2 has already cover the first type, since the path

reaches ai will also reach u′′l , and u′′l y is reducible to Case I.

• If u′′l is after ai, then ai is also on vly, so F (ai) = F (vl), which is after or equal

to u′′l . Also F (ai) is before v, so the detour (xy � [x′, y′]) � [F (ai), b] (Here b can

be bi or F ′(bi)) in B2 has already cover the first type, since the path reaches

F (ai) will also reach u′′l , and u′′l y is reducible to Case I.
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x yu'

v

x yu'

v

(Subcase 1)

(Subcase 2)

Figure 5.8: The illustration of subcases 1 and 2. The black line is vly.

Corollary 5.5. Suppose we have known that v ∈ xy�[x′, y′]. For any x̂ ∈ {x,∆, w, cl,

cbl, c
f
bl, c

f
br, c

L
br} and ŷ ∈ {y,∇, w′, cr, cbr, clbr, clbl, cRbl} on the path xy � [x′, y′], if x̂v � u

is a subpath of xy � [x′, y′], then we can find (xy � [x′, y′]) � [v, ŷ] in O(log n) time.

Symmetrically, if vŷ�u is a subpath of xy� [x′, y′], then we can find (xy� [x′, y′])� [x̂, v]

in O(log n) time.

We only need to consider one of vl or vr and replace the detour (xy � [x′, y′]) �

[ai(F (ai)), bi(F (bi))] with (xy � [x′, y′]) � [ai(F (ai)), ŷ] or (xy � [x′, y′]) � [x̂, bi(F (bi))].

Now we consider the detour (xy � [x′, y′]) � v by different case. Recall that we can

find ul = ρu(xu) and ur = ρu(uy) on xy. The 3 possible type of detours are:

(i) The detour that reaches some point in (u, ur].

(ii) The detour that reaches some point in [ul, u).

(iii) The detour that avoids the range [ul, ur] in xy.

The first and second types are reducible to Case I. For the third type, we consider
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the different cases on whether the path xy � u goes through x′ or y′. Recall that

x′ = ρx(xu), y′ = ρy(uy). There are 4 possibilities of their locations:

• Case II.1 If xy � u does not go through x′ or y′,

• Case II.2 If xy � u goes through x′ but not y′,

• Case II.3 If xy � u goes through y′ but not x′,

• Case II.4 If xy � u goes through both x′ and y′,

5.5.2.1 Case II.1

If xy � u does not go through x′ or y′, which means that ∆ of xy � u is before x′

and ∇ of xy �u is after y′. so xy �u = xy � [x′, y′]. We can easily check whether v is in

xy � [x′, y′] by checking whether v ∈ xy � u. If v ∈ xy � [x′, y′], just call the procedure

of Theorem 5.4 with x̂ = ∆ and ŷ = ∇.

5.5.2.2 Case II.2

If xy � u goes through x′ but not y′, we make use of the point cl. Of course, if

v /∈ xy � u, it is trivial. In the case that v ∈ xy � u, recall that cl is the first vertex on

the range (∆,∇) of the path xy � [x′, y′] satisfying:

∃u′ ∈ [x′, y′], such that x′, cl ∈ xy � u′, and y′ /∈ xy � u′

From the definition of cl, v cannot be in the range [x, cl) in xy � [x′, y′]. Since

y′ /∈ xy � u′, xy � u′ does not go through any vertex in u′y′, so cly � u′ is the subpath

of xy � [x′, y′] from cl to y.

We check whether v ∈ xy � u′. Note that in the structure u′ is stored with cl.

There are three possibilities:

(i) If v /∈ xy � u′, then v is not in the range [cl, y] in xy � [x′, y′]. Since v is also not

in the range [x, cl), it follows that v /∈ xy � [x′, y′]. This case is trivial.
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(ii) If v ∈ xy � u′ and v is before cl on that path, then v /∈ cly � u′, so v is also not

in xy � [x′, y′].

(iii) If v ∈ cly � u′ and ‖clv � u‖ = ‖clv � u′‖, so v is on xy � [x′, y′] and it is equal to

or after cl. Thus clv � u is a subpath of xy � [x′, y′]. Since v is on xy � u and y′

is not on xy �u, vy �u is also a subpath of xy � [x′, y′]. So we can the procedure

of Theorem 5.4 with x̂ = cl and ŷ = ∇.

(iv) If v ∈ cly � u′ and ‖clv � u‖ 6= ‖clv � u′‖, then v is on xy � [x′, y′] and u 6= u′.

Since clv � u′ is a subpath of xy � [x′, y′], u /∈ clv � u′, so clv � u must go through

u′. We now consider the relativeposition of u and u′:

If u is before u′ in xy, the path (clu
′�u)·u′y must be shorter than (clv�u)·(vy�u),

since clu
′ �u is a subpath of clv �u. Also clv �u is shorter than the subpath from

cl to v on xy� [x′, y′]. So the path from x to cl through xy� [x′, y′] concatenating

the path (clu
′�u)·u′y will be shorter than xy�[x′, y′], which does not go through

v and can be covered by the path from x to y′ in Case I. See Figure 5.9.

If u is after u′ in xy, it is easy to see that u is not on xcl which goes through

x′. So the shortest path from x to cl avoiding u will go through x′, which can

be covered by the path from ul which is reducible to Case I. Thus we only do

not need to consider the detour (xy � [x′, y′]) � [cl, v] by the Corollary 5.5 with

x̂ = cl and ŷ = ∇.

Case II.3 is symmetric to Case II.2.

5.5.2.3 Case II.4

In this case xy � u goes through both x′ and y′. If v ∈ xy � u, recall that cbl is the

first vertex on the range [∆,∇] in the path xy � [x′, y′] satisfying:

∃u′ ∈ [x′, y′], such that x′, y′, cbl ∈ xy � u′
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x yu

v

u'x'

x yu

v

u'x'

(A)

(B)

y'

y'

Figure 5.9: When u is before u′ and clv � u goes through u′ in Case II.2, as shown in
the dash line of (A), we can see clv � u is shorter than the subpath from
cl to v in xy � [x′, y′]. So the black line in (B) is shorter than xy � [x′, y′],
and it goes through y′ so can be obtained by Case I.

From this definition, since x′, y′, v ∈ xy � u, v is not in the range [x, cbl) on

xy � [x′, y′]. Then we check the relative position of v in the path xy � u′. See Figure

5.6.

• Suppose that v is in the range (∆, cFbl) or the range (cLbl,∇) in the path xy � u′,

where ∆ and ∇ are w.r.t. the detour xy � u′. Since these ranges are disjoint

with xy � [x′, y′], we can guarantee that v /∈ xy � [x′, y′].

• If v is in the range [cFbl, c
r
bl] and ‖cFblcrbl �u‖ = ‖cFblcrbl �u′‖, then v is on xy � [x′, y′]

and cFblc
r
bl � u is a subpath of xy � [x′, y′]. Thus we can call the procedure of

Theorem 5.4 with x̂ = cFbl and ŷ = crbl.

• If v is in the range [cFbl, c
r
bl] and ‖cFblcrbl�u‖ 6= ‖cFblcrbl�u′‖, we can see u′ ∈ cFblcrbl�u.

If v /∈ cFblcrbl � u, there will be a path from x′ to y or x to y′ avoiding u, v which

is shorter than xy � [x′, y′]. Otherwise one of cFblv � u and cFblv � u must be a

subpath of xy � [x′, y′]. Consider the relative position of u′ and v on cFblc
r
bl � u
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and the relative position of u and u′ on xy. If u′ is after v on cFblc
r
bl � u and

u is before u′ on xy, then the path crbly � u′ does not go through u, v, so the

path reaches crbl will reach y′. So we call the procedure of Corollary 5.5 to find

the path (xy � [x′, y′]) � [v, crbl]. u
′ on xy. If u′ is before v on cFblc

r
bl � u and u is

after u′ on xy, then the path xcFbly � u′ does not go through u, v, so the path

reaches cFbl will reach x′. So we call the procedure of Corollary 5.5 to find the

path (xy � [x′, y′]) � [cFbl, v]. When other cases happen, there must be a path

reaching x′ or y′ shorter than xy � [x′, y′], which are similar to the case shown

in Figure 5.9, so we do not need to consider those cases.

• When v is in [cbl, c
L
bl], it is symmetric to the case of v ∈ [cFbl, c

r
bl].

• If v is in the range (crbl, cbl) and u is before or equal to u′, then v cannot be

before cLbl or after cFbl on xy � [x′, y′]. Then u and v are not on the path from

x to cLbl through xy � [x′, y′] and then through cLbly � u′, which is shorter than

xy � [x′, y′] and goes through y′ Thus, we do not need to consider the detour

from x to y avoiding [x′, y′].

• In a similar fashion, we do not need to consider the case when v is in the range

(crbl, cbl) and u is after u′, since the path (xcFbl � u′) then from cFbl to y through

xy � [x′, y′] is shorter than xy � [x′, y′].

• If v is not in xy � u′ and u is before or equal to u′, then the path from x to cLbl

through xy � [x′, y′] concatenating cLbly � u′) does not contain v and is shorter

than xy � [x′, y′], so we can abandon this case.

• Now we consider the last case: if v is not in xy � u′ and u is after u′, then we

know that u /∈ xcbl � u′ and xcbl � u will go through x′. Then we perform a

symmetric procedure for cbr, if it is not in the last case, then we can solve Case

II.4 directly. If it is in the last case (v /∈ xy �u′′ and u is before u′′), we will have
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cbry � u will go through y′. Thus the detour (xy � [x′, y′]) � [cbl, cbr] in B2(x, y)

can cover this case since if the shortest detour goes through cbl or cbr, it must

go through x′ or y′.

5.6 Case III: Two failed vertices on xy

In this case both u and v are on the original shortest path from x to y, where u is

before v in xy. In Section 5.6.1 we consider the situation where |xu| or |vy| is a power

of 2; these queries are easily reducible to several Case I queries. However, in general

we will need to use a fundamentally different approach to answering such queries. In

Section 5.6.2 we introduce a binary partition data structure that is tailored to Case

III queries and in Section 5.6.3 we give the complete Case III query algorithm.

5.6.1 If |xu| or |vy| is a power of 2

W.l.o.g, we only consider the case where |xu| is a power of 2 and v ∈ xy �u. As in

Section 5.4.2 we find vl = ρv(∇v) and vr = ρv(vy), where ∇ is the convergence point

of the paths xy �u and xy. The shortest detour belongs to one of the following types:

(i) The detour that avoids u and the range [vl, vr] in xy � u.

(ii) The detour that reaches some points in (v, vr].

(iii) The detour that reaches some point in [vl, v), but does not reach (v, vr].

The first type can be covered by B2(xy) as shown in Section 5.4.2, and the second

type can also covered by B2(xvr) since (xvr�u)�v is in B2. The third type is reducible

to Case I since |vlv| is a power of 2.

5.6.2 The binary partition structure

When both failed vertices lie on the shortest path xy we need to consider the

possibility that the optimal detour departs from xy before u and returns to xy between
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u and v, possibly departing and returning several times. If we could identify with

certainty just one vertex m between u and v that lies on xy � {u, v}, we could reduce

our Case III query to two Case II queries: xm � {u, v} and my � {u, v}. The binary

partition structure allows us to answer a Case III query directly or reduce it to Case II

queries. For each x, y and i, j ≤ blog |xy|c, we store the following structure Ci,j(x, y):

Let [x′, y′] = [x⊕ 2i, y 	 2j]. Define the following points on [x′, y′]:

mq,r ∈ x′y′, such that |x′mq,r| =
⌊ r

2q
|x′y′|

⌋
,

for all 1 ≤ q ≤ dlog |x′y′|e, 0 ≤ r ≤ 2q

These points define the following ranges:

Rq,0 = [mq,0,mq,1],∀1 ≤ q ≤ dlog |x′y′|e

and

Rq,r = (mq,r,mq,r+1],∀1 ≤ q ≤ dlog |x′y′|e, 1 ≤ r ≤ 2q − 1

where Rq,2q−1 is truncated at y′. See Figure 5.10.

yx x' y'

j2i2

. . .

m1,1

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3 m3,4 m3,5 m3,6 m3,7

Figure 5.10: Different levels of the binary structure

Thus, in level q, we have 2q disjoint ranges Rq,0, Rq,1, ..., Rq,2q−1, and their union

is the whole range [x′, y′]. For every level q, we store in Ci,j(x, y) the length and

number of vertices of the following paths. (Below the superscripts are mnemonics,

where e, o, l, f, and b are for even, odd, last, first, and backwards.) The space needed

for this structure is O(n2 log3 n).
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(i) peq:

peq = min
r∈[0,2q)
r even

xy � (x′y′ \Rq,r)

Let req be the index r for peq. That is, among all paths from x to y that intersect

only one of the even intervals, we store the one with minimum length. Define

leq to be the leftmost vertex of peq in the range Rq,req , that is, leq ∈ peq ∩Rq,req that

minimizes |xleq|.

(ii) poq:

poq = min
r∈[0,2q)

r odd

xy � (x′y′ \Rq,r)

Let roq be the index r for poq. Store soq as the rightmost vertex of poq in the range

Rq,roq .

(iii) pelq : Define the last vertex on peq which is in the subrange Rq,req as Leq. Store the

path:

pelq = xy � (x′y′ \ (Leq,mq,req+1])

i.e., pelq may only use vertices in the range (Leq,mq,req+1].

(iv) pofq : Define the first vertex on poq which reaches the subrange Rq,roq as F o
q . Store

the path:

pofq = xy � (x′y′ \ (mq,roq , F
o
q ))

Parts 5-9 will use the following notation:

Let S and T be two disjoint adjacent subpaths in x′y′, where S precedes T , and

let X = xx′, Y = y′y. Let X ′ be the subpath between X and S and Y ′ be the

subpath between T and Y . See Figure 5.11. Obviously X,X ′, S, T, Y ′, Y are

disjoint and form the path xy. Define the path D(S, T ) to be:
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yx x' y'

X X' S T Y' Y

s tm

Figure 5.11: The form of the path D(S, T ). Here S, T are arbitrary adjacent intervals
on xy and X = xx′ and Y = y′y.

D(S, T ) = min
s∈S,t∈T

(xt�(X ′∪S)) ·(ts�(st∪X∪X ′∪Y ′∪Y \{t, s})) ·(sy�(T ∪Y ′))

That is, D(S, T ) is the shortest path from x to y that passes through T then

S, and that never returns to T and avoids all other vertices in x′y′.

(v) pbq:

pbq = min
r∈[0,2q−2]
r even

D(Rq,r, Rq,r+1)

Let rbq denote the index r for pbq. Store lbq and sbq as the leftmost and rightmost

vertex of pbq in the range Rq,rbq
∪Rq,rbq+1.

(vi) pbfq : Define the first vertex on pbq which reaches the subrange Rq,rbq+1 as F b
q , and

store

pbfq = D(Rq,rbq
, (mq,rbq+1, F

b
q ))

I.e., it further avoids the range [F b
q ,mq,rbq+2] from pbq. Store lbfq as the leftmost

vertex of pbfq in the range Rq,rbq
.
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(vii) pbflq : Let the last vertex on pbfq in the subrange Rq,rbq
be Lbfq and store the path:

pbflq = D((Lbfq ,mq,rbq+1], (mq,rbq+1, F
b
q ))

Figure 5.13 in Section 5.6 illustrates this path.

(viii) pblq : Let the last vertex on pbq in the subrange Rq,rbq
be Lbq and store the path:

pblq = D((Lbq,mq,rbq+1], Rq,rbq+1)

Store sblq as the rightmost vertex of pblq in the range Rq,rbq+1.

(ix) pblfq : Define the first vertex on pblq which is in the subrange Rq,rbq+1 to be F bl
q ,

and store:

pblfq = D((Lbq,mq,rbq+1], (mq,rbq+1, F
bl
q )).

5.6.3 General Cases

We find ul = ρu(xu) and vr = ρv(vy) in constant time. The optimal detour can

belong to one or more of the following types:

• III.1 The detour that reaches some point in (v, vr].

• III.2 The detour that reaches some point in [ul, u).

• III.3 The detour that avoids [ul, vr]

• III.4 The detour that avoids [ul, u] and [v, vr] in xy, but reaches some vertex

between (u, v).

The first and second are considered in Section 5.6.1. The third one can also be

covered by finding x′ = ρx(xu) and y′ = ρy(vy) and then returning xy � [x′, y′] ∈
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B1(x, y). However, things become more complicated when we consider the fourth

case, which means the detour leaves xy before ul and merges with xy after vr and

goes through some vertex between u and v. To deal with this case, we will need the

binary partition structure introduced in the previous subsection.

Now consider the positions of u and v. Find the smallest level q in Ci,j(x, y)

(i = logb|xx′|c, j = logb|y′y|c) in which u and v are not in the same subrange. (This

can be achieved by computing |xu| and |xv|.) Let u ∈ Rq,r and v ∈ Rq,r+1, where r is

even. (If r is odd, then u and v are also in different subranges in level q− 1.) Denote

the rightmost vertex of Rq,r by m. There are 4 possible types for detour III.4 :

• III.4.a The shortest detour only goes through the vertices in Rq,r.

• III.4.b The shortest detour only goes through the vertices in Rq,r+1,

• III.4.c The shortest detour goes through some vertices in Rq,r, then to some

vertices in Rq,r+1.

• III.4.d The shortest detour goes through some vertices in Rq,r+1, then to some

vertices in Rq,r but does not reach m.

In Case III.4.a there are some possible subcases depending on the relative positions

of u and the path peq. See Figure 5.12.

l yx vu L m

Figure 5.12: The illustration of the positions of u, L and m.

• III.4.a.i If peq does not go through Rq,r in Ci,j(x, y), then there exists another

path that only goes through Rq,req disjoint to Rq,r but shorter than any path
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only going through Rq,r. So peq goes through some vertices in [x′, y′] but does

not touch the range [u, v] in xy. Thus, it has already been covered by Cases

III.1 or III.2, as we discussed above.

• III.4.a.ii If Leq is before u in xy, then peq must be longer than ‖xLeq‖+‖Leqy�[u, v]‖,

which will go through ul. This possibility was dealt with in Case III.2.

• III.4.a.iii If u is before leq, p
e
q is the shortest detour for Case III.4.a. (Remember

here leq is the leftmost vertex of peq in the range Rq,req .)

• III.4.a.iv If u ∈ [leq, L
e
q], there are two types of detours depending on whether

the shortest detour goes through the range (u, Leq]. From the definition of peq, a

shortest path that travels through some vertices in (u, Leq] must travel through

Leq. Thus, xy � {u, v} will be the concatenation of the paths from x to Leq and

from Leq to y avoiding u and v, which are both in Case II. For the detours not

going through the range (u, Leq], p
el
q can cover this case.

The Case III.4.b is symmetric to Case III.4.a: just replace peq by poq, L
e
q by F o

q , leq

by soq, and Rq,r by Rq,r+1. For the Case III.4.c, the shortest detour must go through

the vertex m which separates these two ranges Rq,r and Rq,r+1. We find the paths

from x to m and from m to y avoiding u and v, which are both in Case II.

l yx su L m F v

yx L F

Figure 5.13: The fourth type in Case III

For Case III.4.d, there are some possible subcases depending on the relative posi-

tions of u, v and the path pbq. See Figure 5.13:
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• III.4.d.i If pbq does not go through Rq,r or Rq,r+1, i.e., r 6= rbq, then the shortest

detour has already been covered by Cases III.1 or III.2

• III.4.d.ii If Lbq is before u or F b
q is after v in xy, we have already considered this

situation in Cases III.1 and III.2.

• III.4.d.iii If u ∈ [lbq, L
b
q], then any detours that reach some vertex in (u, Lbq] will

go through Lbq. To cover the possibility that the shortest detour goes through

some vertices in (u, Lbq], we find the detours from x to Lbq and from Lbq to y

avoiding u and v, which are both in Case II. To cover the possibility that the

shortest detour avoids (u, Lbq], we can see pblq satisfies this condition. Then in

the path pblq , there are some subcases:

– If v is after sblq in xy, pblq is the shortest detour for this case.

– If F bl
q is after v in xy, pblq must be longer then ‖xF bl

q � [u, v]‖ + ‖F bl
q y‖,

which will go through vr. This situation has been covered by Case III.2.

– If v ∈ [F bl
q , s

bl
q ], then any detours which reach some vertex in [F bl

q , v) will

go through F bl
q , so it can be covered by xF bl

q � {u, v} · F bl
q y � {u, v}, which

are both in Case II. Furthermore we can use the path pblfq to cover the case

in which it does not go through F bl
q .

• III.4.d.iv If v ∈ [F b
q , s

b
q], it is symmetric to the Case III.4.c.iii.

• III.4.d.v If u is before lbq and v is after sbq, then pbq is just the shortest detour for

III.4.d.

This concludes the query algorithm for Case III. The total running time will be

O(log n), which comes from the auto-reductions in Case I and the time needed to

locate vl and vr.
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CHAPTER VI

Dynamic Subgraph Connectivity Oracles

In the first part of this chapter, we will describe a worst-case dynamic subgraph

connectivity structure with Õ(m4/5) vertex update time and Õ(m1/5) query time. We

will utilize the worst-case edge update structure [28] as a component and maintain

a multi-level hierarchy instead of the two-level one in [10]. In general, we will get

faster update time for this structure if there are faster worst-case edge update con-

nectivity structures. In the second part of this chapter, we will describe a new linear

space subgraph connectivity structure with Õ(m2/3) amortized vertex update time

and Õ(m1/3) query time. 1

Techniques. The best worst-case edge update connectivity structure [28] so far

has O(n1/2) update time, much larger than the polylogarithmic amortized edge update

structure [38, 59]. Inspired by [10], we will divide vertices into several levels by their

degrees. In “lower” levels having small degree bounds, we maintain an edge update

connectivity structure for the subgraph on active vertices at these levels. In “higher”

levels having large degree bounds and small numbers of vertices, we only keep the

subgraph at those levels and run a BFS to obtain all the connected components after

an update. To reflect the connectivity between high-level vertices through low-level

vertices, we will add two types of artificial edges to the high-level vertices. (a). In

1These results appears in my paper “New Data Structures for Subgraph Connectivity” [20] in
ICALP 2010.
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the “path graph”, update on every vertex will change the edge set, but the number

of edges changed is only linear to the degree of that vertex. (b). In the “complete

graph”, only low-level vertex updates will change the edge set, but the number of

edges changed is not linear to the degree. In our structure, we only use the “complete

graph” between top levels and bottom levels to bound the update time.

6.1 Basic Structures

In this section, we will define several dynamic structures as elements of the main

structures. If we want to keep the connectivity of some vertex set V1 through a disjoint

set V0, some “artificial edges” may need to be added into V1. For every spanning tree

in V0, the vertices in V1 adjacent to this spanning tree need to be connected. We

will use the ET-tree ideas from Henzinger and King [37] to make such artificial edges

efficiently dynamic when the spanning forest of V0 changes. Here the artificial edges

of V1 associated with a spanning tree in V0 will form a path ordered by the Euler

Tour of that tree.

6.1.1 Euler Tour List

For a tree T , let L(T ) be a list of its vertices encountered during an Euler tour

of T [37], where we only keep any one of the occurrences of each vertex. Note that

L(T ) can start at any vertex in T . Now we count the number of cut/link operations

on the Euler tour lists when we cut/link trees. One may easily verify the following

theorem:

Theorem 6.1. When we delete an edge from T , T will be split into two subtrees T1

and T2. We need at most 2 “cut” operations to split L(T ) into 3 parts, and at most

1 “link” operation to form L(T1) and L(T2).

When we add an edge to link two tree T1 and T2 into one tree T , then we need
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to change the start or end vertices of L(T1) and L(T2) and link them together to get

L(T ), which will take at most 5 “cut/link” operations.

6.1.2 Adjacency Graph

In a graph G = (V,E), let V0, V1, V2, ..., Vk be disjoint subsets of V , and let F

be a forest spanning the connected components of the subgraph of G induced by the

active vertices of V0. We will construct a structure R(G,F, V1, V2, ..., Vk) containing

artificial edges on the active vertices of the sets V1, V2, ..., Vk which can represent the

connectivity of these vertices through V0.

Definition 6.2. For 1 ≤ i ≤ k, the active adjacency list AG(v, Vi) of a vertex

v ∈ V0 is the list of active vertices in Vi which are adjacent to v in G. The active

adjacency list AG(T, Vi) induced by a tree T ∈ F is the concatenation of the lists

AG(v1, Vi), AG(v2, Vi), ..., AG(vk, Vi) where L(T ) = (v1, v2, ..., vk). Note that a vertex

of Vi can appear multiple times in AG(T, Vi).

Definition 6.3. Given a list l = (v1, v2, ..., vk) of vertices, define the edge set P (l) =

{(vi, vi+1)|1 ≤ i < k}.

Definition 6.4. In the structure R(G,F, V1, V2, ..., Vk), for a tree T ∈ F , we maintain

the list AG(T ) of active vertices which is the concatenation of the lists AG(T, V1),

AG(T, V2), ..., AG(T, Vk). Then the set of artificial edges in R(G,F, V1, V2, ..., Vk) is

the union
⋃
T∈F P (AG(T )). We call the edges connecting different AG(T, Vi) (1 ≤

i ≤ k) “inter-level edges”. So the degree of a vertex v of Vi (1 ≤ i ≤ k) in

R(G,F, V1, V2, ..., Vk) is at most twice its degree in G, and the space of this struc-

ture is linear to G.

We can see that deleting a vertex in l will result in deleting at most two edges and

inserting at most one edge in P (l), and inserting a vertex in l will result in inserting
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at most two edges and deleting at most one edge in P (l). Also, one can easily verify

the following properties of the adjacency graph:

Note 6.5. For a spanning tree T ∈ F , the vertices in AG(T, Vi) are connected by the

subset of R(G,F, V1, V2, ..., Vk) induced only by Vi, for all 1 ≤ i ≤ k.

Lemma 6.6. For any two active vertices u, v in V1 ∪ V2 ∪ ... ∪ Vk, if there is a path

with more than one edge connecting them, whose intermediate vertices are active and

in V0, then they are connected by the edges R(G,F, V1, V2, ..., Vk).

Also if u, v are connected in R(G,F, V1, V2, ..., Vk), they are connected in the sub-

graph of G induced by the active vertices.

Lemma 6.7. The cost needed to maintain this structure:

(i) Making a vertex v active or inactive in V1 ∪ V2 ∪ ... ∪ Vk will require inserting

or deleting at most O(min(degG(v), |V0|)) edges in R(G,F, V1, V2, ..., Vk). (Here

degG(v) denotes the degree of v in the graph G.)

(ii) Adding or removing an edge in F will require inserting or deleting O(k) edges

to this structure.

(iii) Making a vertex v ∈ V0 active or inactive will require inserting or deleting

O(k · degG(v)) edges.

(iv) Inserting or deleting an “inter-level” edge (u, v) in G where u ∈ V0, v ∈ V1 ∪

V2 ∪ ... ∪ Vk will require inserting or deleting at most 3 edges in R(G,F, V1, V2,

..., Vk). (G may be not the original graph, but another dynamic graph.)

6.1.3 ET-list for adjacency

Here we describe another data structure for handling adjacency queries among a

dynamic spanning tree F and a disjoint vertex set V1. By this structure, when we
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Figure 6.1: In this figure, the black points denote active vertices while the white points
denote inactive vertices. Here we show a tree T and a set of vertices in
V1 adjacent to T . The figure (a) shows the edge set R(G, T, V1), in which
the number on vertices shows the order of vertices in L(T ). We can see
the artificial edges added to V1 can reflect the connectivity through T
between vertices of V1, and the degree of a vertex v in V1 in this edge
set is linear to the degree of v in G. The figure (b) shows a complete
graph which reflect the connectivity through T on V1 used in [10] and in
ĒT in this chapter. So we do not need to change any edges in (b) when
switching a vertex in V1, but we may change most edges when updating
a vertex in T .

intend to obtain all the vertices in V1 adjacent to a tree T ∈ F , we do not need to

check all the edges connecting T to V1, but only check whether v is adjacent to T for

all v ∈ V1. This takes O(|V1|) time for finding all such vertices. Note that since this

structure keeps all the vertices in V1 no matter whether they are active or not, so we

do not need to update it when switching a vertex in V1.

Theorem 6.8. Let G = (V,E) be a graph and V0, V1 be two disjoint subsets of V . Let

F be a spanning forest on the subgraph of G induced by the active vertices of V0. There

is a data structure ET (G,F, V1) with linear size that accepts edge inserting/deleting

updates in F . Given a vertex v ∈ V1 (active or inactive) and a tree T ∈ F , we can

answer whether they are adjacent in G in constant time. The update time for a vertex

v in V0 of this structure is O(degG(v)|V1|).

Proof. In ET (G,F, V1), for every vertex v ∈ V1 and every T ∈ F , we keep a list of

vertices in T adjacent to v ordered by L(T ). From Theorem 6.1, when we link two

trees or cut a tree into two subtrees in F , it takes O(V1) time to merge or split the
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lists for all v ∈ V1. When a vertex in V0 is turned active or inactive, we need to

add/delete degG(v) edges in F and add/delete that vertex in the lists for all v ∈ V1.

The space will be O(m) since every edge will contribute at most one appearance of

vertex in the lists.

6.2 Dynamic Subgraph Connectivity with Sublinear Worst-

case Update Time

In this section, we will describe our worst-case dynamic subgraph connectivity

structure with sublinear update time. We divide the vertices into several levels by

their degrees. The structure of adjacency graph in Section 6.1.2 will be used to reflect

the connectivity between high-level vertices through low-level vertices. We will use

the dynamic spanning tree structure of O(n1/2) worst-case edge update time [28] to

keep the connectivity of vertices in low-levels of lower degree bounds. However, in

high-levels with high degree bounds, we only store the active vertices and edges and

run a BFS after each update to obtain the new spanning trees.

Theorem 6.9. Given a graph G = (V,E), there exists a dynamic subgraph connec-

tivity structure occupying Õ(m) space and taking Õ(m6/5) preprocessing time. We

can switch every vertex to be “active” or “inactive” in this structure in Õ(m4/5) time,

and answer the connectivity between any pair of vertices in the subgraph of G induced

by the active vertices in Õ(m1/5) query time.

6.2.1 The structure

First we divide all the vertices of G into several parts based on their degrees in

the whole graph G, so the sets are static.

• VA: The set of vertices of degrees less than m1/5

• VB: The set of vertices v satisfying m1/5 ≤ degG(v) < m3/5.

113



• VC : The set of vertices v satisfying m3/5 ≤ degG(v) < m4/5.

• VD: The set of vertices v satisfying degG(v) ≥ m4/5.

So we can see that |VB| ≤ 2m4/5, |VC | ≤ 2m2/5, |VD| ≤ 2m1/5.

In order to get more efficient update time, we continue to partition the set VB into

V0, V1, V2, ..., Vk where k = b2
5

log2mc and:

Vi = {v|v ∈ VB, 2im1/5 ≤ degG(v) < 2i+1m1/5},∀0 ≤ i ≤ k (6.1)

Thus, |Vi| ≤ 21−im4/5. For all the disjoint vertex sets VA, V0, V1, ..., Vk, VC , VD

ordered by their degree bounds, we say that a vertex u is higher than a vertex v if u

is in the set of higher degree bound than v.

For the set VA, the following structure will be built to keep the connectivity

between vertices in other sets through vertices of VA:

• Maintain a dynamic spanning forest FA on the subgraph of G induced by the

active vertices of VA, which will support O(
√
n) edge update time. [28]

• Maintain the edge set (and the structure) EA = R(G,FA, V0, V1, ..., Vk, VC).

• Maintain the structures ET (G,FA, VC),ET (G,FA, VD) so that we can find the

vertices of VC and VD (including active and inactive) adjacent to a tree T of

FA in G in O(|VC |) time by Theorem 6.8. Denote the vertices of VC and VD

adjacent to T by VC(T ) and VD(T ), respectively.

• For every spanning tree T ∈ FA, arbitrarily choose an active vertex uT ∈ VB

which is adjacent to T in G (if there is one). Call it the “representative” vertex

of T . Define the edge set ĒT = {(u, v)|u ∈ VC(T ) ∪ VD(T ), v ∈ VD(T )} ∪

{(uT , v)|v ∈ VD(T )}.
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• Define G0 = (V,E∪EA∪
⋃
T∈FA ĒT ). Note that EA only contains edges connect-

ing active vertices, but ĒT may contain edges associate with inactive vertices.

When considering the connectivity of G0, we only consider the subgraph of G0

induced by the active vertices and ignore the inactive vertices.

We have added artificial edges on the vertices of VB, VC , VD to G0 so that the sub-

graph of G0 induced by the active vertices of these sets can represent the connectivity

in the dynamic graph G. Note that we do not store the set ĒT for every T ∈ FA, but

only store the final graph G0 to save space. We can get every ĒT efficiently from the

adjacency lists.

Then we will build structures for the connectivity on VB∪VC∪VD through V0, ..., Vk.

For i = 0 to k, perform the following two steps:

(i) Maintain a dynamic spanning forest Fi on the subgraph of Gi induced by the

active vertices of Vi. The structure will support O(
√
|Vi|) = O(m2/5/2i/2) edge

update time. [28]

(ii) Maintain the edge set Ei+1 = R(Gi, Fi, Vi+1, ..., Vk, VC , VD), and define the graph

Gi+1 = (V,E(Gi) ∪ Ei+1), where E(Gi) is the set of edges in Gi.

We denote H = Gk+1 which contains all the artificial edge. Note that only the

edges connecting vertices higher than Vi will be added to Gi+1, so the spanning

forest Fi (FA) still spans the connected components of the subgraph of H induced

by the active vertices of Vi (VA), and also EA = R(H,FA, V0, V1, ..., Vk, VC), Ei+1 =

R(H,Fi, Vi+1, ..., Vk, VC , VD) for all 0 ≤ i ≤ k.

Discussion: Why we need ĒT but not simply construct EA = R(G,FA,

V0, ..., Vk, VC , VD)? Since there are no specific bounds for |VD| and the number of

spanning trees in FA, if EA = R(G,FA, V0, ..., Vk, VC , VD), from Lemma 6.7(1), the

update time may become linear when we switch a vertex in VD. Remind that ĒT
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contains the edges connecting active and inactive vertices in VD, so we do not need

to change the edge sets ĒT when switching a vertex of VD.

When we consider the connectivity of vertices of VC and VD in H after an update,

we just run a BFS on the subgraph of H induced by the active vertices of VC and VD

which takes O((|VC | + |VD|)2) = O(m4/5) time and get a spanning forest FCD. Due

to page limit, some proofs of the following lemmas are omitted and will be given in

the full version.

Lemma 6.10. The space for storing H is Õ(m), and it takes Õ(m6/5) time to ini-

tialize this structure.

Lemma 6.11. (Consistency of ĒT ) For any two active vertices u ∈ V \ VA, v ∈ VD,

if there is a path longer than one connecting them whose intermediate vertices are all

active and in VA, then for some T ∈ FA, they are connected by the subset of edges

ĒT ∪ EA induced by the active vertices.

Proof. From the conditions, all the intermediate vertices on the path between u and

v will be in the same spanning tree T ∈ FA. So if u ∈ VC ∪ VD, there is an edge

connecting u and v in Ē(T ). If u ∈ VB and v ∈ VD, by Lemma 6.6, u will be

connected to the representative vertex uT in EA, and there is an edge connecting uT

and v directly in Ē(T ).

From Lemma 6.6 and 6.11, the artificial edges in higher level generated by a

spanning tree in a lower level can reflect the connectivity between active higher level

vertices through this spanning tree. The subgraph of H induced by a subset will

contain all the artificial edges and original edges of G, so it can reflect the connectivity

in this subset and lower sets between its active vertices. We have the following lemma:

Lemma 6.12. For any two active vertices u, v in the set Vi (0 ≤ i ≤ k + 1) or

higher, u and v are connected in the subgraph of H induced by the active vertices of

Vi ∪ ... ∪ Vk ∪ VC ∪ VD if and only if they are connected in the subgraph of G induced
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by the active vertices. Particularly for u, v in VC ∪ VD, u and v are connected in the

the subgraph of H induced by the active vertices of VC ∪ VD if and only if they are

connected in the subgraph of G induced by the active vertices.

Proof. The “only if” part is obvious, since every artificial edge we add into H can

reflect the connectivity in G from Lemma 6.6 and 6.11.

Turning to the “if” part, we prove the first statement by induction. For i = 0,

for any two active u, v ∈ V \ VA, if they are connected in G by a path p and all

the intermediate vertices of p are in VA, from Lemma 6.6 and Lemma 6.11, they are

connected by EA ∪ (
⋃
T∈FA ĒT ) when p is longer than 1. And they are connected by

E if p consists of a single edge. By concatenation, any p can be divided into such

subpaths, so u and v are connected in the subgraph of G0 (thus H = Gk+1) induced

by the active vertices of VB, VC , VD.

Suppose the statement holds for i = q, consider the case that i = q + 1. For any

two active vertices u, v in the set Vq+1 or higher, if they are connected in the dynamic

graph G, by the inductive assumption, they are connected by a path p in H induced

by the active vertices of Vq, ..., Vk, VC , VD. If all the intermediate vertices of p are

in Vq, from Lemma 6.6, u and v are connected by Eq+1 if p is longer than 1 or by

a single edge in H otherwise. Similarly, by concatenation, the statement holds for

i = q + 1.

6.2.2 Switching a vertex

In this section we show how this structure is maintained in Õ(m4/5) time when

changing the status of a vertex v. From Lemma 6.7(4), deleting or inserting an inter-

level edge in H may cause changing at most 3 higher inter-level edges in the adjacency

graph. However, there are at most Θ(log n) vertex sets in this structure, so we need

other schemes to bound the number of edges updated during a vertex update. Note

that after any vertex update, we will run a BFS on the active vertices of VC and VD
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in H = Gk+1.

When v is in VB.

Lemma 6.13. The degree of any vertex of Vi in H is at most (i+ 1)2i+2m1/5.

Lemma 6.14. Changing the status of a vertex v in Vi will not affect the lower-level

dynamic spanning forests FA, F0, F1, ..., Fi−1. It can update at most

O(2im1/5i log3 n) = Õ(2im1/5) edges in Fi, Fi+1, ..., Fk, FCD, respectively. Similarly,

changing the status of a vertex v in VA can update at most Õ(m1/5) edges in FA, F0, F1,

..., Fk, FCD.

Proof. Changing the status of a vertex in Vi can only lead to inserting or deleting

edges in H associated with a vertex in Vi or higher levels. Thus it will not affect the

dynamic spanning forests F0, F1, ..., Fi−1. There are two types of updates:

• Updating v affects a tree T ∈ Fi, so we need to update the list for T in

R(H,Fi, Vi+1, ..., Vk, VC , VD). From Lemma 6.7(3) and 6.13, it results in in-

serting/deleting O(i · k2im1/5) edges in Fi+1, ..., Fk, FCD or inter-level edges in

H.

• From Lemma 6.7(4), updating an inter-level edge e from a spanning tree T ′ to

a higher level vertex in the previous step will change other edges in H. Here we

bound the number of such edges. Let T ′ ∈ Fj, then in R(H,Fj, Vj+1, ..., Vk, VC ,

VD), there are at most O(k) inter-level edges induced by T ′, and from Note 6.5,

there is only one spanning tree adjacent to T ′ in every higher level in H. So

the number of inter-level edges changed by e is O(k2). So we need to update

O(2im1/5i log3 n) such inter-level edges. From Lemma 6.7(4), the total number

of edges updated in H is still Õ(2im1/5).
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Thus, the time needed to update the graph H and the dynamic spanning forests

FA, F0, ..., Fk when switching a vertex in Vi is equal to Õ(2im1/5)|Vi|1/2 = Õ(2(1+i)/2m3/5).

When i = k = b2/5 logmc, the time bound reaches Õ(m4/5).

When v ∈ VB, if v is the representative vertex of a tree T ∈ FA and v is turned

inactive, we need to find another active vertex as the representative for T . If v is

turned active and there is no active vertices of VB associated with a tree T ∈ FA

adjacent to v, v is chosen as the representative vertex of T . In both cases, we need

to find all the vertices in VD adjacent to T and update ĒT , which takes O(|VD|) =

O(m1/5) time using ET (G,FA, VD) and Theorem 6.8. Since v is adjacent to O(m3/5)

spanning trees in FA, this procedure takes O(m4/5) time.

When v is in VA. We follow these steps, which also takes Õ(m4/5) time:

• From Lemma 6.14, changing the status of a vertex v in VA may update Õ(m1/5)

edges in H on VB ∪ VC , and it may update Õ(m1/5) edges in FA, F0, ..., Fk,

FCD, so the time needed for this step is Õ(
√
nm1/5) = Õ(m7/10).

• Maintain the structures ET (G,FA, VC) and ET (G,FA, VD) after updating FA

will take O(m3/5) time, because at most m1/5 edges will be changed in FA, and

from Theorem 6.8, every link/cut operation in FA will take O(|VC | + |VD|) =

O(m2/5) time.

• Consider the edges in ĒT for a tree T ∈ FA connecting VB and VD. For all the old

spanning trees T of FA, delete Ē(T ) from H. For ĒT ′ on every new spanning tree

T ′ in FA after cutting or linking, we find a new active representative vertex in

VB and then construct ĒT ′ . Since there can be at most m1/5 link/cut operations

in FA, this may change at most m1/5|VD| = O(m2/5) edges in all the edge sets

ĒT and H.

• Consider all other edges in ĒT for T ∈ FA. The number of edges changed in

ĒT when performing a cut/link in FA is O((|VC |+ |VD|)|VD|) = O(m3/5). So in
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fact we need to update O(m4/5) such edges in H.

When v is in VC or VD Note that the sets ĒT do not need to update. If v ∈ VC ,

update the structures R(H,Fi, Vi+1, ..., Vk, VC , VD) (0 ≤ i ≤ k) and R(G,FA, V0, V1, ...,

Vk, VC) takes Õ(m4/5) time since the degree of v is bounded by m4/5. If v ∈ VD, we

still need to update R(H,Fi, Vi+1, ..., Vk, VC , VD) (0 ≤ i ≤ k), since the size of VB is

bounded by 2m4/5, from Lemma 6.7(1), this will also take Õ(m4/5) time.

Discussion: Why Õ(m4/5) in the worst-case update time? The O(n1/2)

worst-case edge update connectivity structure [28] is the main bottleneck for our

approach. The set of vertices of degrees in the range [p, q] will contain ≤ 2m/p

vertices, so the vertex update time will be Õ(q(m/p)1/2) ≥ Õ(p1/2m1/2), if we use the

edge update structure. However, when p is large enough, we can run a BFS to get

connected components after a update, which takes Õ(m2/p2) time. When balancing

these two, the update time will be Õ(m4/5). Also, we can get Õ(m4/5+ε) update time

and Õ(m1/5−ε) query time by simply changing the degree bound between VC and VD

to O(m1/5−ε).

6.2.3 Answering a query

To answer a connectivity query between u and v in the subgraph of G induced by

the active vertices, first find the spanning trees T (u) and T (v) in FA, F0, ..., Fk, FCD

containing u and v, respectively. Then find all higher level spanning trees connect-

ing to T (u) or T (v) and check whether T (u) and T (v) are connected to a common

spanning tree in higher levels.

By symmetry, we only discuss finding such spanning trees for u. If u ∈ VA,

we first find T (u) ∈ FA which contains u, and then find the spanning trees in

F0, F1, ..., Fk, FCD which is adjacent to the spanning tree T (u) in H. By Note 6.5

and Lemma 6.11, there is only one tree in each forest satisfying this condition.

Since we maintain the full active adjacency lists AG(T, V0), ..., AG(T, Vk), AG(T, VC)
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in R(G,FA, V0, V1, ..., Vk, VC), we can find the trees T0, ..., Tk, TC in F0, ..., Fk, FCD ad-

jacent to T (u) in G in O(k) = O(log n) time. Those trees are also the ones adjacent

to T in H. To find spanning trees in FCD adjacent to T that only contain active

vertices in VD, we need to check whether u′ is adjacent to T for all active u′ ∈ VD by

ET (G,FA, VD), which takes O(m1/5) time.

For any spanning tree Ti ∈ Fi we have found in VB or u itself is in a tree Ti

of VB, we recursively run this procedure and find all the trees in Fi+1, ..., Fk, FCD

connecting to Ti in H, this will take O(log n) time. Since u can only be connected to

one spanning tree in a higher level forest, the time for all Ti will be O(log2 n). After

this, we check whether there is a common tree in the set of trees connecting to u and

v that we found. The running time for the query algorithm is Õ(m1/5).

The correctness of this query algorithm is easy to see from Lemma 6.12. If we

find a common tree connecting to u and v, then u, v must be connected. If u, v are

connected in the dynamic G, let w be the highest vertex on the path connecting u, v,

then u, v will be connected to the tree containing w in the subgraph without higher

vertices than w, so we have found such spanning tree in our procedure. A complete

proof of the correctness will be given in the full version.

6.3 Dynamic Subgraph Connectivity with Õ(m2/3) Amortized

Update Time and Linear Space

In this section, we briefly describe a dynamic subgraph connectivity structure of

Õ(m2/3) amortized update time and Õ(m1/3) query time, which improves the struc-

ture by Chan, Pǎtraşcu and Roditty [10] from Õ(m4/3) space to linear space.

Theorem 6.15. There is a dynamic subgraph connectivity structure for a graph G

with Õ(m2/3) amortized vertex update time, Õ(m1/3) query time, O(m) space and

Õ(m4/3) preprocessing time.
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As before, define the subsets of vertices in V by their degrees:

• VL: vertices of degrees at most m2/3.

• VH : vertices of degrees larger than m2/3. So |VH | < 2m1/3.

As in [10], we divide the updates into phases, each consisting of m2/3 updates. The

active vertices in VL will be divided into two sets P and Q, where P only undergoes

deletions and Q accepts both insertions and deletions. At the beginning of each phase,

P contains all the active vertices in VL and Q is empty. So when a vertex of VL is

turned active, we add it to Q. At the end of that phase, we move all the vertices of

Q to P and reinitialize the structure. So the size of Q is bounded by m2/3. We also

define the set Q̄ to be all the vertices that have once been in Q within the current

phase, so |Q| ≤ |Q̄| ≤ m2/3. Notice that P and Q only contain active vertices but VH

and Q̄ may contain both active and inactive vertices. Then we maintain the following

structures for each phase:

• Keep a dynamic spanning forest F in the subgraph of G induced by P which

supports edge deletions in polylogarithmic amortized time. [59]

• Maintain the active adjacency structure EQ = R(G,F,Q).

• Maintain the structure ET (G,F, VH).

• For every edge e = (u, v) where u ∈ P and v ∈ Q̄∪VH within the current phase,

let T be the spanning tree of F containing u. Then for every vertex w in VH

adjacent to T , we add an edge (v, w) into the set EH . Since EH ∈ (Q̄∪VH)×VH ,

we just need O(m) space to store EH .

• Construct a dynamic graph G′ containing all the active vertices of Q∪ VH , and

all the edges in E ∪ EQ ∪ EH connecting two such vertices. So the number

of vertices in G′ is O(m2/3). Maintain a dynamic spanning forest F ′ of G′
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which supports insertions and deletions of edges in polylogarithmic amortized

time. [59]

We can see both EQ and EH take linear space to store, and from Theorem 6.8 and

the dynamic structure for edge updates [59], the total space is still linear. It takes

linear time to initialize F,EQ, ET (G,F, VH), G′ and Õ(m4/3) time to initialize EH .

To see the consistency of this structure, we have the following lemma:

Lemma 6.16. Two active vertices of Q ∪ VH are connected in G′ if and only if they

are connected in the subgraph of G induced by the active vertices.

Proof. If there is an edge in EQ or EH connecting u and v, u and v are connected in

the subgraph of G induced by the active vertices. So the“only if” direction is obvious.

When two active u, v ∈ Q∪ VH are connected through a connected component in

P , if u, v ∈ Q they will be connected by the edges of EQ by Lemma 6.6, otherwise

one of them is in VH , then there is an edge in EH connecting u and v directly. Thus

when u, v ∈ Q ∪ VH are connected in G, the path can be divided into parts of the

above case and original edges in E, so u and v are still connected in G′.

When updating a vertex in VL, we analyze the update time by structures:

Maintaining F and EQ. When deleting a vertex from P , we may split a spanning

tree of F into at most m2/3 subtrees. So it takes Õ(m2/3) time to maintain EQ. When

updating a vertex in Q, we need to update O(m2/3) edges of EQ from Lemma 6.7. So

it takes Õ(m2/3) time to update F ′.

Maintaining EH. We need to update EH when a new vertex is inserted to Q̄ or

when a vertex is deleted from P . When a new vertex is inserted to Q̄, we check all the

edges associated with it and find the spanning trees in F adjacent to it, then update

EH . When deleting a vertex of P , we find the vertices of VH adjacent to T which

contains that vertex and delete all the outdated edges of EH . It is hard to bound the

time for updating EH within one update, so we consider the total time needed in one
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phase. For every edge e = (u, v) where u ∈ P , when v appears in Q̄ or VH , we add

O(m1/3) edges (v, w) to EH where w is in VH and adjacent to the spanning tree in F

containing u. As long as u is still in P , the number of such w in VH can only decrease

since P supports deletion only. So only deletions will take place for the edges in EH

induced by e. Thus, updating EH and the corresponding F ′ will take Õ(m4/3) time

per phase, so we get Õ(m2/3) amortized time.

Maintaining ET (G,F, VH). By the same reasoning, maintaining the structure

ET (G,F, VH) for one vertex in VH within one phase will take Õ(m) time.

Updating a vertex in VH. We only need to maintain the graph G′ when

updating a vertex in VH , which will take Õ(m2/3) time.

Answering a query of connectivity between u and v. If both are in Q∪VH ,

by Lemma 6.16, we check whether they are connected in G′. Otherwise suppose u ∈ P

(or v), we need to find an active vertex u′ (or v′) in Q ∪ VH which is adjacent to the

spanning tree T ∈ F containing u (v). Similarly to the worst-case structure, we need

to check all the active vertices in VH whether they are adjacent to T by ET (G,F, VH),

which takes O(m1/3) time. Thus when only u ∈ P , u, v are connected iff u′ and v are

connected in G′ since the path must go through a vertex in G′. When both of them

are in P , they are connected in G iff they are in the same tree of F or u′ and v′ are

connected in G′.
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CHAPTER VII

All-Pair Bounded-Leg Shortest Paths

In this chapter, we consider the all-pair bounded-leg shortest paths problem. In

a weighted, directed graph an L-bounded leg path is one whose constituent edges

have length at most L. For any fixed L, computing L-bounded leg shortest paths

is just as easy as the standard shortest path algorithm. We give an algorithm for

preprocessing a directed graph in order to answer approximate bounded leg distance

and bounded leg shortest path queries. In particular, we can preprocess any graph in

O(n3ε−1 log3 n) time, producing a data structure with size O(n2ε−1 log n) that answers

(1 + ε)-approximate L-bounded leg distance queries in O(log log n) time for any pair

of vertices u, v and leg bound L. If the corresponding (1 + ε)-approximate shortest

path has l edges, it can be returned in O(l log log n) time. 1These bounds are all

within polylog(n) factors of the best standard all-pairs shortest path algorithm and

improve substantially the previous best bounded-leg shortest path algorithm, whose

preprocessing time and space are O(n4) and Õ(n2.5). [53]

7.1 The notations

Let G = (V,E) be a directed graph with a length function w : E → R+. Our aim

is to construct a table such that for every ordered pair of vertices (u, v) in V and any

1This result appears in Duan and Pettie’s paper “Bounded-leg Distance and Reachability Ora-
cles” [21] in SODA 2008.
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positive real number L ∈ R+, we can obtain a (1 + ε)-approximate L-bounded leg

distance from that table. Denote the L-bounded leg distance between u, v ∈ V by

δL(u, v). We say y is a (1 + ε)-approximation of x when x ≤ y ≤ (1 + ε)x.

Let E0 = (e1, e2, ..., em) be the list of edges in increasing order. Let Gi = (V,E[1,i]),

where E[x,y] = {ex, ex+1, ..., ey}, and abbreviate δGi(u, v) by δi(u, v).

In this chapter, v is reachable from u in a graph G is represented by u
G→ v, and v

is not reachable from u in G by u
G9 v. The bottleneck distance from u to v is defined

by

L(u, v) = min{w(ei)|u
Gi→ v}

If u
G9 v, then define L(u, v) =∞.

As the leg bound L increases the set of usable edges grows. Therefore, the length of

the shortest path from u to v in this insert-only dynamic subgraph can only decrease.

When L ≥ w(em), the subgraph becomes the entire graph G. We can see that all

edges in the path from u to v under leg bound L(u, v) are no longer than L(u, v), so

δL(u,v)(u, v) ≤ (n − 1)L(u, v). Any path from u to v in G must contain an edge no

shorter than L(u, v), so δG(u, v) ≥ L(u, v). Thus, we only need log1+ε(n−1) different

distances for each pair of vertices to be able to return a (1 + ε)-approximate distance

under any leg bound. The main problem is how to construct this set of distances

efficiently. An obvious solution is to insert one edge at a time, then check in O(1)

time for every pair of vertices whether its distance changes. The total time for this

trivial algorithm is O(mn2). We will use a natural divide-and-conquer method to

reduce the running time to O(1
ε
n3 log3 n).

Our aim is to construct, for every pair of vertices (u, v), a set of bounded-leg

distance entries: D(u, v) = {(L1, d
L1(u, v)), (L2, d

L2(u, v)), ..., (Lk, d
Lk(u, v))}, where

L(u, v) = L1 < L2 < ... < Lk = w(em) and dLi(u, v) is an approximation of the

distance from u to v under leg bound Li. For any leg bound L, the distance between

u and v should be (1 + ε)-approximated by some dLi(u, v) ∈ D(u, v) where Li is the
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maximum among those Li ≤ L. Denote this by dL(u, v) = dLi(u, v). If L < L1,

dL(u, v) = ∞. Moreover, for every (u, v), we guarantee that |D(u, v)| ≤ 2 log1+ε n,

then |D(u, v)| = O(log1+ε n), so for every distance query under leg bound L, we can

find dL(u, v) in O(log log1+ε n) time.

Same structure for exact BLSP?

Since there can be Θ(n2) different edges in the graph, the distance between any

pair of vertices can change at most O(n2) times, that is, at most O(n4) different

bounded-leg distances needed if our data structure must store every distance that it

could return (i.e. no addition).

However, it is not clear whether such a graph exists. In fact, if there is a graph

H in which there exists a pair of vertices (u, v) having Θ(n2) different bounded-leg

distances, then we can add 2n vertices in H: {u1, u2, . . . , un} and {v1, v2, . . . , vn}, and

also directed edges with very short lengths {(u1, u), (u2, u), . . . , (un, u)} and

{(v, v1), (v, v2), . . . , (v, vn)}. Then in this extended graph H ′, there are 3n vertices,

and for any pair of ui and vj, their distance varies Θ(n2) times when leg bound

increases, so in total there are Θ(n4) different bounded-leg distances.

Now consider the following directed graph H = (V,E): V = {u = a1, a2, . . . , ak =

b0, b1, b2, . . . , bk, v}, and: E = {(ai, ai+1)|1 ≤ i ≤ k−1, w(ai, ai+1) = 4k}∪{(bi, v)|0 ≤

i ≤ k, w(bi, v) = 2k + 1 − 2i} ∪ {(ai, bj)|1 ≤ i ≤ k − 1, 1 ≤ j ≤ k, w(ai, bj) =

k2 − ik + 3k + j}. It is a good exercise to show that the distance from u to v varies

Θ(k2) times, thus there exist graphs with Θ(n4) different bounded-leg distances. This

implies that to improve the Θ(n4) exact BLSP oracles or Θ(ε−1n2 log n) (1 + ε)-

approximate BLSP orables, the query algorithms must add or subtract numbers to

calculate an answer.
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Modified-Floyd(d, P )
d: an n× n matrix
P : a set of vertex pairs

for k = 1 to n do
for all (s, t) in P do
d[s, t]← min{d[s, t], d[s, vk] + d[vk, t]}

return d

Figure 7.1: Modified Floyd Algorithm: As inputs, d is a matrix that contains the
approximate distances for all pairs except the pairs in P . The algorithm
returns the approximate distance matrix d.

7.2 A Binary Partition Algorithm

The high-level idea of our algorithm is to find a small set of distances (O(log1+ε n)

per vertex pair) that can (1 + ε)-approximate any L-bounded leg distance. Suppose

that we have just found a reasonably accurate estimate to the distances in Gi and Gj

respectively, i < j. Call these estimates di and dj. If di(u, v)/dj(u, v) is sufficiently

close to 1 then di(u, v) can be considered a good-enough estimate of δi′(u, v), for all

i < i′ < j. Thus, we can focus on vertex pairs, call them P , whose distance drops

significantly between Gi and Gj. Our idea is to compute a reasonably good estimate

of the distances of the median G(i+j)/2 using a version of the Floyd-Warshall algorithm

(Figure 1) that just considers the pairs P . The correctness and time complexity of our

algorithm will follow from two lemmas. The first says, essentially, that if the Modified-

Floyd algorithm starts off with a good approximation to the distances on all vertex

pairs besides P , it ends with a good approximation for all vertex pairs, including

P . One problem in our divide-and-conquer approach is that errors accumulate as we

break the problem into smaller pieces. The second lemma bounds the growth of these

errors.

Lemma 7.1. Let G′ = (V ′, E ′) be a graph, let P ⊆ V ′ × V ′ be a set of pairs of

vertices. If initially for all (s, t) ∈ (V ′ × V ′) \ P , d(s, t) is an α-approximation of

δ(s, t), and for all (s, t) ∈ P ∩ E ′, δ(s, t) ≤ d(s, t) ≤ w(s, t), then the matrix d

128



returned by this Modified Floyd procedure satisfies: for any pair (s, t) ∈ P , d(s, t) is

an α-approximation of δ(s, t).

Proof. Notice that this algorithm can never underestimate a distance δ(s, t) if there

are no underestimates originally. Denote the real shortest path from s to t in G′ by

s ⇀ t. For any (s, t) ∈ P , if the shortest path s ⇀ t is composed of only one edge,

then (s, t) ∈ E ′ and δ(s, t) = w(s, t) = d(s, t), so this case is trivial. Now assume that

after k rounds (k ≥ 1), for every pair of vertices (s, t) ∈ P such that s ⇀ t includes

only intermediate vertices from {v1, . . . , vk}, d(s, t) is an α-approximation of δ(s, t).

In the (k+1)th round, if k+1 is the index of the highest intermediate vertex in s ⇀ t,

for (s, t) ∈ P , then the highest indices in the paths s ⇀ vk+1 and vk+1 ⇀ t are both

at most k. So, by the inductive hypothesis, d(s, vk+1) and d(vk+1, t) are already α-

approximations of δ(s, vk+1) and δ(vk+1, t) respectively. Therefore, after the (k+ 1)st

round, d(s, t) ≤ d(s, vk+1) + d(vk+1, t) ≤ αδ(s, vk+1) +αδ(vk+1, t) = αδ(s, t), so d(s, t)

is also an α-approximation of δ(s, t).

Suppose that we have a pretty good approximation to the distances in Gi and Gj.

We want to find an approximation to the distances in Gq, where q = b(i + j)/2c. If

the distances of some pairs change slightly between Gi and Gj, then we can just use

their distances in Gi to estimate their distance in Gq. We can focus our attention on

the pairs whose distance changes a lot between Gi and Gj.

Lemma 7.2. Let di and dj be αl-approximations of δi and δj, where i < j. Then we

can find an αl+1-approximation of δq, where q = b(i+ j)/2c, in O(n|P |+ j − i) time,

where P = {(s, t) | (s, t) ∈ V × V and di(s,t)
dj(s,t)

> α}.

Proof. By definition: for all (s, t) ∈ V × V , we have δi(s, t) ≤ di(s, t) ≤ αlδi(s, t) and

δj(s, t) ≤ dj(s, t) ≤ αlδj(s, t). Because for all (s, t) /∈ P , di(s, t) ≤ αdj(s, t), it follows

that

δi(s, t) ≤ di(s, t) ≤ αdj(s, t) ≤ αl+1δj(s, t)
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Since the bounded-leg distance can only decrease with a larger leg-bound, for all

i ≤ q ≤ j, δj(s, t) ≤ δq(s, t) ≤ δi(s, t). Therefore

δq(s, t) ≤ δi(s, t) ≤ di(s, t) ≤ αl+1δj(s, t) ≤ αl+1δq(s, t)

Thus di(s, t) is an αl+1-approximation of δq(s, t) for any (s, t) ∈ (V × V ) \ P .

We can add the edge set E[i+1,q] = {ei+1, ei+2, ..., eq} into di, that is, for all (s, t) ∈

E[i+1,q], if (s, t) ∈ P , set di(s, t) = min{di(s, t), w(s, t)}. This takes q − i = O(j − i)

time. We can ignore E[1,i] because for all (s, t) ∈ E[1,i], δi(s, t) ≤ w(s, t) ≤ w(ei).

If δj(s, t) < δi(s, t) then δj(s, t) ≥ w(ei) ≥ δi(s, t), which is a contradiction. Thus,

if (s, t) ∈ E[1,i] then (s, t) /∈ P . Now for all (s, t) ∈ P ∩ E[1,q] = P ∩ E[i+1,q],

δq(s, t) ≤ δi(s, t) ≤ di(s, t) ≤ w(s, t). From lemma 2.1, if we take di and P as the input

of the Modified Floyd procedure, in O(n|P |) time we can find an αl+1-approximation

of δq; call it dq.

Corollary 7.3. Let k = m
2l

. If we already have an αl-approximation dbi·kcof δbi·kc

for all 0 ≤ i ≤ 2l, then we can find an αl+1-approximation dbi· k
2
c of δbi· k

2
c for all

0 ≤ i ≤ 2l+1 in O(n3 logα n) time.

Proof. Apply lemma 2.2 to all pairs of adjacent graphs Gbi·kc and Gb(i+1)·kc (0 ≤ i <

2l), and let Pi be the set of pairs P for them. Since δL(u,v)(u, v) ≤ (n−1)δG(u, v), the

number of times (u, v) can appear in the sets Pi is O(logα n). Thus, the total time

taken by this procedure is O(n ·
∑2l−1

i=0 |Pi|+m) = O(n3 logα n).

Now we can apply Corollary 2.1 repeatedly and obtain the main algorithm.

Theorem 7.4. For any graph G of n vertices and m edges, we can construct the

set D(u, v), for every pair of vertices (u, v), that contains a (1 + ε)-approximation of

δq(u, v) for any 0 < q ≤ m, in O(ε−1n3 log3 n) time.
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Proof. First, set d0(u, v) = +∞ for all (u, v), and utilize the original Floyd-Warshall

algorithm to compute dm(u, v) = δG(u, v) for all pairs (u, v) in O(n3) time.

Then set α = (1 + ε)
1

logm , and run the procedure of Corollary 2.3 for l = 0, 1, ...,

log2m − 1. Finally we can get an (αlog2m = 1 + ε)-approximation of all bounded-

leg distances for δq where 0 < q ≤ m. Thus the total time of this algorithm is

O(n3 log n logα n) = O(ε−1n3 log3 n).

Every time we finish a run of the Modified Floyd algorithm in graph Gq, we

insert (w(eq), dq(u, v)) into D(u, v) for every pair (u, v) in P . This will take time

O(|P | log log1+ε n), which is much less than the Modified Floyd algorithm itself. Fi-

nally we can see that in D(u, v), the two entries (Li, d
Li(u, v)) and (Li+2, d

Li+2(u, v))

must satisfy dLi (u,v)

dLi+2 (u,v)
> 1+ε otherwise the intermediate entry (Li+1, d

Li+1(u, v)) would

not be computed in this algorithm. So the size of D(u, v) is bounded by 2ε−1 log n.

We can see that the space complexity for every execution of the procedure is

O(n2), and the depth of the recursion is O(log n). So the total space complexity is

O((1 + ε−1)n2 log n).

7.3 Answer a bounded-leg shortest path query

In addition to answering approximate bounded-leg distance queries, we also want

to find a path of that distance satisfying the leg bound. Answering path queries is

what made the space bound of Roditty-Segal’s algorithm [53] O(n2.5). So, given a

pair of vertices (u, v) and a leg bound L, we want to find a path γ such that ∀e ∈ γ,

w(e) ≤ L and
∑

e∈γ w(e) = dL(u, v), where dL(u, v) is the (1 + ε)-approximation we

obtained from the structure D(u, v).

It is easy to achieve this since all our distances are obtained from the Modified

Floyd algorithm. We can save the intermediate vertex in every step of Floyd algo-

rithm, then recursively find the two subpaths. We will slightly change our structure
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GetPath(u, v, L)
Find (L′, dL

′
(u, v), πL

′
(u, v)) ∈ D(u, v) such that L′ is the largest satisfying

L′ ≤ L
If πL

′
(u, v) = nil, return the edge (u, v).

Else Let w = πL
′
(u, v).

GetPath(u,w, L′)
GetPath(w, v, L′)

Figure 7.2: Algorithm for Finding Paths

and algorithm. For any pair (u, v), any entry (Li, d
Li(u, v)) ∈ D(u, v), we define a

function πLi(u, v) ∈ V to be the vertex with the highest index in the real path from

u to v of distance dLi(u, v) under leg bound Li; if the path only consists of one edge,

then πLi(u, v) = nil. So, in the third line of the algorithm in Figure 1:

d(s, t)← min(d(s, t), d(s, vk) + d(vk, t))

If d(s, t) does not change after executing this line, then π(s, t) also does not change.

If d(s, t) = d(s, vk) + d(vk, t), then π(s, t) will be set to vk. After this procedure, we

can add the entry (L, dL(u, v), πL(u, v)) to D(u, v).

The procedure to find the path is shown in Figure 2:

Since the leg bound L can only decrease in the recursion, this recursive procedure

will output the approximate bounded-leg shortest path from u to v inO(log(ε−1 log n))

time per edge.

7.4 A one-level algorithm for all-pair bounded-leg distance

In section 2.2 we execute a divide-and-conquer algorithm with a binary partition.

Of course, it is an efficient algorithm for the graph of Θ(n2) edges because there

is no truly sub-cubic all-pair shortest path algorithm for only the whole graph [9].

However, when it is performed on a sparse graph, the time for this algorithm cannot

be reduced since the time taken by the Modified-Floyd algorithm does not depend on
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the number of edges. To get rid of this, we cannot use the modified Floyd algorithm,

but only execute a one-level partition. First, we need the following lemma:

Lemma 7.5. For the two subgraphs of G: Gi and Gj (i < j−1), if we already have the

αl-approximations of δi and δj: di and dj, then we can find the αl+1-approximation

of δq(u, v) for all (u, v) ∈ V × V and i < q < j in O((j − i)|P |) time, where P =

{(u, v)|(u, v) ∈ V × V and di(u,v)
dj(u,v)

> α}.

Proof. From the proof of lemma 2.2, we can see that di(u, v) is already an αl+1-

approximation of δq(u, v) for any (u, v) /∈ P . Then we insert the edges ei+1, ei+2, ..., ej−1

in the increasing order of their indices into the graph Gi. When inserting edge

ek = (s, t), we check for every (u, v) ∈ P that:

dk(u, v)← min{dk−1(u, v), dk−1(u, s) + w(s, t) + dk−1(t, v)}

where dk−1(u, v) is the same as di(u, v) if (u, v) /∈ P . Since

δk(u, v) = min{δk−1(u, v), δk−1(u, s) + w(s, t) + δk−1(t, v)}

We can conclude that if dk−1 is an αl+1-approximation of δk−1, then dk is an αl+1-

approximation of δk. By induction, the lemma holds. It is obvious that the running

time for this procedure is O((j − i)|P |).

Using the O(mn+n2 log log n) time APSP algorithm [50], we can compute the all-

pair shortest path for the graphs G0, Gbm/kc, Gb2m/kc, ..., Gm for some k, then apply

Lemma 2.3 to obtain the (1 + ε)-approximation for all pairs of vertices in any Gq

(0 < q ≤ m). So, the time needed is O(kmn + kn2 log log n) + O(m
k
· n2 log1+ε n). If

m ≥ n log log n, for k =
√
n log1+ε n, the running time is O(mn3/2

√
log1+ε n), and if

m < n log log n, for k =
√

m log1+ε n

log logn
, the running time is O(n2

√
m log1+ε n log log n).

They are fast than binary partition algorithm described in Section 2.2 when m is less
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than n3/2 log2 n
√

log1+ε n.
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