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CHAPTER I

Introduction

One of the most common research questions in survival analysis is how the observed

covariates, Z, affect survival when data is right censored. Usually treated as a finite-

dimensional vector in Euclidean space, Z can be baseline covariates that stay constant

over time, or time changing factors. The presence of censoring complicates the estimation

since care has to be taken with respect to unknown cumulative baseline hazard function

H . Though regarded as absolutely continuous, H is either estimated non-parametrically

via approximation by a infinite dimensional step function, or is imposed with a fully para-

metric distribution form. The latter approach is less frequently used in practice compared

to the former, the semiparametric approach, since the inference is less robust due to the

parametric assumptions made. The challenge of handling infinite dimensional nuisance

parameters inspires various works in semiparametric models and that forms an important

research area in survival analysis. Cox proportional hazard (PH) model is perhaps the most

popular semiparametric model used in survival analysis, Cox (1972). Various extensionsof

the PH model avoid the proportionality assumption or any distributional form of the haz-

ard. For example, imputation methods, as in Faucett et al. (2002), Andersen et al. (2004),

Hsu et al. (2006). These methods directly fill in missing data using multiple imputation

methods; frailty models that represent heterogeneity of mortality, among other non linear

1
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transformation models. In this thesis, we further explore the possibility of improving the

existing semiparametric analysis methods in two areas. First we develop a multiple impu-

tation method that better utilizes covariates to recover statistical information; Second area

focuses on transformation models that generalizes frailty models when time dependent

covariates are observed, or, in another word, when exposures are dynamic.

Currently most multiple imputation methods for censored survival data either ignore

covariate information when imputing a likely event time, or place quite restrictive mod-

eling assumptions on the survival distributions used for imputation. Several researchers

modeled censored restricted lifetimes as a function of patient characteristics. Karrison

(1987) used a generalized Cox model approach with piecewise constant baseline hazards,

and made appropriate transformations to the restricted mean scale that indirectly linked co-

variates to the restricted means. Extensions of this approach, also centered around a Cox

model, were given by Chen and Tsiatis (2001) and Zucker (1988). Andersen et al. (2004)

link covariate effects with the mean restricted lifetimes by using pseudo-observations in

lieu of the original outcomes and applying generalized estimating equations (GEE) by

Liang and Zeger (1986). None of these authors suggested the restricted mean as a tool

for imputation of censored lifetimes. In Chapter II, we propose a more robust multiple

imputation approach that directly imputes restricted lifetimes over the study period based

on a model of the mean restricted life as a linear function of covariates. This method

has the advantages of retaining patient characteristics when making imputation choices,

while avoiding parametric assumptions on the shapes of hazards or survival functions.

Simulation results show that our method outperforms its closest competitor for modeling

restricted mean lifetimes in terms of bias and efficiency in both independent censoring and

dependent censoring scenarios. Survival estimates of restricted lifetime model parameters

and marginal survival estimates regain much of the precision lost due to censoring. The
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proposed method is also much less subject to dependent censoring bias captured by co-

variates in the restricted mean model. This particular feature is observed in a full statistical

analysis conducted in the context of the International Breast Cancer Study Group Ludwig

Trial V using the proposed methodology. The work is also published as Liu et al. (2011).

Frailty models are popular when unmeasured predictors cause heterogeneity in mor-

tality. Most often frailties represent an unobserved time-independent predictor known at

baseline, for instance, Zeng and Lin (2007), Kosorok et al. (2004). The large sample

properties of estimates are usually justified using empirical process theories, see Kosorok

et al. (2004), Zeng and Lin (2007), Zeng and Lin (2010), or martingale-based arguments

(Chen (2009) and Chen (2010)). Meanwhile there are some research propose that, when

time changing factors are present, it is quite natural to believe a latent stochastic pro-

cess is implied and it also affects survival. Typical examples are Gjessing et al. (2003)

and Yashin and Manton (1997). Those works also discuss asymptotics of estimates. In

Chapter III, we extend the modeling of frailty as a stochastic process in a general setting.

We provide the estimation and inference framework for this type of model based on full

likelihood approach, and build more rigorous theoretical justifications for large sample

property using Martingale theory. We also discuss the asymptotic properties of estimates

using a profile likelihood approach as in Murphy (1994), Murphy (1995), and Murphy

and van der Vaart (2000). We show that in general no explicit covariance function form

are available. Simulation studies are presented to illustrate the method, assuming frailty

as a non-homogeneous Poisson process (NHPP), using a time-dependent covariate. We

also present simulation studies that, assuming an oberved frailty process, Cox model gives

biased estimate.

In Chapter IV, we develop a mechanistic modeling approach to explain dynamic effect

when the disease (not necessarily cancer) has a latent development period before diagnosis.
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This paper is motivated by an observational study in Tsodikov and Muller (1998), where

the natural process of tumor initiation/promotion/progression is modulated by radiation.

Radiation triggers lesions (initiation) that adds to the process of spontaneous formation of

lesions in the host. Those lesions then compete as they develop into tumor during pro-

motion. The same radiation may also kill some of the lesions. This non-linear interplay

of these complex effects may result in improved survival of the subjects. Classical semi-

parametric models with time dependent risks, including Cox model, fail to account for the

dynamic irradiation effects on latent tumor process. We propose an incidence model based

on the lesion initiation, promotion, competition and death modulated by the radiation to

interpret the diversity of such complex exposure effects. The estimation procedure is based

on the idea of iterative weighted algorithm introduced by Chen (2009). The advantage of

this modeling approach is that we can interpret the time changing exposure effect as a

stochastic process while retaining the power of rigorous statistical inference. As a result,

we develop statistically and numerically efficient NPMLE techniques essentially as con-

venient as those for Cox models.



CHAPTER II

Multiple Imputation Based on Restricted Mean Models
for Censored Data

2.1 Introduction

In survival analysis, estimation of expected life over a fixed time window is often of

interest, either non-parametrically or as a function of covariates. In addition, it is common

to desire estimates of survival probabilities within particular subgroups. For example, in

the International Breast Cancer Study Group (IBCSG) Ludwig Trial V, investigators would

like to estimate a long-duration treatment effect on patient lifetimes over the 9 year study

period, adjusting for tumor size, estrogen receptor (ER) status, number of positive nodes

and age. They also want to compare marginal survival curves for the two treatment groups.

The presence of right censoring makes standard analysis methods for fully observed data

inappropriate, although they would be much simpler to implement if available.

We propose that since restricted means are of interest and may be modeled already

as part of a thorough analysis of the IBCSG study, that we take advantage of the re-

stricted mean model structure to augment censored outcomes via Multiple Imputation

(MI). The resulting final analyses (regression parameters, estimated restricted means and

non-parametric quantities) are based on more standard analytical tools using multiply im-

puted datasets and are hypothesized to be more efficient since imputes better utilize co-

5
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variate information.

Several researchers have given attention to modeling censored restricted lifetimes as

a function of patient characteristics. Karrison (1987) used a generalized Cox model ap-

proach Cox (1972) with piecewise constant baseline hazards, and made appropriate trans-

formations to the restricted mean scale that indirectly linked covariates to the restricted

means. Extensions of this approach, also centered around a Cox model, were given by

Chen and Tsiatis (2001) and Zucker (1988). Andersen et al. (2004) link covariate effects

with the mean restricted lifetimes by using pseudo observations in lieu of the original out-

comes and applying generalized linear models (GLM) Liang and Zeger (1986). None of

these authors suggested the restricted mean as a tool for imputation of censored lifetimes.

Meanwhile, increasingly researchers have come to view censored data in the more

traditional role of missing data, where multiple imputation is a popular strategy for appro-

priately addressing missing information in an analysis. For example, Faucett et al. (2002)

multiply impute survival outcomes via joint modeling of a change-point model and a time-

dependent Cox proportional hazards model. Taylor et al. (2002) develop non-parametric

MI methods that reproduce Kaplan Meier Kaplan and Meier (1958) estimates when no

covariate information is available. Hsu et al. (2006) use Cox models to more selectively

build risk sets of individuals with similar hazards for multiple imputation, utilizing a non-

parametric imputation procedure within this risk set. The advantages of imputation are

longstanding, because many different analyses may be conducted using the multiply im-

puted datasets once they are obtained. An overview of several effective imputation strate-

gies based upon observed data is given in Rubin (1987) and Little and Rubin (2002). Most

existing MI methods either assume parametric models acting on (and linking) the hazards

of interest or are non-parametric in nature.

Our goal in this research is to produce multiply imputed datasets that directly model
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the missing outcomes of interest via a restricted mean structure. The resulting multiply

imputed datasets incorporate individual information to gain efficiency in restricted mean

model parameter estimation as well as in other analyses of interest, such as survival curve

estimation and two sample testing. The rest of the manuscript is structured as follows: in

Section 2.2, we describe the mean structure for restricted lifetimes given covariates. Sec-

tion 2.3 introduces the restricted mean lifetime based MI algorithm with some technical

details of implementation included in an appendix. In Section 2.4 we summarize sev-

eral commonly used standard analyses applied to multiply imputed datasets. Section 2.5

presents finite sample simulation results. We return to the IBCSG study in Section 2.6 and

report various analyses of interest. Discussion follows in Section 2.7.

This work is also published as Liu et al. (2011).

2.2 Structure for restricted mean lifetimes used in multiple imputa-
tion

Suppose lifetime, T , has survival function, ST (t), with mean life E(T ) =
∫∞

0
ST (t)dt.

With right censored data, the data tends to support only estimated lifetimes restricted to

the study period, or restricted means, E{min(τ, T )} =
∫ τ

0
ST (t)dt, where τ is within the

range of the observed data Irwin (1949).

To examine the restricted mean as function of covariates, Z, regression models have

been developed. For instance, one approach is to assume a transformation model taking

the form, g(T ) = βTZ + ε, where β = (β[0], β[1], ..., β[p]) is a (p+ 1)-dimensional vector,

ε is residual vector with mean zero, and g is some link function (e.g., Buckley and James

(1979), Dabrowska and Doksum (1979), Fine et al. (1998)). Fully parametric models can

be implemented if the residual distribution is known. Andersen et al. (2004) use pseudo

observations to model this mean structure, with the added advantage that few assumptions
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are required on the distribution of ε for their model to hold.

In particular, for each individual, pseudo observation i (i = 1, ..., n) is defined as:

n

∫ τ

0

ŜKM(t)dt− (n− 1)

∫ τ

0

ŜKM(−i)(t)dt,

where ŜKM(t) is the Kaplan Meier (KM) estimate for survival and ŜKM(−i)(t) is the KM

estimate excluding patient i. These pseudo observations are comparable in expectation to

the distribution of the original restricted failure times, similar to the jackknife. Hence this

modeling approach addresses the censoring issue through transformation to uncensored

values with identical restricted mean regression parameters. Andersen et al. recommend

GLM analysis on log transformed pseudo observations using an identity link.

We assume a similar mean structure with the idea of imputing for logmin(τ, T ) rather

than using log transformed pseudo observations. That is:

(2.1) E[log{min(τ, T )}|Z] = βTZ.

The log transformation of min(τ, T ) continues to ensure that regression parameters

apply to the real line rather than merely to positive values. Also, transforming min(τ, T )

before model fitting seems to produce better estimates of the intercept than if a log link

were applied, which is useful in the context of imputation. We suspect that this is the

case due to Jensen’s Inequality since logE{min(τ, T )|Z} ≥ E[log{min(τ, T )}|Z] and

we impute on the scale of log{min(τ, T )}. Standard linear models can be used to fit (2.1)

once multiply imputed datasets are created.

2.3 Multiple Imputation Algorithm

With the mean structure in (2.1), we have a natural way to fill in missing event times

during the study window. We achieve this goal by developing restricted mean Multiple

Imputation (MI) algorithm. The algorithm has two parts: first, we obtain desired parameter
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estimates as in (2.1); Second, we append appropriate residuals to the estimated means to

form an impute that better approximate variability of the original data.

The proposed algorithm is summarized in Step 1-4, with further details of implemen-

tation following.

Step 1: By fitting GLM model (2.1) treating censored data as failures, we obtain

initial parameter estimates β̂(0). Next we use a pseudo EM algorithm described in the

Appendix (A.1), to obtain a converged and improved β̂. This algorithm takes into account

the current estimate of β̂, its variability and the observed censoring time Ci for each value

requiring imputation.

Step 2: We form imputes for censored patients by adding error terms to the estimated

means β̂TZ where β̂ is obtained in Step 1. For patients with similar β̂TZ, observed residu-

als are sampled; the detailed sampling procedure is described in Appendix (A.2). Sampled

error terms are required to yield an impute larger than the original censored value.

Step 3: Repeat Step 2 until we have M imputes for each censored value.

Step 4: Combine analysis fromM imputed datasets to get the final parameter estimates

and the associated variances.

Next we describe the details of the algorithm. Suppose T1, ..., Tn come from a non neg-

ative random variable, T , with survival function, ST , and C1, ..., Cn come from a random

variable, C, that may or may not depend on covariates in model (2.1), but are otherwise

independent of T . Let Xi = min(Ti, Ci), i = 1, ..., n be the observed times to event. Let

Y = log{min(τ, T )} with τ a fixed positive constant.

In Step 1, we fit (2.1) to obtain initial values β̂(0) treating all observed data as failures.

In practice we have not found the initial value to have much influence on final parameter

estimates, although several alternative choices for obtaining β̂(0) were explored. Naturally

the more censoring in the data, the further away β̂(0) is from the true β when censored
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values are treated as failures. The next part of the algorithm is an iterative procedure to

obtain β̂(0), β̂(1), β̂(2), ..., β̂(k) where the procedure is said to converge when maxj(|β̂(k)
[j] −

β̂
(k−1)
[j] |) < a for some small tolerance a, with β̂(k)

[j] being the jth element of the vector β̂(k).

Steps of the iterative procedure are located in Appendix (A.1).

In Step 2, with the converged parameter β̂, Ê(Yi|Ci, Zi) is calculated as β̂TZi for a

censored patient i, then residual errors are added to Ê(Yi|Ci, Zi) to reproduce appropriate

variability. Details of sampling residuals are in Appendix (A.2). Our assumption for con-

structing residuals is that patients with similar Ê(Yi|Zi) will have a similar distribution of

residuals and can be used to create an appropriate pool for selection. Residuals that result

in imputes of log{min(τ, T )} < logCi are removed from further consideration. In the

case of models with discrete covariates only, this residual pool reduces to patients with co-

variates identical to Zi, and the impute (β̂TZi + residual) will essentially select one of the

failed patients’ death times from the pool as the imputed value. For continuous covariates,

we sample residuals from patients whose Ê(Y |Z) fall within some small b−margin of the

censored patient’s Ê(Yi|Zi), so that the impute does not necessarily match any observed

failure time from the original dataset, but is shifted higher or lower depending on β̂TZi. In

either case, when a patient from the residual pool is selected with event times > τ , we use

log τ for the imputed value since a reasonable shift from β̂TZi is not available in this case.

Finally in Step 4, for each censored value, we sample M of those residuals and add

them to Ê(Yi|Zi) as described above, resulting in a total of M imputed datasets to be

analyzed.

2.4 Analyse multiply imputed datasets

Since we fill in the missing outcomes for censored people, many research problems

become complete data problems and we can apply standard procedures to analyze M
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imputed datasets. In practice, M = 10 multiply imputed datasets are usually sufficient.

Next we summarize some most commonly desired analyses.

2.4.1 Estimating regression parameters based on multiply imputed datasets

Using a standard GLM modeling approach, each of the M imputed dataset yields es-

timates β̂MI
m = (β̂MI

m,[0], β̂
MI
m,[1], ..., β̂

MI
m,[p]),m = 1, ...,M under model (2.1). The final esti-

mates based on the multiply imputed datasets are β̂MI =
∑M

m=1 β̂
MI
m /M . The associated

variances are composed of within imputation variances W and between imputation vari-

ances B respectively, see Rubin (1987) and Little and Rubin (2002).

The variances become

V ar(β̂MI) = W + (1 +M−1)B.

where W =
∑M

m=1 V ar(β̂
MI
m )/M and B =

∑M
m=1(β̂

MI
m − β̂MI)2/(M − 1).

Similarly, covariances between the jth and kth elements of β̂MI = (β̂MI
[0] , β̂

MI
[1] , ..., β̂

MI
[p] )

are calculated as in Rubin (1987) and Little and Rubin (2002):

Cov(β̂MI
[j] , β̂

MI
[k] ) =

M∑
m=1

Cov{β̂MI
m,[j], β̂

MI
m,[k]}/M

+(1 +M−1)
M∑

m=1

[{β̂MI
m,[j] − β̂MI

[j] }{β̂MI
m,[k] − β̂MI

[k] }]/(M − 1),

where β̂MI
m,[j], j = 0, 1, ..., p,m = 1, ...,M is the jth element of estimate β̂MI

m from mth

dataset.

The hypothesis test for β̂MI and significance level is determined by the t distribution:

(β̂MI − β)V ar(β̂MI)−1/2 ∼ tυ, where υ = {1 + (M + 1)−1W/B}2
(M − 1) based on

Satterthwaite approximation (Rubin (1987), Little and Rubin (2002)).
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2.4.2 Survival curve estimates based on multiply imputed datasets

Using theM imputed datasets, we calculate KM survival estimates ŜKM
1 (t), ..., ŜKM

M (t),

and obtain associated variances V̂1(t), ..., V̂M(t) based on Greenwood’s formula. For com-

plete datasets, the KM survival estimates reduce to simple sample proportions of those

alive at times t. The combined survival estimate ŜMI(t) and V̂ MI(t) are calculated to be

ŜMI(t) = M−1

M∑
m=1

ŜKM
m (t)

V̂ MI(t) = M−1

M∑
m=1

V̂m(t) + (1 +M−1)
M∑

m=1

{ŜKM
m (t)− ŜMI(t)}/(M − 1).

2.4.3 Log-rank test based on multiply imputed datasets

For the mth imputed dataset (m = 1, ...,M), let Tm
1 < ... < Tm

L denote the ordered

failure times , Dm
ik and Y m

ik denote the number of failures and number at risk for group i

at time Tm
k , i = 1, 2, k = 1, ..., L. Furthermore, let Dm

k and Y m
k denote the corresponding

values in whole sample, Em
1k = Dm

k Y
m
1k /Y

m
k be expected failures in group 1 and V m

1k =

Dm
k Y

m
1kY

m
2k (Y m

k −Dm
k )/(Y m

k )2(Y m
k −1). The log-rank statistic for themth imputed dataset

is given by:

QMI
m = (

L∑
k=1

V m
1k )−1/2

L∑
k=1

(Dm
1k − Em

1k).

The combined log-rank statistic and corresponding variance then become:

QMI =
M∑

m=1

QMI
m /M

V MI = 1 + (1 +M−1)
M∑

m=1

(QMI
m −QMI)/(M − 1),

since QMI
m is asymptotic standard normal for large samples.

The hypothesis test for treatment difference and significance level is determined by the

t distribution: QMI/
√
V MI ∼ tυ =

{
1 + (M + 1)−1/

∑M
m=1(Q

MI
m −QMI)

}2

(M − 1)

based on Satterthwaite approximation (Rubin (1987), Little and Rubin (2002)).
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2.5 Simulation Study

In this section, we study finite sample properties of selected analyses based on re-

stricted mean MI datasets, including restricted mean regression parameter estimation and

marginal survival curve estimation.

GLM parameter estimates for the restricted mean model are produced using the fol-

lowing methods:

(a) model (2.1) with an identity link where log{min(τ, T )} is multiply imputed for

censored observations using the restricted mean MI approach,

(b) model (2.1) with an identity link applied to log transformed pseudo observations

(PO) as in Andersen, Hansen and Klein Andersen et al. (2004),

(c) the model in (a) applied to the uncensored (fully observed) data.

We first study the independent censoring case. In each of 1000 simulations, we perform

the following procedure with a sample of size n = 100 and τ fixed at 1.5:

Step 1: For covariates, we generate bivariate normal (0, 1) pairs (Z1i = z1i, Z2i = z2i),

i = 1, ..., n with correlation 0.3. We then transform one of these into a Uniform(0, 1)

distributed covariate by applying the inverse transform method, that is, Ui = P (Z1i ≤ z1i).

The second normal is transformed into a Bernoulli(0.5) covariate, Bi = I(Z2i ≥ 0).

Step 2: We obtain the outcome of interest, min(τ, Ti), i = 1, ..., n. Each failure time

Ti is simulated from an exponential distribution with hazard rate, λi, that satisfies the mean

structure (2.1) for a pre-specified β = (β0, β1, β2),Bi, Ui and τ . That is, for this simulation
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setup,

E(Yi|Ci, Bi, Ui) =

∫ +∞

−∞
ydFYi

(y)

=

∫ logτ−

−∞
yfTi

(ey)dy + P (Yi ≥ log τ)× log τ

=

∫ logτ−

−∞
yλie

ye−λie
y

dy + e−λiτ × log τ.

Therefore λi is a numerical solution to∫ logτ−

−∞
yλie

ye−λie
y

dy + e−λiτ × log τ = β0 + β1 ×Bi + β2 × Ui,

in terms of β0, β1, β2, Bi, Ui and τ . This step gives us an uncensored dataset for analyses

using method (c).

Step 3: We generate independent censoring from an exponential distribution with rate

chosen to yield approximately 30% censoring prior to τ . Censored data analyses are based

on min(τ,Xi) where Xi = min(Ti, Ci).

Step 4: Using the censored dataset generated from Step 3, we apply the MI algorithm

described in Section 3 and obtain multiply imputed datasets. Then we estimate model (2.1)

regression parameters as in Section 4.1, and survival percentages as in Section 4.2.

Step 5: Using the censored dataset generated from Step 3, we apply the PO approach to

estimate model (2.1) regression parameters. We estimate survival percentages using KM

method. These analyses will be compared to those in Step 4.

Step 6: Using the uncensored dataset generated from Step 2, we estimate model (2.1)

regression parameters and survival percentages. These analyses represent the upper bound

of available efficiency that is attainable for this setting.

The simulation for the dependent censoring case uses n = 1000 and τ = 2. Ci

is simulated using the exponential distribution Exp(λ × Ui), where λ is chosen to give

approximately 30% censoring. Otherwise the procedure for simulation is similar to the
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independent case.

Table 2.1 displays the simulation results in the independent censoring case, where the

true values of β are (−1, 0.5, 0.5). For each approach (a), (b) and (c), we present bias as

β̂ − β, and the corresponding average estimated standard errors (SE). We also calculate

the empirical standard deviation (ESD) of the 1000 estimates and the proportion of simu-

lations that cover the true values (empirical coverage probability, CP). To assess gains in

efficiency, we give average 95% confidence interval (95% CI) widths over the 1000 simula-

tions. The asymptotic relative efficiency (ARE) is defined as V ar(β̂PO)/V ar(β̂ of interest),

where V ar(β̂PO), the variance of estimates using the PO approach, is used as the reference

variance.

The results show that the MI approach and uncensored data analysis yield approxi-

mately unbiased estimates. Aside from the intercept term, the PO method also appears

unbiased. Because of difficulty in estimating the intercept term, the PO approach tends to

have a lower coverage rate for the true E[log{min(τ, T )}] (83% for the PO approach as

opposed to 93% for the MI method and 94% for the uncensored data case).

The 95% CI widths for regression parameters are around 12% narrower using the MI

method compared to the PO approach. Furthermore, they are very close to the 95% CI

widths based on uncensored data. The MI parameter estimates are 27−28% more efficient

in terms of the ARE than the PO approach. Hence by assuming the mean structure as

in (2.1) and including minimal assumptions on the variance, we are able to recover much

of the efficiency lost due to censoring.

Additional simulations under different parameter settings show similar patterns of re-

sults. For simplicity, we present one additional scenario where the true values of β are

(−1, 0, 0.5), (−1, 0.5, 0) and (−1, 0, 0) as in Table 2.2, 2.3 and 2.4 and we skip the boot-

strap stages for all these scenarios. An interesting fact worth mentioning is that even
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Table 2.1: Independent censoring: Comparison of estimates based on model (1) using
method (a) restricted mean MI (MI) approach, method (b) pseudo observation (PO) ap-
proach, method (c) uncensored observations (Uncensored), and method (d) restricted mean
MI (MIS) approach with a bootstrap procedure added, method (n = 100).

Parameter Method Bias(1) SE(2) ESD(3) CP(4) Width of CI(5) ARE(6)

β0 = −1 Uncensored -0.005 0.286 0.314 91.7% 1.12 1.36
PO -0.193 0.333 0.383 89.1% 1.31 1.00
MI 0.002 0.295 0.316 92.8% 1.15 1.27
MIS -0.012 0.262 0.297 91.1% 1.03 1.62

β1 = 0.5 Uncensored 0.005 0.220 0.233 93.8% 0.86 1.35
PO 0.055 0.256 0.273 92.9% 1.01 1.00
MI 0.011 0.227 0.240 93.5% 0.89 1.27
MIS 0.002 0.228 0.250 91.4% 0.90 1.26

β2 = 0.5 Uncensored 0.005 0.437 0.456 94.4% 1.71 1.36
PO 0.059 0.510 0.537 93.8% 2.00 1.00
MI -0.042 0.451 0.452 95.1% 1.77 1.28
MIS 0.010 0.391 0.413 93.4% 1.77 1.28

1. Bias is the average of bβ − β over the simulations. I.e., the average estimated parameter is the shown bias plus the true
parameter in column 1.

2. SE is the average estimated standard errors over the simulations.

3. ESD is empirical standard deviation (ESD) of the 1000 estimates.

4. CP is the empirical coverage probability, i.e., the proportion of simulations that cover the true values.

5. Width of CI is the average 95% confidence interval (95% CI) widths over the 1000 simulations.

6. ARE is asymptotic relative efficiency, defined as V ar(bβPO)/V ar(bβ), where V ar(bβPO), the variance of estimates using
the PO approach, is used as the reference variance.
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Table 2.2: Independent censoring II: Comparison of estimates based on model (1) us-
ing method (a) restricted mean MI (MI) approach, method (b) pseudo observation (PO)
approach, method (c) uncensored observations (Uncensored), method (n = 100).

Parameter Method Bias(1) SE(2) ESD(3) CP(4) Width of CI(5) ARE(6)

β0 = −1 Uncensored 0.010 0.254 0.281 91.7% 1.00 1.37
PO -0.176 0.298 0.339 88.5% 1.17 1.00
MI 0.000 0.262 0.302 91.0% 1.03 1.29

β1 = 0 Uncensored -0.011 0.221 0.236 92.1% 0.87 1.37
PO 0.041 0.259 0.284 92.0% 1.02 1.00
MI -0.002 0.228 0.249 91.6% 0.89 1.29

β2 = 0.5 Uncensored -0.001 0.380 0.387 94.3% 1.49 1.37
PO 0.046 0.444 0.448 94.7% 1.74 1.00
MI 0.000 0.390 0.419 93.3% 1.53 1.30

1. Bias is the average of bβ − β over the simulations. I.e., the average estimated parameter is the shown bias plus the true
parameter in column 1.

2. SE is the average estimated standard errors over the simulations.

3. ESD is empirical standard deviation (ESD) of the 1000 estimates.

4. CP is the empirical coverage probability, i.e., the proportion of simulations that cover the true values.

5. Width of CI is the average 95% confidence interval (95% CI) widths over the 1000 simulations.

6. ARE is asymptotic relative efficiency, defined as V ar(bβPO)/V ar(bβ), where V ar(bβPO), the variance of estimates using
the PO approach, is used as the reference variance.

though the covariates, in the scenario where true values of β are (−1, 0, 0), are not predic-

tive of the outcome, efficiency gain is still observed. This is because the algorithm utilizes

the covariates information regardless their predictability. In another word, the model itself

will not be able to tell whether the covariates are predictive or not.

The results for dependent censoring case are presented in Table 2.5, where the true

values of β are (−1, 1, 0.5). The sample size used (1000) is comparable to the sample size

in the IBCSG example in Section 6. Parameter estimates using the restricted mean MI
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Table 2.3: Independent censoring III: Comparison of estimates based on model (1) us-
ing method (a) restricted mean MI (MI) approach, method (b) pseudo observation (PO)
approach, method (c) uncensored observations (Uncensored), method (n = 100).

Parameter Method Bias(1) SE(2) ESD(3) CP(4) Width of CI(5) ARE(6)

β0 = −1 Uncensored 0.004 0.283 0.292 94.2% 1.11 1.37
PO -0.185 0.330 0.350 91.4% 1.29 1.00
MI -0.011 0.292 0.310 93.1% 1.14 1.28

β1 = 0.5 Uncensored -0.012 0.246 0.250 93.9% 0.96 1.36
PO 0.034 0.287 0.301 93.7% 1.13 1.00
MI -0.002 0.254 0.266 93.4% 0.99 1.28

β2 = 0 Uncensored 0.012 0.422 0.407 95.9% 1.66 1.36
PO 0.012 0.493 0.472 96.1% 1.93 1.00
MI 0.019 0.436 0.430 94.7% 1.71 1.28

1. Bias is the average of bβ − β over the simulations. I.e., the average estimated parameter is the shown bias plus the true
parameter in column 1.

2. SE is the average estimated standard errors over the simulations.

3. ESD is empirical standard deviation (ESD) of the 1000 estimates.

4. CP is the empirical coverage probability, i.e., the proportion of simulations that cover the true values.

5. Width of CI is the average 95% confidence interval (95% CI) widths over the 1000 simulations.

6. ARE is asymptotic relative efficiency, defined as V ar(bβPO)/V ar(bβ), where V ar(bβPO), the variance of estimates using
the PO approach, is used as the reference variance.
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Table 2.4: Independent censoring IV: Comparison of estimates based on model (1) us-
ing method (a) restricted mean MI (MI) approach, method (b) pseudo observation (PO)
approach, method (c) uncensored observations (Uncensored), method (n = 100).

Parameter Method Bias(1) SE(2) ESD(3) CP(4) Width of CI(5) ARE(6)

β0 = −1 Uncensored -0.019 0.281 0.275 94.3% 1.10 1.17
PO -0.216 0.330 0.333 92.2% 1.29 1.00
MI -0.093 0.280 0.285 93.3% 1.10 1.17

β1 = 0 Uncensored 0.005 0.254 0.259 95.0% 1.00 1.17
PO 0.012 0.298 0.312 94.3% 1.17 1.00
MI 0.003 0.254 0.268 93.5% 0.99 1.17

β2 = 0 Uncensored 0.004 0.503 0.493 94.8% 1.97 1.17
PO -0.005 0.591 0.580 95.4% 2.32 1.00
MI 0.001 0.503 0.516 93.2% 1.97 1.18

1. Bias is the average of bβ − β over the simulations. I.e., the average estimated parameter is the shown bias plus the true
parameter in column 1.

2. SE is the average estimated standard errors over the simulations.

3. ESD is empirical standard deviation (ESD) of the 1000 estimates.

4. CP is the empirical coverage probability, i.e., the proportion of simulations that cover the true values.

5. Width of CI is the average 95% confidence interval (95% CI) widths over the 1000 simulations.

6. ARE is asymptotic relative efficiency, defined as V ar(bβPO)/V ar(bβ), where V ar(bβPO), the variance of estimates using
the PO approach, is used as the reference variance.
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Table 2.5: Dependent censoring: Comparison of estimates based on model (1) using
method (a) restricted mean MI (MI) approach, method (b) pseudo observation (PO) ap-
proach, method (c) uncensored observations (Uncensored), method (n = 1000).

Parameter Method Bias(1) SE(2) ESD(3) CP(4) Width of CI(5) ARE(6)

β0 = −1 Uncensored 0.001 0.078 0.091 90.6% 0.31 1.49
PO -0.163 0.095 0.119 57.3% 0.37 1.00
MI 0.002 0.082 0.099 90.0% 0.32 1.33

β1 = 1 Uncensored 0.001 0.066 0.071 93.5% 0.26 1.49
PO 0.131 0.081 0.093 63.7% 0.32 1.00
MI 0.004 0.069 0.074 93.5% 0.27 1.38

β2 = 0.5 Uncensored -0.004 0.117 0.121 92.9% 0.46 1.49
PO -0.083 0.142 0.148 89.2% 0.56 1.00
MI -0.008 0.122 0.132 91.7% 0.48 1.36

1. Bias is the average of bβ − β over the simulations. I.e., the average estimated parameter is the shown bias plus the true
parameter in column 1.

2. SE is the average estimated standard errors over the simulations.

3. ESD is empirical standard deviation (ESD) of the 1000 estimates.

4. CP is the empirical coverage probability, i.e., the proportion of simulations that cover the true values.

5. Width of CI is the average 95% confidence interval (95% CI) widths over the 1000 simulations.

6. ARE is asymptotic relative efficiency, defined as V ar(bβPO)/V ar(bβ), where V ar(bβPO), the variance of estimates using
the PO approach, is used as the reference variance.

approach are essentially unbiased, while the PO method was subject to bias as large as one

standard deviation.

As mentioned in Section 1, various analyses can be conducted based on multiply im-

puted datasets. One example is to produce marginal survival estimates. Simulation results

in the independent censoring case are shown in Table 2.6 at survival quantiles 60% through

40% ≈ S(τ). Survival estimates using the MI method approximate true quantiles well,

and as expected, the level of efficiency gain increases with increased censoring. Survival
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quantiles 100% through 60%, where censoring was minimal (around 16%), showed only

negligible differences in efficiency (less than 1%). For this reason, we did not present the

results for this range.

Simulations conducted in the dependent censoring case gave unbiased results for the

MI estimated quantiles whereas the KM method overestimated survival by approximately

3% after the 60th quantile. Although gains in efficiency for survival estimates were seen

using MI method in the dependent censoring case, gains were not nearly as attractive as in

the independent censoring case [data not shown].

We also conducted simulation using PO method as described in Andersen and Perme

(2010) for both censoring scenario. In these settings, PO is created according to weighted

KM estimates. We first generate Z∗ as 0 if U ∈ (0, 0.25], 1 if U ∈ (0.25, 0.5], 2 if U ∈

(0.5, 0.75] and 3 otherwise. In another word, Z∗ is the original covariateU categorized into

4 bins with the same size. Then we create weighted KM estiamte n−1
∑G

g=1 ngŜ
KM
g (t),

where ŜKM
g (t) is a Kaplan-Meier estimate in subgroup g of patients with categorical co-

variate Z∗ = g and ng is the number of patients in subgroup g (g = 1, ..., 4). The results

using this approach and using restricted MI method are similar as shown in Table 2.1 and

Table 2.5. The discussion of comparing the two methods in this context is in final section.

Some simulations were repeated using an additional bootstrap step to provide a further

level of variability in the selection of imputed values. That is, each of the M imputed

datasets was produced from a different bootstrap sample of the original observed data,

which further varied the distribution of parameter estimates in Section 3 Step 1 as well as

the observed residual distribution in Section 3 Step 2. The results are presented in Table

2.1 and Table 2.6. Although some authors, for example, Rubins and Schenker (1991),

Heitjan and Little (1991), Taylor et al. (2002), have found improved coverage using this

approach, coverage probabilities in the simulations did not appreciably change Table 2.6.
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Table 2.6: Independent censoring: Comparison of survival estimates using restricted mean
MI (MI) approach, restricted mean MI (MI) approach with bootstrap procedure (MIS),
KM with censored observations (Censored), and KM with uncensored observations (Un-
censored) (n = 100).

Quantile Censoring %(1) Method Bias(2) SE(3) ARE(4)

60% 21.3% Uncensored 0.006 0.049 1.18
Censored 0.006 0.053 1.00

MI -0.005 0.052 1.01
MIS 0.003 0.052 1.03

55% 23.7% Uncensored 0.005 0.049 1.22
Censored 0.005 0.055 1.00

MI -0.008 0.054 1.03
MIS 0.002 0.053 1.05

50% 26.0% Uncensored 0.007 0.050 1.27
Censored 0.007 0.056 1.00

MI -0.007 0.054 1.06
MIS 0.002 0.054 1.07

45% 28.1% Uncensored 0.006 0.050 1.33
Censored 0.006 0.057 1.00

MI -0.009 0.054 1.09
MIS -0.002 0.054 1.10

40% 30.1% Uncensored 0.006 0.049 1.40
Censored 0.004 0.058 1.00

MI -0.008 0.054 1.13
MIS 0.001 0.054 1.14

1. Censoring % is the average censoring percentage up to corresponding quantile over the simulations.

2. Bias is the average of true survival percentages minus estimated survival percentages over the simulations.

3. SE is the average estimated standard errors over the simulations.

4. ARE is asymptotic relative efficiency, defined as V ar(bSKM
PO )/V ar(bSKM ), where V ar(bSKM

PO ), the variance of estimates
using the PO approach, is used as reference variance.
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A conservative recommendation would be to perform the analysis both with and without

the bootstrap step, particularly for smaller sample sizes than the simulations shown here

(n < 100).

2.6 IBCSG Ludwig Trial V Example

We now apply standard analyses to restricted mean-based multiply imputed datasets

from the IBCSG Ludwig Trial V study. The data consist of 1229 patients, where 59

patients are still at risk at 108 months, 551 have died and 669 are censored prior to 108

months of followup. Observed covariates include long-duration (LD) or short-duration

(SD) treatment assignment, estrogen-receptor ER status (positive vs. negative/unknown),

tumor size (greater or less than 2cm), number of nodes (0-3, 4-9 or 10+), and age (in

decades).

The primary interest of the study is to examine the treatment effect over the study

period. Just as in a traditional medical journal results section, we first describe marginal

treatment effects via plots and point estimates using the KM method and our restricted

mean MI method. Then we test for treatment differences using the traditional log-rank

test and the MI augmented log-rank test. Multivariate analysis results then assess adjusted

treatment effects and other useful predictors.

As part of performing the MI procedure we estimate the restricted mean in terms of

available data as follows:

E[log{min(108, T )}] = β0 + β1 × I(LD treatment) + β2 × I(ER positive)

+ β3 × I(Tumor ≥ 2cm) + β4 × I(positive nodes 4-9)

+ β5 × I(positive nodes 10+) + β6 × (Age in decades).
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In other words, using the methods described in Section (2.3), for censored patients

we multiply imputed failure times incorporating information on treatment assignment, ER

status, node group categories, tumor size and age.

Marginal survival curves based on the KM method and the MI method are shown in

Figure (2.1), with confidence intervals at year marks shown in Table 2.7. The rightmost

column of Table 2.7 summarizes the differences in point estimates of Ŝ(t), according to

method. Estimates between the two methods are similar during the first couple of years,

but as censoring increases, so do differences between survival estimates across time. Par-

ticularly in the short-duration therapy, the difference in Ŝ(8 years) approaches 6%. This

pattern was similar both with and without a bootstrap step included in the analysis. When

investigating possible reasons for differences in tail survival estimates, we identified de-

pendent censoring captured by age (Hazard Ratio for censoring: 0.81 per decade age in-

crease, 95% CI: (0.70, 0.93), p-value=0.004). That is, older patients who entered the trial

were both less likely to be censored and had longer restricted lifetimes (to be discussed

shortly in Table 2.8 as part of the multivariate analyses). The MI procedure accounts for

this setting, giving lower survival estimates over time when compared to the KM method.

The treatment differences are much larger once the dependent censoring bias related to

age is accounted for. This is reflected in the much higher significance of the logrank anal-

ysis on the restricted mean MI datasets (without bootstrap: p=7 × 10−9; with bootstrap:

p=2 × 10−9) compared to the traditional logrank test (p=0.0001). The marginal survival

plots also indicate some non proportionality early in the study duration, perhaps arguing

the merits of a multivariate model not dependent on proportional hazard shapes to hold.

The significant treatment difference is maintained once we adjust for other risk fac-

tors (full results in Table 2.8). The first 3 columns of Table 2.8 give the GLM model fit

using the pseudo observation (PO) approach as in Andersen et al. (2004). The remaining
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Figure 2.1: Treatment Specific Marginal Survival by Method.
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columns give the analysis based on our restricted mean MI procedure. We report ebβ , where

β̂ = (β̂0, β̂1, β̂2, β̂3, β̂4, β̂5, β̂6) with associated 95% CIs and p-values. The parameters ebβ
are interpreted as multiplicative effects, so that parameter estimates higher than one give

longer estimated restricted lifetimes and estimates smaller than one give shorter estimated

restricted lifetimes. For example, using the MI approach, long-duration treatment tends to

prolong restricted lifetime by a factor of eβ̂1 = 1.14 (95% CI: 1.06, 1.23), compared to

the restricted lifetime on the SD arm, adjusted for other factors. Across covariate effects,

we observe similar or slightly narrower 95% CI widths and 1% efficiency gains for the

MI method versus the PO approach. These minor efficiency gains in the variability of

the parameter estimates were also seen when including a bootstrap step. The multivariate

analysis confirms the role of age as a factor causing some dependent censoring since age

is both related to the event time as well as the censoring time as noted above. The signif-

icance of age straddles the p-value=0.05 depending on methodology used. According to

all methods used, older age is associated with longer restricted lifetimes. The MI method

without a bootstrap step indicates that for each decade increase in age, the estimated re-

stricted lifetime increases by 4.1% {eβ̂MI
6 = 1.041, 95% CI: (1.002, 1.082), p-value=0.040

}. This seems to be capturing the known risk of more aggressive breast cancer tumors

diagnosed in younger patients. Incorporating a bootstrap step into the MI procedure gave

corresponding results for age as {1.036, 95% CI: (0.996, 1.076), p-value=0.076}, while

the PO method gave {eβ̂PO
6 = 1.038, 95% CI: (0.998, 1.079), p-value=0.060}.

The MI procedure seems to be accounting for dependent censoring through slightly

better estimation of the intercept, which affects estimation of restricted lifetimes, and

therefore the values imputed in the MI algorithm. For instance, we may estimate restricted

lifetimes for a typical patient in the SD treatment arm, using average patient profile values

for other risk factors, i.e., (58.3)(0.79)0.27(0.55)0.16(0.88)0.77(1.23)0.54(1.04)5.00 = 61.6
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months for the MI method (95% CI: 57.9, 65.5), and similarly 62.1 months for the PO

method (95% CI: 58.3, 66.0). That is, a 50 year old patient with a 27% chance of hav-

ing 4-9 positive nodes, a 16% of having 10+ positive nodes, a 54% chance of being ER

positive, and a 77% chance of having tumor greater than 2cm is expected to live 61.6

months out of a possible 108 months on study based on the MI method. The PO approach

estimates a slightly longer restricted mean for this type of patient, likely connected to de-

pendent censoring biases associated with age. Since younger (sicker) patients are being

censored more often, the PO approach seems to be slightly overestimating the expected

number of months lived during the 108 month duration.

2.7 Discussion

Using the restricted mean formulation, the shapes of the survival curves in relation

to one another are not specified. Our method merely requires the mean structure to be

correctly specified, i.e., the area under the survival curve to τ follows (2.1). It is also

possible, of course, to recover restricted mean estimates from a Cox modeling framework

using Ŝ(t|Z) = Ŝ0(t)
eβ̂T Z , and in cases where hazards are truly proportional these es-

timates should be fully efficient. In two sample testing literature when hazards are not

proportional, Pepe and Fleming (1998) indicated a substantial improvement in detecting

treatment effects using differences in restricted means as opposed to the logrank test (score

test for Cox model). Previous authors advocating restricted mean models have not clearly

laid out inference performance issues in relation to hazard based models beyond the intu-

ition gleaned from the two sample testing setting.

Andersen et al. (2004) use pseudo observations to create a modified dataset and ap-

ply a similar mean structure as (2.1) for analysis. In studying the PO method and how

it might be modified to provide imputes larger than the observed censoring times, we
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discovered a potential loss of statistical information available from Z. We considered im-

putes for Ci that add Ci plus a conditional pseudo observation created from the patients

at risk at Ci. Suppose ŜKM(−i)(t|T ≥ Ci) is the KM estimate with the person censored

at Ci left out among those otherwise at risk at Ci. Then a conditional pseudo observation

defined as n
∫ τ

Ci
ŜKM(t|T ≥ Ci)dt − (n − 1)

∫ τ

Ci
ŜKM(−i)(t|T ≥ Ci)dt would reduce

to
∫ τ

Ci
ŜKM(t|T ≥ Ci)dt. The non-parametric estimate ŜKM(t|T ≥ Ci) does not fully

utilize covariate information from Z. Pseudo observation calculation for this special case

may indicate why our restricted mean MI approach outperforms the traditional PO method

in simulation with respect to efficiency. Looking at this special case of pseudo observa-

tion creation may also suggest why dependent censoring might influence the PO method

in terms of bias. That is, a conditional pseudo observation ŜKM(t|T ≥ Ci) may still be

biased if censoring depends on Z, and the traditional PO method seems also subject to this

same source of bias.

More recently, Andersen and Perme (2010) suggested the use of pseudo observations

based upon weighted Kaplan-Meier estimates (Murray and Tsiatis (1996)), n−1
∑G

g=1 ngŜ
KM
g (t),

where ŜKM
g (t) is a Kaplan-Meier estimate in subgroup g of patients with categorical co-

variate Z = g and ng is the number of patients in subgroup g (g = 1, ..., G). When only

a single categorical covariate is associated with the survival and censoring distributions,

corresponding calculations of conditional pseudovalues created from those at risk at Ci

reduce to
∫ τ

Ci
ŜKM

g (t|T ≥ Ci)dt, which is a maximum likelihood estimate of the restricted

mean life for someone from group g surviving past Ci. Since all available covariate infor-

mation is utilized in this scenario, we suspect that the pseudo observation approach will

be fully efficient and unbiased for estimation of parameters in (1). Simulations using cat-

egorical covariates yield very similar results for parameter estimates based on weighted

Kaplan-Meier based pseudo observations and restricted mean MI method, see Table 2.1.
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The approach of creating pseudo observations with Kaplan-Meier estimates averaged

across categorical covariate strata may be impractical in regression settings with many

covariates. As covariate strata become more finely partitioned, technical difficulties of

estimating survival consistently in the tails of the distribution arise since each stratum

specific Kaplan-Meier curve is only guaranteed consistency in the range of the observed

outcomes for that stratum. When only a single continuous covariate is related to survival

and censoring distributions, averaging Kaplan-Meier estimates across categorical strata

of the continuous covariate may still be viable since simulations by Murray and Tsiatis

demonstrated that most efficiency gain and bias correction may be captured using roughly

3 to 5 strata.

With a single categorical covariate our restricted mean MI approach reduces to that of

Hsu et al. (2006) since risk set groupings based on either similar restricted means, as in

our work, or similar hazards, as in Hsu et al.’s work, will result in groups with the same

categorical covariate to impute from. As indicated in Hsu et al., this special case produces

marginal survival estimates similar in expectation to the weighted Kaplan-Meier estimate

described by Murray and Tsiatis as well as the survival estimates proposed by Malani

(1995). Similarly, rank-based tests based on MI analyses with categorical covariates would

be expected to perform similarly to those proposed by Mackenzie and Abrahamowicz

(2005).

To our knowledge, this is the first instance when the restricted mean lifetime has been

used to impute censored survival data based on risk factors, increasing efficiency. Ef-

ficiency gains when using covariate information in marginal survival curve estimation

have been seen in many other contexts by authors including Finkelstein and Schoenfeld

(1994),Gray (1994) and Robins and Rotnitzky (1992) . The MI method retains essential

characteristics of the observed data and approximates the original distribution well. Final
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parameter estimates have good operating characteristics and have improved finite sample

properties. Particularly appealing to clinicians is that the interpretation of the parameter

estimates apply directly to days, months or years of life saved for different risk profiles. In

addition, our method preserves the traditional benefits of MI such as transparency of vari-

ance calculation and availability of standard statistical software to analyze the augmented

datasets.
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Ŝ
(K

M
) (
t)

(9
5%

C
I)

(1
)

Ŝ
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CHAPTER III

Stochastic Process Frailty Model

3.1 Introduction

Frailty models are commonly used when population heterogeneity is not fully ex-

plained by individuals’ observed risk factors. The idea of using a non-negative random

variable, U , to represent additional variability in the population was first introduced by

Vaupel et al. (1979). Frailties are often incorporated into variations of the Cox propor-

tional hazard (PH) model Cox (1972); In the case of Vaupel et al., the survival function

becomes S(t|z) = E(e−UeβT z
R t
0 dHs), where Hs is a baseline cumulative hazard function

at time s, z is an observed time-independent covariate vector, and β is a parameter vector

associated with the influence of z on survival. U is typically assumed to follow a non-

negative parametric distribution, such as gamma {Klein (1992), Nielson et al. (1992) and

Hougaard (1996), compound Poisson family {Aalen (1992)}, among other distributions

Hougaard (2000).

Several authors extend frailty models by allowing z to be a function of time t. For

example, Kosorok et al. (2004) considered the following survival model:

(3.1) S(t|z[0, t]) = E(e−U
R t
0 eβT zsdHs),

where z[0, t] represents the history of zs, s ∈ [0, t]. Here U remains a time-independent

frailty unrelated to z[0, t]. As shown in Appendix ( B.1), the corresponding hazard function

33
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becomes

λ(t|z[0, t]) =
E{U exp(−U

∫ t

0
eβT zsdHs)}

E{exp(−U
∫ t

0
eβT zsdHs)}

eβT ztdHt/dt

= E(U |T ≥ t, z[0, t])eβT ztdHt/dt,

where T is the failure time distribution.

Zeng and Lin (2007) considered an extended model in the same spirit where time accel-

erates according to a function of the observed time-dependent covariate, zs for s ∈ [0, t]. In

the context of univariate frailty models, the work of Zeng and Lin (2007) reduces to (3.1)

extended by an additional power transformation, and where the distribution of U has no

unknown parameters. The frailty, U , is characterized by the Laplace transform, L(x) =

E(e−Ux). Their transformation function G(x) = − logE(e−Ux) acts on the cumulative

hazard. That is, suppose z̃ is the subset of observed time independent covariates in zs. The

cumulative hazard becomes Λ(t|z[0, t]) = G(x), where x =
(∫ t

0
eβT zsdHs

)exp(γT z̃)

.

Various authors have contributed to the literature on estimation and inference for mod-

els with time-independent frailties. Murphy (1994) and Murphy (1995) provide asymp-

totic theory in the case U has a gamma distribution and covariates are recorded at baseline.

For general U , Tsodikov (2003) proposes a Quasi-EM procedure for estimation of (3.1).

Kosorok et al. (2004), Zeng and Lin (2007) and Zeng and Lin (2010) study properties of

estimated hazards and model parameters for their respective models using empirical pro-

cesses. Bagdonnavicius and Nikulin (1999) and Martinussen and Scheike (2006) use a

modified partial likelihood approach to argue normality of estimates in (1). Chen (2009)

and Chen (2010) outline a weighted Breslow-type estimation approach for (3.1), basing

associated asymptotic results on martingale theory.

In the majority of the existing literature, U is treated as time-independent. However,

with observed zt being dynamic, there is no reason to assume that the unobserved explana-
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tory variable U is not. We will use the notation Ut to represent an unobserved stochastic

process that changes over time t ∈ [0, τ ]. The history of Us for s ∈ [0, t] will hereafter

be denoted as U [0, t]. For instance, Tsodikov and Muller (1998) use a non-homogeneous

Poisson process (NHPP) to incorporate a frailty, Ut, that captures induction of cancerous

lesions in mice by a time changing radiation exposure. Yashin and Manton (1997) propose

a Gaussian frailty process for Ut. Gjessing et al. (2003) model Ut as a Levy process. Yue

and Chan (1997) extend stochastic frailty modeling to the bivariate survival setting.

In this work, we consider a general process Ut and an non parametric maximum like-

lihood estimate (NPMLE) framework for the corresponding models for S(t|z[0, t]). Esti-

mation and inferential tools are developed within this general framework, where the dis-

tribution of Ut is left unspecified except for Laplace functionals Shiryaev (1960) of the

process. Section 3.2 outlines the stochastic process frailty model. Estimation procedures

outlined in Section 3.4 and asymptotic derivations in Section 3.5 continue to keep Ut in its

most general form; this latter section gives asymptotic properties of estimates for model

parameters and the cumulative hazard function. A special case of the stochastic process

frailty model is elucidated in Section 3.6, the non-homogeneous Poisson process (NHPP)

frailty, assuming observed covariate is a time-dependent binary factor. Examples of a

known frailty, Poisson frailty and Poisson process frailty are given in Section 3.7, assum-

ing observed covariate is a time-independent binary factor. A simulation conducted in this

special case is given in Section 3.8. A discussion follows in Section 3.9.

3.2 Stochastic Process Frailty Model

Suppose the frailty process, Ut, follows an unspecified distribution that is a func-

tional of the observed history of time-dependent covariates, z[0, t]. The survival function

S(t|z[0, t]) will be a weighted average over possible histories of Us, s ∈ [0, t], or U [0, t].
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That is,

(3.2) S(t|z[0, t]) = EU [0,t]

(
e−

R t
0 UsdHs

)
.

with corresponding cumulative hazard function

Λ(t|z[0, t]) = − logEU [0,t](e
−

R t
0 UsdHs).(3.3)

In the case when Us = UeβT zs , (3.2) reduces to (3.1), however other functional forms

of Us in terms of zs or z[0, s] would also fit into this framework.

Based on (3.2), the hazard function becomes

λ(t|z[0, t]) =
EU [0,t]

{
Ut exp(−

∫ t

0
UsdHs)

}
EU [0,t]

{
exp(−

∫ t

0
UsdHs)

} dHt/dt

= E(Ut|T ≥ t, z[0, t])dHt/dt,(3.4)

by an argument shown in Appendix ( B.1). Thus, the hazard is the product of the baseline

hazard and an expectation that can be interpreted as an imputation of the unobserved value

of the frailty process at time t, given the individual is alive at t. In the case of the traditional

Cox model, Us = eβT zs , so that the traditional Cox model can be thought of as having an

(imputed) non-random frailty.

Let H[0, t] denote the history of baseline hazard values from 0 to t. To emphasize

that the imputed frailty, E(Ut|T ≥ t, z[0, t]), depends on H[0, t], as well as the history of

observed covariates, z[0, t], we introduce the notation

Θ0(t,H[0, t]|z[0, t]) = E(Ut|T ≥ t, z[0, t]),

so that λ(t|z[0, t]) = Θ0(t,H[0, t]|z[0, t])dHt/dt. Importantly, under independent censor-

ing, conditioning upon T ≥ t is equivalent to conditioning upon X = t,∆ = 0. This

corresponds to the usual idea of relating net and crude hazards under independent censor-

ing.
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We will see that in the more general stochastic process case the impute,

Θ0(t,H[0, t]|z[0, t]), allows the ability to multiplicatively increase or decrease λ(t|z[0, t]).

This differs from the more standard case with a time-independent frailty, where the im-

putes only decrease the hazard multiplicatively over time Vaupel et al. (1979). In Sec-

tion 3.6 we will see an example where Ut gives non monotonicity of the imputes.

3.3 Imputation of Ut

In this section, we expand our understanding of the role of imputed frailties, their

interpretation within likelihoods, estimating equations and their NPMLEs.

3.3.1 Data structure and notation

Suppose failure time, T , and right censoring time, C, are independent random vari-

ables. C is also independent of Us, s ∈ [0, τ ]. We observe a vector of time-dependent

covariates, z(t), through time t, with t ∈ [0, τ ] and τ < ∞, appropriately constrained to

be during the study period. Let X = min(T,C) and ∆ = I(T ≤ C). Each independent

individual, i, contributes observed data {Xi,∆i, zi[0, Xi]}, i = 1, . . . , n, where zi[0, Xi]

is the subject-specific trajectory of the covariate process in the interval where the subject

is at risk. The observed data can be represented equivalently in counting process notation

as {Ni(t), N
c
i (t), Yi(t), zi(t)}, i = 1, . . . , n, where Ni(t) = I(Xi ≤ t)∆i gives the failure

counting process, N c
i (t) = I(Xi ≤ t)(1 −∆i) gives the censoring counting process, and

Yi(t) = I(Xi ≥ t) gives the at risk process Nielson et al. (1992).

3.3.2 General form of imputes, Ux, given knowledge to time t

In this paper we begin by considering imputes of Ut based on full knowledge of

death and censoring information for the subject, including the future beyond t; that is,

E(Ut|X,∆, z[0, X]), or equivalently, E(Ut|N(s), Y (s), z(s), s ∈ [0, τ ]). In other words,
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the impute of Ut involves information not only at t, but also observed death or censoring

information in the future. In Appendix B.1, Bayes rule is used to obtain the distribution of

Ux given {X,∆, z[0, X]}, or more particularly, given {X = t,∆, z[0, t]}, for t > x. The

resulting expectations become

E(Ux|X = t,∆ = 0, z[0, t]) =
EU [0,t]

{
Ux exp(−

∫ t

0
UsdHs)

}
EU [0,t]

{
exp(−

∫ t

0
UsdHs)

}(3.5)

and E(Ux|X = t,∆ = 1, z[0, t]) =
EU [0,t]

{
UxUt exp(−

∫ t

0
UsdHs)

}
EU [0,t]

{
Ut exp(−

∫ t

0
UsdHs)

} .(3.6)

For simplicity, we introduce the following notation for the above expressions,

Θ∆(x,H[0, t]|z[0, t]) =
EU [0,t]

{
UxU

∆
t exp(−

∫ t

0
UsdHs)

}
EU [0,t]

{
U∆

t exp(−
∫ t

0
UsdHs)

}
= E(Ux|X = t,∆, z[0, t]).(3.7)

Recall that in the case when ∆ = 0, this definition of Θ0(x,H[0, t]|z[0, t]) is identical

to that in equation (3.5), so that imputes based upon knowledge of observed censoring

at time t are the same as imputes for survivors in the absence of additional information.

These imputes, Θ∆(x,H[0, t]|z[0, t]), become useful in describing the form of the NPMLE

for Ht.

For t > x, define

Θ0(x, t,H[0, t]|z[0, t]) = E(UxUt|X = t,∆ = 0, z[0, t])

=
EU [0,t]

{
UxUt exp(−

∫ t

0
UsdHs)

}
EU [0,t]

{
exp(−

∫ t

0
UsdHs)

} .

This term algebraically relates Θ0(t,H[0, t]|z[0, t]) to Θ1(x,H[0, t]|z[0, t]), since

Θ0(x, t,H[0, t]|z[0, t])
Θ0(t,H[0, t]|z[0, t])

= Θ1(x,H[0, t]|z[0, t]).
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In the following section, it will be convenient to have the functional derivatives of

Θ0(t,H[0, t]|z[0, t]) and log Θ0(t,H[0, t]|z[0, t]) with respect to the baseline hazard at

time x, dHx.

First, for t > x,

∂

∂dHx

Θ0(t,H[0, t]|z[0, t])

=
∂

∂dHx

EU [0,t]

{
Ut exp(−

∫ t

0
UsdHs)

}
EU [0,t]

{
exp(−

∫ t

0
UsdHs)

}
= −

EU [0,t]

{
UxUt exp(−

∫ t

0
UsdHs)

}
EU [0,t]

{
exp(−

∫ t

0
UsdHs)

}
+
EU [0,t]

{
Ut exp(−

∫ t

0
UsdHs)

}
EU [0,t]

{
exp(−

∫ t

0
UsdHs)

} EU [0,t]

{
Ux exp(−

∫ t

0
UsdHs)

}
EU [0,t]

{
exp(−

∫ t

0
UsdHs)

}
= −Θ0(x, t,H[0, t]|z[0, t]) + Θ0(x,H[0, t]|z[0, t])Θ0(t,H[0, t]|z[0, t])

= −E(UxUt|X = t,∆ = 0, z[0, t])

+E(Ux|X = t,∆ = 0, z[0, t])E(Ut|X = t,∆ = 0, z[0, t])

= −cov(Ux, Ut|X = t,∆ = 0, z[0, t]).(3.8)

Hence this term is known based on the covariance structure of the stochastic process, Ut,

without requiring an explicit form for Ut. Using this result, we also get for t > x

∂

∂dHx

log Θ0(t,H[0, t]|z[0, t])

= −Θ0(x, t,H[0, t]|z[0, t])−Θ0(x,H[0, t]|z[0, t])Θ0(t,H[0, t]|z[0, t])
Θ0(t,H[0, t]|z[0, t])

= −Θ1(x,H[0, t]|z[0, t]) + Θ0(x,H[0, t]|z[0, t]).(3.9)

The above relationship expresses the difference in the value of the imputed frailty process

Ux at time x < t for a subject known to survive past t (Θ0(x,H[0, t]|z[0, t])) vs. the one

known to fail at t (Θ1(x,H[0, t]|z[0, t])), the history on [0, x] being the same for both.
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In the time-independent frailty case, cov(Ux, Ut|X = t,∆ = 0, z[0, t]) = V ar(U |X =

t,∆ = 0, z[0, t]) > 0, and consequently from (3.8) and (3.9) the failing subject always

has larger imputed risk. This is still the case with frailty being a stochastic process with

positive conditional covariance. That is, cov(Ux, Ut|X = t,∆ = 0, z[0, t]) > 0. However,

when this covariance is negative, smaller Ux is generally associated with larger future Ut

leading to potentially greater risk of failure. Inverting the previous sentence, information

that subject failed at t may lead to smaller imputed Ux compared to the subject known

to survive past t, Θ1(x,H[0, t]|z[0, t]) < Θ0(x,H[0, t]|z[0, t]). Consequently, the frailty

process has a sense of a measure of relative risk only when the conditional covariance is

positive, and the risk of failure is positively “correlated” with the frailty.

3.3.3 NPMLE based on imputes of Ut

Using S(t|z[0, t]) as in (3.2), Λ(t|z[0, t]) as in (3.3) and λ(t|z[0, t]) as in (3.4), the

log-likelihood becomes

l =
n∑

i=1

∫ τ

0

{log λ(t|zi[0, t]} dNi(t)− {dN c
i (t) + dNi(t)}Λ(t|zi[0, t])

=
n∑

i=1

∫ τ

0

{
log Θ0(t,H[0, t]|zi[0, t]) + log dHt

}
dNi(t)

+ {dN c
i (t) + dNi(t)} logE(e−

R t
0 UsdHs).(3.10)

The role of the impute, Θ0(t,H[0, t]|zi[0, t]), in the likelihood is to represent the frailty of

a person with a similar history to individual i given this person survived beyond time t; in

the Cox model, the non-random impute, eβT zs,i would stand in for this individual.

Based on taking the functional derivative with respect to dHx in (3.10), the correspond-
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ing estimating equation for Ht becomes

U∗
H(H[0, τ ], t, β) =

n∑
i=1

∫ t

0

(
dNi(x)

+

[ ∫ τ

x

{
Θ0(x,H[0, u]|zi[0, u])−Θ1(x,H[0, u]|zi[0, u])

}
dNi(u)

−
∫ τ

x

Θ0(x,H[0, u]|zi[0, u]) {dNi(u) + dN c
i (u)}

]
dHx

)
=

n∑
i=1

∫ t

0

(
dNi(x)

−
{∫ τ

x

Θ1(x,H[0, u]|zi[0, u])dNi(u)

+

∫ τ

x

Θ0(x,H[0, u]|zi[0, u])dN
c
i (u)

}
dHx

)
=

n∑
i=1

∫ t

0

(
dNi(x)

−
[ ∫ τ

x

Θ∆i(x,H[0, u]|zi[0, u]) {dNi(u) + dN c
i (u)}

]
dHx

)
.

Set this equation to zero, then take derivative with respect to t, we may obtain an

equation for dHx. Integrating this equation for dHx from 0 to t, we have the following

NPMLE equation for Ht.

dĤt =
n∑

i=1

∫ t

0

dNi(x)∑n
i=1

∫ τ

x
Θ∆i(x,H[0, u]|zi[0, u]) {dNi(u) + dN c

i (u)}
.(3.11)

The same form of NPMLE can be found in traditional Cox models, models with time

independent frailty as in Tsodikov (2003), Kosorok et al. (2004), Zeng and Lin (2007),

Chen (2009), and Chen (2010). In the special case where U [0, t] is fully observed, (3.2)

reduces to a traditional Cox model with observed time dependent covariates and (3.35)

reduces to the Breslow estimator for that case. In the special case where the frailty is time-

independent, (3.35) reduces to the estimator developed by Tsodikov (2003), Kosorok et al.

(2004), Zeng and Lin (2007), 9Chen (2009), and Chen (2010). In each case, the imputes

Θ∆i(x,H[0, u]|zi[0, u]) in (3.35) capture the full information available on the subject.
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We build our estimation procedure and asymptotic theory on the log-likelihood repre-

sented in next section as that form yields convenient martingale property of the score.

3.4 Estimation of model parameters and baseline cumulative hazard

Consider the log-likelihood (3.10) in Section 3.3. The trailing term involving

−
∫ τ

0
logE(e−

R t
0 UsdHs) {dN c

i (t) + dNi(t)} can be rewritten as∫ τ

0
Yi(t)Θ

0(t,H[0, t]|z[0, t])dHt upon noting that

Λ(t|z[0, t]) =
∫ t

0
Θ0(s,H[0, s]|z[0, s])dHs. So the log-likelihood in (3.10) becomes

l =
n∑

i=1

∫ τ

0

{
log dHt + log Θ0(t,H[0, t]|zi[0, t])

}
dNi(t)

−Yi(t)Θ
0(t,H[0, t]|zi[0, t])dHt,(3.12)

where here and below the subscript i denotes individual level information, and

Θβ(t,H[0, t])|z[0, x] =
∂

∂β
Θ0(t,H[0, t]|z[0, t]).

Also, let

dM(t) = dN(t)− Y (t)Θ0(t,H[0, t]|z[0, t])dHt.(3.13)

Then differentiating the likelihood we can obtain the following score functionals for
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(Ht, β):

UH(H[0, τ ], t, β) =
n∑

i=1

∫ t

0

[
dNi(x) + dHx

∫ τ

x

{
Θ0(x,H[0, u]|zi[0, u])

−Θ1(x,H[0, u]|zi[0, u])

}
dNi(u)

−Yi(x)Θ
0(x,H[0, x]|zi[0, x])dHx

+dHx

∫ τ

x

Yi(u)

{
−Θ0(x, t,H[0, t]|z[0, t])

+Θ0(x,H[0, t]|z[0, t])Θ0(t,H[0, t]|z[0, t])
}
dHu

]
=

n∑
i=1

∫ t

0

(
dMi(x) +

[ ∫ τ

x

{
Θ0(x,H[0, u]|zi[0, u])

−Θ1(x,H[0, u]|zi[0, u])

}
dMi(u)

]
dHx

)
(3.14)

Uβ(H[0, τ ], β) =
n∑

i=1

∫ τ

0

Θβ(x,H[0, x]|zi[0, x])

Θ0(x,H[0, x]|zi[0, x])
dMi(x).(3.15)

Solutions to the above estimating equations, when set to zero, give Ĥt and β̂.

3.5 Asymptotics of estimates

To demonstrate the consistency and asymptotic normality of (Ĥt, β̂), for a time point

t, we follow the ideas presented in Chen (2009) and Chen (2010). For models like (3.1),

Kosorok et al. (2004), Zeng and Lin (2007), and Zeng and Lin (2010) establish the asymp-

totic properties of the NPMLE using empirical processes. We follow an alternative ar-

guments of Chen (2009) and Chen (2010), who elucidate the weak convergence of the

NPMLE using martingales.

3.5.1 Martingale properties of estimating equations

We show that (3.14) is a multivariate martingale if (Ht, β) are evaluated at their true

values (Ht, β0).

After exchanging integrals and some algebra, (3.14), scaled by n−1/2, can be written
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as:

n−1/2UH(H[0, τ ], t, β) = n−1/2

n∑
i=1

∫ t

0

[
1 +

∫ u

0

{
Θ0(x,H[0, u]|zi[0, u])

−Θ1(x,H[0, u]|zi[0, u])

}
dHx

]
dMi(u)

+n−1/2

∫ τ

t+

∫ t

0

{
Θ0(x,H[0, u]|zi[0, u])

−Θ1(x,H[0, u]|zi[0, u])

}
dHxdMi(u)

= n−1/2

n∑
i=1

∫ τ

0

ξi(u, t)dMi(u)(3.16)

where ξi(u, t) = I(u ≤ t) +
∫ u∧t

0

{
Θ0(x,H[0, u]|zi[0, u])−Θ1(x,H[0, u]|zi[0, u])

}
dHx,

is a bounded and predictable process up to u.

Prvious authors have studied stochastic integrals of the form
∫ τ

0
ξ(u, t)dM(u) Lachout

(2001), calling them linear transformation of Wiener process. In general,
∫ τ

0
ξ(u, t)dM(u)

is not a martingale unless ξ(u, t) does not depend on t for u ≤ t, as in this case. That is,

ξ(u, t) = ξ(u) = 1+
∫ u

0

{
Θ0(x,H[0, u]|zi[0, u])−Θ1(x,H[0, u]|zi[0, u])

}
dHx, for u ≤ t.

Further details are provided in Appendix (B.3).

The corresponding predictable variation process for (3.16) is:

n−1

n∑
i=1

∫ τ

0

ξ2
i (u, t)Yi(u)Θ

0(u,H[0, u]|zi[0, u])dHu,(3.17)

that converges in probability to the following deterministic functional as n→∞:∫ τ

0

ξ2(u, t)P (T ≥ u)Θ0(u,H[0, u]|z[0, u])dHu,

Assume ξ(u, t) and Θ0(u,H[0, u]|zi[0, u]) are bounded and smooth, under certain reg-

ularity conditions (listed in Appendix (B.2), Martingale Central Limit Theorum (MCLT)

gives the following weak convergence:

n−1/2UH(H[0, τ ], t, β) ⇒ W̃UH
(t, β),(3.18)
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where W̃UH
(t, β) is a zero-mean Gaussian process with the following covariance function:

σ2
H(s, t) =

∫ τ

0

ξ(u, s)ξ(u, t)P (T ≥ u)Θ0(u,H[0, u]|z[0, u])dHu,(3.19)

for t, s ∈ [0, τ ].

Similarly, assuming Θβ(x,H[0,x]|zx)
Θ0(x,H[0,x]|zx)

is bounded and smooth, n−1/2Uβ(H[0, τ ], β0) is also

a martingale with predictable variation process:

n−1

n∑
i=1

∫ τ

0

{Θβ(u,H[0, u]|zi[0, u])}2

Θ0(u,H[0, u]|zi[0, u])
Yi(u)dHu,(3.20)

that converges to the following deterministic functional σ2
β(β) as n→∞:

σ2
β(β) =

∫ τ

0

{Θβ(u,H[0, u]|z[0, u])}2

Θ0(u,H[0, u]|z[0, u])
P (T ≥ u)dHu.(3.21)

By MCLT,

n−1/2U(H[0, τ ], β0) ⇒ W̃Uβ
(β),(3.22)

where W̃Uβ
is a zero-mean Gaussian process with the covariance σ2

β(β).

Meanwhile, n−1/2U(H[0, τ ], t, β0), for some t, and n−1/2U(H[0, τ ], β0) is also a mar-

tingale that has the following predictable covariation process:

n−1

n∑
i=1

∫ τ

0

ξ(u, t)Θβ(u,H[0, u]|zi[0, u])Yi(u)dHu,(3.23)

that converges to the following deterministic functional σ2
H,β(t, β), as n→∞:

σ2
H,β(t, β) =

∫ τ

0

ξ(u, t)Θβ(u,H[0, u]|zi[0, u])P (T ≥ u)dHu.

Hence, by MCLT, n−1/2 {U(H[0, τ ], t, β0), U(H[0, τ ], β0)} converges weakly to a Gaus-

sian process with covariance function σ2
H,β(t, β).

Therefore, (3.14) is a martingale that coverges to a zero-mean Gaussian process W̃U(t, β).

That is,

n−1/2

 UH(H[0, τ ], t, β)

Uβ(H[0, τ ], β)

⇒ W̃U(t, β)(3.24)
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The covariance function of W̃U(t, β) is characterized by the following:

Σ(s, t, β) =


σ2

H(s, s) σ2
H(s, t) σ2

H,β(s, β)

σ2
H(t, s) σ2

H(t, t) σ2
H,β(t, β)

σ2
H,β(s, β) σ2

H,β(t, β) σ2
β(β)

(3.25)

for s, t ∈ [0, τ ].

The components in Σ(s, t, β) can be consistently estimated by the corresponding pre-

dictable variation (covariation) processes as in (3.17), (3.20) and (3.23) by replacing dH

with dĤ and replacing β with β̂ .

Remark 1: We can also write (3.14) as

UH(H[0, τ ], x, β) =
n∑

i=1

dNi(x)−
n∑

i=1

Yi(x)Θ
0(x,H[0, x]|zi[0, x])wi(x, τ)dHx,

Uβ(β) =
n∑

i=1

∫ τ

0

Θβ(x,H[0, x]x|zi[0, x])

Θ0(x,H[0, x]|zi[0, x])
dMi(x),

where

wi(x) = 1−

∫ τ

x

{
Θ0(x,H[0, u]|zi[0, u])−Θ1(x,H[0, u]|zi[0, u])

}
dMi(u)

Θ0(x,H[0, x]|zi[0, x])

As discussed in Chen (2009) and Chen (2010), w(x) has unit expectation, which is a

consequence of the martingale property of the score. Also as discussed in Chen (2009),

the martingale suggests:

E

{
n∑

i=1

dNi(t)|Ft−

}
=

n∑
i=1

Yi(t)Θ
0(t,H[0, t]|zi[0, t])dHt,

that leads to inefficient NPMLE as:

dĤt =
n∑

i=1

dNi(x)∑n
i=1 Yi(x)Θ0(t,H[0, t]|zi[0, t])

.(3.26)

In this way, we can interpret the weight w as correcting for the loss of information by

using only past histories in the imputation operators vs. the full available information on
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each subject. In expectation, this quantity is 1, suggesting that both (3.35) and (3.26) lead

to consistent estimate for H .

Remark 2: The implication of weak convergence of (3.14) is that n−1(UH , Uβ) con-

verges to zero in probability by Lenglart Inequality. The consistency of {(Ĥ, β̂)} follows

immediately, see, Fleming and Harrington (2005).

Remark 3: Murphy (1994), Murphy (1995) and Murphy and van der Vaart (2000)

showed weak convergence of the NPMLE based on the similar models as (3.1). In Ap-

pendix (B.8), we present the works using profile likelihood and show that the converging

process for Ĥ satisfies second order non-homogeneous stochastic equation. In general,

there is no explicit solution to this type of equation. The difference between profile likeli-

hood approach and the approaches used by Bagdonnavicius and Nikulin (1999) and Mar-

tinussen and Scheike (2006), is that the latter used modified profile likelihood similar to

partial likelihood as in Cox (1972). The parital likelihood approach is not fully efficient

for models (3.1) and (3.2), because the hazard functions are usually not linear in H .

3.5.2 Weak Convergence

In this section we derive the asymptotic distribution for
√
n(Ĥt −Ht, β̂ − β0).

Taylor expansion suggests the following, ignore op(1) terms:

n−1/2

 UH(Ĥ[0, τ ], t, β̂)− UH(H[0, τ ], t, β)

Uβ(Ĥ[0, τ ], β̂)− Uβ(H[0, τ ], β)


=

√
n

 ∫ t

0
n−1UH

H (H[0, τ ], t, y, β)d(Ĥ −H)(y) + n−1Uβ
H(H[0, τ ], t, β)(β̂ − β)∫ τ

0
n−1UH

β (H[0, τ ], y, β)d(Ĥ −H)(y) + n−1Uβ
β (H[0, τ ], β)(β̂ − β)


=

√
n

 ∫ t

0
φH

H(H[0, τ ], t, y, β)d(Ĥ −H)(y) + φβ
H(H[0, τ ], t, β)(β̂ − β)∫ τ

0
φH

β (H[0, τ ], y, β)d(Ĥ −H)(y) + φβ
β(H[0, τ ], β)(β̂ − β)


where UH

H , Uβ
H , UH

β and Uβ
β , together with their corresponding converging functions, φH

H ,
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φβ
H , φH

β and φβ
β are given in Appendix B.5.

First, UH(Ĥ[0, τ ], t, β̂) and Uβ(Ĥ[0, τ ], β̂) are zero. Meanwhile, based on (3.24) in

Section 3.5.1, we have

√
n

 ∫ t

0
φH

H(H[0, τ ], t, y, β)d(Ĥ −H)(y) + φβ
H(H[0, τ ], t, β)(β̂ − β)∫ τ

0
φH

β (H[0, τ ], y, β)d(Ĥ −H)(y) + φβ
β(H[0, τ ], β)(β̂ − β)


⇒ W̃U(t, β),(3.27)

where W̃U(t, β) has covariance matrix Σ(s, t, β) in (3.25).

LetW1(t) denote
∫ t

0
φH

H(H[0, τ ], t, y, β)dV (y)+φβ
H(H[0, τ ], t, β)(β̂−β), where V (y) =

(Ĥ −H)y and W2 denote
∫ τ

0
φH

β (H[0, τ ], y, β)dV (y) + φβ
β(H[0, τ ], β)(β̂ − β).

The covariance for the left hand side of (3.27), as shown in Appendix C.2, is

Σ∗(s, t, β) =


σ∗,2W1

(s, s) σ∗,2W1
(s, t) σ∗,2W1,W2

(s, β)

σ∗,2W1
(t, s) σ∗,2W1

(t, t) σ∗,2W1,W2
(t, β)

σ∗,2W1,W2
(s, β) σ∗,2W1,W2

(t, β) σ∗,2W2
(β)

 .

Based on (3.27), we have Σ∗(s, t, β) = Σ(s, t, β). As a result, the covariance function

of
√
n(Ĥt − Ht, β̂ − β0) are expressed as solutions to this system of Volterra integral

equations.

The observed information matrix I will be used to give estimate of the covariance of

the estimating equations. The form of I is given in Appendix (B.7).

3.6 Example: Ut as a non homogeneous Poisson process (NHPP)

In this section we illustrate our method in a special case whereUt is a non-homogeneous

Poisson process (NHPP) characterized by cumulative intensity
∫ t

0
µsds with µs = eβT zs .

This process is well suited to describe accumulating lesions or other damages in a system

induced by time-varying environmental exposure linked to the NHPP intensity. For now
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we keep zs general; in the simulation section that follows zs is a time-dependent indicator

function of progression that turns on at a random point during followup.

As in (3.2), S(t|z[0, t]) = EU [0,t](e
−

R t
0 UsdHs). In the case of NHPP, Us is a count over

time taking values, 0, 1, 2, . . . at times 0, T1, T2, . . .. Let Nt be the number of events in

[0, t]. Thus, S(t|z[0, t]) becomes

EU [0,t](e
−

R t
0 UsdHs)

= EU [0,t]

{
E
(
e−

R t
0 UsdHs |Us, s ∈ [0, t]

)}
= EU [0,t]E

{
exp

(
−

Nt−1∑
u=1

∫ Tu+1

Tu

udHs −
∫ t

TNt

NtdHs

)
|Us, s ∈ [0, t]

}
,(3.28)

where the inner expectation is taken with respect to event times T1, T2, . . . , TNt . And since

after cancellations of like terms

−
Nt−1∑
u=1

∫ Tu+1

Tu

udHs −
∫ t

TNt

NtdHs =
Nt∑

u=1

HTu −NtHt,

(3.28) becomes

EU [0,t]

[
exp(−NtHt)E

{
exp

(
Nt∑

u=1

HTu

)
|Us, s ∈ [0, t]

}]
.(3.29)

From McDonald (1947), givenNt events in [0, t], the unordered events T ∗
1 , T

∗
2 , . . . , T

∗
Nt

are independent and identically distributed random variables with density

µxR t
0 µsds

= eβT zx(
∫ t

0
eβT zsds)−1, for x ∈ [0, t], so that (3.29) becomes

EU [0,t]

[
exp(−NtHt)E

{
exp

(
Nt∑

u=1

HTu

)
|Us, s ∈ [0, t]

}]
= EU [0,t]

[
exp(−NtHt)

{
E(eHT∗ |Us, s ∈ [0, t])

}Nt
]

= EU [0,t]

{(
e−Ht

∫ t

0
eHsµsds∫ t

0
µsds

)Nt }
.(3.30)

Let Bt =
R t
0 eHs−HtµsdsR t

0 µsds
. The remaining random variable in the expectation of (3.30),
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Nt, is distributed as a Poisson random variable with mean
∫ t

0
µsds. Hence (3.30) becomes:

EU([0,t])(B
Nt
t ) =

∞∑
Nt=0

BNt
t

1

{Nt}!

{∫ t

0

µsds

}Nt

e−
R t
0 µsds

=
∞∑

Nt=0

1

{Nt}!

{
Bt

∫ t

0

µsds

}Nt

exp

(
−Bt

∫ t

0

µsds

)
× exp

(
Bt

∫ t

0

µsds−
∫ t

0

µsds

)
= exp

(
Bt

∫ t

0

µsds−
∫ t

0

µsds

)
.

After minor calculations when substituting Bt into the above, the survival function

becomes:

S(t|z[0, t]) = exp

{
−
∫ t

0

µs(1− eHs−Ht)ds

}
,(3.31)

with corresponding hazard function :

λ(t|z[0, t]) =

(
e−Ht

∫ t

0

µse
Hsds

)
×
(
dHt

dt

)
.

The imputed frailties for this case, according to (3.7), become

Θ0(x,H[0, t]|z[0, t]) = S(t|z[0, t])−1

× ∂

∂dHx

[
− exp

{
−
∫ t

0

µs(1− eHs−Ht)ds

}]
=

∫ t

0

∂

∂dHx

µs(1− 1− eHs−Ht)ds

=

∫ x

0

µse
Hs−Htds

Θ1(x,H[0, t]|z[0, t]) =

∫ x

0

µse
Hs−Htds×

(
1 +

1∫ t

0
µseHs−Htds

)
.
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Based on (3.14), the estimating equations become

UH(H[0, τ ], t, β) =
n∑

i=1

∫ t

0

dNi(x)− Yi(x)(e
−Hx

∫ x

0

µs,ie
Hsds)dHx

+

[ ∫ τ

x

∫ x

0
µs,ie

Hsds∫ u

0
µs,ieHsds

{
dNi(u)

−Yi(u)

(
e−Hu

∫ u

0

µs,ie
Hsds

)
dHu

}]
dHx,

U(β) =
n∑

i=1

∫ τ

0

∫ x

0
(

dµs,i

dβ
)eHsds∫ x

0
µs,ieHsds

{
dNi(x)

−Yi(x)

(
e−Hx

∫ x

0

µs,ie
Hsds

)
dHx

}
.(3.32)

Ĥ and β̂ are solutions to the above equations when they are zero. The associated vari-

ances can be obtained using the Hessian information matrix as shown in Appendix (B.7).

In practice, it is common to numerically solve for Ĥ and β̂ in estimating equations like

(3.32). Similarly, it is common to numerically compute second order derivatives based

on the full likelihood when calculating variances. This is the approach we adopt in Sec-

tion 3.8, for the NHPP example.

Remark 4: When Ut is a Poisson process with a constant mean function µs = µ,

the results obtained in this section also apply. Recall that in deriving the form of survival

function based on (3.29), givenNt events in [0, t], the unordered events T ∗
1 , T

∗
2 , . . . , T

∗
Nt

are

independent and identically distributed random variables with density 1/t, so that (3.29)

becomes, for Ut as a Poisson process,

EU [0,t]

[
exp(−NtHt)E

{
exp

(
Nt∑

u=1

HTu

)
|Us, s ∈ [0, t]

}]

= E

{(
t−1e−Ht

∫ t

0

eHsds

)Nt }
.(3.33)

This will be useful in next section where we further look at survival function and hazard

function of Ut when it is a Poisson process.
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3.7 Other examples of known U , time-independent U

As mentioned in Section 3.2, Cox models and time-independent frailty models are spe-

cial cases under our modeling framework in (3.2). For simplicity and clarity, we give some

simple examples where observed covariate, z, is assumed to be a time-independent binary

factor, we compare the different behaviors of survival functions and hazard functions based

on the same z and baseline hazard function Ht = log((1 + t).

3.7.1 U is known

When U is fully observed, (3.2) is simply Cox PH model, where U = eβz. The survival

function and hazard function are

S(t|z) = exp
{
−eβz log(1 + t)

}
λ(t|z) = (1 + t)−1eβz

3.7.2 U is Poisson random variable

When U is a Poisson distributed random variable, where the mean of U is eβz. We

can see that (3.2) will also reduce to a Cox PH model, The survival function and hazard

function are

S(t|z) = E(e−UHt)

= exp
{
eβz(e−Ht − 1)

}
= exp

{
−eβzt/(1 + t)

}
λ(t|z) = (1 + t)−2eβz

3.7.3 Ut is a Poisson process

Interestingly, when Ut is a Poisson process with mean eβz, (3.2) is still a Cox PH

model. Based on (3.33), using the similar arguments as shown in Section 3.6, the survival
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function is

S(t|z) = E

{(
t−1e−Ht

∫ t

0

eHsds

)U }
=

∞∑
U=0

1

U !

{
Bte

βzt
}U

exp
(
−Bte

βzt
)

× exp
(
Bte

βzt− eβzt
)

= exp
{
(Bt − 1)eβzt

}
,

where Bt = t−1
∫ t

0
eHs−Htds. The corresponding hazard function becomes

λ(t|z) = (1 + t)−1eβz

∫ t

0

1 + s

1 + t
ds

= (1 + t)−1eβz

(
t

1 + t
+

t2

2 + 2t

)
The figures for a β = −0.5 are presented to compare the different forms of survival

functions (Figure 3.1) and hazard functions (Figure 3.2) under three assumptions of U or

Ut.
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Figure 3.1: Survival functions with observed covariate z=0 and z=1, for known frailty
(dotted and dot-dash), Poisson frailty (long-dash and two-dash) and Poisson process fraitly
(solid and dash)
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Figure 3.2: Hazard functions with observed covariate z=0 and z=1, for known frailty
(dotted and dot-dash), Poisson frailty (long-dash and two-dash) and Poisson process fraitly
(solid and dash)

3.8 Simulation results for NHPP special case

We take the NHPP setting described in the previous section as the context for our

simulation, where Hs = log(1 + s) and zs = I(A > s). The unobserved frailty Ut

is an NHPP with cumulative intensity,
∫ t

0
eβT I(A>s)ds. For instance this frailty can be

thought of as capturing accumulating, and unobserved, metastasis sites. A is generated

from an exponential distribution with rates chosen to produce P (zτ = 0) between 70% to

90%; A can be thought of as the time of observed progression. Hence, survival function,

S(t|z[0, t]), becomes exp
{
−
∫ t

0
eβT I(A>s)( t−s

1+t
)ds
}

. That is, when t < A, S(t|z[0, t]) =

exp
{
−eβt2/(2 + 2t)

}
. When t ≥ A, S(t|z[0, t]) equals to

exp
{
−eβAt/(1 + t) + eβA2/(2 + 2t)− (t2 − At)/(1 + t) + (t2 − A2)/(2 + 2t)

}
.

Based on the inverse transform method, the survival time T is created by solving

S(t|z[0, t])−B = 0 for t, where B is generated from a Uniform(0, 1) distribution. Cen-

soring is simulated from a Uniform(0, τ) distribution with τ chosen to yield the desired
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degree of censoring (10%, 30% or 50%).

Table 3.1 and Table 3.2 give results for scenarios varying β = (0,−0.5),

N = (200, 300, 500) and censoring rates = (10%, 30%, 50%). For purposes of comparison,

we estimate model parameters based on (3.31) (NHPP method) as well as parameters

from the more traditional Cox model with observed time-dependent zs = I(A > s) (Cox

method).

Recall that when β = 0, model (3.31) reduces to Poisson process frailty model, which

turns out to be a Cox PH model as we discussed in Section 3.7. In this case, β stands for

the log odds ratio for both NHPP method and Cox method. Hence it is not surprising that

they give similar results for β̂.

When β = −0.5, (3.31) is no longer a Cox model. In order to compare to a Cox model

assuming observed Ut with the same interpretation of β, we simulate from the following

Cox model

λ(t|z[0, t]) =

(∫ t

0

µsds

)
× dHt/dt

=

(∫ t

0

eβT I(A>s)ds

)
× dHt/dt(3.34)

with log-partial likelihood

l =
n∑

i=1

∆i

{
log

∫ Xi

0

eβI(Ai>s)ds− log
n∑

j=1

Yj(Xi)

∫ Xi

0

eβI(Aj>s)ds

}
,

and NPMLE is:

dĤt =

∑n
i=1 dNi(t)∑n

j=1 Yj(t)
∫ t

0
ebβI(Aj>s)ds

.

when accounting for the unobserved frailty U [0, t] using our NHPP model, bias is

negligible, estimated variability is close to empirically derived variability and coverage
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rates are within a reasonable range near 95%. When using the Cox model in (3.34) where

z[0, t] is observed, but U [0, t] is assumed to be fixed at its mean
∫ t

0
µsds, bias is 10 times

bigger than those using NHPP model, variance is over estimated that resulting in coverages

over 97% on average.

3.9 Discussion

Oftentimes in medicine, economics, reliability and other fields of science, unobserved

processes mature over time before manifesting themselves in the observed failure of the

system or organism. Our methodology lays a foundation for statistical analysis of such

systems in the univariate survival setting. We present a modeling framework and infer-

ential tools for research scenarios where both observed and unobserved covariates change

over time that affect survival responses.

Our methodological development does not require that the unobserved stochastic pro-

cess (frailty) be explicitly specified. Characterization of the conditional covariances of

the frailty process is sufficient to estimate regression coefficients and the corresponding

baseline cumulative hazard NPMLE. Connections are made between the martingale and

the imputation rational behind the NPMLE score equations.

A formal martingale-based approach for inference is also developed. We borrow from

Chen (2009) to elucidate the martingale structure of the estimating equations and sub-

sequently use martingale machinery to study asymptotics. Empirical processes offer an

alternative, if more complex, tool that is potentially more powerful, particularly if strong

consistency is desired.

As an instructive example, we lay out a special case of a non-homogeneous Poisson

process frailty that is currently not available in the literature. Simulations contrast our

modeling approach to that of a traditional Cox model using observed time-dependent co-



58

Ta
bl

e
3.

2:
Si

m
ul

at
io

n
re

su
lts

fo
rt

he
N

H
PP

ex
am

pl
e

us
in

g
pr

op
os

ed
m

et
ho

d
(N

H
PP

)a
nd

th
e

C
ox

m
od

el
w

ith
tim

e-
de

pe
nd

en
tc

ov
ar

ia
te

(C
ox

)f
or
β

=
−

0.
5,

ba
se

d
on

10
00

si
m

ul
at

ed
da

ta
se

ts
w

ith
di

ff
er

en
ts

am
pl

e
si

ze
s

(N
)a

nd
ce

ns
or

in
g

ra
te

s.

β
=
−

0.
5

N
ce

ns
or

in
g

%
N

H
PP

C
ox

E
st

im
at

e(1
)

SE
(2

)
E

SD
(3

)
C

P(4
)

E
st

im
at

e(1
)

SE
(2

)
E

SD
(3

)
C

P(4
)

20
0

10
%

-0
.4

91
0.

30
2

0.
30

4
94

.8
%

-0
.4

49
0.

29
6

0.
24

0
97

.2
%

30
0

10
%

-0
.5

11
0.

24
6

0.
25

1
95

.2
%

-0
.4

68
0.

24
2

0.
20

2
97

.4
%

50
0

10
%

-0
.4

98
0.

19
0

0.
20

2
93

.2
%

-0
.4

76
0.

18
7

0.
16

3
97

.2
%

20
0

30
%

-0
.5

05
0.

31
7

0.
32

6
95

.4
%

-0
.4

49
0.

31
4

0.
24

8
96

.8
%

30
0

30
%

-0
.5

10
0.

25
9

0.
26

4
94

.2
%

-0
.4

70
0.

25
6

0.
20

7
97

.9
%

50
0

30
%

-0
.4

98
0.

20
0

0.
20

4
94

.4
%

-0
.4

78
0.

19
8

0.
17

1
97

.6
%

20
0

50
%

-0
.5

30
0.

34
3

0.
35

2
95

.4
%

-0
.4

47
0.

34
1

0.
26

5
97

.0
%

30
0

50
%

-0
.4

99
0.

27
9

0.
29

1
95

.6
%

-0
.4

68
0.

27
9

0.
22

2
97

.4
%

50
0

50
%

-0
.4

94
0.

21
6

0.
21

7
94

.6
%

-0
.4

82
0.

21
5

0.
18

2
97

.6
%

1.
E

st
im

at
e

is
th

e
av

er
ag

e
of

es
tim

at
es

of
th

e
tr

ue
pa

ra
m

et
er

va
lu

es
ov

er
th

e
10

00
si

m
ul

at
io

ns
.

2.
SE

is
th

e
av

er
ag

e
of

es
tim

at
ed

st
an

da
rd

er
ro

rs
ov

er
th

e
10

00
si

m
ul

at
io

ns
.

3.
E

SD
is

em
pi

ri
ca

ls
ta

nd
ar

d
de

vi
at

io
n

(E
SD

)o
ft

he
10

00
es

tim
at

es
.

4.
C

P
is

th
e

em
pi

ri
ca

lc
ov

er
ag

e
pr

ob
ab

ili
ty

,i
.e

.,
th

e
pr

op
or

tio
n

of
si

m
ul

at
io

ns
th

at
co

ve
rt

he
tr

ue
pa

ra
m

et
er

va
lu

es
.



59

variates. Results indicate that inference using traditional methods can be very misleading

when the stochastic frailty process is ignored.

Our methodological framework allows for many additional formulations of stochastic

frailties. Development and careful study of mechanistic failure models custom-built for

specific subject matter problems may bring further useful literature to the emerging field

of frailty models. Extending the approach to multivariate survival and general multivariate

process models is a promising avenue for future research.



CHAPTER IV

Estimate Dynamic Exposure Effects Using A
Semiparametric Incidence Model

4.1 Introduction

The development of cancer lesions can come from more than one source. In many

cases cancer forms spontaneously, unrelated to any exposure. An alternative, and often si-

multaneous, process that may induce lesion formation is exposure to a carcinogenic agent,

for instance radiation prescribed for treatment. Lesions from these two processes, back-

ground and induced, continue to progress until one or more of the lesions become de-

tectable. Of course the primary hope of the radiation therapy is that existing cancer cells

will be killed, dominating any role that induced cancer cells would have on progression.

This complicated, generally favorable, interplay between cancer cell induction and death

is often called hormesis Yakovlev et al. Yakovlev et al. (1992). In this paper we develop

a general survival modeling framework and corresponding nonparametric maximum like-

lihood estimation (NPMLE) tools that build in hazards due to background and induced

lesion development, with parameterization that allows for mediation of hazards as a func-

tion of dose or other predictors.

In particular, this research is motivated by a mouse survival study (n = 691) with

three radiation exposure groups Tsodikov et al. Tsodikov and Muller (1998). The mice

60
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are of a special breed that generally show a high background incidence of lymphomas in

the absence of any exposure. Two hundred ninety four (42.5%) of the mice were injected

with 0.15 Gy of radiation at baseline (acute dosing), two hundred ninety nine (43.3%) of

the mice were given 0.15 Gy of radiation parcelled out over 36-week period (protracted

dosing) and the remaining ninety eight mice (14.2%) were not given radiation (control).

Mice were followed for periods varying up to approximately 1000 days, depending on the

entry into the study; with censoring % was approximately 44.6% (42.3% for acute dosing

group, 47.6% for protracted group, 42.9% for control).

Figure 4.1 shows lymphoma-free survival estimated via Kaplan Meier (KM) Kaplan

and Meier (1958), with the end of the protracted dosing period shown as a vertical dashed

line at 252 days. The hormesis effect can be appreciated when viewing time to lymphoma

detection. The acute dosing group has the highest survival rates over time, indicating that,

compared to the control group, any induced lesion development from the radiation dose is

counteracted by cancer cell death from that single dose at time 0. However, when the same

radiation dose was spread over 252 days in the protracted dosing group, survival declined

dramatically before eventually recovering to control group levels approximately 500 days

after dosing stopped. A semiparametric approach is attractive since we do not have suffi-

cient information about the dynamics of lesion progression and their influence on baseline

hazards originating from background and induced lesions. The Cox proportional hazard

model Cox (1972) is a popular semiparametric approach that links risk factors to a hazard

function, and this is our starting point. Fitting dose as an observed time-dependent covari-

ate fails to capture the non-proportional hazards in the three dosing groups shown in Figure

1. Stratification of the baseline hazard by the three dosing groups with a time-varying dose

covariate could be employed to capture non-proportional hazards. For example, one might

attempt a model of the form λ(t|dose[0, t]) = λ0g(t) exp{β×dose(t)}, where the subscript
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g represents dosing group. However, a shared parameter for β across dosing groups is not

plausible for this setting. In the acute dosing group, β would stand in for the effect over

the entire study period of total dose at time 0, whereas for the protracted dosing group,

β represents the effect of partial dose over smaller time periods. Another parameteriza-

tion option would be to assume that the total dose over time acts on survival through β as

λ(t|dose[0, t]) = λ0g(t) exp(β × total dose). However, as seen in Figure 1, markedly dif-

ferent survival curves for groups with the same total dose over the study period precludes

assuming a shared parameter of this form.

Our goal is to provide a modeling framework allows parameterization of a protracted

dosing setting where induced hazards as linked to continued exposure to radiation, this

framework also allows for simultaneous modeling of hazards of the more traditional pro-

portional hazards form, where for instance, a single dose at baseline affects subsequent

hazards.

The rest of manuscript is structured as follows: Section 4.2 introduces intuition and

notation driving the model. Section 4.3 gives estimation and inferential procedures. Then

we will revisit the mouse study and interpretation of results in Section 4.4. A discussion

follows in Section 4.5.

4.2 The incidence model and its generic form

We treat radiation dose as a dynamic time-changing factor. A detailed parametric

mechanistic model for dynamic exposure effects was proposed in Tsodikov and Muller

(1998), and we generally follow a similar idea here with the aim to arrive at a generic

semiparametric form inherrent to such models.

Consider a competing risk with a cumulative hazard H originating at the point in time

x. Mechanistically, this can be thought of as a cancer lesion formed at time x and capable
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of producing an observed survival response (incidence of observed tumor) at some later

time t > x following a progression period t − x. Associated with this risk is a survival

function

F (t− x) = exp{−H(t− x)} = exp

{
−
∫ t

x

dH(y − x)

}
,(4.1)

where integration (accumulation) of hazard occurs in follow-up time y ∈ [x, t], and the

lesion-specific risk has a time origin at y = x, the point of risk formation. Suppose now

that a dynamic exposure has a multiplicative “treatment” effect η(x, y) accumulating in

follow-up time period [x, y] and affecting the risk of progression. Incorporating this effect

into (4.1) we get the dynamic Cox model

F (t− x|η) = exp

{
−
∫ t

x

η(x, y)dH(y − x)

}
(4.2)

with the hazard function η(x, y)h(y − x), h(t) = dH(t)/dt.

Now let ξ(x)dx summarize a multiplicative effect (acting on h) of exposure on the

strength of the risk induced at time [x, x + dx]. The quantity ξ(x) can be thought of

as linked to the dose rate with the meaning of the amount of risk induced per unit time

exposure to a certain dose in the time interval [x, x+ dx].

Finally, assuming the risks at different times x compete with each other. We have the

host risk represented by a sum (integral) over the exposure period x ∈ [0, t] preceding the

time point t of interest

λ(t|η, ξ) =

∫ t

0

ξ(x)η(t, x)h(t− x)dx

=

∫ t

0

θ(s, t|z[0, t])dH(s),(4.3)

where θ(s, t|z[0, t]) = ξ(t − s)η(t, t − s) is some parametrically specified functional of

the exposure trajectory z[0, t] that θ and η depend on.
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Thus, we deduce the key feature of the survival model where risks of exposure are

induced over time, competing, and affecting each other multiplicatively, as the hazard

function represented as a linear integral functional of the baseline hazard with a paramet-

rically specified kernel. Note that in the traditional Cox model, the model hazard λ is

related to the baseline hazard h directly rather than λ being a cumulative form of h as in

this case.

Reflecting back at the mice lymphoma study that motivated this paper, we describe

the background or acutely induced cancer using the traditional time-dependent Cox model

with the hazard function of the form

µ(t|z[0, t])dAt/dt,(4.4)

where A is some generally different baseline cumulative hazard, and µ is a generally time-

dependent predictor. Time-dependent µ is needed to describe a possible dynamic “treat-

ment” effect of exposure on background latent disease (the hormesis effect).

Assuming that the risks of different types of exposure or background are additive (that

would be the case if they compete and are independent) we arrive at a generic functional

transformation model serving a broad range of examples. The class is defined by the

following expression for the hazard function:

λ(t|z[0, t]) = µ(t|z[0, t])dAt/dt+

∫ t

0

θ(s, t|z[0, t])dHs,(4.5)

where Hs and As are two nonparametrically specified baseline cumulative hazard func-

tions at time s; θ(s, t) and µ(t) are functionals of the observed history of dynamic expo-

sure, z[0, t]. Incorporated into the parametric kernels θ and µ are regression parameters β

measuring sensitivity to exposure and effects of possible other covariates.
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4.3 Estimation and inference

4.3.1 Data structure and notation

Suppose failure time, T , and right censoring time, C, are independent random vari-

ables. We observe a vector of time-dependent covariates, z(t), through time t, with

t ∈ [0, τ ] and τ < ∞, appropriately constrained to be during the study period. Let X =

min(T,C) and ∆ = I(T ≤ C). Each independent individual, i, contributes observed data

{Xi,∆i, zi(t)}, i = 1, . . . , n. The observed data can be represented equivalently in count-

ing process notation as {Ni(t), Yi(t), zi(t)}, i = 1, . . . , n, where Ni(t) = I(Xi ≤ t)∆i

gives the failure counting process and Yi(t) = I(Xi ≥ t) gives the at risk process,see Niel-

son et al. (1992).

4.3.2 Estimating Equation

Under independent censoring assumption, the log-likelihood becomes

l =
n∑

i=1

∫ τ

0

[
log

{
µ(t|zi[0, t])dAt +

∫ t

0

θ(s, t|zi[0, t])dHs

}
dNi(t)

−Yi(t)

{
µ(t|zi[0, t])dAt +

∫ t

0

θ(s, t)dHs

}]
,(4.6)

where here and below the subscript i denotes individual patient level information.

Differentiating the likelihood we get the following score vector for (Ht, β), for t ∈

[0, τ ]:

UH(H[0, τ ], A[0, τ ], t, β) =
n∑

i=1

∫ τ

t+

θ(t, x|zi[0, x])

λ(x|zi[0, x])
dMi(x)

UA(H[0, t], A[0, t], β) =
n∑

i=1

∫ t

0

µi(x)dMi(x)

Uβ(H[0, τ ], A[0, τ ], β) =
n∑

i=1

∫ τ

0

{λ(t|zi[0, t])}−1

{
µβ

i (t)dAt

+

∫ t

0

θβ
i (s, t)dHs

}
dMi(t)(4.7)
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where

dMi(t) = dNi(t)− Yi(t)λ(t|zi[0, t])dt

and

θβ(s, t) =
∂

∂β
θ(s, t)

µβ(s, t) =
∂

∂β
µ(s, t)

Solutions to the estimating equations setting score to zero give Ĥt, Ât and β̂.

4.3.3 Asymptotics of Estimates

In this section we show the consistency and asymptotic normality of (Ĥt, Ât, β̂), for

one time t. We follow the ideas described in Chen (2009). The arguments are similar to

those developed in Chapter III, therefore, we present the key results without going into

technical details.

Since M(t) is martingale with the filtration:

Ft− = σ{N(s), Y (s), z(s) : s ∈ [0, t)}.

Combining terms in (4.7), we obtain

UH(H[0, τ ], A[0, τ ], t, β) =
n∑

i=1

∫ τ

t+
ψi(x, t)dMi(x)

Uβ(H[0, τ ], A[0, τ ], β) =
n∑

i=1

∫ τ

0

ρi(x)dMi(x)

where

ψ(x, t) =
θ(t, x)

λ(x|z[0, x])
− λ−1(x, |z[0, x])

{∫ x

t+
θ(s, x)dHs

}
.
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Therefore, (4.7) is multivariate martingale if (Ht, At, β) are evaluated at their true val-

ues. It converges to a zero-mean Gaussian process W̃U(t, β) with the covariance function

Σ(s, t, β) =



σ2
H(s, s) σ2

H(s, t) σ2
H,A(s, s) 0 σ2

H,β(s, β)

σ2
H(t, s) σ2

H(t, t) 0 σ2
H,A(t, t) σ2

H,β(t, β)

σ2
A(s, s) σ2

A(s, t) σ2
H,A(s, s) 0 σ2

A,β(s, β)

σ2
A(t, s) σ2

A(t, t) 0 σ2
H,A(t, t) σ2

A,β(t, β)

σ2
H,β(s, β) σ2

H,β(t, β) σ2
A,β(s, β) σ2

A,β(t, β) σ2
β(β)


,(4.8)

where the forms of each component in Σ(s, t, β) are given in Appendix C.1.

Next we outline the study of weak convergence of
√
n(Ĥt −Ht, Ât − At, β̂ − β0).
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Taylor expansion gives (ignoring op(1) terms):

n−1/2


UH(Ĥ[0, τ ], Â[0, τ ], t, β̂)− UH(H[0, τ ], A[0, τ ], t, β)

UA(Ĥ[0, t], Â[0, t], β̂)− UA(H[0, t], A[0, t], β)

Uβ(Ĥ[0, τ ], Â[0, τ ], β̂)− Uβ(H[0, τ ], A[0, τ ], β)



=
√
n



∫ t

0
n−1UH

H (H[0, τ ], A[0, τ ], t, y, β)d(Ĥ −H)(y)

+
∫ t

0
n−1UA

H(H[0, τ ], A[0, τ ], t, y, β)d(Â− A)(y)

+n−1Uβ
H(H[0, τ ], A[0, τ ], t, β)(β̂ − β)∫ t

0
n−1UH

A (H[0, τ ], A[0, τ ], t, y, β)d(Ĥ −H)(y)

+
∫ t

0
n−1UA

A (H[0, τ ], A[0, τ ], t, y, β)d(Â− A)(y)

+n−1Uβ
A(H[0, τ ], A[0, τ ], t, β)(β̂ − β)∫ τ

0
n−1UH

β (H[0, τ ], A[0, τ ], y, β)d(Ĥ −H)(y)

+
∫ τ

0
n−1UA

β (H[0, τ ], A[0, τ ], y, β)d(Â− A)(y)

+n−1Uβ
β (H[0, τ ], A[0, τ ], β)(β̂ − β)



=
√
n



∫ t

0
φH

H(H[0, τ ], A[0, τ ], t, y, β)d(Ĥ −H)(y)

+
∫ t

0
φA

H(H[0, τ ], A[0, τ ], t, y, β)d(Â− A)(y)

+φβ
H(H[0, τ ], A[0, τ ], t, β)(β̂ − β)∫ t

0
φH

A (H[0, τ ], A[0, τ ], t, y, β)d(Ĥ −H)(y)

+
∫ t

0
φA

A(H[0, τ ], A[0, τ ], t, y, β)d(Â− A)(y)

+φβ
A(H[0, τ ], A[0, τ ], t, β)(β̂ − β)∫ τ

0
φH

β (H[0, τ ], A[0, τ ], y, β)d(Ĥ −H)(y)

+
∫ τ

0
φA

β (H[0, τ ], A[0, τ ], y, β)d(Â− A)(y)

+φβ
β(H[0, τ ], A[0, τ ], β)(β̂ − β)



.(4.9)
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Then we have

√
n



∫ t

0
φH

H(H[0, τ ], A[0, τ ], t, y, β)d(Ĥ −H)(y)

+
∫ t

0
φA

H(H[0, τ ], A[0, τ ], t, y, β)d(Â− A)(y)r

+φβ
H(H[0, τ ], A[0, τ ], t, β)(β̂ − β)∫ t

0
φH

A (H[0, τ ], A[0, τ ], t, y, β)d(Ĥ −H)(y)

+
∫ t

0
φA

A(H[0, τ ], A[0, τ ], t, y, β)d(Â− A)(y)

+φβ
A(H[0, τ ], A[0, τ ], t, β)(β̂ − β)∫ τ

0
φH

β (H[0, τ ], A[0, τ ], y, β)d(Ĥ −H)(y)

+
∫ τ

0
φA

β (H[0, τ ], A[0, τ ], y, β)d(Â− A)(y)

+φβ
β(H[0, τ ], A[0, τ ], β)(β̂ − β)



⇒ W̃U(t, β).(4.10)

Let VH(y) = (Ĥ − H)y, VA(y) = (Â − A)y and let W1(t), W2(t) and W3 be the

following:

W1(t) =

∫ t

0

φH
H(H[0, τ ], A[0, τ ], t, y, β)dVH(y)

+

∫ t

0

φA
H(H[0, τ ], A[0, τ ], t, y, β)dVA(y)

+φβ
H(H[0, τ ], A[0, τ ], t, β)(β̂ − β)

W2(t) =

∫ t

0

φH
A (H[0, τ ], A[0, τ ], t, y, β)dVH(y)

+

∫ t

0

φA
A(H[0, τ ], A[0, τ ], t, y, β)dVA(y)

+φβ
A(H[0, τ ], A[0, τ ], t, β)(β̂ − β)

W3 =

∫ τ

0

φH
β (H[0, τ ], A[0, τ ], y, β)dVH(y)

+

∫ τ

0

φA
β (H[0, τ ], A[0, τ ], y, β)dVA(y)

+φβ
β(H[0, τ ], A[0, τ ], β)(β̂ − β).

The covariance function of left hand side of (4.10), denoted as Σ∗(s, t, β), is equivalent

to (4.8). The covariance functions of {dW1(t), dW2(t),W3} can be found as solutions to
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the system of Volterra integral equations expressing this equivalence.

The associated variances can be estimated using the Hessian information matrix, sim-

ilar to Chapter III. In practice, it is common to numerically solve for Ĥ , Â and β̂ in esti-

mating equations like (4.7). Similarly, it is common to numerically compute second order

derivatives based on the full likelihood when calculating variances. This is the approach

we adopt in Section 4.4 for the Mouse study.

4.4 Mouse Study

We now revisit the mouse study described in Section 4.1. Let λc(t) denote the hazard

for the control group. Let λa(t) represent the hazard for acute dosing group. And let λp(t)

denote the hazard for the protracted group.

In agreement with the general modeling of Section 4.2, the components of the hazard

are specified as follows with each line representing the respective group in each subclass

of exposure (Background, A, and induced, B).

A. Background hazard:

Control λB
c (t) = dAt/dt(4.11)

Protracted dosing λB
p (t) = exp{−β(t ∧ 252)}dAt/dt(4.12)

Acute dosing λB
a (t) = ηdAt/dt(4.13)

B. Induced hazard:

Control λI
c(t) = 0(4.14)

Protracted λI
p(t) =

∫ 252∧t

0

exp{−α(t− x)}dHx(4.15)

Acute λI
a(t) = γdHt,(4.16)

The hazard models can be summerized as in Table 4.1.
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Table 4.1: Hazard models for three dosing groups, background and induced.
Group Background Induced

Acute ηdAt/dt γdHt

Protracted e−β(t∧252)dAt/dt
∫ t

0
e−α(t−x)dHx

Control dAt/dt 0

Background and induced hazard components are summed up for each group, respec-

tively. For example, the hazard for protracted dosing group is the sum of e−β(t∧252)dAt/dt,

the component at background process, and
∫ t

0
e−α(t−x)dHx, the component on the induced

process. Baseline hazard H is used to model the risk of latent tumor in induced process

while A is reserved for background process. There is no induced hazard in the control

group, hence the corresponding component is set to 0. The beneficial effect, or treatment

effect, of the radiation on background cancer for acute dosing group is the hormesis effect

we observe. This is the traditional Cox hazard model since only one dose at baseline is

involved. The harmful effect of the same dose that induces new lesions is also modeled by

a Cox component. The time-dependent component of background cancer in the protracted

dosing group, e−β(t∧252)dAt/dt, models the “treatment” effect of protracted exposure on

the background cancer. Induced cancer hazard function in this group is represented by an

integral form of the baseline hazard modeling accumulating harmful effects of exposure

over time, as it is the combination of the independent competing risks that originated at

different (continuous) times of exposure.

Shown in Figure 4.2 are observed (Kaplan-Meier) and model-predicted survival curves.

Overall, the agreement is very good.

The estimates for the model parameters together with the corresponding 95% confi-

dence intervals are presented in Table 4.2. The algorithm converges when γ̂ = 0, hence
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Figure 4.2: Lymphoma Free Survivals by Groups - Predicted vs. Observed

we do not give the associated 95% confidence interval and p-value.

η̂ gives the estimate of hormesis effect. That is, the acute dosing group has lower

hazard (0.872, 95% CI: 0.684, 1.110, p-value: 0.133) than control group (null hypothesis

is η = 1), resulting higher survival at the beginning of study period. The radiation effect is

protracted dosing group is more complicated. The treatment effect of the radiation dose at

the background β̂ = 0.008, (95% CI: 0.001, 0.014, p-value: 0.008) seems to be dominated

by the harmful effect on the induced process, where α̂ = 0.822, (95% CI: 0.418, 1.226,

p-value <0.0001) stands for the unit dose harmful effect and overall harmful effect should

be integrated over the radiation period.

4.5 Discussion

In this work, we propose a mechanistic model that accounts for complexity of radiation

on tumor growth. The model reproduces the diversity of hormesis effect. The rapid decline
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of survival in [0, 252] for protracted dosing group implies that the latent period for lym-

phoma of the induced process is very short. This can also be confirmed by the observed

improved survival soon after time=0 for acute dosing group, where a single radiation dose

kills background more than it induces lymphoma, or in another word, the induced lym-

phoma has such a short latent period that it is killed by the same dose before it surfaces.

When the radiation stops, both acute dosing group and protracted dosing group seem to

behave similarly as the control group. This indicates that, in the long run, the system is

governed by the background process.

In recent years, transformation models have been studied to evaluate the relationship

between dynamic risk factors and survival outcomes when Cox PH assumption does not

hold. The method we propose can mechanistically model the effect of the radiation in

mouse study that demonstrates hormesis effect. We develop a specific transformation

model class that is capable to reproduce the diversity of hormesis effect caused by radia-

tion. We provide rigorous theoretical justifications for such models.

The method developed in this chapter will be applicable to many situations when ex-

posure is time changing and effects are complicated. Mice data used as a test for the

methodology to be developed in this project are only one example of such data. With this

project we are laying the ground work to be able to model any situation where the risk

and exposure is time-changing, and the disease has a period of latent development before

diagnosis.

The modeling component in (4.5) that models the protracted radiation effect (combi-

nation of harmful and beneficial effect) is considered as in integral form since the dose is

continuous. However, in some situations, the exposures are not necessarily continuous.

For instance, in recent years, as the rapid development of therapy, many cancer patients

have better survival and longer intervals between cancer relapse. This creates the discrete
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experience for those patients to receive treatments through out their lives. The opportunity

of having multiple treatments increases. Our method can be modified for such discretized

treatment (exposures) easily by modifying the accumulating risk component in our inci-

dence model as a summation of risks generated at discretized times when the treatment

takes place.

Some other examples where the model could be used are: in clinical trials, patients re-

ceive drugs on continuous basis, however, when drug cures the disease, its side effect also

can be counteracting the treatment effect; bone marrow transplant patients experiencing

abnormal platelets, effects of air pollution on pulmonary disorders and other environmen-

tal exposure problems.

Though the method developed in this work assumes exposure is continuous, the exten-

sion to discretized exposure could also be studied. In modern medical practice, patients

with chronic disease who experience relapse usually received multiple treatments during

their lifetimes. As the quality of therapy improves, the interval for patients to receive next

treatment during relapse is getting longer. This results in discretized exposure (treatment).

The incidence model that takes into consideration of the effect of continuous and accu-

mulated radiation, could be modified to account for those situations. A good example is

Hodgkin’s disease.



CHAPTER V

Conclusion and future work

This thesis explores two topics in semiparametric survival analysis area, 1) predic-

tion of patients’ lifetimes based on their risk profiles; (2) estimation of dynamic exposure

effects on survival outcomes among patients with chronic disease.

In Chapter II, we develop restricted mean MI method that has several advantages. First,

we can retain patients characteristics when making imputation choices, therefore improve

precision and efficiency in estimation and inference procedures. This can be observed in

both independent censoring and dependent censoring scenarios. Due to the utilization of

covariate information, the method can also correct the bias caused by dependent censoring.

Second, the MI method does not require assumptions on hazard distribution, so that we

bypass the challenge that authors should consider when they use Cox modeling approach.

We also maintain the traditional advantages of MI method, for example, we make the

censoring data analysis into complete data analysis and standard statistics analytical tools

are widely available.

The method serves as a base for MI choices when dependent censoring is caused by a

time-changing factor. It also will be modified to impute Quality-of-Life outcomes, based

on observed information. I am one of the co-authors in both of these projects.

In Chapter III, we lay a foundation for statistical analysis of any dynamic systems

77
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where observed covariate zt dynamically affect the latent process that links to the response

of the system. The method may well be suited for many cancer research that usually

involves tumor growth process before diagnosis. The method can also be extended to

non-survival outcomes. For instance, the imputation framework developed for a stochastic

process that is informed by some external dynamic factors can be used to describe the

status of a system. For instance, if we observe a changing PSA score for a prostate cancer

patient, it may well be associated with the underlying tumor growth process that links

to the disease status of a patient. In this case, the imputed frailty, given the dynamic

PSA score, could be interpreted as how sick the patient is at the time of observed. The

imputation of a process can also be applied in fields other than medical science. For

example, in financial market, people observe stock indices change constantly over time,

and they are interested in predicting the future strength of the economy based on those

changing factors. Then the driving force of the economical change can be seen as a latent

process and we can make similar predictions as described in this work.

Though the method proposed is designated in the univariate survival setting, the ex-

tension to multivariate survival setting is possible. A preliminary thought about Laplace

functional for a bivariate survival setting would be EU [0,t](e
−

R R
UsdH1

s dH2
s ), where H1

s and

H2
s correspond to the baseline cumulative hazard functions of the bivariate survival.

In Chapter IV, we propose a method that can mechanistically model the complex effect

of the radiation. The advantage of our modeling approach is that we are able to reproduce

the diversity of hormesis effect, while retaining the power of rigorous theoretical justifica-

tions for such models. The method developed in this chapter will be applicable to many

situations when exposure is time changing, effects are complicated, and the disease has a

period of latent development before diagnosis.

Extensions to discretized exposures can be easily made. A good example is Hodgkin’s
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disease. In modern medical practice, patients with chronic disease who experience relapse

usually received multiple treatments during their lifetimes. As the quality of therapy im-

proves, the interval for patients to receive next treatment during relapse is getting longer.

This results in discretized exposure (treatment). The incidence model that takes into con-

sideration of the effect of continuous and accumulated radiation, could be modified to

account for those situations.

Some other examples where the model could be used are: in clinical trials, patients re-

ceive drugs on continuous basis, however, when drug cures the disease, its side effect also

can be counteracting the treatment effect; bone marrow transplant patients experiencing

abnormal platelets, effects of air pollution on pulmonary disorders and other environmen-

tal exposure problems.
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APPENDIX A

Appendices for Chapter II

A.1 EM algorithm in restricted mean MI procedure

We assume the mean structure as in 2.1, but keep the distribution of Y otherwise un-

specified. The goal is to predict each censored individual’s mean restricted lifetime based

on the converged β̂(k)TZi values.

We calculate β̂(0)TZi as the initial expected value of Yi based on covariate profile Zi.

We use β̂(0) to estimate the initial expected value of Yi based on β̂(0)TZi for each censored

individual i.

To get the next iterated estimate, β̂(1), we sample from N{β̂(0)TZi, V ar(β̂
(0)TZi)} for

each patient censored at Xi = Ci. We retain sample values that are greater than logCi,

and then use the sample average to estimate E(Yi|Ci, Zi), our E-step of the pseudo EM

algorithm. After the ’E’ step is completed for each censored individual, this completed

dataset is used to calculate β̂(1) under (2.1), our M-step. We repeat ’E’ and ’M’ steps until

the convergence of β̂(k).

A.2 Residual sampling procedure in restricted mean MI algorithm

In order to generate an augmented dataset, we append an appropriate residual to pre-

dicted mean, Ê(Yi|Ci, Zi), for each censored patient i. We achieve this goal by creating
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an imputing pool with patients whose categorical covariates match Zi, and whose Ê(Y |Z)

fall within some small b−margin of Ê(Yi|Zi) [to account for similarity in continuous co-

variates]. Once we form the imputing pool, we estimate the pool’s survival curve using

the Kaplan Meier method. Then we randomly select a probability, si, from a Uniform(a,1)

distribution, where a is the minimum survival probability in this pool. Next we select a

failure time where the estimated survival probability from the KM curve equals to si. The

corresponding residual is taken from the patient with the observed failure time that was

selected. This is then the error term to be appended to Ê(Yi|Ci, Zi). This approach is sim-

ilar to the nearest neighborhood approach in Hsu et al. (2006) modified for the restricted

mean setting.

A.3 Nonparametric Estimate for E {logmin(τ, T )}

Suppose random samples T1, ..., Tn come from a non negative random variable, T , with

survival function, ST , and C1, ..., Cn come from a random variable, C, that is independent

of T . Let Xi = min(Ti, Ci), i = 1, ..., n be the observed times to event. Suppose Y =

g{min(τ, T )}with τ a fixed positive constant, and g some strictly monotone function with

associated inverse g(−1) that satisfies:

g : [0,+∞) → (−∞,+∞)

g−1 : (−∞,+∞) → [0,+∞)

Without loss of generality, assume g to be monotone increasing. Then

µ̂ =

∫ g(−1)(0)

X(1)

{P̂ (T > t)− 1}dg(t) +

∫ τ

g(−1)(0)

P̂ (T > t)dg(t) + P̂ (T > τ)g(τ)

is a consistent estimator of E(Y ), where P̂ (T > t) is Kaplan Meier estimator for

P (T > t).

Proof.
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For Y = g{min(τ, T )}, the distribution can be characterized as:

FY (y) = P [g{min(τ, T )} ≤ y]I{y < g(τ)}+ P [g{min(τ, T )} ≤ y]I{y ≥ g(τ)}

= FT{g(−1)(y)}I{y < g(τ)}+ I{y ≥ g(τ)}.

The random variable, Y , has a range of (−∞, g(τ)], with a discontinuity point of jump

size dFY {g(τ)} = FY {g(τ)} − FY {g(τ−)} = ST (τ), at g(τ).

E(Y ) can be written as:

µ =

∫ g(∞)

0

{P (Y > −y)− 1}dy +

∫ g(τ)

0

P (Y > y)dy + dFY {g(τ)} × g(τ).

where dFY {g(τ)} = FY {g(τ)} − FY {g(τ)−} = ST (τ). Denote the three terms on the

right hand side of the equation and corresponding estimates as µi and µ̂i, i = 1, 2, 3 re-

spectively.

For µ1, it can be shown that:

µ1 =

∫ g(∞)

0

{P (Y > −y)− 1}dy

=

∫ g(∞)

0

[P{g(T ) > −y)} − 1]dy

=

∫ g(∞)

0

[P
(
T > g−1(−y)} − 1]dy

=

∫ g(−1)(0)

g(−1){−g(∞)}
{P (T > t)− 1}dg(t),

where the last line is obtained by the transformation t = g−1(−y), y = −g(t). To obtain

a consistent estimate of µ1, we replace P (T > t) with its corresponding Kaplan-Meier

estimates, and change the lower bound of the integral to X(1), the first observed failure

time. This is because P̂ (T > t) remains 1 until t = X(1) and monotone transformation

preserves the ranks of observed event times. Hence µ̂1 is:
∫ g(−1)(0)

X(1)
{P̂ (T > t)− 1}dg(t).
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Similarly, for µ2, we have

µ2 =

∫ g(τ)

0

P (Y > y)dy

=

∫ g(τ)

0

[P{g(T ) > y)}]dy

=

∫ g(τ)

0

P{T > g−1(y)}dy

=

∫ τ

g(−1)(0)

P (T > t)dg(t),

where the last line is obtained via the transformation t = g−1(y), y = g(t). The corre-

sponding consistent estimate µ̂2 becomes
∫ τ

g(−1)(0)
P̂ (T > t)dg(t).

For the third term µ3 = dFY {g(τ)} × g(τ), with dFY {g(τ)} = ST (τ), the consistent

estimate is P̂ (T > τ)g(τ).

Combining µ̂i, i = 1, 2, 3, we obtain a consistent estimate of µ. Particularly, if g is the

log function, we obtain:

Ê(Y ) =

∫ 1

X(1)

{P̂ (T > t)− 1}d log t+

∫ τ

1

P̂ (T > t)d log t+ P̂ (T > τ)× log τ,
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APPENDIX B

Appendices for Chapter III

B.1 Expectaion E(Ux|X,∆, z[0, t])

Based on the survival function in (3.2) and the data structure described in Section 3.3,

we derive that E(Ux|X,∆, , z[0, t]), that is, the conditional expectation of Ux given full

knowledge of the individual’s failure and censoring information.

First, let ∆ = 0. Then we have

E(Ux|X = t,∆ = 0, z[0, t]) =

∫
Uxf(Ux|X = t,∆ = 0, z[0, t])dUx

=

∫
Uxf(C = t|Ux, z[0, t])P (T > t|Ux, z[0, t])f(Ux)dUx

f(C = t|z[0, t])S(t|z[0, t])

=

∫
UxP (T > t|Ux = u, z[0, t])f(Ux)dUx

S(t|z[0, t])

which becomes, based on (3.2)∫
Uxe

−
R t
0 UsdHsf(Ux)dUx∫

e−
R t
0 UsdHsf(Ux)dUx

.

Finally, we have

E(Ux|X = t,∆ = 0, z[0, t]) =
EU [0,t]

{
Ux exp(−

∫ t

0
UsdHs)

}
EU [0,t]

{
exp(−

∫ t

0
UsdHs)

} .

The imputed frailty, Θ0(t,H[0, t]|z[0, t]) as in (3.4), is a special case of the above

quantity when x = t.
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Now let ∆ = 1, then we have

E(Ux|X = t,∆ = 1, z[0, t]) =

∫
Uxf(Ux|X = t,∆ = 1, z[0, t])dUx

=

∫
UxP (C > t|Ux, z[0, t])f(T = t|Ux, z[0, t])f(Ux)dUx

P (C > t|z[0, t])f(T = t|z[0, t])

=

∫
Uxf(T = t|Ux, z[0, t])f(Ux)du

f(T = t|z[0, t])

which becomes, based on (3.2) and the relationship − d
dt
S(t|z[0, t]) = f(T = t|z[0, t])∫

UxUte
−

R t
0 UsdHsf(Ux)dUx∫

Ute
−

R t
0 UsdHsf(Ux)dUx

.

Finally, we have

E(Ux|X = t,∆ = 1, z[0, t]) =
EU [0,t]

{
UxUt exp(−

∫ t

0
UsdHs)

}
EU [0,t]

{
Ut exp(−

∫ t

0
UsdHs)

} .

This reduces to the impute for Kosorok et al. (2004) hazard model, as we described in

Section 3.1, in the special case where Us = UeβT zs .

B.2 Regularity conditions

(a) The true function H is strictly increasing and absolutely continuous, with differentials

exist everywhere.

(b) True values of parameter vector β0 are in the interior of a compact Euclidean space.

(c) The covariate process Z(t) is left continuous with total bounded variation within [0, τ ].

(d) For at risk process Y (t), P (Y (τ) = 1|Zt) > 0.

(e) The at risk set will not shrink to empty, i.e., when T = τ , P (censoring|Zt) > 0.

(f) The posterior frailty Θ and its derivatives with respect to dH and β are bounded within

[0, τ ].

(g) Hessian matrix I evaluated at true values of H and β is positive definite.



87

B.3 Property of martingale transform
∫ τ

0 ξ(u, t)dM(u)

We denote process
∫ τ

0
ξ(u, t)dM(u) as V (t). To see when V (t) is a martingale, we

only need to check when E{dV (t)|Ft−} = 0, where Ft− = σ{N(s), Y (s), z(s) : s ∈

[0, t)} is the same filtration of martingale M ,.

First, we notice that:

dV (t) =

∫ τ

0

{ξ(u, t+ dt)dM(u)− ξ(u, t)dM(u)}

=

∫ τ

0

{ξ′(u, t)dt} dM(u),

where ξ′(u, t) denotes the partial derivative of ξ with respect to t.

Next, if we assume the boundness and smoothness of determinisitc function ξ, we

have:

E{dV (t)|Ft−} =

∫ τ

0

E {ξ′(u, t)dtdM(u)|Ft−}

= dt

∫ τ

0

ξ′(u, t)E {dM(u)|Ft−}

=

 0 if u ≥ t

dt
∫ τ

0
ξ′(u, t)dM(u) if u < t

Furthermore,
∫ τ

0
ξ′(u, t)dtdM(u) will be zero only if ξ′(u, t) = 0. That is, when u < t

and ξ(u, t) does not depend on t (giving ξ′(u, t) = 0), V (t) will be a martingale. This

establishes the martingale property of the score.

Similarly, for a process with the form V ∗(t) =
∫ τ

t
ξ(u, t)dM(u), u always lies in the

future of t, hence E{dV ∗(t)|Ft−} = 0.

B.4 Covariance for martingale
∫ τ

0 ξ(u, t)dM(u)

Suppose M is a F-martingale and the corresponding counting process has compen-

sator A. Let V (t) =
∫ τ

0
ξ(u, t)dM(u). Let ξ(u) be a funciton of u only, and in the special
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case of this paper, ξ(u) = 1 +
∫ u

0
Θ̇(u,H[0,u],x|zi[0,u])
Θ0(u,H[0,u]|zi[0,u])

dHx. So V (t) =
∫ t

0
ξ(u)dM(u) +∫ τ

t
ξ(u, t)dM(u). Both ξ(u) and ξ(u, t) are predictable given filtration with respect to

either u or t, giving the variance seen in (3.17) for (3.16).

B.5 Second order Derivatives of estimating equations

The estimating equations are given in (3.14). The second order derivatives of equations

include the following four terms:

UH
H (H[0, τ ], t, y, β) =

∂

∂dHy

UH(H[0, τ ], t, β)

=
n∑

i=1

−Yi(y)Θ
0(y,H[0, y]|zi[0, y])

−
∫ t

y+

Yi(u)Θ̇(u,H[0, u], y|zi[0, u])dHu

+

∫ t

y+

{
Θ̇(u,H[0, u], y|zi[0, u])

Θ0(u,H[0, u]|zi[0, u])
dNi(u)

−Yi(u)Θ̇(u,H[0, u], y|zi[0, u])dHu

}
+dHy

∫ τ

y+

([
Θ̈(u,H[0, u], y, y|zi[0, u])

Θ0(u,H[0, u]|zi[0, u])

−

{
Θ̇(u,H[0, u], y|zi[0, u])

Θ0(u,H[0, u]|zi[0, u])

}2 ]
dNi(u)

−Yi(u)Θ̈(u,H[0, u], y, y|zi[0, u])dHu

)
+

∫ t

y+

∫ τ

x+

[{
Θ̈(u,H[0, u], x, y|zi[0, u])

Θ0(u,H[0, u]|zi[0, u])

−Θ̇(u,H[0, u], x|zi[0, u])Θ̇(u,H[0, u], y|zi[0, u])

{Θ0(u,H[0, u]|zi[0, u])}2

}
dNi(u)

−Yi(u)Θ̈(u,H[0, u], x, y|zi[0, u])dHu

]
dHx

−
∫ t

0

Yi(y)Θ̇(y,H[0, y], x|zi
y)dHx,
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Uβ
H(H[0, τ ], t, β) =

∂

∂β
UH(H[0, τ ], t, β)

=
n∑

i=1

∫ t

0

−Yi(x)Θ
β(y,H[0, y]|zi

y)dHx

+dHx

∫ τ

x+

([
Θ̇β(u,H[0, u], x|zi[0, u])

Θ0(u,H[0, u]|zi[0, u])

−Θ̇(u,H[0, u], x|zi[0, u])Θ
β(u,H[0, u]|zi[0, u])

{Θ0(u,H[0, u]|zi[0, u])}2

]
dNi(u)

−Yi(u)Θ̇
β(u,H[0, u], tj|zi[0, u])dHu

)
UH

β (H[0, τ ], β) =
∂

∂dHy

Uβ(H[0, τ ], β)

=
n∑

i=1

∫ τ

y+

([
Θβ,y(x,H[0, x]|zi[0, x])

Θ0(x,H[0, x]|zi[0, x])

−Θβ(x,H[0, x]|zi[0, x])Θ̇(x,H[0, x], y|zi[0, x])

{Θ0(x,H[0, x]|zi[0, x])}2

]
dNi(x)

−Yi(x)Θ
β,y(x,H[0, x]|zi[0, x])dHx

)
−

n∑
i=1

Yi(y)Θ
β(y,H[0, y]|zi

y)

Uβ
β (H[0, τ ], β) =

∂

∂β
Uβ(H[0, τ ], β)

=
n∑

i=1

∫ τ

0

[{
Θβ,β(x,H[0, x]|zi[0, x])

Θ0(x,H[0, x]|zi[0, x])

−
{

Θβ(x,H[0, x]|zi[0, x])

Θ0(x,H[0, x]|zi[0, x])

}2}
dNi(x)

−Yi(x)Θ
β,β(x,H[0, x]|zi[0, x])dHx

]
,



90

where

Θ̈(u,H[0, u], x, y|zi[0, u]) = E(UuUxUy|e
R u
0 UsdHs)

−E(UuUx|e
R u
0 UsdHs)Θ(y,H[0, u]|zi[0, u]))

+Θ̇(u,H[0, u], x|zi[0, u])Θ(y,H[0, u]|zi[0, u])

+Θ(u,H[0, u]|zi[0, u])Θ̇(y,H[0, u], tk|zi[0, u])

Θ̇β(u,H[0, u], x|zi[0, u]) =
∂

∂β
Θ̇(u,H[0, u], x|zi[0, u])

Θβ,y(u,H[0, u]|zi[0, u]) =
∂

∂dHy

Θβ(u,H[0, u]|zi[0, u])

Θβ,β(u,H[0, u]|zi[0, u]) =
∂2

∂β∂βT
Θ(u,H[0, u]|zi[0, u]).

When scaled by n, those derivatives will converge in probability to some deterministic

functions that can be expressed as follows:

n−1UH
H (H[0, τ ], t, y, β)

P→ φH
H(H[0, τ ], t, y, β)

n−1Uβ
H(H[0, τ ], y, β)

P→ φβ
H(H[0, τ ], y, β)

n−1UH
β (H[0, τ ], t, β)

P→ φH
β (H[0, τ ], β)

n−1Uβ
β (H[0, τ ], β)

P→ φH
H(H[0, τ ], t, y, β).

B.6 Covariance matrix for {dW1(t),W2}

Based on Section 3.5.2, W1(t) =
∫ t

0
φH

H(H[0, τ ], t, y, β)dV (y)+φβ
H(H[0, τ ], t, β)(β̂−

β). Therefore, we have

dW1(t) = φH
H(H[0, τ ], t, t, β)dV (t) +

∫ t

0

φ̇H
H(H[0, τ ], t, y, β)dV (y)

+φ̇β
H(H[0, τ ], t, β)(β̂ − β),

where φ̇H
H(H[0, τ ], t, y, β) = ∂

∂t
φH

H(H[0, τ ], t, y, β) and

φ̇β
H(H[0, τ ], t, β) = ∂

∂t
φβ

H(H[0, τ ], t, β).
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Then for s, t ∈ [0, τ ], let σ∗,2W1
(s, t) = cov {dW1(s), dW1(t)}

σ∗,2W1
(s, t) = φH

H(H[0, τ ], s, s, β)φH
H(H[0, τ ], t, t, β)E {dV (s)dV (t)}

+φH
H(H[0, τ ], s, s, β)

∫ t

0

φ̇H
H(H[0, τ ], s, y, β)E {dV (y)dV (s)}

+φH
H(H[0, τ ], s, s, β)φ̇β

H(H[0, τ ], t, β)E
{
dV (s)(β̂ − β)

}
,

+φH
H(H[0, τ ], t, t, β)

∫ s

0

φ̇H
H(H[0, τ ], s, y, β)E {dV (y)dV (t)}

+

∫ s

0

∫ t

0

φ̇H
H(H[0, τ ], s, y, β)φ̇H

H(H[0, τ ], s, y∗, β)E {dV (y)dV (y∗)}

+φ̇β
H(H[0, τ ], t, β)

∫ s

0

φ̇H
H(H[0, τ ], s, y, β)E

{
dV (y)(β̂ − β)

}
,

+φ̇β
H(H[0, τ ], s, β)φH

H(H[0, τ ], t, t, β)E
{
dV (t)(β̂ − β)

}
,

+φ̇β
H(H[0, τ ], s, β)

∫ t

0

φ̇H
H(H[0, τ ], s, y, β)E

{
dV (y)(β̂ − β)

}
,

+φ̇β
H(H[0, τ ], s, β)φ̇β

H(H[0, τ ], t, β)E
{

(β̂ − β)2
}
.

Similarly, forW2 =
∫ τ

0
φH

β (H[0, τ ], y, β)dV (y)+φβ
β(H[0, τ ], β)(β̂−β), let σ∗,2W2

(β) =

var(W2). Then we have

σ∗,2W2
(β) =

∫ τ

0

∫ τ

0

φH
β (H[0, τ ], y, β)φH

β (H[0, τ ], y∗, β)E {dV (y)dV (y∗)}

+2φβ
β(H[0, τ ], β)

∫ τ

0

φH
β (H[0, τ ], y, β)E

{
dV (y)(β̂ − β)

}
,

+
{
φβ

β(H[0, τ ], β)
}2

E
{

(β̂ − β)2
}
.
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The covariance between dW1(t) and W2, denoted as σ∗,2W1,W2
(t, β), becomes

σ∗,2W1,W2
(t, β) = φH

H(H[0, τ ], t, t, β)

∫ τ

0

φH
β (H[0, τ ], y, β)E {dV (y)dV (t)}

+

∫ t

0

∫ τ

0

φ̇H
H(H[0, τ ], t, y, β)φβ

H(H[0, τ ], y∗, β)E {dV (y)dV (y∗)}

+φ̇β
H(H[0, τ ], t, β)

∫ τ

0

φH
β (H[0, τ ], y, β)E

{
dV (y)(β̂ − β)

}
,

+φH
H(H[0, τ ], t, t, β)φβ

β(H[0, τ ], β)E
{
dV (t)(β̂ − β)

}
+φβ

β(H[0, τ ], β)

∫ t

0

φ̇H
H(H[0, τ ], t, y, β)E

{
dV (y)(β̂ − β)

}
+φ̇β

H(H[0, τ ], t, β)φβ
β(H[0, τ ], β)E

{
(β̂ − β)2

}
.

B.7 Hessian matrix I

Along the lines of Chen (2009), Chen (2010), Hessian matrix I involves four different

components: IdHjdHj
, IdHkdHj

, IdHjβ , and Iββ for j, k = 1, ..., p. Those terms can be

expressed as:

IdHjdHj
= − ∂2l

∂dHj∂dHj

=

{
n∑

i=1

dNi(tj)

}2

(dHj)
−2

+

∫ τ

tj

[
Θ̈(u,H[0, u], tj, tj|zi[0, u])

Θ0(u,H[0, u]|zi[0, u])

+

{
Θ̇(u,H[0, u], tj|zi[0, u])

Θ0(u,H[0, u]|zi[0, u])

}2 ]
dNi(u),

IdHkdHj
= − ∂2l

∂dHk∂dHj

=
n∑

i=1

∫ τ

tk∨tj

{
Θ̈(u,H[0, u], tk, tj|zi[0, u])

Θ0(u,H[0, u]|zi[0, u])

+
Θ̇2(u,H[0, u], tk|zi[0, u])Θ̇(u,H[0, u], tj|zi[0, u])

{Θ0(u,H[0, u]|zi[0, u])}2

}
dNi(u),
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IdHjβ = − ∂2l

∂dHj∂β

=
n∑

i=1

∫ τ

tj

{
Θ̇β(u,H[0, u], tj|zi[0, u])

Θ0(u,H[0, u]|zi[0, u])

−Θ̇(u,H[0, u], tj|zi[0, u])Θ
β(u,H[0, u]|zi[0, u])

{Θ0(u,H[0, u]|zi[0, u])}2

}
dNi(u)

−Yi(tj)Θ
β(tj, H[0, tj]|zi

tj
)

−
∫ τ

tj

Yi(u)Θ̇
β(u,H[0, u], tj|zi[0, u])dHu,

Iββ = − ∂2l

∂β∂βT

=
n∑

i=1

∫ τ

0

[
Θβ,β(u,H[0, u]|zi[0, u])

Θ0(u,H[0, u]|zi[0, u])
−
{

Θβ(u,H[0, u]|zi[0, u])

Θ0(u,H[0, u]|zi[0, u])

}2 ]
dNi(u)

−Yi(u)Θ
β(u,H[0, u]|zi[0, u])dHu

where

Θ̈(u,H[0, u], tk, tj|zi[0, u]) = E(UuUjUk|e
R u
0 UsdHs)

−E(UuUj|e
R u
0 UsdHs)Θ(tk, H[0, u]|zi[0, u]))

+Θ̇(u,H[0, u], tk|zi[0, u])Θ(tj, H[0, u]|zi[0, u])

+Θ(u,H[0, u]|zi[0, u])Θ̇(tj, H[0, u], tk|zi[0, u])

Θ̇β(u,H[0, u], tj|zi[0, u]) =
∂

∂β
Θ̇(u,H[0, u], tj|zi[0, u])

B.8 Properties of estimates using profile likelihood

Suppose that
√
n
{
Ĥt −Ht

}
has limiting process V (t), then we have the following

equation:

Ĥt =
n∑

i=1

∫ t

0

dNi(x)×

Θi(Ĥx, β)Yi(x)dx−
n∑

i=1

∫ τ

x

{
Θ̇i(Ĥu, β)

Θi(Ĥu, β)
dNi(u)− Θ̇i(Ĥu, β)Yi(u)d̂Hu

}
.
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We can then look at convergence behavior of
{
Ĥt(Ĥt, β0)−Ht

}
since it is necessary

to derive property of β̂ under profile likelihood. The derivation is as follows:

√
n
{
Ĥt(Ĥt, β0)−Ht

}
= n−1/2

n∑
i=1

∫ t

0

dNi(x)− Yi(x)Θi(Hx, β0)dHx

n−1
∑n

i=1 Yi(x)Θi(Ĥx, β0)ŵi(x)

+ n−1/2

n∑
i=1

∫ t

0

Yi(x)Θi(Hx, β0)dHx − Yi(x)Θi(Ĥx, β0)dHx

n−1
∑n

i=1 Yi(x)Θi(Ĥx, β0)ŵi(x)

+ n−1/2

n∑
i=1

∫ t

0

dHx

n−1
∑n

i=1 Yi(x)Θi(Ĥx, β0)ŵi(x)
×(∫ τ

x

Θ̇i(Ĥu, β0)

Θi(Ĥu, β0)
{dNi(u)−Θi(Hu, β0)Yi(u)dHu}

)
+ n−1/2

n∑
i=1

∫ t

0

dHx

n−1
∑n

i=1 Yi(x)Θi(Ĥx, β0)ŵi(x)
×(∫ τ

x

Θ̇i(Ĥu, β0)

Θi(Ĥu, β0)

{
Θi(Hu, β0)−Θi(Ĥu, β0)

}
Yi(u)dHu

)
− n−1/2

n∑
i=1

∫ t

0

dHx

n−1
∑n

i=1 Yi(x)Θi(Ĥx, β0)ŵi(x)
×(∫ τ

x

Θ̇i(Ĥu, β0)Yi(u)(dĤu − dHu)

)
= n−1/2

n∑
i=1

∫ t

0

{1 + dHxΘ̇i(Ĥx, β0)/Θi(Ĥx, β0)}
n−1

∑n
i=1 Yi(x)Θi(Ĥx, β0)ŵi(x)

dMi(x)

− n1/2

∫ t

0

n−1
∑n

i=1 Yi(x)Θ̇i(Hx, β0)(Ĥx −Hx)dHx

n−1
∑n

i=1 Yi(x)Θi(Ĥx, β0)ŵi(x)

+ n−1/2

n∑
i=1

∫ t

0

dHx

n−1
∑n

i=1 Yi(x)Θi(Ĥx, β0)ŵi(x)

{∫ τ

x+

Θ̇i(Ĥu, β0)

Θi(Ĥu, β0)
dMi(u)

}

− n−1/2

n∑
i=1

∫ t

0

dHx

n−1
∑n

i=1 Yi(x)Θi(Ĥx, β0)ŵi(x)
×(∫ τ

x

Θ̇i(Ĥu, β0)Θ̇i(Hu, β0)

Θi(Ĥu, β0)
(Ĥu −Hu)Yi(u)dHu

)
− n−1/2

n∑
i=1

∫ t

0

dHx

n−1
∑n

i=1 Yi(x)Θi(Ĥx, β0)ŵi(x)
×(∫ τ

x

Θ̇i(Ĥu, β0)Yi(u)(dĤu − dHu)

)
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The first term can be further decomposed as follows by consistency of Ĥ:

n−1/2

n∑
i=1

∫ t

0

{1 + dHxΘ̇i(Hx, β0)/Θi(Hx, β0)}
n−1

∑n
i=1 Yi(x)Θi(Hx, β0)wi(x)

dMi(x){1 + op(1)}

Furthermore, we know that

n−1

n∑
i=1

Yi(x)Θi(Hx, β0)wi(x)

= n−1

{
n∑

i=1

Yi(x)Θi(Hx, β0)−
n∑

i=1

∫ τ

x

Θ̇i(Hu, β0)

Θi(Hu, β0)
dMi(u)

}
(B.1)

As n→∞, by WLLN, n−1
∑n

i=1 Yi(x)Θi(Hx, β0) converges in probability to a deter-

ministic function cx = E {Θ(Hx, β0);X ≥ x}. On the other hand, the second term,

n−1

n∑
i=1

∫ τ

x

Θ̇i(Hu, β0)

Θi(Hu, β0)
dMi(u),

is a Martingale with predictable variation process (PVP) as follows:

n−2

n∑
i=1

∫ τ

x

Θ̇2
i (Hu, β0)

Θi(Hu, β0)
Y (u)dHu.

The PVP converges to zero as n → ∞. That is, (B.1) converges uniformly to cx as

n→∞.

By Martingale Central Limit Theorum (MCLT),

n−1/2

n∑
i=1

∫ t

0

{1 + dHxΘ̇i(Hx, β0)/Θi(Hx, β0)}
n−1

∑n
i=1 Yi(x)Θi(Hx, β0)wi(x)

dMi(x) ⇒ W1(t)

where W1(t) is a mean-zero Gaussian process with variance

There are two implications for subsequent derivations for (B.1). First, we can substitute

cx as denominator when establishing asymptotics; Second, the op(1) term can be dropped

since the product of op(1) and a converged Gaussian process is still an op(1) term.

Similarly, the third term, independent of first term, becomes (up to op(1)):

n−1/2

n∑
i=1

∫ t

0

dHx

n−1
∑n

i=1 Yi(x)Θi(Hx, β0)

∫ τ

x+

Θ̇i(Hu, β0)

Θi(Hu, β0)
dMi(u).
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The integrand is in fact a Martingale that converges to a mean-zero Gaussian pro-

cess W2(x) with variance σ2(x) = (dHx/cx)
2E

[∫ τ

x+

{
Θ̇(Hu,β0)
Θ(Hu,β0)

}2

Y (u)Θ(Hu, β0)dHu

]
.

Hence the whole term converges to process
∫ t

0
W2(x)dx. Furthermore, W1 and W2 are

independent, we can combine them as one zero-mean Wiener process W with variance

function σ(t) = I(x ∈ [0, t])σ1(x) + I(x ∈ (t, τ ])σ2(x).

Since the second term in (B.1) includes the process
√
n
{
Ĥx(Ĥx, β0)−Hx

}
, this term

will converge to the recursive process V1(t) =
∫ t

0

E{Θ̇(Hx,β0);X≥x}
E{Θ(Hx,β0);X≥x} V (x)dHx. Similarly, the

fourth and fifth terms will converge to:

V2(t) =

∫ t

0

dHx

cx

∫ τ

x

E

{
Θ̇2(Hx, β0)

Θ(Hx, β0)
;X ≥ x

}
V (u)dHu

V3(t) =

∫ t

0

dHx

cx

∫ τ

x

E
{

Θ̇(Hx, β0);X ≥ x
}
dV (u)

In summary,
√
n{Ĥt −Ht} converges to V (t) that satisfies the following equation:

(B.2) V (t) = W (t)− V1(t)− V2(t)− V3(t).

This is a non homogeneous second order differential equations with time changing

coefficients. In general there is no explicit solution.

We can rewrite
√
n(β̂ − β0) as:

√
n(β̂ − β0) = {n−1Ipr(β0)}−1n−1/2Upr(β0) + op(1).

We have already shown that n−1Ipr(β0)
p→ I1(β0).
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For Upr(β0), it can be written as:

n−1/2Upr(β0)

= n−1/2

n∑
i=1

∫ τ

0

Θβ0

i (Ĥx, β0)

Θi(Ĥx, β0)

{
dNi(x)− Yi(x)Θi(Ĥx, β0)d̂Hx

}
= n−1/2

n∑
i=1

∫ τ

0

Θβ0

i (Ĥx, β0)

Θi(Ĥx, β0)
{dNi(x)− Yi(x)Θi(Hx, β0)dHx}

+ n−1/2

n∑
i=1

∫ τ

0

Θβ0

i (Ĥx, β0)

Θi(Ĥx, β0)

{
Yi(x)Θi(Hx, β0)dHx − Yi(x)Θi(Ĥx, β0)dHx

}
+ n−1/2

n∑
i=1

∫ τ

0

Θβ0

i (Ĥx, β0)

Θi(Ĥx, β0)

{
Yi(x)Θi(Ĥx, β0)dHx − Yi(x)Θi(Ĥx, β0)d̂Hx

}
= n−1/2

n∑
i=1

∫ τ

0

Θβ0

i (Ĥx, β0)

Θi(Ĥx, β0)
dMi(x)

− n−1/2

n∑
i=1

∫ τ

0

Θβ0

i (Ĥx, β0)

Θi(Ĥx, β0)
Yi(x)Θ̇i(Hx, β0)dHx(Ĥx −Hx)

− n−1/2

n∑
i=1

∫ τ

0

Θβ0

i (Ĥx, β0)Yi(x)(d̂Hx − dHx)(B.3)

The first term is (up to op(1)) a Martingale and its asymptotic behavior is equivalent to

that of n−1/2U(β0).

According to (3.16), n−1/2U(β0) is a Martingale with PVP:

n−1

n∑
i=1

∫ τ

0

{Θβ0

i (Hx, β0)}2

Θi(Hx, β0)
Yi(x)dH(x),

that converges to I1(β0). By Martingale CLT, n−1/2U(β0), a realization of a martingale

process at t = τ , converges in distribution to zero-mean Normal with variance I1(β0). The

arguments are similar to Fleming and Harrington (2005).

The second term in (B.3) will converge to
∫ τ

0
E
{

Θβ0 (Hx,β0)Θ̇(Hx,β0)
Θ(Hx,β0)

;X ≥ x
}
V (x)dHx

Last term in (B.3) equals (up to op(1)) n−1/2
∑n

i=1

∫ τ

0
Θβ0

i (Hx, β0)Yi(x)(d̂Hx − dHx),

and it converges to following process:
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=
√
n

n∑
i=1

∫ τ

0

Θ0,β
i,x Yi(x)

dNi(x)− hxYi(x)Θi(Ĥx, β̂)wi(x)∑n
i=1 Yi(x)Θi(Ĥx, β̂)wi(x)

= n−1/2

n∑
i=1

∫ τ

0

Θ0,β
i,x Yi(x)

{1 + hx(log Θi(Ĥx, β̂))′}dMi(x) + hx

∫ τ

x+(log Θi,s)
′dMi(s)

n−1
∑n

i=1 Yi(x)Θi(Ĥx, β̂)wi(x)
.(B.4)

Follow the similar arguments in Section 4.1, (B.4) is asymptotically equivalent to dis-

tribution of martingaleM∗
1 (τ) plus the integration of another indepedent martingaleM∗

2 (x)

over [0, τ ] where:

M∗
1 (τ) = n−1/2

n∑
i=1

∫ τ

0

Θ0,β
i,x Yi(x)

1 + hx(log Θi(Ĥx, β̂))′

Cx

dMi(x);

M∗
2 (x) = n−1/2Θ0,β

i,x Yi(x)hx

n∑
i=1

∫ τ

x+

(log Θi,s)
′

Cx

dMi(s),

with PVPs:

n−1
∑n

i=1

∫ τ

0

{
Θ0,β

i,x

1 + hx(log Θi(Ĥx, β̂))′

Cx

}2

Y 2
i (x)Θi(Ĥx, β̂)hx;

n−1{Θ0,β
i,x Yi(x)hx}2

∑n
i=1

∫ τ

x+

{
(log Θi,s)

′

Cx

}2

Yi(s)Θi,shs,

that converge to

σ∗1(τ) = E

∫ τ

0

{
Θ0,β

i,x

1 + hx(log Θi(Ĥx, β̂))′

Cx

}2

Y 2
i (x)Θi(Ĥx, β̂)hx

 ;

σ∗2(x) = {Θ0,β
i,x Yi(x)hx}2E

[∫ τ

x+

{
(log Θi,s)

′

Cx

}2

Yi(s)Θi,shs

]
,

as n→∞. Hence by Martingale Central Limit Theorum and Slutsky Theorum, (B.4) con-

verges to a mean zero Normal W ∗
1 (τ) with variance σ∗1(τ) plus integration of a Gaussian

process W ∗
2 (x) with variance σ∗2(x) over [0, τ ], respectively. That is,

√
n

n∑
i=1

∫ τ

0

Θ0,β
i,x Yi(x)(hx − ĥx)

D→ W ∗
1 (τ) +

∫ τ

0

W ∗
2 (x)dx
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Hence, by Slutsky Theorum, the following holds:

n−1/2

n∑
i=1

∫ τ

0

Θ0,β
i,x Yi(x)(hx − ĥx) ⇒ 0.

Combining these results, we have :

√
n(β̂ − β0)

D→ N(0, I−1
1 (β0)).
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APPENDIX C

Appendices for Chapter IV

C.1 Covariance matrix for (4.7)

Based on Section 4.3.3, for s, t ∈ [0, τ ], the components in (4.8) are

σ2
H(s, t) =

∫ τ

s+∨t+
ψ(x, s)ψ(x, t)P (T ≥ x)λ(x|z[0, x])dx

σ2
H,A(s, t) =

∫ τ

s∨t

ψ(x, s ∨ t)µ(x)P (T ≥ x)λ(x|z[0, x])dx

σ2
H,β(s, β) =

∫ τ

s

ψ(x, s)ρ(x)P (T ≥ x)λ(x|z[0, x])dx

σ2
A(s, t) =

∫ s∨t

0

µ2(x)P (T ≥ x)λ(x|z[0, x])dx

σ2
A,β(s, β) =

∫ τ

s

µ(x)ρ(x)P (T ≥ x)λ(x|z[0, x])dx

σ2
β(β) =

∫ τ

0

ρ2(x)P (T ≥ x)λ(x|z[0, x])dx
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C.2 Covariance matrix for {dW1(t), dW2(t),W3}

Based on W1(t), W2(t) and W3 given in Section 4.3.3, we have

dW1(t) = φH
H(H[0, τ ], A[0, τ ], t, t, β)dV H(t)

+

∫ t

0

φ̇H
H(H[0, τ ], A[0, τ ], t, y, β)dV H(y)

+φA
H(H[0, τ ], A[0, τ ], t, t, β)dV A(t)

+

∫ t

0

φ̇A
H(H[0, τ ], A[0, τ ], t, y, β)dV A(y)

+φ̇β
H(H[0, τ ], A[0, τ ], t, β)(β̂ − β),

where

φ̇H
H(H[0, τ ], A[0, τ ], t, y, β) =

∂

∂t
φH

H(H[0, τ ], A[0, τ ], t, y, β)

φ̇A
H(H[0, τ ], A[0, τ ], t, y, β) =

∂

∂t
φA

H(H[0, τ ], A[0, τ ], t, y, β)

φ̇β
H(H[0, τ ], t, β) =

∂

∂t
φβ

H(H[0, τ ], A[0, τ ], t, β),

dW2(t) = φH
A (H[0, τ ], A[0, τ ], t, t, β)dVH(t)

+

∫ t

0

φ̇H
A (H[0, τ ], A[0, τ ], t, y, β)dV H(y)

+φA
A(H[0, τ ], A[0, τ ], t, t, β)dVA(t)

+

∫ t

0

φ̇A
A(H[0, τ ], A[0, τ ], t, y, β)dV A(y)

+φ̇β
A(H[0, τ ], A[0, τ ], t, β)(β̂ − β)

where

φ̇H
A (H[0, τ ], A[0, τ ], t, y, β) =

∂

∂t
φH

A (H[0, τ ], A[0, τ ], t, y, β)

φ̇A
A(H[0, τ ], A[0, τ ], t, y, β) =

∂

∂t
φA

A(H[0, τ ], A[0, τ ], t, y, β)

φ̇β
A(H[0, τ ], t, β) =

∂

∂t
φβ

A(H[0, τ ], A[0, τ ], t, β),
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Then for s, t ∈ [0, τ ], let σ∗,2W1
(s, t) = cov {dW1(s)dW1(t)}

σ∗,2W1
(s, t) =

φH
H(H[0, τ ], A[0, τ ], s, s, β)φH

H(H[0, τ ], A[0, τ ], t, t, β)E {dVH(s)dVH(t)}

+φH
H(H[0, τ ], A[0, τ ], s, s, β)

∫ t

0

φ̇H
H(H[0, τ ], A[0, τ ], s, y, β)E {dVH(y)dVH(s)}

+φH
H(H[0, τ ], A[0, τ ], s, s, β)φA

H(H[0, τ ], A[0, τ ], t, t, β)E {dVH(s)dVA(t)}

+φH
H(H[0, τ ], A[0, τ ], s, s, β)

∫ t

0

φ̇A
H(H[0, τ ], A[0, τ ], s, y, β)E {dVA(y)dVH(s)}

+φH
H(H[0, τ ], A[0, τ ], s, s, β)φ̇β

H(H[0, τ ], A[0, τ ], t, β)E
{
dVH(s)(β̂ − β)

}
+φH

H(H[0, τ ], A[0, τ ], t, t, β)

∫ s

0

φ̇H
H(H[0, τ ], A[0, τ ], s, y, β)E {dVH(y)dVH(t)}

+

∫ s

0

∫ t

0

φ̇H
H(H[0, τ ], A[0, τ ], s, y, β)

φ̇H
H(H[0, τ ], A[0, τ ], s, y∗, β)E {dVH(y)dVH(y∗)}

+φA
H(H[0, τ ], A[0, τ ], t, t, β)

∫ s

0

φ̇H
H(H[0, τ ], A[0, τ ], s, y, β)E {dVH(y)dVA(t)}

+

∫ s

0

∫ t

0

φ̇H
H(H[0, τ ], A[0, τ ], s, y, β)

φ̇A
H(H[0, τ ], A[0, τ ], s, y∗, β)E {dVH(y)dVA(y∗)}

+φ̇β
H(H[0, τ ], A[0, τ ], t, β)

∫ s

0

φ̇H
H(H[0, τ ], A[0, τ ], s, y, β)E

{
dVH(y)(β̂ − β)

}
+φA

H(H[0, τ ], A[0, τ ], s, s, β)φH
H(H[0, τ ], A[0, τ ], t, t, β)E {dVA(s)dVH(t)}

+φA
H(H[0, τ ], A[0, τ ], s, s, β)

∫ t

0

φ̇H
H(H[0, τ ], A[0, τ ], s, y, β)E {dVH(y)dVA(s)}

+φA
H(H[0, τ ], A[0, τ ], s, s, β)φA

H(H[0, τ ], A[0, τ ], t, t, β)E {dVA(s)dVA(t)}

+φA
H(H[0, τ ], A[0, τ ], s, s, β)

∫ t

0

φ̇A
H(H[0, τ ], A[0, τ ], s, y, β)E {dVA(y)dVA(s)}

+φA
H(H[0, τ ], A[0, τ ], s, s, β)φ̇β

H(H[0, τ ], A[0, τ ], t, β)E
{
dVA(s)(β̂ − β)

}
,

+φH
H(H[0, τ ], A[0, τ ], t, t, β)

∫ s

0

φ̇A
H(H[0, τ ], A[0, τ ], s, y, β)E {dVA(y)dVH(t)}
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+

∫ s

0

∫ t

0

φ̇A
H(H[0, τ ], A[0, τ ], s, y, β)φ̇H

H(H[0, τ ], A[0, τ ], s, y∗, β)E {dVA(y)dVH(y∗)}

+φA
H(H[0, τ ], A[0, τ ], t, t, β)

∫ s

0

φ̇A
H(H[0, τ ], A[0, τ ], s, y, β)E {dVA(y)dVA(t)}

+

∫ s

0

∫ t

0

φ̇H
H(H[0, τ ], A[0, τ ], s, y, β)φ̇A

H(H[0, τ ], A[0, τ ], s, y∗, β)E {dVH(y)dVA(y∗)}

+φ̇β
H(H[0, τ ], A[0, τ ], t, β)

∫ s

0

φ̇A
H(H[0, τ ], A[0, τ ], s, y, β)E

{
dVA(y)(β̂ − β)

}
+φ̇β

H(H[0, τ ], A[0, τ ], s, β)φH
H(H[0, τ ], A[0, τ ], t, t, β)E

{
dVH(t)(β̂ − β)

}
,

+φ̇β
H(H[0, τ ], A[0, τ ], s, β)

∫ t

0

φ̇H
H(H[0, τ ], A[0, τ ], s, y, β)E

{
dVH(y)(β̂ − β)

}
,

+φ̇β
H(H[0, τ ], A[0, τ ], s, β)φA

H(H[0, τ ], A[0, τ ], t, t, β)E
{
dVA(t)(β̂ − β)

}
,

+φ̇β
H(H[0, τ ], A[0, τ ], s, β)

∫ t

0

φ̇A
H(H[0, τ ], A[0, τ ], s, y, β)E

{
dVA(y)(β̂ − β)

}
,

+φ̇β
H(H[0, τ ], A[0, τ ], s, β)φ̇β

H(H[0, τ ], A[0, τ ], t, β)E
{

(β̂ − β)2
}
.

The covariance of {dW1(s), dW2(t)}, denoted as σ∗,2W1,W2
(s, t) can be obtained in sim-

ilar fashion.

Now let σ∗,2W3
(β) = var(W3). Then we have

σ∗,2W3
(β) =∫ τ

0

∫ τ

0

φH
β (H[0, τ ], A[0, τ ], y, β)

φH
β (H[0, τ ], A[0, τ ], y∗, β)E {dVH(y)dVH(y∗)}

+2φβ
β(H[0, τ ], A[0, τ ], β)

∫ τ

0

φH
β (H[0, τ ], A[0, τ ], y, β)E

{
dVH(y)(β̂ − β)

}
,

+

∫ τ

0

∫ τ

0

φA
β (H[0, τ ], A[0, τ ], y, β)

φA
β (H[0, τ ], A[0, τ ], y∗, β)E {dVA(y)dVA(y∗)}

+2φβ
β(H[0, τ ], A[0, τ ], β)

∫ τ

0

φA
β (H[0, τ ], A[0, τ ], y, β)E

{
dVA(y)(β̂ − β)

}
,

+
{
φβ

β(H[0, τ ], A[0, τ ], β)
}2

E
{

(β̂ − β)2
}
.



104

The covariance between dW1(t) and W3, denoted as σ∗,2W1,W3
(t, β), becomes

σ∗,2W1,W3
(t, β) =

φH
H(H[0, τ ], A[0, τ ], t, t, β)

∫ τ

0

φH
β (H[0, τ ], A[0, τ ], y, β)E {dVH(y)dVH(t)}

+

∫ t

0

∫ τ

0

φ̇H
H(H[0, τ ], A[0, τ ], t, y, β)

φβ
H(H[0, τ ], A[0, τ ], y∗, β)E {dVH(y)dVH(y∗)}

+φA
H(H[0, τ ], A[0, τ ], t, t, β)

∫ τ

0

φH
β (H[0, τ ], A[0, τ ], y, β)E {dVH(y)dVA(t)}

+

∫ t

0

∫ τ

0

φ̇A
H(H[0, τ ], A[0, τ ], t, y, β)

φβ
H(H[0, τ ], A[0, τ ], y∗, β)E {dVA(y)dVH(y∗)}

+φ̇β
H(H[0, τ ], A[0, τ ], t, β)

∫ τ

0

φH
β (H[0, τ ], A[0, τ ], y, β)E

{
dVH(y)(β̂ − β)

}
+φH

H(H[0, τ ], A[0, τ ], t, t, β)

∫ τ

0

φA
β (H[0, τ ], A[0, τ ], y, β)E {dVA(y)dVH(t)}

+

∫ t

0

∫ τ

0

φ̇H
H(H[0, τ ], A[0, τ ], t, y, β)

φA
β (H[0, τ ], A[0, τ ], y∗, β)E {dVH(y)dVA(y∗)}

+φA
H(H[0, τ ], A[0, τ ], t, t, β)

∫ τ

0

φA
β (H[0, τ ], A[0, τ ], y, β)E {dVA(y)dVA(t)}

+

∫ t

0

∫ τ

0

φ̇A
H(H[0, τ ], A[0, τ ], t, y, β)

φA
β (H[0, τ ], A[0, τ ], y∗, β)E {dVA(y)dVA(y∗)}

+φ̇β
H(H[0, τ ], A[0, τ ], t, β)

∫ τ

0

φA
β (H[0, τ ], A[0, τ ], y, β)E

{
dVA(y)(β̂ − β)

}
+φH

H(H[0, τ ], A[0, τ ], t, t, β)φβ
β(H[0, τ ], A[0, τ ], β)E

{
dVH(t)(β̂ − β)

}
+

∫ t

0

φ̇H
H(H[0, τ ], A[0, τ ], t, y, β)φβ

β(H[0, τ ], A[0, τ ], β)E
{
dVH(t)(β̂ − β)

}
+φA

H(H[0, τ ], A[0, τ ], t, t, β)φβ
β(H[0, τ ], A[0, τ ], β)E

{
dVA(t)(β̂ − β)

}
+

∫ t

0

φ̇A
H(H[0, τ ], A[0, τ ], t, y, β)φβ

β(H[0, τ ], A[0, τ ], β)E
{
dVA(t)(β̂ − β)

}
+φ̇β

H(H[0, τ ], A[0, τ ], t, β)φβ
β(H[0, τ ], A[0, τ ], β)E

{
(β̂ − β)2

}
.

The covariance between dW2(t) and W3, denoted as σ∗,2W2,W3
(t, β), can be obtained in
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similar way.
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