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CHAPTER 1                                                                                                     

Introduction 

 

 

Metabolomics Background 

The study of metabolism is vital to understand biological systems and their potential 

dysregualtion in disease states.  Metabolites supply not only the building blocks for all 

classes of biological molecules including DNA, RNA, and proteins but also regulate their 

expression and activities.  It is of little surprise that the field of metabolomics, the global 

measurement of metabolites1, has seen explosive growth in the post-genomic era 

coincident with advances in analytical instrumentation, data processing, and 

chemometric tools designed to facilitate efficient and accurate large-scale metabolite 

quantification.  Since the Nicholson Group at The Imperial College of London and the 

Fiehn group at The Max-Planck Institute of Molecular Plant Physiology in Germany 

coined the terms “metabonomics”2 and "metabolomics"1 in 1999 and 2002, respectively, 

the number of publications indexed by these terms (now generally considered 

interchangeable)3, 4 has grown exponentially to ~900 PubMed indexed citations in 2010 

(Figure 1-1).  Accordingly, metabolomics has become a vital tool in biomedical research 

as practiced independently to study metabolite interaction or in combination with 

genomic, transcriptomic, and/or proteomic data to study biological systems in a holistic 

manner (e.g. systems biology).   

 



2 
 

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

200

400

600

800

1000

Publication Year

N
u

m
b

e
r 

o
f 

"M
e
ta

b
o

li
m

ic
s
"

P
u

b
li
c
a
ti

o
n

s

 
 

Figure 1-1.  Number of Publications Returned with “Metabolomics” Keyword Search of 
NCBI- PubMed. 

 

Metabolomics Approaches and Platforms.  Analytical approaches for 

metabolomic analysis of biological systems can be classified broadly as directed 

(targeted) or undirected (untargeted).  This distinction is dependent upon whether the 

methodology implemented is designed to quantify a number of specific metabolites 

(directed) or to measure a generally larger set of metabolites restricted only by the 

sensitivity and applicability of the analytical platform(s) and data processing employed 

(undirected).  These approaches have found widespread use in biological investigations 

of biomarkers of disease5, pharmacological toxicity3, functional genomics6, and 

nutrigenomics7.  Metabolomic platforms can be categorized based on the detection 

method used (generally MS or NMR) as detailed below.  Sample types commonly 

investigated include plant tissue, plasma, urine, cerebral spinal fluid, mammalian tissue, 

and cultured eukaryotic and prokaryotic cells.  Accordingly, efficient extraction of 

metabolites from these various samples through customized sample preparation 

procedures is a critical parameter in accurate metabolomic analysis as discussed in 

Chapter 3.  Moreover, the human metabolome, for example, is estimated to be 

comprised of ~2400 compounds8 with diversity in structure ranging from polar sugars to 
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lipophilic triacylglycerols, therefore complementary preparation techniques and analysis 

platforms are necessary to approach true global metabolite measurement.   

 

Directed Metabolomics.  Quantification of small numbers of metabolites (< 10) in 

biological samples has been commonplace for decades.  Initial studies used chemical or 

enzymatic assays to convert a metabolite of interest into a detectable product or 

cofactor.  These approaches do not require advanced analytical equipment and are 

therefore still used in many research laboratories today.  1H-NMR has seen limited use 

for absolute quantification of metabolites due to inherent sensitivity and specificity 

limitations, although studies have reported quantification of 11 metabolites in urine9 48 in 

whole blood10 ~100 in urine11.  Separation based techniques such as HPLC-UV and GC-

FID have been used for metabolite quantification but suffer from limited sensitivity and 

selectivity critical for successful analysis in complex biological matrices.  Larger sets of 

specified metabolites (as many as 205) have been quantified recently in biofluids and 

cellular extracts using separations based approaches coupled with mass spectrometry 

detection (CE-MS12, GC-MS13, and LC-MS14, 15) as discussed below.   

 

Undirected Metabolomics.  Undirected metabolomic studies strive to measure all 

the metabolites in a given sample.  While the chemical identity of each unique “feature” 

or signal measured in an analysis may ultimately be important for a given study, 

undirected experiments generally begin with a simple hypothesis that differences in 

metabolite concentrations can be measured between groups of samples.  Accordingly, 

the initial goal of an undirected analysis is to discover these differences.  Advanced data 

processing techniques are used in the undirected approach as discussed below.  

Studies that terminate at “feature” identification fall under the category of “metabolite 

profiling” and can be useful in areas such as biomarker identification.  Alternately, these 

features can be further interrogated and structurally identified leading to new ideas 

regarding the alteration in biochemical processes responsible for the observed 

differences.  Hence, this class of experiment is often referred to as “hypothesis 

generating”.   

 

NMR.  Nuclear magnetic resonance spectroscopy is a powerful analytical tool for 

chemical structural characterization and has been used extensively for metabolite 

profiling.  1H-NMR experiments are commonly employed and involve measuring energy 
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absorbed and re-emitted from hydrogen nuclei in a magnetic field.  This approach is 

nearly universal due to the ubiquity of protons in metabolite species.  1H-NMR offers full 

scan compatibility, fast analysis times (~5 min/sample), is non-destructive, and 

quantitative.  However, NMR suffers from inherent low sensitivity and is generally 

employed as a profiling tool to find biomarker signals as opposed to quantifying specific 

metabolites.  Although, hardware improvements such as cryogenically cooled probes 

and advances in spectral deconvolution software16 have improved the utility of NMR as a 

quantitative tool for metabolite measurement in biological samples.11 For example, as 

many as 100 metabolites have been quantified in plasma using these advanced 

approaches.10 

 

Mass Spectrometry.  Mass spectrometry detection has become synonymous with 

absolute metabolite quantification in recent years based primarily on the technique's high 

sensitivity relative to NMR.  The sensitivity and selectivity of MS are improved 

considerably when coupled to separation techniques such as GC, CE, and HPLC.  

Accordingly, dozens of practical combinations of separation technique, ionization source, 

and mass analyzer have been employed for metabolomic analysis based on analytical 

considerations such as sample size, metabolite class of interest, required sensitivity, 

desired mass accuracy, dynamic range, and need for full scan capability.  Accordingly, 

no single analytical platform is ideal for all types of metabolomic analysis.   

 

Mass Analyzer.  Mass analyzers commonly used in metabolomic analysis include 

quadrupole, quadrupole ion trap (QIT), linear ion trap (LIT), time-of-flight (TOF), Fourier 

transform ion cyclotron resonance (FT-ICR), and Orbitrap.  Hybrid systems containing 

multiple mass analyzers such as triple-quadrupole (QQQ) and quadrupole-time of flight 

(Q-TOF) are used routinely to further increase the sensitivity and specificity of mass 

spectrometry based detection.  The use of high resolution advanced hybrid instruments 

such as TOF-TOF17 and LIT-Orbitrap18 has been reported recently to improve selectivity 

for non-separation based or “shotgun” metabolomic analysis.  The operating principals 

and advantages of each instrument type for metabolomics are beyond the scope of this 

dissertation, but reviewed recently.19 
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Ionization Source.  The selection of ionization source is a critical parameter in 

mass spectrometry as analytes must be ionized for separation based on mass to charge 

ratio to occur.  Electron ionization (EI) is omnipresent in gas chromatography and offers 

the unique advantages of near universal gas-phase volatile analyte ionization and 

reproducible analyte fragmentation.  Electrospray ionization (ESI) dominates liquid 

based direct injection (DI) and separation approaches.20 ESI provides adequate 

sensitivity for a wide variety of metabolites but is susceptible to poor reproducibility 

caused by ionization suppression.  Ionization suppression involves the reduction (or 

enhancement) in analyte ionization and signal intensity due to coelution with interfering 

analytes through a mechanism involving gas-phase or liquid-phase interactions still 

under investigation.21  This issue is compounded in metabolomic analysis due to the 

ubiquity of suppressive species such as salts and organic buffers common in biological 

matrices such urine, plasma, and cellular extracts.  The impact of ionization suppression 

on quantification can be corrected through careful sample matrix control and/or the use 

of isotopically labeled internal standards as discussed below.  Atmospheric pressure 

chemical ionization (APCI) is used less frequently due to lower sensitivity for most 

metabolites but has been demonstrated to complement ESI by improving metabolome 

coverage through detection of neutral/lipophilic species such as cholesterol.20 

Atmospheric pressure photo ionization (APPI) has not been commonly applied to 

metabolomic analysis but was recently demonstrated to provide complementary 

ionization of non-polar analytes relative to ESI and APCI.22  Analysis of solid samples 

such as blood spots and whole islets has been reported using non-separation based 

ionization techniques such as matrix assisted laser desorption/ionization (MALDI)23-25, 

desorption electrospray ionization (DESI)26, and direct analysis in real time (DART)27.  

These approaches have the advantage of speed although this benefit generally comes 

with a severe loss of sensitivity and specificity.  To overcome these issues, such 

methods have been coupled with high resolution TOF-TOF17 and LIT-Orbitrap18 mass 

spectrometers to improve mass spectral resolution and specificity. 

 

Stable Isotopes in Quantification.  In addition to the plethora of routine factors 

that plague reproducibility in preparation and analysis of biological samples (e.g. 

degradation, heterogeneity, and biological variability) accurate quantification using mass 

spectrometry suffers from signal variability due to ionization suppression (discussed 

above).  Traditional approaches to correct for matrix interferences such as standard 
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addition may be used, but are cumbersome, time-consuming, and impractical for 

multi-analyte analysis with large sample sets.  Recently, stable isotope-labeled 

standards incorporating 13C, 2H, and 15N have become available for many common 

metabolites to correct for such variability and are used extensively to improve the 

accuracy of metabolite quantification.  Isotopically labeled standards have highly similar 

if not identical chemical properties to their endogenous analogs and therefore 

experience identical measurement variability caused by instrument response drift and 

ionization suppression.  Identical chromatographic behavior is generally observed for 13C 

and 15N labeled analytes28 while separation can occur for 2H labeled analytes29 leading 

to less accurate quantification and variable ionization suppression.  Variability introduced 

during sample preparation (e.g. metabolite degradation and incomplete derivatization) 

are corrected by this approach also since both labeled and non-labeled species are 

impacted identically.  However, many stable labeled standards have limited availability 

and/or are prohibitively expensive to synthesize.   

As a solution to these issues, novel approaches to large-scale metabolite 

quantification in microbes have been reported recently involving the use of stable 

labeled internal references for all endogenously synthesized metabolites.  These 

standards are generated through the use of metabolite extracts of microbes grown on 

stable labeled substrate (e.g. [U-13C]-glucose).30 Alternately, an approach has been 

demonstrated that involves growth of both microbial and mammalian cells used in 

biological experimentation with labeled substrate allowing for use of non-isotopically 

labeled authentic standards as internal standards.31 Complications in quantification with 

these approaches may arise due to incomplete isotopic labeling which can generate a 

wide distribution of metabolite isotopes thereby decreasing the sensitivity and specificity 

of mass spectrometry detection.   

Derivatization approaches with stable isotopically labeled reagents such as dansyl 

chloride have also been reported as an alternative approach to multi-analyte internal 

standard correction.  This technique labels primary amine, secondary amine, and 

phenolic hydroxyl groups with labeled or unlabeled substrate for absolute quantification 

and differential profiling of metabolites.32 The use of labeled silation reagents has also 

been reported for GC x GC analysis of metabolites in plasma.33 
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Separation Methods 

GC-MS.  Gas chromatography based separations are commonly used in 

metabolomic analysis.  GC provides excellent chromatographic resolution and can be 

coupled with EI ionization sources which are less susceptible to ionization suppression 

and allow for rapid and unambiguous library based identification of unknowns.  A major 

drawback of metabolite analysis by GC is that analytes must be volatile.  Therefore GC 

is most commonly employed in conjunction with sample preparation procedures that use 

derivatization (e.g. trimethyl silane) to increase the volatility of metabolite classes such 

as sugars, sugar phosphates, amino acids, and fatty acids.  These sample handling 

steps often decrease reproducibility and therefore require internal standardization to 

provide acceptable precision.  Derivatization procedures also increase sample 

complexity and decrease sensitivity as multiple derivatives often form for a given 

metabolite dividing analyte signal between several chromatographic peaks.  The inability 

to analyze important metabolite classes such as nucleotides and acyl-CoAs due to their 

high molecular weight and/or thermal lability is a further drawback.   

 

LC-MS.  LC techniques provide adequate separation for a broad range of 

metabolites but offer generally lower chromatographic resolution than GC.  Several 

modes of HPLC separation including reverse-phase, ion pairing, and HILIC have been 

reported for metabolite analysis as detailed extensively in Chapter 2.   

 

CE-MS.  CE is an excellent separation technique for highly polar and ionic analytes 

making it a natural choice for metabolite analysis.  CE also generates fast and highly 

efficient separations (several hundred thousand theoretical plates)34 primarily due to the 

flat flow profile (non-laminar) and absence of slow mass transfer considerations in the 

separation process.  Due to extremely low flow rates, interface with ESI nebulizers to 

achieve stable spray has been challenging; however, methods for detection of 198 

metabolites in E coli have been reported.35 Several approaches to coupling CE and 

ESI-MS have been developed and recently reviewed.12  Unfortunately, the performance 

of CE-MS for routine metabolomic analysis has drawbacks such as the inability to 

separate neutral analytes.  Micellar electrokinetic chromatography can overcome this 

issue although the surfactants required for this mode of separation are not MS friendly.  

Further limitations of commercial CE-MS instrumentation include poor reproducibility and 
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have led some researches to conclude LC-MS and GC-MS platforms are better suited to 

routine metabolomic analysis.36 

 

Multi-Platform Techniques.  Due to the inherent limitations of the various 

separation and ionization techniques, several groups have proposed using parallel 

approaches (e.g. GC-MS and LC-MS) to increase coverage of the metabolome.36, 37 

GC-MS and LC-MS are commonly used in parallel as GC-MS generally offers superior 

analysis of metabolite classes such as fatty acids whereas LC is superior in the assay of 

higher molecular weight and multiply charged metabolite classes such as nucleotides 

and acyl-CoAs.  Dual HPLC methods have been proposed including HILIC for amines 

and ion-pairing for carboxylic acids and sugar phosphates.38  Combined HILIC and 

reverse phase approaches have also been reported.39  

Multidimensional separations have also been applied to metabolomic analysis to 

improve sensitivity and peak capacity.  The application of GC x GC has been reported 

for the metabolomic analysis of microbes and plasma.33, 37, 40 Although, the focus of 

much of the GC x GC research effort has been on methodology to improve 

chemometrics since the 3D data sets generated by the technique are particularly difficult 

to process.41 LC x LC has been applied in a limited number of studies of microbes42, 43 

and found to substantially increase the number of detectable metabolites. 

  

Data processing.  Directed metabolomic analysis does not require specialized 

software as this approach can leverage conventional packages for chemical and 

biochemical analysis.  Processing of undirected data offers unique challenges, primarily 

due to the > 1000 features (chromatographic peaks with mass/charge and retention time 

values) commonly detected in a chromatogram.  Hence, data analysis remains a major 

bottleneck in an undirected metabolomic workflow and a great deal of effort has been 

placed on software development over the past several years.  The ideal software 

application must accurately "pick" features (e.g. chromatographic peaks) from total ion 

chromatograms, accurately integrate often non-Gaussian or poorly resolved peaks, and 

identify the molecular ion based on concurrent detection of common adducts and/or 

fragments.  Subsequent steps include feature "alignment" (binning of features across 

injections based on specified mass/charge and retention time windows) for group 

comparison and statistical analysis.  Many applications have been developed by 

research groups to perform such analysis including XCMS44, MZ Mine45, and Maven46.  
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The software company ACD/Labs has also developed the IntelliXtrac package for 

metabolomics.  In addition, major instrument manufactures have developed proprietary 

software suites such as Mass Hunter / Mass Profiler Professional from Agilent 

Technologies, MarkerLynx from Waters, SIEVE from Thermo Scientific, and MarkerView 

from AB Sciex in an effort to provide "total solutions" for metabolomics analyses when 

combined with their hardware.   

 

Metabolite Identification.  Metabolite identification is a major challenge in LC-MS 

based metabolomics and can be costly and time consuming.47 Databases have been 

developed to aid in metabolite ID such as METabolite LINk (METLIN)48, the Human 

Metabolome Database (HMDB)49, Kyoto Encyclopedia of Genes and Genomes 

(KEGG)50, Madison Metabolomics Consortium Database (MMCD)51, and ChemSpider, 

all reviewed recently.47  These databases are searchable by measured m/z and provide 

a starting point for feature identification.  Proposed metabolite identifications can then be 

evaluated based on match between theoretical and observed molecular weights and 

isotopic distribution patterns.  MS/MS spectra are now available through many of these 

databases to improve the quality of proposed identifications.47 The gold standard for 

unknown metabolite identification is retention time comparison to an authentic standard 

through a spiking study in addition to matching MS/MS spectra obtained on identical 

equipment. 

Diabetes Background 

β-cells found in the islets of Langerhans secrete insulin in response to elevated 

blood glucose through glucose stimulated insulin secretion (GSIS).  The hormone insulin 

signals to liver, muscle, and fat cells to take up glucose from the blood and store it as the 

polymer glycogen for later use.  Failure to adequately regulate insulin levels and 

consequently blood glucose causes diabetes resulting in serious long-term 

complications such as cardiovascular disease, chronic renal failure, and retinal damage.   

GSIS is triggered by closure of KATP channels due to an increase in the ATP/ADP 

ratio concurrent with metabolism of glucose, primarily though glycolysis (Figure 1-3), the 

TCA cycle (Figure 1-4) and Pentose Phosphate Pathway (Figure 1-5).  Closure of KATP 

channels cause membrane depolarization, opening of voltage sensitive Ca2+ channels, 

and subsequent exocytosis of insulin vesicles (Figure 1-2a).  Besides this well 

established KATP dependent mechanism, considerable evidence supports the concept 
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that other metabolic processes also facilitate GSIS in KATP independent or amplifying 

pathways.52  A variety of metabolic coupling factors including NADPH and long-chain 

acyl-CoAs have been implicated in both amplifying and triggering pathways.  These 

coupling factors are generated through established pathways of energy metabolism in 

addition to cross-mitochondrial membrane cycling pathways (Figure 1-2b) as recently 

reviewed.53-55 The pyruvate/malate shuttle involves conversion of oxaloacetate to malate 

then pyruvate before returning to oxaloacete generating NADPH at the expense of ATP 

and NADH.  The pyruvate/citrate shuttle converts oxaloacetate and acetyl-CoA to citrate 

which is exported to the cytosol where it is converted back to oxaloacetate and acetyl-

CoA.  Oxaloacetate can then form pyruvate as in the pyruvate/malate shuttle generating 

NADPH.  Acetyl-CoA can form malonyl-CoA to generate long-chain acyl-CoAs in fatty 

acid synthesis.  The pyruvate/isocitrate shuttle involves oxaloacetate condensation with 

acetyl-CoA to form citrate, which is converted to isocitrate, then α-ketoglutarate and back 

to oxaloacetate generating NADPH.  Fatty acid signaling has also been proposed which 

involves the synthesis of long-chain acyl-CoAs and phospholipids from malonyl-CoA 

generated by glycolysis and TCA cycle which inhibits fatty acid oxidation and increases 

the synthesis of long-chain acyl-CoAs and complex lipids which may participate in 

signaling. 

Despite years of extensive β-cell research the precise metabolic pathways that 

facilitate GSIS and the mechanistic impact of metabolic coupling factors in β-cells are 

not fully understood.56  Accordingly, there is a clear opportunity to develop and apply 

emerging analytical techniques such as LC-MS metabolomics platforms to gain further 

insight into the metabolic pathways involved in GSIS.    
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Figure 1-2.  KATP Dependent and Independent Pathways of GSIS.   

(A) Glucose-stimulated insulin release from pancreatic β-cells (adapted from57).  Abbreviations 
are: glucose-6-phosphate (G-6-P), fructose 1,6-bisphosphate (F 1,6-bis P), 1,3-
bisphosphoglycerate (1,3 Bis PG), 3-phosphoglycerate (3-PG), phosphoenolpyruvate (PEP), 
voltage dependent calcium channel (VDCC), citrate synthase (CS), isocitrate dehydrogenase 
(ICD), ketoglutarate dehydrogenase (KGDH), succinate dehydrogenase (SDH), fumarase (F), 
and malate dehydrogenase (MDH).   

(B) Mitochondrial biochemical pathways that are involved in KATP-independent GSIS (adapted 
from53).  Abbreviations are: acetyl-CoA (Ac-CoA), α-ketoglutarate (α-KG), isocitrate 
dehydrogenase (ICDc), acetyl-CoA citrate lyase (ACL), acetyl-CoA carboxylase (ACC), fatty acid 
synthase (FAS), pyruvate carboxylase (PC), malate dehydrogenase (MDH), malate carrier (MC), 
malic enzyme (ME), pyruvate kinase (PK), phosphoenolpyruvate carboxykinase (PEPCK), and 
citrate/isocitrate carrier (CIC). 
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Figure 1-3.  Glycolysis Pathway Map 
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Figure 1-4.  Pathway Map of the Tricarboxylic Acid (TCA) Cycle.   
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Figure 1-5.  Pathway Map of the Pentose Phosphate Pathway (PPP). 
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Analytical Methods for Metabolite Measurement in β-Cells 

 Extensive investigations into mammalian β-cell metabolism have been conducted 

over the past 50 years to study biochemical responses to glucose and reviewed 

thoroughly.52-54, 58-61  A fundamental breakthrough in mammalian β-cell research occurred 

in 1965 with the development of biological techniques to isolate islets from rat 

pancreas62 enabling ex vivo experimentation.  Primary islets were used nearly 

exclusively for experimentation through 1981 before clonal insulinoma lines were 

developed starting with MIN6 derived from hamster islets.63  This discovery substantially 

accelerated β-cell research since islet tissue is difficult to isolate in analytically relevant 

quantities.  The use of as many as 800 islets (total combined isolation of 5 rats) has 

been reported to generate enough material for a single replicate biological 

measurement.64  Dozens of immortal lines have followed MIN6 and their properties 

recently reviewed.65  These lines include INS-1 832/13 which has been used extensively 

since its introduction in 2000 to study fuel induced insulin secretion.66  INS-1 832/13 

shares many properties with primary β-cells including biphasic physiological response to 

glucose and normal response to non-glucose secretagogues.61, 66  The analytical 

approaches used historically and at present to measure metabolites in β-cells are 

highlighted below. 

 Initial studies of isolated islets in the 1960s included research introducing 

fundamental concepts such as the dose-response relationship between glucose 

concentration and oxidation rate in β-cells and the preferential flux through oxidative 

pathways by measuring the specific activity of 14CO2 generated during metabolism of 

[1-14C]- and [6-14C]-glucose.67  Another study measured elevated levels of citrate using 

an enzymatic assay with fluorometric detection in islets of hyperglycemic mice.68  An 

enzymatic cycling procedure was applied to measure glucose-6-phosphate and 

6-phosphogluconate which were shown to increase in relation to extracellular glucose 

concentration.69  A more comprehensive in vivo study used enzymatic fluorimetric 

procedures combined with an oil well method and enzymatic cycling of pyridine 

nucleotides to improve sensitivity in the 1970s.  This study rivaled those carried out 

through the 2000s in scope by simultaneously measuring increases in 6 metabolites 

(glucose, glucose-6-phosphate, fructose-1,6-bisphoshpate, 6-phosphogluconate, ATP, 

and phosphocreatine) in rat islets at ~2, 5, and 60 min following glucose infusion 

concurrent with insulin release.64 The scope and analytical techniques for metabolite 
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measurement evolved in the 1980s with measurement of 11 nucleotides in isolated rat 

islets by an anion exchange HPLC-UV method.70  HPLC-UV was also reported for 

measurement of short chain acyl-CoAs in islets while total long chain acyl-CoAs were 

determined by an enzymatic-fluorimetric method.71, 72 

In the 2000s, 1H-NMR was used to measure incorporation of 13C into glutamate from 

metabolism of [U-13C]-glucose demonstrating pyruvate cycling (substrate cycle 

converting pyruvate to malate and back to pyruvate as a shuttle of reducing equivalents) 

in INS-1 cells.73, 74 The use of 31P-NMR was also reported for measuring mitochondrial 

ATP production in combination with tandem LC-MS (QQQ) to measure ADP, ATP, 

malate, citrate and aspartate.75 QQQ was also used to study acetyl, succinyl, malonyl, 

and HMG-CoA in INS-1 832/13 cells.76 Surprisingly, in the same study enzymatic assay 

remained the method of choice to measure malate, citrate, isocitrate, glutamate, 

aspartate, aconitate, and α-ketoglutarate yielding 11 metabolites total.76 GC-FID was 

employed to measure lipids in INS-1 832/13 cells and 112 lipid species were reported.77 

GC-MS methodology was also used to measure pyruvate, lactate, citrate, 

α-ketoglutarate, succinate, fumarate, malate in INS1-832/13 cells78 and a larger set of 16 

metabolites (amino acids, carboxylic acids, and sugar phosphates) in a subsequent 

study.79 In a novel application, MALDI was applied to the analysis of metabolites in islet 

tissue.23  The utility of LC x LC in increasing detectable features was also demonstrated 

for metabolite profiling in islets.  In the 2010s, GC-MS was used to quantify a more 

comprehensive set of amino acids, carboxylic acids, and sugar phosphates in INS-1 in a 

study of sample preparation (33 total)80 and a study of GSIS (38 total) combined with a 

substantial set of unidentified features (164 total) through undirected analysis.81  

β-Cell Metabolomics   

The vast majority of studies into β-cell metabolism involve comparative 

measurement of a small number of metabolites in different experimental groups under 

culture conditions or with glucose stimulation at single time points.  While such studies 

are useful, they provide limited insight into temporal and dose-dependent changes in 

β-cell metabolism important to a comprehensive investigation of insulin secretion.   

Limited studies have investigated changes in metabolites with extracellular 

secretagogue concentration including measurement of glucose-6-phosphate and 

6-phosphogluconate in islets with glucose.69 The dose-response behavior of 10 

nucleotides was measured in islets from 5 to 30 mM glucose70 and 5 nucleotides from 0 
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to 20 mM glucose.82  In another study, citrate and malate levels were measured in INS-1 

with glucose concentrations from 4 to 20 mM.83  

Additional studies have investigated temporal changes of select metabolites 

following stimulation.  ATP was measured in INS-1 from 1 to 30 min post glucose 

stimulation comparing INS-1 exposed to leptin and control.84 Another study measured 

malate, citrate, and aspartate in INS-1 cells from 5 to 120 min following glucose 

stimulation75 and demonstrated increases in malate and citrate after as little as 5 min.  

Adenosine and guanine nucleotides were measured 15 s to 30 min post glucose 

stimulation in islets85 and ADP, ATP, GDP, GTP, and UTP were measured from 5 to 60 

min post glucose stimulation in islets.82 ATP/ADP ratio and glucose-6-phosphate were 

measured from 1 to 8 min following glucose stimulation of mouse islets.86 A time-course 

study from 0 to 8 min following glucose stimulation of islets was also used to 

demonstrate oscillations in ATP and citrate (up to 2-fold)87 although the study lacked 

replicate measurements and confirmatory findings have not been published. 

Clearly, measurement of the dose-response and temporal behavior of a more 

comprehensive portion of the β-cell metabolome concurrent with GSIS would prove 

beneficial in advancing our understanding of GSIS in β-cells and is a primary focus of 

this dissertation.   

Dissertation Overview 

The initial objectives of this research were to advance the field of metabolomics by 

developing an improved analytical method for LC-MS metabolite profiling and a sample 

preparation procedure amenable to rapid analysis of adherent mammalian cells such as 

INS-1.  In the second phase of this project, these improved techniques were applied to 

study GSIS in INS-1 832/13 cells and investigate both dose-response and temporal 

changes in metabolite concentrations concurrent with GSIS to provide new insights into 

metabolic mechanisms and test prevailing hypothesis of GSIS.   

Chapter 2 describes the development and performance of a hybrid AEX/HILIC-MS 

method for metabolite profiling well suited to the directed and undirected analysis of 

metabolites and cofactors implicated in β-cell metabolism.  Chapter 3 describes the 

comprehensive development of a rapid sampling method for adherent mammalian cells.  

These improved methods were employed in Chapter 4 to study metabolic pathways and 

evaluate prevailing hypothesis of GSIS through dose-response and time-resolved 
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experiments.  Alterations in metabolic pathways concurrent with decreased GSIS due to 

exposure to lipotoxic and glucotoxic culture conditions are demonstrated in Chapter 5. 
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CHAPTER 2                                                                                                     

Development of a Hybrid Anion Exchange/Hydrophilic Interaction Liquid 

Chromatographic Method for Metabolomic Analysis 

  
  

Introduction  

 HPLC-MS dominates metabolomic measurements due to its high sensitivity, 

specificity, and ease of multi-analyte quantification.1 HPLC-MS also offers advantages 

over GC-MS such as the ability to assay a wider range of analytes including high 

molecular weight and thermally labile species.   

Separation of metabolites from salts, buffers, and other metabolites present in a 

sample is necessary to achieve reproducible and sensitive quantification in HPLC-MS, 

primarily due to ionization suppression2-4 as discussed in Chapter 1.  Chromatographic 

separation is also important for metabolite identification by mass spectrometry since 

many metabolites have similar or identical molecular weights.  Moreover, structural 

similarities may also lead to identical collision induced dissociation fragments thereby 

diminishing the potential for MS-MS based separation.5 Selectivity is further diminished 

with common isotopic labeling experiments that substantially increase the mass range 

impacted by a given analyte though extended isotopic distribution patterns.  Hence, 

good chromatographic performance is vital to maximize the sensitivity and selectivity 

possible with mass spectrometry based analysis. 

 Adequate retention and separation of small polar metabolites is especially 

challenging.  Many metabolites of interest in central metabolism are hydrophilic sugars, 

sugar phosphates, carboxylic acids, and nucleotides that are poorly retained by 

conventional reversed phase approaches.  Separation of polar metabolites from 

suppressive salts and buffers common in biofluids and cell culture media is challenging 

since these species have similar chromatographic properties to metabolites and can be 

present at concentrations several orders of magnitude higher than analytes of interest.  

Furthermore, common metabolites have tricarboxylic acid and tri-phosphate 
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functionalities that participate in strong secondary interactions with metal impurities in 

silica stationary phases causing poor peak shape. 

A variety of chromatographic approaches have been developed for metabolomic 

analysis.  Several reverse phase methods have been proposed using C18 columns that 

incorporate polar embedded groups to protect against stationary phase collapse.  These 

methods are compatible with 100% aqueous mobile phases to provide enhanced 

retention of polar analytes.6-8  However, performance of this approach remains poor with 

inadequate retention and resolution of many metabolite classes such as sugars, sugar 

phosphates, and nucleotides.9 Also, peak broadening is problematic due to high levels of 

organic solvents commonly present in cellular extracts (e.g. band spreading at the 

column head with injection of strong solvent).  To improve retention, methods using 

volatile ion pairing agents such as tributyl amine have been developed.10-12 These 

methods have proven effective for the analysis of charged metabolites, although the 

pairing agent contaminates the HPLC system (tubing and degasser); therefore, HPLC 

equipment must be dedicated for use with these methods.13, 14 

Hydrophilic Interaction Liquid Chromatography (HILIC) has been increasingly 

used in the past decade for polar metabolite analysis.7-9, 12, 15-17  The HILIC mode of 

separation is based on analyte interaction with an adsorbed water layer on the surface of 

a polar stationary phase and offers excellent retention of polar molecules.  However, 

chromatographic efficiencies for these polar stationary phases are generally lower than 

conventional C18 phases.14 A novel hybrid HILIC/anion exchange method (HILIC/AEX) 

employing a cationic polar stationary phase was reported recently9 using a Luna propyl 

amine column and basic mobile phase (20 mM ammonium acetate, pH 9.45) allowing for 

weak anion exchange interaction in addition to the HILIC mechanism of retention. 

 In this study, we evaluated a polar embedded reverse phase column (Atlantis 

C18), and several HILIC columns (Halo HILIC, Luna HILIC, Diamond Hydride, and Luna 

NH2) for the analysis of metabolites important in the study of central energy metabolism 

such as those from glycolysis, the TCA cycle, amino acids, and related nucleotide 

cofactors.  The Luna NH2 column (HILIC/AEX method) was found to provide superior 

performance.  The impact of operating conditions such as temperature and ionic 

strength were evaluated for this column and conditions chosen to maximize sensitivity, 

reproducibility, and column lifetime.  We report a HILIC/AEX method using the Luna NH2 

column well-suited to the global metabolite profiling of cellular extracts.   



25 
 

Experimental 

 Materials.  All reagents were purchased from Sigma-Aldrich (St. Louis, MO) 

unless otherwise noted.  HPLC grade acetonitrile was purchased from Burdick & 

Jackson (Muskegon, MI).  Mass spectrometry grade formic acid, ammonium acetate, 

and ammonium hydroxide was used for all mobile phase preparation.  pH adjustment 

was performed without contact between the pH meter electrode and the bulk mobile 

phase to reduce contamination.   

 

Equipment.  Chromatographic separations were performed with an Agilent 

Technologies (Santa Clara, CA) 1200 HPLC system and Agilent LC/MSD-TOF.  HPLC 

columns studied in these experiments are listed in Table 2-1.   

 

Column Screen.  A set of key metabolites (Table 2-2) was assayed using five 

different silica based HPLC columns to assess chromatographic performance (Rs and k’) 

of each method.  Reverse phase, HILIC, and HILIC/AEX methods were tested using 

columns and conditions detailed in Table 2-3.  The operating parameters used for all 

experiments are detailed in Table 2-4.  A pH of 9.9 was chosen for the HILIC/AEX 

method based on the k' for GTP, the most strongly retained metabolite investigated.  

Mobile phase pH was increased from pH 9.5 (reported previously) to 9.9 to afford a k’ of 

~2 for GTP with 100% aqueous mobile phase (i.e., the strongest mobile phase).   

 

Method Optimization.  The effect of column temperature on the chromatographic 

performance (Rs and k’) of key metabolites was assessed at 15, 25, 30, 35, and 40 °C.  

The HPLC column was equilibrated for 30 min at each temperature prior to each 

injection.  The impact of ionic strength was also evaluated (concentration of pH 9.9 

NH4OAc in mobile phase B) on chromatographic performance of key metabolites at 5, 

10, 20, and 40 mM.  The HPLC column was equilibrated for 20 column volumes in each 

mobile phase prior to injection.   
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Table 2-1.  Columns and Mobile Phase for HPLC Metabolite Screen 

Manufacturer  Support 
Line 

Phase Dimensions  Mobile Phase  

Waters  Atlantis  C18 2.1 x 150 mm, 2.7 µm  0.1% formic acid pH 2.3 

Advance Material 
Technology 

Halo 
HILIC 

SiO2 2.1 x 150 mm, 3.5 µm 10 mM NH4OAc pH 6.8 

Phenomenex 
Luna 
HILIC 

diol 2.1 x 150 mm, 3 µm 10 mM NH4OAc pH 6.8 

Cogent 
Diamond 
Hydride 

SiH 2.1 x 150 mm, 4 µm 10 mM NH4OAc pH 6.8 

Phenomenex Luna NH2 propyl amine 2.1 x 150 mm, 3 µm  10 mM NH4OAc pH 9.9 

 

 

 

Table 2-2.  Metabolites Evaluated in Standard Mix 

Glycolysis   TCA Nucleotides + 
Cofactors 

Amino Acids 

glucose-6-phosphate citrate cAMP alanine 

fructose-6-phosphate isocitrate AMP arginine 

fructose-1,6-bisphosphate succinate ADP aspartic acid 

2-phosphoglycerate fumarate ATP cystine 

3-phosphoglycerate acetyl-CoA cGMP glutamic acid 

phosphoenolpyruvate succinyl-CoA GMP glycine 

lactate  GDP histidine 

  GTP isoleucine 

  NAD+ lysine 

  NADH methionine 

  FAD phenylalananine 

   proline 

   serine 

   threonine 

   tyrosine 

   valine 
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Table 2-3.  Chromatographic Conditions for Column Screen 

Parameter  Value 

HPLC  Agilent 1200SL 

column as listed in Table 2-1 

column temperature 30 °C 

flow rate 210 µL/min 

injection volume 3 µL 

sample 20 µM standards as listed in Table 2-2 

mobile phase A acetonitrile 

mobile phase B as listed in Table 2-1 

gradient program 10%B to 90%B over 30 min, hold 5 min. 

  

 

Table 2-4.  Chromatographic Conditions for Temperature and Ionic Strength Studies 

Parameter  Value 

HPLC  Agilent 1200SL 

column Luna NH2, 2.1 x 150 mm, 3 µm 

column temperature 25 °C (unless otherwise specified) 

flow rate 250 µL/min 

injection volume 2 µL 

sample 20 µM standards as listed in Table 2-2 

mobile phase A acetonitrile 

mobile phase B 20 mM NH4OAc pH 9.9 (unless otherwise specified) 

gradient program 45%B (hold 2 min) to 65%B over 0 min (hold 0 min) to 75%B over 15 
min (hold 0 min) to 100%B over 0 min (hold 5 min) 

 

Table 2-5.  Mass Spectrometer Conditions  

Parameter  Value 

mass spectrometer Agilent LC/MSD-TOF 

ion source dual ESI (negative mode) 

gas temperature 350 °C 

drying gas flow 10 L/min 

nebulizer  20 psig 

vcap 3500 V 

fragmentor 150 V 

skimmer 65 V 

acquisition rate 1 spectra/s 

mass range 50-1200 m/z 

data storage centroid 

reference mass correction on 
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Results and Discussion 

 Column Screen.  Metabolites from glycolysis, the TCA cycle, nucleotide 

cofactors, and amino acids (Table 2-2) were screened using columns and mobile phases 

that encompassed reversed phase, HILIC, and AEX/HILIC approaches (Table 2-1).  

Representative chromatograms for amino acids (leucine/isoleucine), sugar phosphates 

(glucose-6-phosphate), organic acids (citrate + isocitrate), and nucleotides (cAMP, AMP, 

ADP) are shown in Figure 2-1.  The reverse phase method was not effective in resolving 

or retaining the analytes of interest.  k' values ranged from 0.44 to 0.56 and no resolution 

was observed between leucine and isoleucine or AMP and ADP.  Improved retention of 

polar analytes using this stationary phase (Waters Atlantis) and other similar columns 

has been observed using 100% aqueous mobile phase6, 9 as opposed to the 90% 

aqueous starting condition used here, although the issue of poor retention of many polar 

analytes such as glucose-6-phosphate and ATP cannot be overcome.9 Hence, reverse 

phase was set aside in favor of more promising methods. 

 The HILIC columns investigated demonstrated improved retention with a 

minimum k' of 1.0 for cAMP by the Diamond Hydride column.  Halo HILIC, Luna HILIC, 

and Diamond Hydride columns provided adequate retention but poor peak shape and 

resolution for many metabolites.  The Halo HILIC column inadequately resolved leucine 

and isoleucine (Rs = 0.48) and only broad baseline disturbances were observed at the 

m/z corresponding to citrate and isocitrate.  A small broad peak for AMP was observed 

and ADP was not detected.  Luna HILIC performed similarly with leucine and isoleucine 

resolved slightly (Rs = 0.71) and no defined peak detected for citrate or isocitrate.  AMP 

peak shape was improved relative to Halo HILIC, although it was not baseline resolved 

from cAMP (Rs = 0.85).  Surprisingly, a peak was not detected for glucose-6-phosphate 

with this diol phase, presumably due to a broad elution caused by strong secondary 

stationary phase interaction.  The Diamond Hydride column retained leucine and 

isoleucine with a k' of 4.2 although no resolution was achieved.  Like other HILIC 

columns, no peaks for citrate or isocitrate were detected.  cAMP and AMP were retained 

and resolved, however ADP eluted as a broad peak with low intensity.  The Luna NH2 

performed remarkably compared to the other columns investigated.  Leucine and 

isoleucine were well retained (k' = 4.0) and resolved (Rs = 1.5).  Citrate and isocitrate 

were retained well with Rs 1.0.  cAMP, AMP, and ADP showed excellent retention and 

resolution.  All peaks for these representative compounds were narrow and symmetrical.   



29 
 

These findings are in agreement with a study that reported better chromatography 

for a similar method compared to Waters HILIC (SiO2), Luna CN (cyanopropyl), and TSK 

Gel Amide 80 (carbamoyl).9 Since the Luna NH2 exhibited superior performance to all 

other methods investigated, this column was chosen for further optimization and method 

development.   
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Figure 2-1.  LC-MS Chromatograms of Select Metabolites by Reverse Phase, HILIC, 
and HILIC/AEX Methods. 

Columns studied were Atlantis C18 with acidic pH (a), Halo SiO2 with neutral pH (b), Luna Diol 
with neutral pH (c), Microsolv Diamond Hydride with neutral pH (e), and Luna NH2 with basic pH 
(e).  Peak labels are leucine (1), isoleucine (2), glucose-6-phosphate (3), citrate (4), isocitrate (5), 
cAMP (6), AMP (7), and ADP (8).  Traces are theoretical [M-H]- ± 70 ppm.  HPLC conditions are 
listed in Table 2-3. 
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Column Temperature.  The impact of temperature on retention and selectivity 

was assessed from 15 to 40 °C for the standard set of metabolites (Figure 2-2).  The 

retention time for all metabolites increased with temperature which is unexpected since 

elevated temperatures are associated with generally faster elution.18 The increase in 

retention observed here is possibly due to a change in pKa of the propyl amine 

stationary phase with temperature.  Temperature impacted selectivity as the k’ for 

metabolites such as fructose-bisphosphate changed from 7.3 to 11.2 over the 

temperature interval studied whereas the k' for GTP changed only from 12.7 to 13.6.  

This variability demonstrates that temperature can be valuable parameter in adjusting 

selectivity with the HILIC/AEX method.  Peak shape did not change significantly with 

temperature.  Although these variations were observed, we ultimately chose a moderate 

temperature of 25 °C to minimize potential degradation of the silica based stationary 

phase which may be accelerated at elevated temperatures, an important consideration 

when also operating at elevated pH.18  

 

Ionic Strength.  Ionic strength strongly influences retention in ion exchange 

chromatography through competition with analytes for charged groups on the stationary 

phase.  We measured the influence of mobile phase ionic strength on k’ from 5 to 20 mM 

NH4OAc at pH 9.9 (Figure 2-3).  As predicted, we observed decreased retention for all 

metabolites with increasing ionic strength.  However, a trend of decreasing sensitivity 

with ionic strength was also observed (Figure 2-4), presumably due to ionization 

suppression.  Selectivity and peak shape were minimally impacted.  Therefore 5 mM 

NH4OAc was chosen as the buffer concentration for the final method. 
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Figure 2-2.  k' versus Temperature for Select Metabolites.   

HPLC conditions as listed in Table 2-4, Mass spectrometer settings as listed in Table 2-5. 
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Figure 2-3.  Impact of Ionic Strength on Retention Factor (k').   

Retention factor versus concentration pH 9.9 NH4OAc in mobile phase B.  HPLC conditions as 
listed in Table 2-4, Mass spectrometer settings as listed in Table 2-5. 
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Figure 2-4.  Impact of Ionic Strength on Sensitivity.   

Concentration NH4OAc in mobile phase B versus peak height.  HPLC conditions are listed in 
Table 2-3. 

 

Final Method.  We adopted a linear gradient (20 to 100% B over 20 min) using a 

5 mM NH4OAc buffer at pH 9.9 and column temperature of 25 °C for routine analysis.  

An example chromatogram of an INS-1 cellular extract is show in Figure 2-5 and 

demonstrates adequate sensitivity of many key metabolites of glycolysis, the TCA cycle 

and related cofactors in a biological sample.  Peak shape for all metabolites quantified is 

adequate despite the high sample loading.   

We evaluated a 3-step gradient method employing a shallow segment in which %B 

(strong solvent) changed at a rate of 0.67 %/min as opposed to 2.7 %/min to attempt 

improvement of resolution.  Resolution for many metabolites is improved (Figure 2-6).  

Resolution of 1.1 was achieved for 2-phosphoglycerate and 3-phosphoglycerate and 

resolution of citrate and isocitrate was 1.0.  Little selectivity for the TCA cycle 

dicarboxylic acids succinate, fumarate, and malate was observed, although these 

structurally similar compounds are resolved by mass.  While providing enhanced 

resolution, retention time reproducibility was poor with this approach owing presumably 

to instrument variability in delivering the gradient and changes in column characteristics 

with use.  Diminished performance was also observed when analyzing cellular extracts 

as opposed to idealized standards.  For example, resolution between the critical pairs 
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citrate / isocitrate and 2-phosphoglycerate / 3-phosphoglycerate diminished with injection 

of complex sample matrix (e.g. lipids, proteins, salts, buffers) and higher sample loads 

necessary to achieve detection of lower level metabolites such as NADPH.  We 

therefore adopted the linear gradient (above) for routine analysis. 

 

Figure 2-5.  HILIC-AEX Chromatograms of an INS-1 Extract.   

HPLC Conditions are: Column: Luna NH2, 2.1 x 150 mm, 3 µm; flow: 200 µL/min; temperature: 
25 °C; mobile phase A: acetonitrile, mobile phase B: 5 mM NH4OAc pH 9.9.  Gradient: 20% B to 
100% B over 20 min, hold 5 min at 300 µL/min.  Injection volume: 80 µL. 
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Figure 2-6.  HILIC-AEX Chromatograms of Standard Mixture.   

HPLC Conditions are: Column: Luna NH2, 2.1 x 150 mm, 3 µm; flow: 250 µL/min; temperature: 
25 °C; mobile phase A: acetonitrile, mobile phase B: 5 mM NH4OAc pH 9.9.  Gradient: 45% B, 
hold 2 min, to 70% B over 0.1 min, 0 hold, to 80% B over 14.9 min, to 100% B over 0.1 min, hold 
5 min. 

 

Long Term Assessment.  This method has been used extensively for screening 

cellular extracts and has performed adequately.  The most significant issues with this 

method include poor run-to-run retention time reproducibility and decreased column 

lifetime (e.g. degradation in peak shape and decreased retention) relative to reverse 

phase columns, presumably due to the high pH used.  The inability of this method to 

chromatograph the key energy metabolites oxaloacetate and pyruvate (presumably due 

to strong stationary phase interaction with alpha-keto acid groups) is also an issue.  

Regardless, we have found the overall performance of this approach useful to generate 

unique insights into cellular metabolism.  We have used this method to quantify ~90 

metabolites in INS-1 cells on a directed basis and hundreds of features on an undirected 

basis as demonstrated in Chapters 3 and 4.   
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Conclusions 

We developed a HILIC/AEX method that provides excellent chromatographic 

performance for the metabolomic analysis of polar metabolites relevant to energy 

metabolism.  This method uses a Luna propyl amine stationary phase at elevated pH 

that affords better chromatographic performance (e.g. retention and peak shape) than 

other reverse phase and HILIC columns often used in metabolite analysis.  The impact 

of column temperature and mobile phase ionic strength on chromatographic 

performance was evaluated and conditions selected to provide enhanced sensitivity and 

column lifetime.  The performance of the method was demonstrated through adequate 

detection of many metabolites from glycolysis, the TCA cycle, and related cofactors in 

INS-1 cellular extracts.  Potential improvements to this method could be realized through 

application of recent advances in stationary phase chemistry.  Ideally, the 

commercialization of a propyl amine stationary phase on an advanced hybrid silica (e.g. 

Waters ethylene bridged hybrid) with better high pH stability and sub 2 µm particles 

could provide improved reproducibility and speed though an increase in column stability 

and lowered plate height.   
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CHAPTER 3                                                                                                                    

Sample Preparation for Adherent Mammalian Cell Metabolomics: Reducing Time 

and Increasing Sensitivity 

  
 
 

Introduction 

Metabolomic analysis of cells and tissues has emerged as an important technique 

for studying cellular biochemistry.  With the advent of powerful high performance liquid 

chromatography - mass spectrometry (HPLC-MS) and gas chromatography - mass 

spectrometry (GC-MS) methods, large numbers of metabolites can be quantified to 

provide detailed insight into the metabolic status of cells.  Despite the power of these 

methods, sample preparation is critical to achieving meaningful results.  In these studies, 

we sought to develop a novel sample preparation procedure for adherent mammalian 

cells that would be simpler and faster than conventional methods.  We chose INS-1 

832/13 cells1,2 as a model cell line.  This clone has proven to be a useful model for the 

study of insulin secretion with many properties in common with mammalian β-cells 

including physiological response to glucose.  Accurate measurement of metabolites and 

their changes during glucose-stimulated insulin secretion is expected to add to our 

understanding of insulin secretion in normal and pathological states.   

Many studies on sample preparation for metabolomic analysis of yeast and bacteria 

have been reported (see recent review3).  Because of substantial differences in 

eukaryotic and prokaryotic cells, the findings from these investigations may not be fully 

applicable to adherent mammalian cells.  While minimal media used to culture 

prokaryotic cells and mammalian culture media both contain interfering anions such as 

Cl-, SO4
-, and PO4

-, mammalian culture media also contains up to millimolar 

concentrations of amino acids, Good's buffers, organic acids, and complex biological 

mixtures such as fetal bovine serum.  Unless these components are removed, they can 

cause substantial electrospray ionization suppression and contaminate the intracellular 

metabolite pool.  These issues are compounded with adherent mammalian cells since 
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they cannot be concentrated by centrifugation or filtration prior to quenching without 

trypsination or physical removal, which has been demonstrated to significantly alter the 

metabolome.4 

Limited work has focused on development of sample preparation techniques for 

metabolomic analysis of adherent mammalian cells.  One study employed rigorous 

experimental design to maximize nucleotide recovery, energy charge, fructose 1,6 

bisphosphate (FBP) content, and minimize residual protein/DNA.5  While valuable, the 

method may not be applicable to global metabolomic studies as it employs a biphasic 

extraction solvent that may remove non-polar metabolites from the assayed extract and 

employs elevated temperatures, which may degrade thermally labile metabolites such as 

nicotinamide adenine dinucleotide (NADH), nicotinamide adenine dinucleotide 

phosphate  (NADPH)6, and succinyl-CoA (sCoA).7  

Although rigorous studies of sample preparation for adherent mammalian cells are 

rare, many metabolomic studies of such cells have been described (see Table 3-1).  

Extraction approaches vary widely in volume of solvent (e.g., 1 to 26 mL/10 cm plate of 

cells), number of repeated extractions (1 to 3), and duration of incubation per cycle of 

extraction (as long as 60 min).  A variety of rinsing, quenching, heating, and sample 

concentration procedures are also used.  Without comparative studies, it is difficult to 

know how performance, e.g., sample stability and metabolite recovery, is impacted by 

different procedures or if a method could be improved, e.g., by simplification or better 

removal of interferences. 

To better understand how different sample preparation techniques affect the 

metabolome we measured the quantitative effect of novel and commonly used sample 

preparation procedures on recovery and stability of 27 known metabolites associated 

with glycolysis and the tricarboxylic acid (TCA) cycle as well as ~700 unidentified 

features using an undirected approach.  Our initial method incorporated a water rinse to 

improve sensitivity and remove contaminants, a single rapid extraction with cold organic 

solvent to minimize sample preparation time, and a novel liquid nitrogen (LN2) quench 

step to rapidly halt metabolism and allow for storage of unextracted samples.  We then 

evaluated the impact of additional and/or alternate sample preparation steps on 

metabolite recovery and stability.   

Based on this study, we developed a procedure that removes interfering media 

components from the cell surface, quenches metabolism, extracts a wide range of 

metabolites, and generates stable extracts with sufficient concentration to detect many 
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metabolites by anion exchange / hydrophilic interaction liquid chromatography - 

electrospray ionization- mass spectrometry (AEX/HILIC-ESI-MS).  This method requires 

as little as 5 min, is convenient, and provides good sensitivity for a variety of metabolites.   

 

Table 3-1.  Summary of sample preparation procedures reported for metabolomic 
analysis of cultured adherent mammalian cells. 

Cell Type Analytical 
Technique 

Rinse Quench Extraction Dry Ref 

Human rhabdo-
myosarcoma 

NMR trypsination/ 
3X 0 °C 
PBS  

LN2 (pelleted cells) 10% ice cold TCA in H2O yes 8 

Human breast 
cancer 

NMR 2X ice cold 
PBS 

MeOH MeOH/ CHCl3/ H2O 
biphase 

yes 4 

Human 
fibroblasts 

LC/MS No -75 °C 80% MeOH -75 °C 80% MeOH yes 9 

Generic  LC/MS No -75 °C 80% MeOH 4 °C 80% MeOH optional 10 

Hepatic  GC/MS and 
LC/MS 

No 150 °C Air boiling H2O yes 11 

INS-1 GC/MS 1x MES,  
1x H2O 

-75 °C MeOH 70 °C heating followed by 
CHCl3/ H2O biphase 

yes 12 

INS-1 GC/MS 2X ice cold 
PBS 

-80 °C 80% MeOH 82% MeOH yes 13 

Canine kidney LC/UV and 
conductivity 

1x PBS 4 °C MeOH / CHCl3 2x buffered MeOH / 
CHCl3/ H2O biphase and 
90 °C heating  

yes 5 

CHO enzyme and 
GC/MS 

60% MeOH -40 °C 60% MeOH 100% MeOH yes 14 

HeLa LC/MS 2x NH4OAc 80% MeOH 80% MeOH no 15 

 

 

Materials and Methods 

Materials.  All chemicals were purchased form Sigma-Aldrich (St. Louis, MO) 

unless otherwise noted.  HPLC grade acetonitrile was purchased from Burdick & 

Jackson (Muskegon, MI).  RPMI media, fetal bovine serum, 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), and penicillin-streptomycin were purchased 

from Invitrogen Corp. (Carlsbad, CA).  Cells lifters and 10 cm polystyrene non-pyrogenic 

culture dishes were purchased from Corning (Lowell, MA). 

 

Cell Culture.  Culture media was prepared with RPMI-1640 (+L-glutamine) 

supplemented with 10% fetal bovine serum (FBS), 1 mM pyruvate, 10 mM HEPES, 

50 µM 2-beta mercaptoethanol, and 1 unit penicillin-streptomycin.  KRHB (Krebs-Ringer-
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HEPES buffer) was prepared containing 20 mM HEPES, 118 mM NaCl, 5.4 mM KCl, 2.4 

mM CaCl, 1.2 mM MgSO4, and 1.2 mM KH2PO4 and adjusted to pH 7.4 with HCl.  INS-1 

cells were grown to confluence (~4 x 107 cells) in 10 cm polystyrene dishes at 37 °C and 

5% CO2.  RPMI media was replaced with KRHB containing 10 mM glucose 30 min prior 

to quench to generate metabolite changes comparable to those expected from 

stimulation experiments.  (Stimulus-secretion coupling studies of β-cells are generally 

carried out in KRHB instead of culture media to measure the effect of specific stimulants 

without other potential fuels and unknown compounds from the media impacting results). 

 

HPLC-MS.  Chromatographic separations were performed with an Agilent 

Technologies (Santa Clara, CA) 1200 HPLC system equipped with a Phenomenex 

(Torrance, CA) Luna NH2 2.0 x 150 mm, 3 µm HPLC column equipped with a 2.0 x 

4 mm guard column using the following conditions: mobile phase A was 100% 

acetonitrile (ACN); mobile phase B was 100% 5 mM ammonium acetate pH 9.9 with 

ammonium hydroxide; gradient program was (time, %B, flow rate) 0 min, 20%, 200 

µL/min, 20 min, 100%, 200 µL/min, 20.1 min, 100%, 300 µL/min; column temperature 

was 25 °C; injection volume was 80 µL, and auto sampler temperature was 4 °C.  These 

chromatographic conditions are similar to those reported previously16, 17 and provide for 

a weak AEX/HILIC separation afforded by the polar and partially deprotonated propyl-

amine stationary phase.  A representative INS-1 extract chromatogram with additional 

method details is provided in Figure 2-5.  Detection was performed on an Agilent 

Technologies LC/MSD TOF using a dual ESI source in negative-ion mode.  Instrument 

parameters were as follows: gas temp: 350 °C, drying gas: 10 L/min, nebulizer: 20 psig, 

VCap 3500 V, fragmentor: 150 V, skimmer: 65 V, acquisition rate: 1 spectra/s, mass 

range: 50-1200 m/z, data storage: centroid with 20 count threshold, reference spray: on. 

 

Nominal Preparation, Quenching, Extraction, and Assay Procedure.  Unless 

otherwise stated, metabolism was quenched and metabolites extracted from INS-1 cells 

using the following procedure (see also illustration in Figure 3-1).  Cells were rapidly 

rinsed by gently dispensing ~10 mL of 37 °C deionized water to the cell surface.  The 

plate was rocked briefly (~2 s), aspirated, and quenched by directly adding ~15 mL of 

LN2 to the dish.  Approximately 5 s passed between addition of water and quenching by 

addition of LN2.  The plates were briefly stored on dry ice, transferred to a -80 °C freezer, 

and extracted and assayed within 7 d. 



42 
 

For extraction, plates were immediately transferred to a 4 °C cold room and 1.5 mL 

of ice cold 90% 9:1 MeOH: CHCl3 (MC) was immediately added to each plate and cells 

scraped/suspended with a cell lifter.  The extraction solvent also contained 13C6-fructose-

6-phosphate (F6P) (10 µM), 13C1-phosphoenolpyruvate (PEP) (10 µM), 13C6-citrate (CIT) 

(10 µM), 13C4-succinate (SUC) (10 µM), 13C10
15N5-adenosine monophosphate (AMP) 

(2 µM), 13C10-adenosine triphosphate (ATP) (20 µM), and 13C10-guanosine triphosphate 

(GTP) (10 µM) as internal standards.  Extracts were transferred to 1.5 mL 

microcentrifuge tubes and pelleted at 4 °C for 3 min at 16,100 g.  Supernatants were 

transferred to auto sampler vials and assayed.  Using this rapid procedure, a single 

sample can be quenched, extracted, pelleted, and ready for injection in ~5 min.  All 

experiments were performed in triplicate.   

 

Solvent Screen.  INS-1 cells were extracted with 0.7 mL of 100% ethanol (EtOH), 

ACN, MeOH, and 9:1 MC yielding extracts containing ~70% organic (based on an 

estimated 300 µL residual water/plate).  Samples were assayed within 10 min of 

extraction solvent and reinjected after 8 h of storage at 4°C.   

 

Optimization of 9:1 MC to Water Ratio for Extraction.  INS-1 cells were extracted 

using the nominal procedure using 1.7 mL of 100:0, 94:6, 88:12, and 82:18 9:1 

MC:water yielding extracts containing approximately 85%, 80%, 75%, and 70% 9:1 MC 

based on 300 µL residual water per confluent 10 cm plate. 

 

Determination of Soluble Protein Content.  An aqueous cellular suspension was 

generated by thawing eight quenched 10 cm plates of INS-1 cells, scraping the cells 

from the plate surface (without solvent addition) and combining all material into a 

microcentrifuge tube.  The pooled material was sonicated for 10 min in an ice bath and 

10 µL of the cellular suspension was spiked per 90 µL of extraction solvent in 

microcentrifuge tubes.  Extraction solvent contained a combination of water with either 

9:1 MC or methanol in ratios yielding the designated % organic upon addition of the 

cellular suspension.  Samples were centrifuged for 10 min at 16,100 g after which a 100 

to 500 µL aliquot of the supernatant (dependent on anticipated protein content) was 

transferred to a new microcentrifgue tube and evaporated to dryness.  Samples were 

reconstituted in 110-1000 µL of pH 8.0 50 mM tris and sonicated for 10 min in an ice 

bath.  100 µL aliquots of each solution were then added to 1 mL of Bradford Reagent 
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(Coomassie Plus, Thermo Scientific) and UV absorption measured at 595 nm in a 1 cm 

path length disposable cuvette.  Sample were quantified against standards from 1 to 

25 µg/mL bovine serum albumin (BSA) fit to a second order polynomial. 

 

 

 

Figure 3-1.  Diagram of Metabolite Extraction Procedure.   

Note that the final extraction solvent composition is ~75:25 9:1 MC: water after combining 1.5 mL 
of 90% 9:1 MC with residual ~300 µL water adhered to the dish and cells.  Experimental buffer 
was KRHB with 0.5 mM and/or 10 mM glucose. 
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Evaluation of Extraction Conditions.  To evaluate extraction incubation time, 

plates of INS-1 cells were quenched using the nominal procedure to the point of 

extraction solvent addition.  Prior to pelleting, three 400 µL aliquots of suspension were 

transferred to individual microcentrifuge tubes and stored on ice.  The suspensions were 

pelleted after 1, 20, or 40 min of incubation and supernatants assayed. 

To evaluate the use of multiple extraction cycles, INS-1 cells were extracted with 

1.3 mL of 93:7 9:1 MC: water yielding a 75:25 9:1 MC: water extract.  For each replicate, 

three 650 µL aliquots of suspension were transferred to three individual microcentrifuge 

tubes and pelleted.  The supernatants were transferred to auto sampler vials and the 

pellets subjected to 0, 1, or 2 additional rounds of extraction with 50 µL of 75:25 9:1 

MC:water.  A pipette tip was used to break up and resuspended the pellet following each 

round of extraction.  The extracts from subsequent extraction cycles were combined with 

the previous.  To compensate for additional volume introduced by multiple extraction 

cycles, 100 µL or 50 µL of extraction solvent was added to the supernatant of 1x or 2x 

extracted samples, respectively.   

 

Short Term Sample Stability.  INS-1 samples were prepared using the nominal 

procedure and each extract split into 3 aliquots and stored at 4 °C for 0 h, 4 h, and 8 h.  

Following the specified hold period, samples were transferred to LN2 for storage.  

Samples were thawed and injected in a single analytical run to minimize the impact of 

system drift.  Additional INS-1 cells were prepared with 1.7 mL of 59:41 methanol:water 

to yield 50 % methanol solvent extracts.  50 % methanol extracts were injected within 

7 min of solvent addition, and reinjected following 2 h of 4 °C storage. 

 

Long Term Sample Stability.  One set of INS-1 plates was extracted immediately 

after quenching.  Each replicate was split into 2 aliquots and stored at either -80 °C or in 

LN2 (T0 control).  A second set of plates was stored without extraction at -80 °C.  Stored 

plates were extracted after 7 d and injected in a single run.  For extracts stored in LN2 or 

at -80 °C prior to analysis, the extracts were sonicated 3 min in an ice bath, centrifuged 3 

min at 16,100 g to pellet any precipitate, and transferred to auto sampler vials. 

 

Impact of Water Rinsing.  To assess suppression, cells were rinsed with either 

10 mL 37 °C Milli-Q water or 10 mL 37 °C KRHB prior to quenching.  To assess rinsing 

impact on the metabolic profile, control cells were rinsed twice with 10 mL KRHB and 
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experimental cells were rinsed once with 10 mL 37 °C Milli-Q water (either rapidly or with 

30 s incubation) and re-rinsed with an additional 10 mL KRHB to achieve an identical 

final residue matrix. 

 

Evaluation of Quenching Methods.  Following aspiration of the water rinse 

solution, metabolism was quenched with ~15 mL LN2, 1.5 mL of -75 °C 90% 9:1 MC, or 

1.5 mL ice cold 90% 9:1 MC.  Scraping and pelleting was conducted immediately 

following quench per the nominal method. 

 

Comparison of Metabolite Changes with Glucose Stimulation Using Different 

Quenching and Preparation Methods.  INS-1 cells were grown in 6 cm plates and 

preincubated in 3 mL KRHB containing 0.5 mM glucose for 30 min.  Cells were then 

quenched (control) or stimulated with 95 µL of 1 M glucose (final concentration 10 mM), 

incubated 20 min, then quenched.  Quenching and extraction were performed using our 

rapid method and two established methods for adherent mammalian cells.  The first, 

80% MeOH, involves no rinse, -80 °C 8:2 MeOH:H2O quench, 3 extraction cycles, and 

drying/reconstitution of the sample.18 The second, B-MTC, involves PBS rinse, 4 °C 2:1 

MeOH:CHCl3 quench, 2 biphasic extraction cycles with 1:1 MeOH:2.8 mM tricine and 

CHCl3, heating at 90 °C for 4 minutes, and drying/reconstitution of the sample.5 All 

volumes were scaled accordingly to 6 cm plate size.  Dried samples were reconstituted 

in 1:1 MeOH:H2O for compatibility with the HILIC method. 

 

Residual Water in INS-1 Cell Plates.  Plates of INS-1 cells quenched and stored at 

-80 °C were thawed, scraped, and the resulting suspension transferred to individual 

microcentrifuge tubes containing a granule of trichloroacetic acid.  The samples were 

sonicated in an ice bath for 10 min, centrifuged to pellet debris, and aqueous volume 

measured.  The average volume was 290 µL plus an estimated 10 µL of residual water 

remaining in the plate yielding ~300 µL residual water per plate. 

 

Data Processing and Statistics.  Compounds were identified based on retention 

time and m/z match to injections of authentic standards.  Quantification was performed 

using Agilent Technologies MassHunter Quantitative software.  Peak areas were 

measured from extracted ion chromatograms of [M-H]- metabolite ions with ± 70 ppm 

detection windows centered on the theoretical mass.  [M-2H]2- ions were used for 
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acetyl-CoA (aCoA) and sCoA to improve sensitivity.  Peak areas from internal standards 

were measured using an identical procedure; however, values were only used to verify 

instrument stability and not used in endogenous metabolite quantification.  Undirected 

data processing was performed using Agilent Technologies MassHunter Qualitative 

software for peak picking and MassProfiler Professional for data alignment, statistical 

analysis, and visualization. 

Data are expressed as the mean ± standard error of the mean (SEM).  Statistical 

significance was determined using a non-corrected two-tailed Student's t test, unpaired 

assuming equal variance.  A p-value of < 0.05 was considered significant. 

 

Results and Discussion 

Solvent Screen.  Initial experiments evaluated EtOH, ACN, MeOH, and 9:1 MC (all 

70:30 organic:H2O) for their ability to extract and stabilize metabolites.  All samples were 

injected within 10 min of extraction solvent addition to minimize metabolite peak area 

variability due to potential extract instability.  The following compounds were measured 

in the extracts:  Glucose-6-phosphate + fructose-6-phospate (G6P+F6P), FBP, 2-

phosphoglycerate + 3-phosphoglycerate (2PG+3PG), PEP, aCoA, citrate + isocitrate 

(CIT+ICIT), α-ketoglutarate (AKG), sCoA, SUC, fumarate (FUM), malate (MAL), AMP, 

adenosine diphosphate (ADP), ATP, guanosine mono and diphosphate (GMP and 

GDP), GTP, flavin adenine dinucleotide (FAD), NAD+, NADH, NADP+, NADPH, Asp, and 

Glu.  The peak area for each metabolite relative to 9:1 MC is shown in Figure 3-2a.  

Metabolite recoveries with MeOH and 9:1 MC were similar and the highest for nearly all 

analytes.  In contrast to most metabolites, NADP+ showed substantially higher recovery 

with ACN.  These results are consistent with most metabolite extraction studies which 

find methanolic solutions to be suitable extraction solvents.   
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Figure 3-2.  Recovery and Stability (4 °C, 8 h) for Metabolites Extracted from INS-1 Cells 
Using Various Solvents at 70:30 Solvent: Water Ratio in The Final Extract.   

Samples injected within 10 min of extraction solvent addition.  (a) Metabolite peak area ratio in 
specified solvent versus 9:1 MC.  (b) Log 2 of metabolite peak area ratio after 8 h of 4 °C storage 
versus initial injection.  ACN (acetonitrile), EtOH (ethanol), MeOH (methanol), 9:1 MC (9:1 MeOH: 
CHCl3).  Error bars represent 1 SEM, n = 3. 



48 
 

Extract Stability.  Metabolomic studies often require the analysis of many samples 

prepared simultaneously to reduce variability and improve work flow efficiency.  

Preparing multiple samples at once can lead to storage times of several hours prior to 

injection because LC-MS analysis may require 10-60 min per sample; therefore, 

metabolite stability is a critical parameter.  Metabolite instability can be caused by 

inherent chemical liability, enzymatic action3, 16, and degradation of macromolecules to 

release “metabolites”.19  In this regard, metabolite concentrations may either increase or 

decrease depending on the dominant effects. 

To evaluate the impact of organic solvent on stability, samples were reanalyzed 

after 8 h at 4 °°°°C (mimicking typical auto sampler storage) and metabolite peak areas 

were compared to initial values obtained following immediate injection (Figure 3-2b).  

Stability of peak areas for metabolites such as G6P+F6P, FBP, CIT+ICIT, SUC, FUM, 

MAL, ATP, GTP, NAD, Asp, and Glu were impacted minimally by organic solvent (areas 

between 96 to 120% of initial values), whereas 2PG+3PG, PEP, AKG, AMP, ADP, GMP, 

GDP, FAD, NADH, NADP+, and NADPH showed substantial variability in peak area (20 

to 220% of initial).   

Further study of the nucleotides revealed that much of the instability was due to 

enzymatic activity (data not shown), in agreement with other reports.20-22  This finding 

highlights a disadvantage of cold aqueous-organic mixtures as extraction solvents; they 

fail to achieve complete enzyme deactivation.  Reports have shown that brief heating 

ameliorates this effect.3, 5  An advantage of the 75% 9:1 MC mix and cold sample 

storage used here is low enzymatic activity without risking loss of labile metabolites by 

heating. 

Overall, 9:1 MC produced the most stable extracts of the solvents studied; therefore, 

further work was performed with this solvent.  The ratio of 9:1 MC to water was 

investigated and 75% 9:1 MC was found to provide the best balance between polar 

metabolite recovery and soluble protein removal.  We also found that additional 

extraction cycles and longer extraction incubation time did not improve recovery of a 

broad range analytes compared to a single cycle ~1 min extraction with 9:1 MC (see 

Figure 3-4).  Stability of INS-1 extracts containing 75% 9:1 MC in the final extract (% 

water adjusted for residual water content of the plate) was comparable to that shown in 

Figure 3-2 b (see Figure 3-8).  Metabolite extracts are stable when stored at -80 ºC for 

7 d with less than 25% decrease in peak area over that period (see Figure 3-9). 
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Optimization of Ratio of 9:1 MC to Water.  To evaluate the impact of organic-

aqueous solvent ratio on metabolite recovery, INS-1 cells were extracted with 70%, 

75%, 80%, and 85% 9:1 MC and metabolite peak areas measured (Figure 3-3a).  The 

recovery of most components was unaffected by the ratio of 9:1 MC to water in the 

extract with the exception of sugar phosphates, di-nucleotides, and tri-nucleotides.  

Recovery for FBP, 2PG+3PG, PEP, ADP, and NADP+ increased 1.2- 1.9 fold when 

decreasing 9:1 MC from 85% to 75% but substantially less (1.02- 1.08 fold) from 75% to 

70% 9:1 MC.  ATP, GDP, and GTP increased 2.0 fold, 2.7 fold, and 3.8 fold, 

respectively, when decreasing 9:1 MC from 85% to 75% with additional increases at 

70% 9:1 MC of 1.2-fold, 1.2-fold, and 1.4-fold.  This increased recovery of nucleotides 

and FBP with increasing polarity of the extraction solvent is consistent with reports from 

the study of MDCK cells22 and E.  coli for CTP and UTP in samples extracted with 80 or 

100% methanol although, lower recoveries were observed in 50% methanol and 

attributed to degradation.20 

While decreasing the percentage of 9:1 MC in the extraction solvent increases 

recovery of many polar metabolites, dissolved protein content increases (Figure 3-3b).  

Such increases in protein content may have deleterious effects on chromatographic 

performance as well as extract stability (because of residual enzymatic activity).  

Because the increase in recovery of ATP, GDP, and GTP with 70% as opposed to 75% 

9:1 MC is relatively small compared to the 1.9-fold increase in dissolved protein (Figure 

3-3), 75% 9:1 MC was chosen as the final extraction solvent.  A representative 

chromatogram of an INS-1 extract using the finalized extraction solvent is shown in 

Figure 2-5). 
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Figure 3-3.  Metabolite Peak Areas and Soluble Protein Content for INS-1 Extracts with 
Varying Ratio of 9:1 MC to Water.   

(a) Peak area ratio for metabolites in INS-1 cells extracted with 70% to 85% 9:1 MC versus 75% 
9:1 MC.  (b) Soluble protein content in methanol (MeOH) and 9:1 methanol: chloroform (9:1 MC) 
spiked with INS-1 cellular suspensions at various solvent: water ratios.  Error bars represent 1 
SEM, n = 3. 

 

Extraction.  A single rapid extraction cycle is desirable for minimizing systematic 

error, improving labile metabolite recovery, and increasing throughput; however, longer 

extraction times (20-60 min) and multiple rounds of extraction (1-3) are often proposed, 

presumably to improve metabolite recovery.  To evaluate the impact of extraction 

incubation time, peak areas for metabolites of glycolysis, TCA cycle, and related 
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cofactors in INS-1 extracts were measured in samples extracted for 1, 20, and 60 min 

prior to pelleting.  Peak areas for 20 and 40 min extracted samples relative to 1 min 

extracted samples were similar (Figure 3-4a) and ranged from 99% - 127% (mean = 108 

± 7%) and 95 - 122% (mean = 105 ± 5%), respectively.  Significantly different peak 

areas were observed for GMP and 13C1-PEP for 20 min extracted samples and for SUC 

in 40 min extracted samples relative to 1 min extracted samples.  Metabolite peak areas 

for samples extracted 2x and 3x relative to 1x (Figure 3-4 b) ranged from 98% to 117% 

(mean 107 ± 4 %) and 94% to 117% (mean = 104 ± 5%), respectively.  No differences in 

metabolite peak area relative to 1x extraction were significant at p < 0.05.  Undirected 

data analysis comparing all features detected for 20 min extraction compared to 1 min 

extraction (Figure 3-4 c) and 2x extraction cycles versus 1x (Figure 3-4 d) demonstrates 

little variability in the global metabolite profile with only 16 of 981 and 8 of 746 features 

detected with fold change > 1.2 and p < 0.05, respectively.  No features were significant 

in either experiment with p value correction for multiple testing.  In addition, no trend is 

observed between early and late eluting species (see retention time color key in Figures 

Figure 3-4b and Figure 3-4c) indicating that a single extraction cycle is sufficient for 

analytes of a wide polarity range.  We conclude that a single extraction cycle with ~1 min 

incubation time is sufficient to recover the broad range of metabolites detectable by this 

method. 
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Figure 3-4.  Effect of Extraction Time and Multiple Extraction Cycles on Metabolite Peak 
Areas from INS-1 Cells.   

(a) Peak areas for metabolites in INS-1 cells extracted for 20 min and 60 min versus 1 min.  Error 
bars represent 1 SEM, n = 3.  No metabolite peak areas are statistically different compared to 1 
min extraction with p < 0.05.  (b) Peak areas for metabolites in INS-1 cells extracted 2x and 3x 
versus 1x extraction cycle.  Error bars represent 1 standard error of the mean (SEM), n = 3.  No 
metabolite peak areas are statistically different compared to 1x extraction cycle with p < 0.05.  (c) 
Log-log plot of peak area for features detected in INS-1 cells extracted for 20 min versus 1 min.  
Features in this plot were detected in all replicates with RSD < 20% in each group.  22 of 981 
feature peak areas were statistically different between groups with p < 0.05.  (d) Log-log plot of 
peak area for features detected in INS-1 cells extracted with 2x versus 1x cycles of extraction.  
Plotted features were detected in all replicates with RSD < 20% in each group.  21 of 746 
features plotted had peak areas that were statistically different between groups with p < 0.05.   
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Water Rinsing.  After aspiration, residual media or buffer remains on the cell and 

dish surface which is subsequently dissolved into extraction solvent yielding potential for 

contamination of the intracellular metabolite pool and lowered analytical performance, 

e.g. due to ionization suppression.  A solution to this problem is to rinse residual 

media/buffer from the cell surface with water prior to quenching; however, legitimate 

concerns have been raised that such rinsing of mammalian cells may alter intracellular 

metabolites9.  We therefore evaluated the impact of rinsing cells with water to eliminate 

media and buffer residue prior to quenching.   

Peak areas for metabolites of glycolysis, the TCA cycle, and related cofactors were 

compared for cells incubated in KRHB and then rinsed with either KRHB or water prior to 

quenching.  (Non-water rinsed cells were rinsed with KRHB to act as a control by 

removing extracellular metabolites excreted by cells during incubation).  Substantial 

increases in metabolite peak areas, from 1.5 to 22-fold, were observed for 26 of the 

measured metabolites in water rinsed samples compared to KRHB rinsed samples 

(Figure 3-6a).  LC-MS chromatograms (Figure 3-6b) illustrate clear enhancement of 

metabolite signals with water rinse, especially in the 17-25 min range where TCA and 

glycolysis metabolites elute.  A region of broad peaks observed at ~12 min, attributed to 

HEPES in the KRHB, is decreased by rinsing showing removal of media components.  

Removing this background simplifies the chromatogram and reveals more metabolites.  

Overall, water rinsing increased the number of high quality detectable features (i.e., 

features present in 3 of 3 samples with relative standard deviation (RSD) < 30%) from 

237 to 452.  The increased signals are attributed at least in part to removal of salts that 

affect ESI. 

Although the increase in signal and detectable features with water rinsing is 

attractive, it is necessary to determine if the procedure alters the metabolome.  To 

assess this possibility, INS-1 cells were rinsed with water for 2 or 30 s and compared to 

cells rinsed only with KRHB.  To account for differences in MS sensitivity due to 

ionization suppression, all INS-1 cells were rapidly re-rinsed with KRHB for ~2 s prior to 

aspiration and quenching.  Using this procedure, all cells had the same final matrix, but 

some had been pretreated with water prior to quenching.  For the glycolysis and TCA 

compounds, no significant differences were found for cells rinsed briefly with water 

compared to those rinsed with KRHB (see Figure 3-6a) suggesting little alteration of 

these metabolic pathways or leakage during a short water rinse.  In contrast, with a 30 s 

exposure to pure water significant differences (p < 0.05) in peak area are observed for 
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G6P+F6P, PEP, aCoA, SUC, ADP, and GDP (Figure 3-6a) demonstrating that alteration 

of metabolite content does occur with water exposure, but only after longer times than 

necessary to rinse away media.   

To further expand on these observations, we compared peak areas for all features 

detected following a 2 s water rinse and a KRHB rinse (Figure 3-6b).  Peak areas ranged 

from 84% to 123% of control with a mean of 104 ± 8% and no significant features were 

identified following p-value correction for multiple testing.  Thus, little change in peak 

area was observed for nearly all detected features with rapid water rinse over a broad 

range of hydrophobicity.  We conclude that the short water rinse improves signal without 

substantially altering the detectable metabolome. 
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Figure 3-5.  Enhancement of Metabolite Peak Area with Water Rinsing.   

(a) Fold change enhancement of INS-1 metabolite peak area with water rinse versus KRB rinse.  
INS-1 cells rinsed with water or KRHB prior to quench and re-rinsed with KRHB to yield an 
identical residue matrix.  (b) 3D MS-chromatograms of KRHB and water rinsed INS-1 cells.  
Broad peaks from 10 to 15 min are attributed to residual HEPES buffer.  Substantial signal 
enhancement is observed for water rinse sample in 15-20 min region where TCA and glycolysis 
components elute.  Error bars represent 1 SEM, n = 3. 
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Figure 3-6.  Effect of Water Rinse on Metabolite Peak Areas from INS-1 Cells on a 
Directed and Undirected Basis.   

INS-1 cells were rinsed with KRHB, water (rapid ~2 s), or water (incubate 30 s) prior to a second 
rapid rinse with KRHB to yield an equivalent matrix in all samples prior to quenching.  (a) Peak 
areas ratios for specified metabolites in extracts of cells rinsed with water versus KRHB prior to 
quench.  Error bars represent 1 SEM, n = 3.  Asterisk indicates significant difference in peak area 
with p < 0.05.  (b) Log-log plot of peak areas for all features detected in extracts of INS-1 cells 
treated with  rapid water or KRHB rinse prior to quenching.  Features plotted are detected in all 
replicates and peak areas have RSD < 25% within each group.   
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Evaluation of LN2, -75 °C, and 0 °C Quenching Methods.  Most sample 

preparation procedures use cold organic solvents to simultaneously quench metabolism 

and initiate metabolite extraction.  While these procedures are effective, we investigated 

applying LN2 directly to plates to quench metabolism and adding extraction solvent at a 

later time.  This approach of separating quench and extraction steps was designed to 

allow the analyst to focus on time sensitive biological manipulations (e.g., changing cell 

media at fixed times) leaving solvent measuring and subsequent extraction steps to be 

performed later.  This approach could prove especially useful when conducting 

complicated extraction protocols requiring extended incubation times and multiple 

extraction cycles.  An additional benefit of postponing extraction is the flexibility to adjust 

internal standard concentrations in the extraction solvent based on a preliminary sample 

analysis without the need to repeat the full set of biological experiments as required by 

some protocols.10  Finally, we also observed improved long term (7 d) stability of 

samples (mean recovery = 98 ± 6% compared to 90 ± 8 %) when stored as frozen plates 

and extracted shortly before analysis compared to stored as extracts at -80 °C. 

To evaluate the performance of the technique, we compared metabolite profiles of 

INS-1 cells quenched with LN2 to those quenched and extracted simultaneously with -75 

°C and 0 °C 75% 9 :1 MC (Figure 3-7).  Peak areas for a majority of metabolites were 

similar; although, significant differences were observed in metabolite levels for 5 of 27 

and 11 of 27 metabolites in -80 °C and 0 °C samples, respectively, relative to LN2 

quench.  We conclude that direct LN2 quenching provides benefits in work flow and 

stability (at least for the extraction procedures used here) while offering similar 

metabolite profiles to -75 °C and 0 °C quench methods.   
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Figure 3-7.  Comparison of Metabolite Peak Areas with Different Quenching Techniques.   

INS-1 cells quenched with LN2, -75 °C solvent, and 0 °C solvent, extracted, and assayed.  
Metabolite peak areas for each technique plotted versus peak areas from LN2 technique.  Error 
bars represent 1 SEM, n = 3.  Asterisk indicates significant difference in peak area with p < 0.05. 

 

 

Short Term Stability.  Stability of INS-1 cells extracted with 75% 9:1 MC was 

evaluated by comparing peak areas for extracts stored at 4 °C for 0, 4 and 8 h (typical 

auto sampler storage times) before injection (Figure 3-8).  Peak areas for metabolites 

ranged from 87 % to 114 % (mean = 98 ± 9 %) after 8 h of storage versus time 0 

injection.  The only exception was sCoA which is chemically labile and had a peak area 

of 65% versus time 0 injection.  These results demonstrate that 75% 9:1 MC as 

extraction solvent affords excellent stability for most metabolites.   
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Figure 3-8.  Short-term Metabolite Stability of INS-1 Extracts at 4 °C.   

(a) Stability of INS-1 metabolites extracted with 75:25 9:1 MC:water after 4 and 8 h 4 °C storage.  
Metabolite peak area of 4 or 8 h 4 °C stored sample versus T0 sample.  Error bars represent 1 
SEM, n = 3.  Asterisk indicates significant difference in peak area with p < 0.05. 

 

Long Term Stability.  Long term stability of both INS-1 extracts and non-extracted 

INS-1 culture plates stored at -80 °C for 7 d was assessed (Figure 3-9).  The peak areas 

of metabolites from glycolysis, the TCA cycle, and related cofactors in culture plates 

stored at -80 °C were compared to those of samples extracted immediately after 

quenching and stored in LN2 prior to injection (T0 control).  This procedure allowed for all 

samples to be injected sequentially which eliminated the potential for instrument 

sensitivity drift to impact results.   

Stability of -80 °C stored extracts was good with metabolite peak areas ranging from 

80% to 102% (mean = 90 ± 8 %) versus T0 control with the exception of PEP and 

NADPH which had peak areas of 74% and 76% versus T0 control, respectively.  Non-

extracted culture plates stored at -80 °C had improved stability with metabolite peak 

areas ranging from 74% to 109% versus T0 control (mean = 98 ± 6%).  More 

metabolites had statistically different peak areas relative to T0 control in extracts stored 

at -80 °C compared to non-extracted plates although, this difference can be attributed to 

the different quantification approaches used.  Metabolite peak areas for stored extracts 

were compared to their parent T0 control replicate whereas non-extracted plates were 

compared as groups of true biological replicates.  This data demonstrates that samples 

are stable for at least 1 week at -80 °C stored both as extracts and as non-extracted 

plates. 
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Figure 3-9.  Stability of INS-1 Extracts and Non-extracted Plates Stored for 7 d at -80 °C.   

Peak area ratio of metabolites in specified storage condition versus peak area in T0 control 
(extracted at time 0 and stored in LN2).  Error bars represent 1 SEM, n = 3.  Asterisk indicates 
significant difference in peak area with p < 0.05. 

 

Comparison of Glucose Stimulation Results with Different Quenching / 

Preparation Methods.  To evaluate the performance of the 9:1 MC method in 

quantifying changes in metabolite concentration associated with glucose stimulated 

insulin secretion, we subjected INS-1 cells to step changes in glucose concentration and 

prepared samples using this method and two established methods, 80% MeOH and B-

MTC (Figure 3-10).  The final volume of all samples was identical allowing for a direct 

comparison of results between methods. 

We found that the 9:1 MC method tended to give higher peak areas for the glycolytic 

and TCA compounds (Figure 3-10a).  This result was accompanied by higher signal to 

noise ratios, which was significant for compounds that produced small peak areas such 

as aCoA, but was less important for more abundant species like MAL (see Figure 

3-10b).  The 9:1 MC method also allowed detection of sCoA, unlike the other methods.  

These results suggest overall better sensitivity obtainable by the 9:1 MC method.  

Because of differences in rinsing, quenching, extraction, heating, and drying steps with 

each preparation method, it is not possible to directly pinpoint the reasons for this effect, 

but based on our study we believe that the rinsing step is a key factor in the improved 

sensitivity as evident in substantially larger peaks for suppressive components such as 

HEPES in the 80% MeOH chromatograms and phosphate ion in the B-MTC sample.   

The improved detection NADH, NADPH, and sCoA may also be attributable to 

avoiding a heating step.  In addition to the improved peak areas, the 9:1 MC method had 
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the convenience of shorter sample preparation times.  The total preparation time for six 

samples was ~15 min using the 9:1 MC method compared to ~5 h using 80% MeOH and 

B-MTC methods, with a large portion of preparation time for the 80% MeOH and B-MTC 

methods devoted to drying samples under N2 stream.  Although the 9:1 MC method had 

advantages of sensitivity, detection of heat sensitive compounds, and decreased time 

requirements; we did find that B-MTC method had better reproducibility with average 

RSD for all glycolytic and TCA components of 11%, 12%, and 7% for 9:1 MC, 80% 

MeOH, and B-MTC, respectively. 

All three methods produced comparable relative changes in metabolites with 

glucose stimulation (Figure 3-10c).  Further, these changes tend to agree well with 

expectation and previous results.  Most detected components in the glycolysis and TCA 

pathways increased substantially following glucose addition which is consistent with 

increased glycolysis and anaplerosis in these cells.23  Using the 9:1 MC method, 

increases in most components of glycolysis and TCA pathways were moderate (1.6 to 

2.0-fold) with the exception of FBP, FUM, and MAL which increased 5.3, 5.3 and 6.9-

fold, respectively.  The large increases in FUM and MAL likely arise from the high levels 

of pyruvate carboxylase found in β-cells and the INS-1 clone used in these studies.24 

These results agree with findings from a previous study which reported increases in 

CIT+ICIT, MAL, AKG, aCoA, and sCoA of 1.5, 2.0, 1.8, 1.5, and 1.9-fold, respectively, 

upon 30 min glucose stimulation.25  The previous study also reported little change in Asp 

and Glu levels which is consistent with results we obtained all three extraction methods.  

In a similar study, CIT and MAL were observed to increase 2 and 5 fold, respectively, 

after a 30 min stimulation.23  We found that NADH increased 4.7-fold which is consistent 

with an anticipated increase in catabolic reduction charge due to increased glycolysis 

and TCA cycle flux.  Mono and di-phosphonucleotides decreased from -1.2 to -1.5 fold 

while a slight increase of 1.2 fold was observed for ATP and GTP was little changed.  

This observed increase in the ATP/ADP ratio is consistent with previous observations for 

GSIS in islet β-cells.26 
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Figure 3-10.  Metabolite Peak Areas, Sensitivity, and Changes in INS-1 with Glucose 
Stimulation Using Proposed and Established Quenching and Extraction Methods.   

75% 9:1 MC is water rinse, LN2 quench, and 1 cycle of 9:1 MC extraction.  80% MeOH is no 
rinse, -80 °C 8:2 MeOH:H2O quench, 3 extraction cycles, dried with N2, and reconstituted in 1:1 
MeOH:H2O.  B-MCT is PBS rinse, 4 °C 2:1 MC quench, 2 extraction cycles of 1:1 MeOH:3.8 mM 
tricine and CHCl3, heat 4 min at 90 °C, dry with N2, and reconstitute in 1:1 MeOH:H2O.  INS-1 
cells incubated in 0.5 mM glucose 30 min versus cells incubated in 0.5 mM glucose 30 min and 
stimulated to 10 mM glucose for 20 min.  (a) Metabolite peak areas ratios versus 9:1 MC for 10 
mM glucose samples.  Error bars represent 1 SEM, n = 3.  (b) Comparison of NAD+, aCoA, and 
sCoA chromatograms in 0.5 mM glucose samples.  Each individual chromatogram scaled to 
maximum peak height.  Asterisk indicates aCoA peak.  (c) Log 2 of the peak area ratio for 
metabolites in 10 mM glucose versus 0.5 mM glucose.  x indicates not detected.  Error bars 
represent 1 SEM, n = 3.   



63 
 

Conclusions 

We have developed a sample preparation procedure for global metabolic analysis of 

adherent mammalian cells that uses water rinsing, LN2 quenching, and rapid single step 

extraction.  Individual samples can be quenched, prepared, and injected within ~5 min 

using only 1.5 mL of solvent for a 10 cm plate to minimize dilution.  Sensitivity is 

enhanced by use of water rinsing, which if performed rapidly, does not alter the 

metabolome.  The choice of 75% 9:1 MC extraction solvent yields extracts that are 

stable for at least 8 h at 4 °C and 7 d at -80 °C.  The method produces relative changes 

in the metabolome that are similar to previous methods that require longer times, but 

with an overall increase in peak area for better sensitivity.  All three methods appear to 

produce valid metabolite profiles for glucose-stimulation experiments. 

Although we have identified conditions that reproducibly extract and stabilize 

components from glycolysis, the TCA cycle, and nucleotide metabolites from INS-1 cells, 

it would be premature to conclude that this procedure would be fully applicable to all 

mammalian cell lines as presented.  It is anticipated that most procedural aspects should 

translate effectively; nevertheless, we suggest that any experiment aimed at 

characterizing a metabolome should be preceded by careful characterization of the 

sample preparation procedure.   
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CHAPTER 4                                                                                                   

Metabolomic Analysis of INS-1 Cells Reveal Temporal Metabolic Changes 

Associated with Glucose-Stimulated Insulin Secretion 

  
  

Introduction 

Progressive reduction in β-cell mass or secretory capacity causes abnormalities of 

glucose metabolism, resulting in diabetes and its complications such as retinopathy, 

kidney failure, nerve damage, cardiovascular disease and increases in premature death.  

β-cells in the islets of Langerhans secrete insulin in response to elevated blood glucose 

and acute increases in blood glucose evokes a rapid pulse of insulin secretion lasting a 

few min, designated as the 1st phase, followed by a lower, extended period of secretion, 

(2nd phase).  An early sign of β-cell dysfunction is the loss of first phase of insulin 

secretion.1 Despite extensive research, the metabolic pathways that facilitate first and 

second phase of glucose-stimulated insulin secretion (GSIS) by β-cells are not fully 

understood.2 GSIS is thought to be triggered by closure of KATP channels due to an 

increase in the ATP/ADP ratio concurrent with metabolism of glucose.  Closure of KATP 

channels causes membrane depolarization, opening of voltage sensitive Ca2+ channels, 

and subsequent exocytosis of a readily available pool of insulin vesicles.3 In addition to 

the KATP dependent mechanism, evidence supports the concept that other metabolic 

processes also facilitate GSIS in KATP-independent or amplifying pathways.4-6 A variety 

of metabolic coupling factors including NADPH and long-chain acyl-CoAs generated by 

pyruvate/citrate, pyruvate/isocitrate, pyruvate/malate, and glycerolipid/fatty acid cycling 

pathways have been implicated in both triggering and amplifying GSIS.4-6 

Measurements of metabolic changes that correlate with GSIS, both temporally and 

with glucose dose, are invaluable in elucidating biochemical mechanisms that underlie 

this process.  Most work on β-cell metabolism to date has been limited to measuring a 

relatively small set of metabolites using enzyme and other single analyte assays.  In 

addition, studies of changes in metabolite levels following glucose exposure have been 

performed in time periods that cannot dissect the important alterations that occur in the 
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first and second phases of insulin secretion, nor have there been detailed evaluation of 

changes in metabolism that result in the decline in insulin secretion in the second phase.  

Improvements in separations techniques and mass spectrometry have allowed 

measurement of a greater number of metabolites creating the opportunity for a more 

global view of metabolic state.7-9  For example, a recent study of INS-1 832/1, 832/2, and 

832/13 clones using GC-MS measured 44 metabolites (164 peaks were detected) 

following prolonged exposure (1 hour) to 3 or 17 mM glucose.8 

In this work, we employed quenching and extraction procedures for in glucose-

responsive INS-1 832/13 cells10 which allow for quantitative and reproducible recovery of 

metabolites11 followed by liquid chromatography-time of flight-mass spectrometry (LC-

TOF-MS) to measure hundreds of metabolites following exposure to glucose.  

Measurements were made between 2 to 45 min, encompassing both first and second 

phases of insulin secretion.  Metabolites associated with glycolysis and the TCA cycle 

were assessed in a targeted manner.  Further, we used “undirected” analysis to monitor 

hundreds of metabolites following glucose treatment and compounds that changed in 

concentration were identified by matching accurate molecular ion mass to metabolite 

databases and identifications validated by comparing experimental to theoretical isotope 

ratios and with retention time match to commercial standards, when available.  By 

measuring targeted and identified metabolites as they changed during both first and 

second phase GSIS and with glucose concentration, we were able to test prevailing 

hypotheses of the mechanisms of GSIS and identify new pathways of interest.    

 

Experimental Procedures  

 

Materials.  All chemicals were purchased form Sigma-Aldrich (St.  Louis, MO) 

unless otherwise noted.  HPLC grade acetonitrile was purchased from Burdick & 

Jackson (Muskegon, MI).  RPMI media, fetal bovine serum, 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), and penicillin-streptomycin were purchased 

from Invitrogen Corp.  (Carlsbad, CA).  Cells lifters and 10 cm polystyrene non-pyrogenic 

culture dishes were purchased from Corning (Lowell, MA).   

 

Cell Culture.  INS-1 832/13 cells cultured in RPMI supplemented with 2 mM 

glutamine, 1 mM sodium pyruvate, 10% FBS, 10 mM HEPES, 100 U/mL penicillin, 100 
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µg/mL streptomycin, 250 ng/mL amphotericin B, and 50 uM β-mercaptoethanol.  Cells 

were plated at a density of ~14x103 cells/cm2 and grown in either 6 cm or 10 cm culture 

dishes at 37 °C and 5% CO2 in a humidified atmosphere to ~70% confluence over ~5 d 

prior to experimentation.  Cells were preincubated in supplemented RPMI containing 3 

mM glucose ~20 h prior to experimentation.  KRHB (Krebs-Ringer-HEPES buffer) was 

prepared containing 10 mM glucose, 20 mM HEPES, 118 mM NaCl, 5.4 mM KCl, 

2.4 mM CaCl, 1.2 mM MgSO4, and 1.2 mM KH2PO4 and adjusted to pH 7.4 with HCl. 

 

Glucose Stimulation Dose/Response.  Following preincubation, culture media 

was replaced with KRHB containing 0, 2, 5, 10, or 20 mM glucose + 0.2% BSA.  Cells 

were incubated for 30 min after which an aliquot of buffer was removed for insulin 

measurement.  Metabolism was immediately quenched and metabolites extracted as 

described previously.11 

 

Glucose Stimulation Time Course.  Cells were transferred to KRHB containing 

0.5 mM glucose and 0.2% BSA for 30 min prior to stimulation and spiked to 10 mM 

glucose by adding an aliquot of 1 M glucose stock.  The buffer was sampled for insulin 

measurement 5 to 90 min after initial transfer to 0.5 mM KRHB (both pre and post 

stimulation).  For metabolite measurements, cells were treated as indicated above 

(without addition of BSA) and cell plates quenched from 25 to 75 min after transfer to 

KRHB.  Carbon flux through glucose was also assessed by stimulating cells with 

[U-13C]- glucose for 60 min.  For absolute metabolite quantification, INS-1 cells were 

stimulated for 30 min with 10 mM glucose and quenched.  For insulin and metabolite 

measurements with AICAR treatment, stimulation was conducted by conditioning cells in 

KRHB containing 0.5 mM glucose for 30 min and replacing the buffer with KRHB 

containing 10 mM glucose with or without 25 µM AICAR.  Incubation buffer was sampled 

for insulin and plates quenched from 10 to 60 min following stimulation. 

 

Insulin measurement.  Aliquots of KRHB were briefly stored on ice, centrifuged at 

3000 rpm for 3 min to pellet any suspended cells, and an aliquot of supernatant was 

transferred to a fresh vial.  Samples were stored at -20 °C and assayed using a Millipore 

Rat/Mouse insulin ELISA Kit.  Insulin secretion rate was calculated by dividing the 

difference in insulin concentration of 2 consecutive time points by the time elapsed 

between sampling (Figure 4-1). 
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Figure 4-1.  Time-Course Insulin Release from INS-1 832/13 Cells Following Glucose 
Stimulation.   

(a) Total insulin secreted versus stimulation time (0.5 to 10 mM glucose) for 3 plates of INS-1 
cells (a, b and c).  Error bars represent SEM of analytical replicates, n=2.  (b) Insulin secretion 
rate versus stimulation time.  Average secretion rate calculated based on insulin released 
between each sampling interval and plotted (blue dash).  The average rate at average sampling 
interval is plotted in red.   

 

Metabolite measurement.  Cell plates were rinsed, metabolism quenched, and 

metabolites extracted using the procedure described previously11 and in Chapter 3.  

Briefly, cell plates were rapidly rinsed with water and quenched with liquid nitrogen.  

Metabolites were extracted with 75% 9:1 methanol:chloroform 25% water and assayed 

by HPLC-TOF-MS.  For absolute quantification, a standard addition approach was used 

to quantify metabolites in cells stimulated for 30 min with 10 mM glucose.  Residual 

protein was determined by Bradford Assay.12  Untargeted and targeted data processing 

was performed as described previously.11 Metabolites previously implicated in GSIS 

(e.g. glycolysis and TCA cycle) were quantified directly using standards to confirm peak 

assignments and 13C labeled internal standards, when available, to improve precision 

(Table 1).  Combined peak areas are reported for unresolved isomers (e.g. citrate + 

isocitrate and hexose phosphates).  Several key metabolites such as pyruvate and 

oxaloacetate are not detected by the method and accurate measurement of these 

metabolites is difficult due to rapid degradation of oxaloacetate to pyruvate.13  

Glyceraldehyde-3-phosphate and dihydroxyacetone phosphate are also highly unstable 

in solution.14  Undirected analysis was performed by identifying metabolites that changed 

in LC-MS peak area following a step change from 0.5 to 10 mM glucose for 25 min.  

Features that were detected in every chromatogram and had < 40% RSD within each 

group were included in the analysis.  For these chromatographic peaks, each mass 
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spectra was evaluated to verify molecular ion assignment through investigating 

corresponding potential adducts and fragments.  Metabolites were tentatively identified 

through accurate mass search of the Human Metabolome Database and further 

validated by comparison of theoretical and observed isotopic distributions and coelution 

studies with authentic standards, when available (Table 1).   

 

Western Blot.  Glucose stimulation cells were placed on ice, washed once with ice 

cold PBS and solubilized in 75 µL Laemelli's/extraction buffer (20 mM HEPES pH 7.5, 

1% Triton X-100, 20 mM beta-glycerophosphate, 150 mM NaCl, 10 mM NaF, 1mM 

sodium orthovanadate, and complete protease inhibitor cocktail (Roche)).  Anti-ACC was 

obtained from Cell Signaling and used at 1:1000.  Blots were developed with ECL 

(Pierce, Rockford, IL) according to the manufacturer's instructions. 

 

Statistics.  Data are expressed as the mean ± standard error of the mean (SEM).  

Statistical significance was determined using a non-corrected two-tailed Student's t test, 

unpaired assuming equal variance.  A p-value of < 0.05 was considered statistically 

significant 

 

Results 

Insulin Secretion Studies.  The EC50 value for insulin secretion from INS-1 832/13 

cells in response to glucose stimulation was 6.2 mM with near maximal insulin secretion 

observed at ~10 mM glucose (Figure 4-1), similar to previous reports.10  Temporal 

changes in insulin secretion were observed with a relatively sharp peak at ~4 min 

(28 ng/mg protein min) and a lower level with a maxima at ~25 min corresponding 

roughly to Phase 1 and Phase 2 of insulin secretion consistent with previous reports of 

GSIS in islets15 and INS-1 832/13 cells16 (Figure 4-2).   
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Table 4-1.  Metabolites Identified in INS-1 Extracts.   

 

Metabolite Abbreviation Standard 

Type 

ID By 

 

MF Theoretical 

Mass 

Measured 

Mass 

Difference Concentration 

 

   (U,D,F)  (amu) (amu) (ppm) (nmole/mg protein) 

Glycolysis         
hexose-phosphate HP 13C D, U C6H13O9P 260.0297 260.0289 -3.0 58 
fructose 1,6-bisphosphate FBP 13C D C6H14O12P2 339.9960 339.9956 -1.1 13 
2-phosphoglycerate + 3-phosphoglycerate 2PG+3PG 13C D, U C3H7O7P 185.9929 185.9924 -2.6 11 
phosphoenolpyruvate PEP 13C D C3H5O6P 167.9824 167.9812 -7.0 2.3 
glycerol-3-phosphate G3P 12C U C3H9O6P 172.0137 172.0135 -1.0 15 
lactate LAC 13C D C3H6O3 90.0317 90.0315 -2.0 41 

Tricarboxylic Acid Cycle         
acetyl- Coenzyme A aCoA 12C D C23H38N7O17P3S 809.1258 809.1242 -1.9 1.6 
citrate+isocitrate CIT+ICIT 13C D, U C6H8O7 192.0270 192.0262 -4.1 110 
alpha-ketogluterate AKG 13C D, U C5H6O5 146.0215 146.0207 -5.3 22 
succinyl-coa sCoA 12C D C25H40N7O19P3S 867.1312 867.1294 -2.0 0.85 
succinate SUC 13C D, U C4H6O4 118.0266 118.0275 7.8 22 
fumarate FUM 13C D, U C4H4O4 116.0110 116.0107 -2.4 17 
malate MAL 12C D, U C4H6O5 134.0215 134.0211 -2.8 67 
malonyl- Coenzyme A mCoA 12C D C24H38N7O19P3S 853.1156 809.1208 -6.1 0.86 
aspartic acid Asp 12C D C4H7NO4 133.0375 133.0372 -2.1 750 
glutamic acid Glu 12C D C5H9NO4 147.0532 147.0528 -2.6 2500 

Pentose phosphate pathway         
ribose phosphate R5P 12C U C5H11O8P 230.0191 230.0183 -3.4 3.4 
6-phosphogluconic acid 6PG 12C U C6H13O10P 276.0246 276.0242 -1.4 2.7 
sedoheptulose-7-phosphate S7P 12C U C7H15O10P 290.0403 290.0405 0.8 12 
phosphoribosyl pyrophosphate PRPP 12C F C5H13O14P3 389.9518 389.9505 -3.3 3.5 

Nucletotides         
adenosine monophosphate AMP 13C D, U C10H14N5O7P 347.0631 347.0620 -3.1 11 
adenosine diphosphate ADP 13C D C10H15N5O10P2 427.0294 427.0282 -2.8 18 
adenosine triphosphate ATP 13C D C10H16N5O13P3 506.9957 506.9949 -1.5 850 
guanosine monophosphate GMP 12C D, U C10H14N5O8P 363.0580 363.0577 -0.8 2.8 
guanosine diphosphate GDP 12C D, U C10H15N5O11P2 443.0243 443.0245 0.5 4.5 
guanosine triphosphate GTP 13C D C10H16N5O14P3 522.9907 522.9900 -1.3 3.9 
uridine monophosphate UMP 12C U C9H13N2O9P 324.0359 324.0350 -2.7 na 

uridine diphosphate UDP 12C F C9H14N2O12P2 404.0022 404.0020 -0.4 na 

uridine triphosphate UTP 12C F C9H15N2O15P3 483.9685 483.9679 -1.2 na 

cytidine monophosphate CMP 12C F C9H14N3O8P 323.0518 323.0502 -4.9 na 

cytidine diphosphate CDP 12C F C9H15N3O11P2 403.0182 403.0178 -0.9 na 

cytidine triphosphate CTP 12C F C9H16N3O14P3 482.9845 482.9833 -2.4 na 

nicotinamide adenine dinucleotide NAD 12C D C21H27N7O14P2 663.1091 663.1089 -0.3 37 
nicotinamide adenine dinucleotide, reduced NADH 12C D, U C21H28N7O14P2 665.1242 665.1240 -0.3 2.0 
nicotinamide adenine dinucleotide phosphate NADP 12C D, U C21H28N7O17P3 743.0755 743.0710 -6.0 0.92 
nicotinamide adenine dinucleotide phosphate, reduced NADPH 12C D C21H29N7O17P3 745.0911 745.0925 1.9 4.0 
flavin adenine dinucleotide  FAD 12C D C27H33N9O15P2 785.1571 785.1565 -0.7 2.6 

Amino Acids         
asparagine Asn 12C U C4H8N2O3 132.0535 132.0531 -2.9 39 
glutamine Gln 12C U C5H10N2O3 146.0691 146.0687 -2.6 76 
lysine Lys 12C U C6H14N2O2 146.1055 146.1050 -3.3 15 
ornithine Orn 12C U C5H12N2O2 132.0899 132.0895 -2.9 22 
serine Ser 12C U C3H7NO3 105.0426 105.0421 -4.6 25 

Long Chain CoAs         
14:0 Conenzyme A 14:0-CoA na F C35H62N7O17P3S 977.3135 977.3108 -2.7 na 

16:0  Conenzyme A 16:0-CoA 12C U C37H66N7O17P3S 1005.3448 1005.3450 0.2 0.46 
16:1  Conenzyme A 16:1-CoA na F C37H64N7O17P3S 1003.3384 1003.3280 -10.3 na 

18:0  Conenzyme A 18:0-CoA na F C39H70N7O17P3S 1033.3761  1033.3688 -7.0 na 

18:1  Conenzyme A 18:1-CoA na F C39H68N7O17P3S 1031.3605 1031.3590 -1.4 na 

Sugar Nucleotide Donors         
GDP- mannose GDP-M 12C U C16H25N5O16P2 605.0771 605.0780 1.5 4.2 
UDP-d-galacturonate UDP-GA na F C15H22N2O18P2 580.0343 580.0334 -1.5 na 
GDP-fucose GDP-F na F C16H25N5O15P2 589.0822 589.0827 0.9 na 
UDP-GlcNAc+GalNAc UDP-GlcNAc + GalNAc na F C17H27N3O17P2 607.0816 607.0814 -0.3 na 
UDP-xylose UDP-X na F C14H22N2O16P2 536.0444 536.0408 -6.7 na 
UDP-glucose + UDP-galactose UPD-Glc + UDP-Gal na F C15H24N2O17P2 566.0550 566.0528 -3.9 7.3 

Miscellaneous         
aminoimidazole carboxamide ribonucleotide ZMP 12C U C9H15N4O8P 338.0627 338.0614 -3.8 4 
glycineamideribotide GAR na U C7H15N2O8P1 286.0566 286.0577 3.9 na 

phosphocreatine PCRE 12C U C4H10N3O5P 211.0358 211.0351 -3.2 120 
creatine CRE 12C U C4H9N3O2  131.0695 131.0703 6.3 8.4 
phosphate PO4 12C U H4O4P 97.9769 97.9772 3.4 383 
pantothenic acid PAN 12C U C9H17NO5 219.1107 219.1120 6.0 0.035 
2-o-(6-phospho-alpha-mannosyl)-d-glycerate PMG na U C9H17O12P1 348.0458 348.0432 -7.4 na 

cytidine diphosphate- ethanolamine CDP-EA na U C11H20N4O11P2 446.0604 446.0594 -2.2 na 

beta-aspartylglycine DG na U C6H10N2O5 190.0590 190.0594 2.2 na 

citicoline CC na U C14H26N4O11P2 488.1073 488.1060 -2.6 na 

farnesyl pyrophosphate FPP na U C15H28O7P2 382.1310 382.1296 -3.6 na 

L-beta-aspartyl-L-alanine or 5-L-Glutamylglycine DA or EG na U C7H12N2O5 204.0746 204.0748 1.1 na 

glycerylphosphorylethanolamine GPEA na U C5H14NO6P 215.0559 215.0551 -3.6 na 

Hexol phosphates MP na U C6H15O9P 262.0454 262.0443 -4.1 na 

HMG-CoA HMG-CoA 12C F C27H44N7O20P3S 911.1574 911.1548 -2.9 na 

Free Fatty Acids         
16:0 16:0 12C F C16H32O2 256.2402 256.2396 -2.3 na 

18:0 18:0 12C F C18H36O2 284.2715 284.2712 -1.0 na 

18:1 18:1 12C F C18H34O2 282.2559  282.2554 -1.7 na 

18:2 18:2 na F C18H32O2 280.2402 280.2398 -1.4 na 

20:0 20:0 12C F C20H40O2 312.3028 312.3011 -5.4 na 

20:1 20:1 na F C20H38O2 310.2872 310.2872 0.1 na 

20:2 20:2 na F C20H36O2 308.2715 308.2711 -1.2 na 

22:0 22:0 12C F C22H44O2  340.3341 340.3335 -1.7 na 

22:1 22:1 na F C22H42O2 338.3185 338.3193 2.4 na 

22:2 22:2 na F C22H40O2 336.3028 336.3031 1.0 na 

22:3 22:3 na F C22H38O2 334.2872 334.2855 -5.0 na 

24:0 24:0 12C F C24H48O2 368.3654 368.3652 -0.5 na 

24:1 24:1 na F C24H46O2 366.3498 366.3464 -9.2 na 

24:2 24:2 na F C24H44O2 364.3341 364.3308 -9.0 na 

24:3 24:3 na F C24H42O2 362.3185 362.3182 -0.8 na 

Metabolite identified by: D = directed, U = undirected, F = follow up analysis 
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Figure 4-2.  Temporal and Dose-Response Metabolite Profiles and Insulin Release with 
Glucose Stimulation in INS-1 832/13 cells.   

(Caption continued on next page) 
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(a) Temporal changes in INS-1 metabolite levels expressed as fold change versus time 0 with 
glucose stimulation.  Cells incubated in KRHB + 0.5 mM glucose for 30 min then stimulated to 10 
mM glucose and sampled over 45 min.  Asterisk indicates significant difference in peak area 
versus time 0 with p < 0.05.  (b) Changes in INS-1 metabolite levels with glucose concentration.  
Changes in metabolite levels expressed as fold change versus 0 mM glucose condition.  INS-1 
cells incubated in KRHB + 0.2% BSA and 0 to 20 mM glucose for 30 min.  Asterisk indicates 
significant difference in peak area versus time 0 with p < 0.05.  (c) Log-log plot for all features 
detected at time 0 (0.5 mM glucose) versus 25 min of 10 mM glucose stimulation.  Features 
colored by m/z.  The 1030 features plotted were detected in all replicates with RSD < 40% for 
either Time 0 or 25 min groups.  130 feature peak areas change >1.5 fold and are statistically 
different with p < 0.05.Insulin secretion profiles for INS-1 cells.  (d) Insulin secreted by INS-1 
832/13 cells versus glucose concentration.  Cells incubated in KRBH +0.2% BSA and 0 to 20 mM 
glucose for 30 min.  Error bars are 1 SEM, n=3.  (e) Insulin secretion rate versus stimulation time.  
INS-1 cells incubated in KRHB + 0.2% BSA + 0.5 mM glucose for 30 min and stimulated with 10 
mM glucose for 50 min.   

 

Metabolomics.  Metabolites were measured using a combined targeted and 

untargeted metabolomics approach.  A summary of the metabolites identified is given in 

Table 1.  Undirected analysis was performed by identifying metabolites that changed in 

LC-MS peak area following glucose stimulation.  The log of mean peak areas of 1030 

features were compared for 0 and 25 min groups (Figure 4-1c).  We found 190 features 

showed statistically significant changes (p < 0.05) and at least 1.5 fold differences 

between 0.5 and 10 mM glucose.  Through accurate mass search of the Human 

Metabolome Database, forty metabolite identities were proposed.  These identities were 

validated by comparison of theoretical and observed isotopic distributions and coelution 

studies with authentic standards, when available (Table 1).  These metabolites included 

compounds rarely measured in the study of GSIS such as phosphocreatine, long-chain 

acyl-CoAs, and glycerol-3-phosphate.  We also identified several metabolites that rapidly 

change with glucose stimulation but have not been previously reported in β-cells such as 

ZMP and GDP-mannose.  Based on hypotheses generated through initial directed and 

undirected analysis, mass chromatograms were further analyzed for additional 

metabolites of interest.  For example, after identifying GDP-mannose, we searched for 

other glycosyltransferase substrates in the data set and found several not detected 

through undirected processing.  In total, 87 metabolites were assessed in detail. 

All identified metabolites were quantified relative to their baseline levels in studies of 

glucose dose-response (0 to 20 mM) and time course following step increase in glucose 

(0.5 to 10 mM from 0 to 45 min) as displayed in heat-maps (Figure 4-2a).  Select 

metabolites are re-plotted as x-y scatter plots in Figures 3-7 for discussion of specific 

pathways.  To aid in assessing metabolite pool size, the absolute concentrations of 44 
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metabolites 30 min following glucose stimulation were measured by multi-point standard 

addition (Table 1).  The incorporation of 13C labeling into the glutamate pool after 60 min 

of stimulation with [U-13C]-glucose is shown in Figure 4-6. 

 

Glycolysis.  Glycolysis comprises the first steps in glucose metabolism and 

accordingly plays a vital role in GSIS (Figure 1-3).  Hexose phosphates changed slightly 

over 45 min of glucose stimulation, increasing 1.2 fold over 8 min, then decreasing by 

50% over 37 min to ~58 µmole/mg protein.  A 3-fold maximal increase was observed at 

20 mM glucose in dose-response studies.  Rapid increases in levels of fructose 

bisphosphate, 2-phosphoglycerate + 3-phosphoglycerate and phosphoenolpyruvate (32-

, 6.7- and 5.5-fold, respectively) were observed.  Lactate levels did not rise significantly 

following glucose exposure consistent with previous observations that little anerobic 

glycolysis occurs in β-cells.17 

 

TCA.  Metabolites in the TCA cycle participate in cyclic pathways that generate 

cofactors, such as NADH and NADPH, which augment GSIS4-6 (Figure 1-4 and Figure 

1-2b).  Acetyl-CoA increased 1.5-fold within 2 min of stimulation and returned to 

prestimulation levels within 12 min of glucose addition.  Coincident with first phase 

insulin release, only Span 2 TCA cycle metabolites, fumarate and malate, showed 

increases while Span 1 TCA cycle intermediates showed no increase (citrate + 

isocitrate, succinyl-CoA, and succinate) or a slight fall (α-ketoglutarate).  The minimal 

early flux into Span 1 pathways is underscored by the minimal change in glutamate 

levels, derived from transamination of α-ketoglutarate.  This is consistent with a greater 

initial flux through pyruvate carboxylase during initial stages of insulin release.  In 

concert, aspartate levels fall, suggesting an increase in the malate-aspartate shuttle.  

Subsequently, all measured TCA cycle intermediates rise throughout the 45 min period 

studied in concert with phase 2 insulin release.  The changes in all TCA cycle and 

related intermediates were also changed in a dose-dependent manner in response to 

glucose at 25 min (Figure 4-1b)   

 

Pentose Phosphate Pathway (PPP).  Metabolites in the pentose phosphate 

pathway are not often measured in investigations of GSIS but play a key part in cellular 

metabolism by supplying 5-carbon substrates for purine, pyrimidine, and histidine 

synthesis and are also important for generation of NADPH for lipid biosynthetic 
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pathways (Figure 1-5).  NADPH is also likely to play a role as a coupling factor in GSIS.  

We observed that most PPP metabolites increased with increasing glucose 

concentration (Figure 4-2b).  Rapid and substantial relative increases in the pentose 

phosphate pathway metabolites pentose phosphates, 6-phosphogluconate, and 

sedoheptulose phosphates (1.8, 3.2, and 2.4 fold increases, respectively) were observed 

concurrent with GSIS.  Phosphoribosyl pyrophosphate, which can enter purine, 

pyrimidine, and histidine metabolism increased 7.4 fold.  This metabolite can be 

converted to fructose-6-phosphate and erythrose-4-phosphate after condensation with 

glyceraldehyde-3-phosphate in the non-oxidative phase of the PPP.  This conversion 

may explain, in part, the rapid sustained rise in fructose-bisphosphate seen at low 

concentration of glucose (Figure 4-1).  While substantial increases in PPP metabolite 

levels are observed with glucose stimulation, the relative pool size of these metabolites 

is substantially smaller than for those of the TCA cycle (Table 1) supporting previous 

findings that the bulk of glucose carbon is oxidized by the TCA cycle and does not 

participate in the PPP.18 

 

Nucleotides.  In both glucose dose-response and time course experiments, we saw 

only small, generally non-significant changes in total ATP levels, but a dose- and time-

dependent decrease in ADP and AMP (Figure 4-2a-b).  This combination resulted in a 

clear glucose-dependent increase in the ATP/ADP ratio and a ~3-fold increase in the 

ATP/ADP ratio within 2 min of stimulation with minimal additional increase throughout 

45 min (Figure 4-2a).  Mono- and di-phosphonucleotides decreased by 1.7-4.3 fold 

within 2 min of glucose stimulation.  GTP increased only slightly (< 5%) whereas UTP 

and CTP increased 40% and 80%, respectively.  Phosphocreatine, proposed as a 

regulator of KATP channel activity in β-cells19, increased 3-fold within 2 min of glucose 

stimulation to ~120 nmole/mg protein or ~6 x the concentration of ADP.  Maximal levels 

of phosphocreatine were reached at 10 mM glucose in dose response study, consistent 

with insulin dose response profile (Figure 4-1).   

 

Cofactors.  A rapid, sustained, and dose-dependent rise in NADH was observed 

with glucose treatment.  The absence of a change in lactate and the sustained increase 

in glycolytic and TCA cycle intermediates would require the shuttling of NADH into the 

mitochondria, likely by the malate-aspartate shuttle and glycerol-3-phosphate shuttle 

which are highly active in the β-cell.  NADPH has been implicated as a coupling factor in 
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GSIS being generated by pyruvate-dependent pyruvate/malate, pyruvate/citrate, and 

pyruvate/isocitrate cycling pathways.2, 20 NADPH increased slightly but insignificantly 

over ~12 min of glucose stimulation and NADP+ significantly decreased 4.0-fold which is 

similar in magnitude to changes reported in islets.21  The NADPH/NADP+ ratio increased 

immediately after addition of glucose and increased 5.8 fold over 25 min tracking the 

release of insulin (Figure 4-2) and exhibited a similar glucose dose-response profile to 

insulin release.   

 

Sugar Nucleotide Donors.  We detected 8 of 9 common sugar nucleotide donors 

with GDP-mannose changing the most substantially.  GDP-mannose forms from 

conversion of glycolytic intermediate fructose-6-phosphate to mannose-6-phosphate and 

mannose-1-phosphate before condensing with GDP.  This metabolite has not previously 

been quantified in β-cells but we observe a rapid increase that peaks at 14-fold over 

basal (~4.2 µ mole/mg protein) within 8 min of glucose followed by a gradual decrease.   

 

Long-chain acyl-CoAs.  Long-chain acyl-CoAs and have been implicated as 

metabolic coupling factors in GSIS.22  Falling levels of long-chain acyl-CoAs can 

increase the likelihood of KATP channel closure23 and we found that 16:0-CoA, for 

example, decreased ~50% within 2 min of glucose stimulation to ~0.46 µ mole / mg 

protein.  Similar changes are observed in 14:0, 16:1, and 18:1 CoAs upon glucose 

stimulation with time and in glucose dose-response profiles (Figure 4-2).   

 

ZMP.  ZMP is an endogenous metabolite in the purine synthesis pathway and a 

precursor to IMP.  Although measurements of endogenous ZMP levels have not been 

reported in β-cells, we detected a 9-fold increase in ZMP to ~4.0 µ mole / mg protein that 

reached a maximum ~25 min after glucose stimulation.  Phosphoribosyl pyrophosphate 

which links the pentose phosphate pathway to the nucleotide synthesis pathway and 

glycinamide ribonucleotide, a ZMP precursor, were also detected, with changes similar 

to ZMP (Figure 4-1).   

AICA riboside (AICAR) is widely used to activate AMP-activated protein kinase 

(AMPK), an important regulator of cellular energy balance.24  AICAR is phosphorylated 

in the cell to generate ZMP which substitutes for AMP in enhancing phosphorylation and 

activation of AMPK.  Based on the timing of the increase in ZMP, we hypothesized that it 

may serve as a negative regulator of GSIS during second phase.  To test this idea, we 
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treated INS-1 832/13 cells with 10 mM glucose and 25 µM AICA riboside and achieved 

~4x higher intercellular ZMP levels at 40 min relative to control cells stimulated with 

10 mM glucose only.  This increase in ZMP significantly decreased the rate of insulin 

release 40 to 60 min post glucose stimulation by 20% (Figure 4-7).   

To assess the potential for AMPK activation, we measured the phosphorylation of 

ACC1, a direct target of AMPK following glucose stimulation by Western blotting of 

INS-1 extracts.  ACC1 phosphorylation rapidly decreased within 5 min of glucose 

stimulation and was completely dephosphorylated by 25 min (Figures 3 i-j and Figure 

4-4i).  No phosphorylation was observed at 25 min, when ZMP levels were increasing.  

These results suggest that while ZMP levels increase, there is minimal activation of 

AMPK.  Thus, while AICAR treatment can increase ZMP levels and reduce insulin 

secretion, these effects are likely dissociated from AMPK activation. 

  

Discussion 

The use of LC-TOF-MS has allowed us to measure the temporal and dose response 

to increasing glucose concentration for a wide range of metabolites in INS-1 832/13 

cells.  These measurements allowed testing of several prevailing hypotheses on the 

mechanism of GSIS and identification of novel metabolites that may play a role in normal 

β-cell metabolism.      

 

KATP Dependent Pathway.  KATP channel closure through rise in the ATP/ADP ratio 

is an established trigger for GSIS and we observe a near maximal 2.9-fold increase at 2 

min following glucose stimulation (Figure 4-3d).  This rapid change in ATP/ADP is in 

agreement with previous reports of a “several fold” increase in mouse β-cells that 

reached a maximum 1 to 3 min following glucose stimulation25 and an ~2-fold increase in 

mouse islets within 5 min of glucose stimulation.26 ATP concentration increased <15% in 

this period (Figure 4-2g) which is consistent with the availability of AMP and ADP 

substrates that were only ~10% of the ATP pool size at 0.5 mM glucose (Table 1).  

Hence, a maximal increase of ~10% in ATP levels is possible from AMP and ADP 

substrate without de novo synthesis which is unlikely within 5 min of glucose addition.  

While measurements do not preclude localized increases in ATP concentrations or 

changes in turnover rate, they may suggest that the KATP channel may be more 

influenced by reductions in ADP concentrations27, phospholipids or long chain acyl-
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CoAs28, the latter of which showed significant reductions in our studies.  The rapid and 

sustained increase in phosphocreatine (Figure 4-2a) may buffer ATP and shows that a 

significant increase in the total energy available to cells has increased.  Phosphocreatine 

may also serve as a shuttle for energy rich phosphate from the mitochondria to the 

plasma membrane and act on KATP channel-associated creatine kinase to phosphorylate 

ADP.19 

Driving the change in ATP/ADP is a rapid acceleration of glycolysis.  In addition to 

more proximal glycolytic metabolites (Figure 4-3a), glycerol-3-phosphate increased 3.4-

fold within 2 min of glucose stimulation (Figure 4-4f).  In the absence of significant 

increases in lactate levels, accumulated NADH is shuttled into the mitochondria via the 

glycerol-3-phosphate shuttle via glycerol-3-phosphate dehydrogenase may accelerate 

glycolysis, further increasing the ATP/ADP ratio.  While glucose-6-phosphate and 

fructose-6-phosphate cannot be resolved using HILIC chromatography, the combined 

hexose phosphate pool did not accumulate, suggesting that phosphofructokinase is not 

a rate limiting step under these conditions.  It has been proposed that long-chain acyl-

CoAs participate in modulating KATP-dependent insulin secretion23, though studies have 

been discordant on the actual concentration changes of long-chain acyl-CoAs 

associated with glucose stimulation.22, 29  We found rapid and significant decreases in 

long-chain acyl-CoAs, e.g. a 50% decrease of palmitoyl-CoA, concurrent with Phase 1 

GSIS (Figure 4-4g).  The long chain acyl-CoA decrease may be due to rapid 

esterification with the rising levels of glycerol-3-phosphate (Figure 4-4f) to form mono- 

and di-glycoerophospholipids.  Indeed, we find a rapid increase in a peak matching the 

mass of 16:0/16:0 (1,2-dipalmatoyl-rac-glycero-3-phosphoglycerol) upon stimulation 

(Figure 4-4h).  Long-chain acyl-CoA concentration has an inverse dose-response 

relationship to glucose (Figure 4-2b), further suggesting that esterification associated 

with elevated glucose facilitates removal of long chain acyl-CoAs from the cytosol.  

These results are consistent with the hypothesis that a decrease in long-chain acyl-CoAs 

facilitates KATP channel closure and enhances the triggering of GSIS.     
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Figure 4-3.  Glucose Stimulation Time Course and Glucose Dose-Response Profiles for 
Representative Glycolytic, TCA, and Adenine Nucleotide INS-1 Metabolites.   

INS-1 cells in KRHB containing 0.5 mM glucose stimulated to 10 mM glucose over 45 min (a-d).  
INS-1 cells incubated in 0 to 10 mM glucose and sampled at 30 min (e-f).  (a,e) 
phosphoenolpyruvate an 2-phosphoglycerate + 3-phosphoglycerate, (b,f) fumarate and malate, 
(c,g) ADP and ATP, (d,h) ATP/ADP ratio.  Red lines are metabolites.  Dashed lines are % 
maximum insulin secretion rate.  Error bars represent 1 SEM, n = 3.   

 

KATP independent pathways.  Many hypotheses on the biochemical basis for the 

amplifying pathway of GSIS have been put forth.4-6 The metabolomic data obtained here 

provide an opportunity to investigate these hypotheses.  The primacy of pyruvate 

carboxylase compared to pyruvate dehydrogenase as a key entry point of glycolysis-

derived carbons into the mitochondria30 is supported by our observation that sharp 

increases in Span 2 metabolites, malate and fumarate, occur immediately after the 

addition of glucose to the INS-1 cells while Span 1 metabolites, and metabolites derived 

from Span 1 (i.e.  α-ketoglutarate) rise later, during the second phase of insulin secretion 

(Figure 4-2b).   

 

Malonyl-CoA Mechanism.  A prominent theory is the malonyl-CoA / long-chain 

acyl-CoA model which states that glucose derived acetyl-CoA is carboxylated to form 

malonyl-CoA by acetyl-CoA-carboxylase (ACC).  The resulting malonyl-CoA 

accumulation inhibits carnitine plamitoyl transferase 1 (CPT1) resulting in build-up of 

long-chain acyl-CoAs (or downstream metabolites) in the cytosol by blocking transport 

into the mitochondria for oxidation.  According to this model, long-chain acyl-CoAs or 
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downstream metabolites act as signaling molecules.  Our data are consistent with this 

idea in the following ways: 1) malonyl-CoA rapidly rises following glucose stimulation; 2) 

AMP levels decrease immediately after glucose addition which would be expected to 

reduce activity of AMPK and reduce ACC phosphorylation;  3) phospho-ACC levels 

decrease rapidly within 5 min of glucose addition; 4) citrate accumulates to allow 

allosteric activation of ACC activity;31, 32  5) palmitic acid and other long chain fatty acids 

decrease reducing their negative feedback to ACC32; 6) acetyl-CoA levels spiked rapidly 

before 1st phase insulin secretion (Figure 4-4); and 7) an increase in PG 16:0/16:0.  

Interestingly, we observed a rapid decrease in long-chain acyl-CoAs.  We do not 

consider this result to be a challenge to the malonyl-CoA model because the decrease in 

long-chain acyl-CoAs is prior to accumulation of malonyl-CoA indicating a rapid increase 

in consumption that is independent of malonyl-CoA.  These results are consistent with 

the idea that downstream metabolic products of long-chain acyl-CoAs may provide direct 

coupling factors for the amplifying pathway rather than the long-chain acyl-CoAs 

themselves.33 Thus, in this interpretation, production of diacylglycerols and perhaps 

other glycerolipids consume the supply of long-chain acyl-CoAs provided by the 

malonyl-CoA pathway and act as more proximate coupling factors.  These findings help 

reconcile the discrepancy between the idea that long-chain acyl-CoAs have direct 

inhibiting effects on insulin secretion at the KATP channel but their partitioning into the 

cytosol is presumed to augment secretion in the malonyl-CoA model.  This view 

illustrates an interesting way that the triggering and amplifying pathways can interact in 

GSIS, i.e.  increased consumption of long-chain acyl-CoAs helps close the KATP channel 

and produces downstream signals to amplify secretion. 
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Figure 4-4.  Glucose Stimulation Time Course Profiles for Metabolites and ACC Involved 
in the Malonyl-CoA Mechanism.   

INS-1 cells in KRHB containing 0.5 mM glucose stimulated to 10 mM glucose over 45 min (a-h).  
(a) AMP, (b) acetyl-CoA, (c) citrate + isocitrate, (d) NDPH/NADP+ ratio, (e) malonyl-CoA, (f) 
glycerol-3-phosphate, (g) plamitoyl-CoA, (h) 1,2-dioctadecanoyl-rac-glycero-3-phosphoglycerol.  
Red lines are metabolites.  Dashed lines are % maximum insulin secretion rate.  Error bars 
represent 1 SEM, n = 3.  (i) Western blot of phospho-ACC 0, 5, and 25 min post stimulation with 
10 mM glucose.  (Western blot data by Mary Treutelaar). 

 

Succinate Mechanism.  Succinate has been proposed as a key metabolite that 

supplies second messengers for the KATP independent pathway based on observations 

that potent secretagogues have in common the ability to provide HMG-CoA reductase 

with substrates (NADPH and HMG-CoA) or their precursors.34   

According this theory, mevalonate, the product of HMG-CoA reductase or one of its 

downstream metabolites contributes to insulin secretion.  We were unable to detect 

mevalonate directly; however, we observed a substantial increase in succinate and 

decrease in HMG-CoA, similar to previous results35 suggesting consumption of this 

metabolite to form mevalonate (Figure 4-5b).  This change was accompanied by a slight 

increase in NADPH and sustained increase in NADPH/NADP+ ratio which could help 



81 
 

drive the reaction towards mevalonate (Figure 4-5d).  We also observed an increase in 

farnesyl pyrophosphate, a downstream product of this pathway that is involved in 

isoprenylation of proteins which has been implicated in GSIS36, 37 (Figure 4-5c).   

The succinate pathway has generally been discussed from the view of anaplerotic 

reactions which could drive the production of mevalonate.34 The near depletion of HMG-

CoA with 10 mM glucose within 10 min suggests that glucose does not provide sufficient 

succinate to maintain a high level of HMG-CoA.  Therefore, our results are consistent 

with a model in which a decrease in AMP and increase in NADPH help activate and 

drive the reduction of HMG-CoA to mevalonic acid while anaplerosis provides HMG-CoA 

substrate at a limiting level.  If a downstream product of this reaction is important for 

GSIS, the low level of HMG-CoA would potentially limit secretion at longer times in INS-1 

cells, possibly contributing to the reduction in insulin secretion in the 2nd phase. 
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Figure 4-5.  Glucose Stimulation Time Course and Glucose Dose-Response Profiles for 
Metabolites Involved it the Succinate Mechanism of GSIS.   

INS-1 cells in KRHB containing 0.5 mM glucose stimulated to 10 mM glucose over 45 min (a-d).  
INS-1 cells incubated in 0 to 10 mM glucose and sampled at 30 min (e-f).  (a,e) succinate, (b,f) 
HMG-CoA, (c,g) farsenyl pyrophosphate, (d,h) NADPH/NADP+ ratio.  Solid red lines are 
metabolites.  Dashed blue lines are % maximum insulin secretion rate.  Error bars represent 1 
SEM, n = 3. 
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Glutamate hypothesis.  Another theory holds that glutamate is an important 

coupling factor in GSIS.  We find no changes in glutamate levels with glucose 

concentration or time following glucose application (Figure 4-6) in agreement with 

several other reports.4 However, if INS-1 cells are stimulated with [U13C]-glucose, then 

the pool of glutamate becomes substantially labeled after 60 min suggesting flux through 

the glutamate pool (Figure 4-6c).  Thus, our data do not support the hypothesis that 

increases in intracellular glutamate, per se, facilitate GSIS; however, participation in non-

anaplerotic cyclic pathways (e.g. aspartate-malate shuttle) could play an important role. 
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Figure 4-6.  Glutamate Glucose Stimulation Time Course, Dose-Response, and 
Isotopomer Distribution Profiles 

INS-1 cells in KRHB containing 0.5 mM glucose stimulated to 10 mM glucose over 45 min (a).  
INS-1 cells incubated in 0 to 10 mM glucose and sampled at 30 min (b).  Solid red lines are 
metabolites.  Dashed blue lines are % maximum insulin secretion rate.  Error bars represent 1 
SEM, n = 3.  (c) Incorporation of 13C into glutamate after 60 min of stimulation with [U-13C]-
glucose.  Error bars represent 1 SEM, n = 3.  ([U-13C]-glucose data by Mahmoud Azzouny). 

 

ZMP.  A novel finding from these experiments was a 10-fold increase in ZMP within 

25 min of step increase in glucose (Figure 4-2a).  ZMP is an intermediate of IMP 

synthesis and is produced through the PPP.  Accordingly, we also found accumulation of 

PPP intermediates glucose-6-phosphate, pentose-phosphates, and sedoheptulose.  

phosphates with glucose.  The accumulation of immediate ZMP precursors 

phosphoribosyl pyrophosphate and glycinamide ribotide (Figure 4-2a) shows kinetics 

that are consistent with synthesis of ZMP through this pathway.  ZMP has been 

generated in vivo by exposing β-cells to AICA riboside (AICAR) which is phosphorylated 

intracellularly to ZMP (AICA ribotide).  Such studies have demonstrated decreased GSIS 

with acute exposure to AICA riboside;38, 39 in some studies AICA riboside in perfused rat 
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pancreas and isolated islets demonstrated potentiation of insulin release.40, 41  To 

determine if ZMP production could influence GSIS, we treated cells with AICAR and 

glucose simultaneously.  AICAR elevated ZMP to ~4x endogenous levels and eventually 

led to a slight but significant inhibition of GSIS (Figure 4-7b).   

ZMP is a known AMPK agonist; but, several observations argue against the 

possibility of ZMP acting through AMPK in this study.  In vitro, AMP is 37-fold more 

active than ZMP in activating AMPK.42  Following a step change in glucose from 0.5 to 

10 mM glucose, ZMP increased from ~0.4 to ~4 nmole/mg protein while AMP decreased 

from ~10 to ~ 5 ng/mg protein.  Therefore, ZMP at 10 mM glucose would be expected to 

provide negligible activation of AMPK relative to AMP at 0.5 mM glucose unless 

compartmentalization or other factors affected their relative potencies in vivo.  Further, 

AMPK activation should result in decreased malonyl-CoA levels through phosphorylation 

and inactivation of ACC; however, AICAR had no effect on malonyl-CoA (data not 

shown) and re-phosphyorylation of ACC was not observed after 25 min of stimulation 

(Figure 4-4i).  Therefore, while ZMP may restrain GSIS, at endogenous levels this effect 

does not seem to be through AMPK but perhaps through an alternate route such as 

altering lipid metabolism which AICAR has been shown to do independent of AMPK 

activation.43 
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Figure 4-7.  Insulin release rate in INS-1 with enhanced ZMP formation.   

INS-1 cells stimulated with 10 mM glucose with or without 25 µM AICA-riboside for 60 min.  (a) 
ZMP level in INS-1 cells over 60 min glucose.  Error bars represent 1 SEM, n = 3.  (b) insulin 
secretion rate measured by change in incubation buffer insulin concentration over indicated time 
period.  Error bars represent 1 SEM, n = 8.  Asterisk indicates significant difference in insulin 
release rate with p < 0.05 

 

Other Metabolites.  Besides the metabolites discussed above, we detected many 

additional metabolites that were affected by glucose.  Among this group, we found 

several substrates for glycosyltransferases including GDP-mannose, GDP-fucose, UDP-

N-acetylglucosamine + UDP-N-acetylgalactoseamine, UDP-glucose, UDP-xylose, and 

UDP-d-galacturonate.  Of these, GDP-mannose shows by far the greatest change (12-

fold increase) following glucose treatment suggesting a potential role in response to 

glucose by the INS-1 cells.  Roles for these pathways in β-cells have not yet been 

extensively explored.  We also observed decreases in pantothenic acid with glucose.  As 

this metabolite is important for CoA synthesis, its decrease may reflect consumption for 

producing CoAs needed for β-cell function.  Besides long-chain acyl-CoAs and farnesyl 
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pyrophosphate discussed above, we found changes in other compounds involved in lipid 

metabolism including decreases in free fatty acids and citicoline, an intermediate in 

production of phosphatidylcholine.  The decrease in free fatty acids may indicate release 

from the cells or metabolic consumption, for example in production of lipid signaling 

molecules.  While investigation of all these pathways is beyond the scope of one paper, 

these results indicate that this method may be used for studying a wide range of 

metabolites and pathways in regard to insulin secretion. 

While observations in INS-1 may not be fully applicable to islets, metabolomic study 

of INS-1 832/13 affords several advantages over primary islets including high specificity 

β-cell metabolism (no α or γ cells are present) and more precise measurements due to 

ease of manipulation and procurement.  One limitation in these studies is the lack of 

accurate measurements for pyruvate and oxaloacetate which are not detected by the 

method used.   

 

Conclusions. 

The time-resolved and glucose-dose response metabolomic data generated using 

LC-MS has provided a novel way to test and extend several hypotheses for the 

biochemical mechanism of GSIS.  The simultaneous measurement of AMP, citrate, long-

chain acyl-CoAs, and malonyl-CoA show a novel interaction of metabolites that are 

important in both the triggering and amplifying pathways of secretion thus helping to 

refine the malonyl-CoA hypothesis.  We find support for the succinate hypothesis with 

measurements that confirm previous findings including rapid increases in NADPH and 

decreases in HMG-CoA.  Detection of farnesyl pyrophosphate provides a novel 

metabolite that may play a role in GSIS from this pathway.  Finally, we find that ZMP can 

inhibit GSIS suggesting a previously unknown role for this compound as an endogenous 

metabolite.   
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CHAPTER 5                                                                                                              

Alterations of β-Cell Metabolism Induced by Lipotoxicity and Glucotoxicity 

 

Introduction 

Type 2 diabetes (T2D) is characterized by insulin resistance and the dysregualtion 

of pancreatic β-cell insulin secretion.  Insulin resistance, usually in the setting of obesity, 

is associated with increased flux of glucose and other nutrients such as fatty acids to the 

β-cell.  This leads to increased demand for insulin secretion.  Although β-cells can adapt 

to this increased demand, in genetically predisposed individuals the β-cell can eventually 

fail in this environment.  β-cell failure, both dysfunction and loss of β-cell mass, leads to 

reduced insulin secretion and hyperglycemia.  In turn, hyperglycemia accelerates β-cell 

deterioration which is further exacerbated by elevated levels of free fatty acids often 

associated with obesity.1-3 Despite extensive research, the biochemical mechanisms for 

deterioration of β-cell function are not fully understood.  It is widely believed that a 

contributing factor is exposure to excess glucose (glucotoxicity), lipids (lipotoxicity), or 

both (glucolipotoxicity).   

In vitro models have been developed that mimic the alterations in glucose 

stimulated insulin secretion (GSIS) in T2D, specifically elevation in basal levels of insulin 

secretion and blunted secretion at stimulatory glucose concentrations.  These models 

are generated by treating clonal β-cell lines or isolated rodent islets in culture with 

elevated levels of free fatty acids (FFA, lipotoxic model),  glucose (HG, glucotoxic 

model), or both (glucolipotoxic model) for 1 to 7 days independenly.4 Previous studies of 

lipotoxicity and glucotoxicity in islets and clonal β-cells have focused primarily on 

determining alterations in gene5-8 and protein6, 8-15 expression.  While highly informative, 

these studies may overlook modifications to β-cell metabolism that underlie the 

dysfunction.  It is likely that global metabolite measurement in β-cells will provide insight 

because GSIS involves numerous metabolic pathways to facilitate Phase 1 and Phase 2 

GSIS as recently reviewed16-18 and discussed in Chapter 4.   
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Metabolite measurements to date in lipotoxic and glucotoxic models are rare and 

have generally been performed at single time points that do not allow for investigation of 

the temporal changes in glucose metabolism.  Since the established mechanism of 

GSIS involves the metabolism of glucose to downstream products and coupling factors 

that signal insulin release16-18, we chose to employ a temporally-resolved metabolomics 

approach to elucidate changes in metabolism that may impact dysregulation of GSIS in 

these disease models.  Identification of changes in metabolites levels and/or metabolic 

pathways could lead to new insights in the mechanisms of lipotoxictiy and glucotoxicity 

in β-cells. 

In this study, we quantify ~90 metabolites impacted by glucose stimulation from 

several different metabolic pathways in INS-1 832/13 cells exhibiting lipotoxic and 

glucotoxic phenotypes.  Cells were pre-incubated in FFA or HG culture media and then 

stimulated with 10 mM glucose after a 2 h incubation in low glucose (1 mM) with no 

other fuels.  Measurements were taken 0, 5, 25, and 45 min post stimulation with 10 mM 

glucose.  The timeframe investigated allows for the determination of metabolic changes 

associated with Phase 1 and Phase 2 GSIS.  We also treated cells with 10 mM 

[U-13C]-glucose to assess glycolytic flux.  These measurements allowed assessment of 

variety of metabolic pathways including glycolysis, the TCA cycle, and pentose 

phosphate shunt.  Proposed GSIS coupling factors including NADPH and long-chain 

acyl-CoAs generated by pyruvate/citrate, pyruvate/isocitrate, pyruvate/malate, and 

glycerolipid/fatty acid cycling pathways implicated in both amplifying and triggering 

signals for GSIS were measured as well.16-18 

In the glucotoxic model, profound alterations in the PPP metabolites were observed 

(increasing more that 200-fold relative to control) demonstrating a substantial alteration 

in glucose usage.  We also observed high levels of gluconate, a metabolite not 

previously quantified in β-cells that could impact Ca2+ signaling.  We report broad and 

persistent increases in key energy ratios in both lipotoxic and glucotoxic models 

supporting a metabolic basis for dysregualtion of GSIS and hyperinsulinemia at basal 

glucose levels.   
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Experimental 

Materials and Reagents.  All chemicals were purchased form Sigma-Aldrich (St.  

Louis, MO) unless otherwise noted.  HPLC grade acetonitrile was purchased from 

Burdick & Jackson (Muskegon, MI).  RPMI media, fetal bovine serum, 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and penicillin-streptomycin 

were purchased from Invitrogen Corp.  (Carlsbad, CA).  Cells lifters and 10 cm 

polystyrene non-pyrogenic culture dishes were purchased from Corning (Lowell, MA).  

KRHB (Krebs-Ringer-HEPES buffer) was prepared containing 10 mM glucose, 20 mM 

HEPES, 118 mM NaCl, 5.4 mM KCl, 2.4 mM CaCl, 1.2 mM MgSO4, and 1.2 mM 

KH2PO4 and adjusted to pH 7.4 with HCl.  10 mM FFA solution (3.33 mM palmitate, 

6.66 mM oleate) in KRHB was prepared by adding palmitate and oleate sodium salts 

finely ground with mortar and pestle and 10% FFA free BSA to a centrifuge tube, diluting 

with KRHB and stirring at ~37 °C for 24 h.  The pH was adjusted to 7.4 with 1 M NaOH.  

FFA media (1 mM FFAs) was made by diluting the 10X stock with supplemented RPMI 

and sterile filtering with a Whatman 0.22 µm filter.  A control was made using the same 

procedure, without addition of FFAs. 

 

Cell Culture.  INS-1 832/13 cells were cultured in RPMI supplemented with 2 mM 

glutamine, 1 mM sodium pyruvate, 10% FBS, 10 mM HEPES, 100 U/mL penicillin, 

100 µg/mL streptomycin, 250 ng/mL amphotericin B, and 50 uM β-mercaptoethanol.  

Cells were plated at a density of ~14x103 cells/cm2 and grown in 6 cm culture dishes or 

6-well plates at 37 °C and 5% CO2 in a humidified atmosphere to confluence over ~5 d.  

For lipotoxicity studies, cells were incubated an additional 5 days in supplemented RPMI 

+ 1% fatty acid free BSA (control) or 1% fatty acid free BSA + 1 mM fatty acids (2:1 

oleate:palmitate).  For glucotoxicity studies, cells were either incubated an additional 

3 days in fully supplemented RPMI alone (control) or supplemented RPMI containing 25 

mM glucose.  Accelerated growth with FFA and HG treatment relative to controls was 

observed in preliminary experiments involving non-confluent cells.  In addition, 

expression of lipotoxic and glucotoxic phenotypes was inconsistent without prior 

confluence, presumably due to utilization of excess nutrient for cell growth.  Hence, 

treatments were initiated after confluence was reached.   
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Insulin and Protein Measurement.  Following exposure to lipotoxic or glucotoxic 

incubation conditions, cells were transferred to KRHB containing 0.2% BSA and 1 mM 

glucose.  After 2 h, the buffer was replaced with KRHB containing 0.2% BSA and either 

3 mM or 10 mM glucose for 30 min.  Following stimulation, aliquots of KRHB were 

removed from each well, briefly stored on ice and centrifuged at 3000 x g for 3 min to 

pellet any suspended cells.  An aliquot of supernatant was transferred to a fresh vial, 

stored at -20 °C, and assayed for insulin.  Total insulin was extracted by aspirating the 

buffer, adding 2 mL of 0.2 mM HCl in 75:25 ethanol:water to each well, and incubating 

on ice for 2 h.19 The cells were scraped, transferred to a microcentrifuge tube and 

centrifuged.  Supernatants were diluted with KRHB + 0.2% BSA and insulin measured 

using a Millipore Rat/Mouse insulin ELISA Kit.  Total protein was measured by adding 2 

mL of 7 M urea / 2 M thiourea / 1% CHAPS buffer to each well and scraping to dissolve 

proteins.  Protein content was determined by Bradford Assay.20  

 

Glucose Stimulation Time Course Metabolite Measurements.  Metabolites were 

measured following exposure to lipotoxic or glucotoxic incubation conditions.  Cells were 

transferred to KRHB containing 1 mM glucose for 2 h then stimulated with KRHB 

containing 10 mM glucose for 0, 5, 25, and 45 min.  One set of samples was rinsed 

briefly (~10 s) with KRHB (-120 min time point) to measure metabolite levels in FFA or 

HG culture media.  Carbon flux through glucose was also assessed by stimulating cells 

with [U-13C]-glucose for 25 min.  For each time point, a set of cell plates was rinsed, 

metabolism quenched, and metabolites extracted using the procedure described 

previously.21  Briefly, cell plates were rapidly rinsed with water and quenched with liquid 

nitrogen.  Metabolites were extracted with 75% 9:1 methanol:chloroform 25% water and 

assayed by HPLC-TOF-MS using a hybrid hydrophobic interaction liquid 

chromatography/anion exchange method similar to that descirbed previously.22 Targeted 

data processing was performed as described previously.21 Metabolites implicated in 

GSIS (e.g. glycolysis and TCA cycle) in previous reports were quantified directly using 

standards to confirm peak assignments and 13C labeled internal standards, when 

available, to improve precision (Table 4-1).   

Statistics.  Data are expressed as the mean ± standard error of the mean (SEM).  

Statistical significance was determined using a non-corrected two-tailed Student's t test, 

unpaired assuming equal variance.  A p-value of < 0.05 was considered significant. 
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Results and Discussion 

Insulin Secretion.  Insulin secreted into media from INS-1 832/13 cells was 

measured following treatment with 1 mM free fatty acids (FFA) for 5 days, or 25 mM 

glucose (HG) for 3 days, conditions similar to those previously described as inducing 

glucotoxic or lipotoxic phenotypes in β-cells4, 9, 23-25(Figure 5-1 a-b).  Prolonged 

incubation in FFAs increased insulin secretion at 3 mM glucose by 280% relative to 

control while secretion at 10 mM glucose was blunted to 60% of control.  The increase in 

insulin secretion from 3-10 mM glucose in the FFA treated cells was only 13% compared 

to a 530% increase for control cells.  These results were similar to previous studies of 

INS-1 cells6, 23 and rat islets.26 Similar results were observed for HG conditions in and 

3 mM glucose increased insulin release by 160% (not significant) relative to control and 

10 mM glucose stimulated release was blunted to a 20% increase over baseline while 

control cells increased 440% from 3-10 mM glucose (Figure 1a).  Similar results were 

observed in previous studies of INS-19 and MIN615 cells.  Additional studies found no 

change in basal insulin release in INS-1E cells after 3 d of 20 mM glucose treatment9 

and a decrease in basal insulin release of ~40% in INS-1 after 4 d in 30 mM glucose.7 

Total insulin content (Figure 5-2a) with FFA and HG treatment was reduced by 37% and 

60% relative to controls, consistent with previous reports of β-cells expressing lipotoxic26 

and glucotoxic15 phenotypes.  Total protein content (Figure 5-2b) was similar between 

each experimental and control sample indicating equivalent biomass; 42% higher levels 

of protein were observed for FFA samples relative to HG samples, possibly due the 

additional 2 d of cell growth.   
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Figure 5-1.  Insulin Release from INS-1 Cells with 3 and 10 mM Glucose Post Treatment 
with Free Fatty Acids and High Glucose.   

(a) FFA group cultured in RPMI supplemented with 1 mM 1:2 palmitate:oleate bound to 1% fatty 
acid free BSA for 5 d, incubated in KRHB containing 1 mM glucose for 2 h, and stimulated with 
either 3 or 10 mM glucose in KRHB containing 0.2% BSA for 30 min.  CTR group treated 
identically, without addition of free fatty acids to culture media.  Error bars represent 1 SEM, n = 
6.  (b)  HG group cultured in RPMI supplemented with 25 mM glucose for 3 d, incubated in KRHB 
containing 1 mM glucose for 2 h, and stimulated with either 3 or 10 mM glucose in KRHB 
containing 0.2% BSA for 30 min.  CTR group treated identically with 11 mM glucose in culture 
media.  Error bars represent 1 SEM, n = 3.  Asterisk represents p < 0.05. 
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Figure 5-2.  Total Insulin and Total Protein in INS-1 Cells Treated with Free Fatty Acids 
(1 mM) or High Glucose (25 mM).   

(a) Total insulin in INS-1 cells.  FFA group cultured in RPMI supplemented with 1 mM 1:2 
palmitate:oleate bound to 1% fatty acid free BSA for 5 d.  CTR group treated identically, without 
addition of free fatty acids to culture media.  HG group cultured in RPMI supplemented with 25 
mM glucose for 3 d.  CTR group treated identically with 11 mM glucose in culture media.  Error 
bars represent 1 SEM, n = 6 and 3 for FFA and HG experiments, respectively.  (b) Total protein in 
INS-1 cells.  Cells treated identically as described for total insulin (above).  Error bars represent 1 
SEM, n = 6 and 3 for FFA and HG experiments, respectively.  Asterisk represents p <0.05. 

 

Metabolomics.  Metabolites from the lipotoxic and glucotoxic models were 

quantified relative to their respective controls at the time 0 (Figure 5-3) and over the 5, 

25, and 45 min post stimulation time points studied (Figure 5-4).  These data are 

replotted as scatter plots in Figure 5-9 through Figure 5-11 to highlight specific 

metabolite changes.  In control conditions, the metabolite concentrations were 

essentially identical to each other indicating excellent reproducibility of the biological and 

analytical methods and minimal impact of BSA (control for FFA) on metabolite 

concentrations.  Following FFA and HG treatments, we observed significant alterations 

in metabolite levels relative to controls in all metabolite classes.  The changes in 

lipotoxic and glucotoxic models point to alterations in β-cell metabolism concurrent with 

alterations in insulin secretion.   

In general, changes were more pronounced in HG conditions relative to FFA 

treatment with significant increases in nearly all glycolysis, TCA, PPP, sugar nucleotide 

donors, and free fatty acid metabolites relative to control.  HG treated cells also 

displayed blunted increases in metabolite concentrations on stimulation as fewer 

analytes changed significantly with 10 mM glucose stimulation relative to time 0 

compared with controls or FFA treated cells (Figure 5-3).    
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Figure 5-3.  Time-Course Changes in Metabolite Concentration with Glucose Stimulation 
for Free Fatty Acid and High Glucose Treated INS-1 832/13 Cells.   

Cells incubated in 11 mM glucose + 1 mM fatty acids (1:2 palmitate:oleate) + 1% BSA for 5 d or 
25 mM glucose for 3 d.  Cells transferred to KRHB + 1 mM glucose for 2 h and stimulated with 10 
mM glucose for 45 min.  Metabolite levels relative to time 0 for each group.  Asterisk represents p 
< 0.05 relative to time-0, n = 3. 
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Figure 5-4.  Alteration in Metabolite Levels Relative to Controls in Culture and with 
Glucose Stimulation for Free Fatty Acid and High Glucose Treated INS-1 832/13 Cells.   

Cells incubated in 11 mM glucose + 1 mM fatty acids (1:2 palmitate:oleate) + 1% BSA for 5 d or 
25 mM glucose for 3 d.  Cells transferred to KRHB + 1 mM glucose for 2 h, and stimulated with 
10 mM glucose for 45 min.  Differences in metabolite levels relative to control for each time point 
and condition.  Asterisk represents p < 0.05 relative to control, n = 3. 
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Glycolysis.  As the pathway comprising the first steps of glucose metabolism 

(Figure 1-3), glycolysis plays a crucial role in GSIS and alterations in these metabolites 

with FFA or HG conditions could have substantial implications for insulin release.   

Fatty acid.  Hexose-phosphates decreased in FFA culture (-120 min) despite the 

presence of 11 mM glucose in the RPMI media, but increased at time 0 and post 

stimulation (130 to 220%) relative to control (Figure 5-4).  This observation suggests 

decreased utilization of glucose in the lipotoxic model under culture conditions where 

free fatty acids are an abundant energy source and increased glycolytic flux with glucose 

stimulation post starvation.  These findings conflict with a previous study that 

demonstrated reduced glucose-6-phosphate levels in islets which the authors attributed 

to increased phosphofructokinase activity after 24 h culture with 0.25 mM oleate.27 This 

difference could be due to variation in β-cell type, FFA composition, and duration of 

exposure.  Increases in the majority of glycolytic intermediates with 10 mM glucose 

stimulation as seen in control cells was not affected by FFA treatment (Figure 5-3). 

High Glucose.  All measured glycolytic metabolites increased with HG treatment 

relative to control with the exception of hexose-phosphates which were significantly 

elevated at -120 min and time 0, showed no significant change 5 and 25 min post 10 mM 

glucose stimulation, and a significant 20% decrease at 45 min.  Although absolute 

hexose-phosphate levels were not significantly different 25 min post stimulation, 

experiments with [U-13C]glucose demonstrate enhanced glycolytic flux in HG cells as a 

larger portion of the hexose phosphate pool is turned over at 25 minutes (Figure 5-5).   

This is supported by the finding of increased levels of downstream metabolites such as 

fructose 1,6-bisphosphate and acetyl-CoA (Figure 5-3). 
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Figure 5-5.  Incorporation of 13C into Hexose-Phosphates with [U-13C]-glucose 
Stimulation in Free Fatty Acid and High Glucose Treated INS-1 832/13 Cells.   

Cells incubated in 11 mM glucose + 1 mM fatty acids (1:2 palmitate:oleate) + 1% BSA for 5 d or 
25 mM glucose for 3 d.  Cells transferred to KRHB + 1 mM glucose for 2 h, and stimulated with 
10 mM [U-13C]-glucose for 25 min.  Metabolite peak areas normalized to maximum value 
measured in each control + experimental group.  Error bars represent 1 SEM, n = 3. 

 

 

TCA cycle.  The TCA cycle plays a critical role in cellular respiration by generating 

reduced cofactors for ATP production in the electron transport chain both through 

oxidation of carbon from glucose and beta-oxidation of fatty acids (Figure 1-4).  

Furthermore, key proposed coupling factors to GSIS such as NADPH and malonyl-CoA 

are generated by cyclic pathways comprised of anaplerotic TCA cycle metabolites 

(Figure 1-2b).  Hence, changes in TCA metabolite concentrations are expected to have 

a substantial impact on GSIS. 

Fatty acids.  In the lipotoxic model, span-1 TCA metabolites (citrate + isocitrate, α-

ketoglutarate, and succinyl-CoA) were elevated at all time-points relative to controls 

whereas span-2 metabolites (fumarate and malate) were lower (Figure 5-4).  This 

observation suggests decreased flux through pyruvate carboxylase which converts 

pyruvate to malate through oxaloacetate consistent with reports of ablated pyruvate 

cycling in a lipotoxic model of INS-123 (see Figure 1-2b and Figure 1-4).  [U-13C]-glucose 

stimulation data suggests increased exchange of TCA metabolites with glutamate in FFA 

treated cells as a larger percentage of the glutamate pool is turned-over (65 versus 50% 
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decrease in [U-12C]-glutamate) after 25 minutes (Figure 5-6 c).  Thus, the increased 

generation of glutamate from α-ketoglutarate in the TCA cycle suggests a catapleurotic 

flux of substrates which could contribute to the relative reduction in fumarate and malate.  

Aspartate is derived primarily from transamination of glutamate to oxaloacetate forming 

aspartate and α-ketoglutarate in the mitochondria as part of the malate-aspartate shuttle 

under increased glucose flux conditions.  Aspartate is carried to the cytosol to 

regenerate oxaloacetate and malate, essentially carrying NADH into the mitochondria.  

Reduction in this shuttle in FFA treated cells is suggested by the smaller increase in 

‘unlabled’ malate found in cells following FFA treatment compared to control cells 

(Figure 6a).  Thus, the reduction in oxaloacetate and malate could limit the shuttle 

activity and reduce insulin secretion by limiting the transfer of NADH flux into the 

mitochondria which is important in maintaining insulin secretion28, 29. 

High glucose.  In the glucotoxic model, citrate + isocitrate, α-ketoglutarate, fumarate, 

and malate were elevated at all time points.  The largest differences were observed at 

time-0 with levels 150, 1100, 1100, and 1600% relative to controls, respectively.  These 

findings are consistent with reports of a sustained elevation in citrate and malate 

concentrations in HG treated INS-1 cells8 and suggest a continued high rate of energy 

metabolism to deplete nutrient stores (e.g. triglycerides and glycogen) produced during 

prolonged incubation in high glucose.  The observation that incorporation of 

[U-13C]-glucose carbon is equivalent or greater for malate and citrate following high 

glucose exposure (Figure 5-6 a and b) support the concept of increased metabolic rate 

in the glucotoxic model as opposed to an alternate interpretation of permanently 

elevated levels due to pathway blockage and/or severe metabolic dysfunction.  Non-13C 

labeled malate increased or remained constant presumably due to the supply from 

substantial pools of non-13C labeled glutamate and aspartate and high malate-aspartate 

shuttle activity. 
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Figure 5-6.  Incorporation of 13C into Citrate, Malate, and Glutamate with [U-13C]-glucose 
Stimulation in Free Fatty Acid and High Glucose Treated INS-1 832/13 Cells.   

Cells incubated in 11 mM glucose +1 mM fatty acids (1:2 palmitate:oleate) + 1% BSA for 5 d or 
25 mM glucose for 3 d.  Cells transferred to KRHB + 1 mM glucose for 2 h, and stimulated with 
10 mM [U-13C]-glucose for 25 min.  Metabolite peak areas normalized to maximum value 
measured in each control + experimental group.  Error bars represent 1 SEM, n = 3. 
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Pentose Phosphate Pathway.  The pentose phosphate pathway (Figure 1-5) has 

been implicated in the alteration of metabolism with HG treatment.  A decrease in 6-

phosphogluconate dehydrogenase (the first and rate limiting enzyme linking glycolysis to 

the PPP), with HG treatment was reported in a study of MIN6 and over-expression of 

G6PD improved insulin secretion.13 The PPP has the potential to serve as a 

compensatory pathway to metabolize excess glucose into nucleotides, nucleic acids, 

and aromatic amino acids.  The PPP also generates the proposed coupling factor 

NADPH which is required to regenerate the antioxidant glutathione.    

Fatty Acids.  Pentose phosphate levels were lower or not significantly different from 

controls in FFA treated cells at -120, 0, and 5 min time-points and increased significantly 

at 25 and 45 min to 126 and 140% relative to controls (Figure 5-4).  Similar results were 

observed for 6-phosphogluconate, and sedheptulose-7-phosphate although a significant 

elevation at 140% of control was observed at time 0 for 6-phosphogluconate.  

Glycineamide ribonucleotide and ZMP, downstream PPP metabolites in the nucleotide 

synthetic pathway, were both elevated in FFA treated cells at -120 min at 370 and 222% 

relative to controls, respectively, and decreased slightly (70-91% relative to controls) at 

25 and 45 min following stimulation.  The 6-phosphogluconate pool in FFA-treated and 

control cells was labeled similarly with [U-13C]-glucose treatment (Figure 7) suggesting 

that flux through the PPP was relatively unaffected by prolonged exposure to FFA.   

High Glucose.  The most profound alteration in INS-1 metabolism with HG treatment 

occurred in PPP intermediates in agreement with a previous study of INS-1.30  Increases 

in PPP metabolites in HG treated cells ranged from 2 to 220-fold relative to controls at 

time 0 (Figure 5-4).  Glycineamide ribonucleotide and ZMP were elevated modestly at 

the -120 min time point (360 and 250% relative to controls) and increased considerably 

on stimulation to 105 and 15-fold of control, respectively.  The increase in ZMP is 

especially interesting given elevated levels of ZMP are associated with a decrease in 

insulin secretion31, 32 as discussed in Chapter 4.   

Stimulation with  [U-13C]-glucose resulted in increased labeling of the 6-

phosphogluconate pool without changes in the unlabeled pool suggesting both an 

enhanced activity of glucose-6-phosphate dehydrogenase and a relatively slow turnover 

of the non-labeled 6-phosphogluconate pool (Figure 5-7).  These observations are in 

contrast to a study of MIN6 cells, another β-cell cell line33, in which a decrease in 

glucose-6-phosphate dehydrogenase activity was reported and associated with a 

potential decrease in regeneration of reduced glutathione.16 We clearly demonstrate 
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substantial enhancement of the PPP, though we also observed decreased levels of both 

reduced and oxidized glutathione relative to control (Figure 5-8).  A decrease in 

glutathione could contribute substantially to reactive oxygen species (ROS) cytotoxicity 

since β-cells already express abnormally low levels of antioxidant enzymes.13  While this 

finding indicates a reduced antioxidant capacity in the glucotoxic model, it does not 

support a decrease in PPP flux and subsequent decrease in NADPH cycling as the 

cause.   

 

 

T0

25
 m

in T0

25
 m

in

0.0

0.5

1.0

CTR FFA

P
e

a
k

 A
re

a
 R

a
ti

o

(P
e

a
k

 A
re

a
 /
 M

a
x

iu
m

u
m

 P
e

a
k

 A
re

a
)

T0

25
 m

in T0

25
 m

in

CTR HG

0

1

2

3

4

5

6

Stimulation Time / Group

6-phosphogluconate

 

Figure 5-7.  Incorporation of 13C into 6-phosphogluconate and with [U-13C]-glucose 
Stimulation in Free Fatty Acid and High Glucose Treated INS-1 832/13 Cells.   

Cells incubated in 11 mM glucose + 1 mM fatty acids (1:2 palmitate:oleate) + 1% BSA for 5 d or 
25 mM glucose for 3 d.  Cells transferred to KRHB + 1 mM glucose for 2 h, and stimulated with 
10 mM [U-13C]-glucose for 25 min.  Metabolite peak areas normalized to maximum value 
measured in each control + experimental group.  Error bars represent 1 SEM, n = 3. 
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Figure 5-8.  Reduced and Oxidized Glutathione Levels in Free Fatty Acid and High 
Glucose Treated INS-1 832/13 Cells.   

Cells incubated in 11 mM glucose + 1 mM fatty acids (1:2 palmitate:oleate) + 1% BSA for 5 d or 
25 mM glucose for 3 d.  Cells rinsed with KRHB + 10 mM glucose and quenched.  Metabolite 
peak areas normalized to maximum value measured in each control + experimental group.  Error 
bars represent 1 SEM, n = 3.  Asterisk indicates p < 0.05 relative to control. 

 

 

 Nucleotides and Cofactors.  Adenine nucleotides and NAD+ and NADP+ 

nucleotides are important for mediating acute and chronic events in insulin secretion as 

discussed in Chapter 4.  Healthy β-cells have a high ATP/ADP ratio and redox potential 

(NADH/NAD+ and NADPH/NADP+) in growth media that decreases during preincubation 

in low glucose and rapidly increase on glucose stimulation (Figure 5-4 and Figure 5-3). 

Fatty acids.  Mono-, di-, and triphosphorylated adenosine nucleotides levels were 

lower relative to control following FFA exposure at -120 and 0 min time points and 

increased to a similar level following glucose exposure (Figure 5-9 a-b).  The ATP/ADP 

ratio was significantly increased at 128% of control (Figure 5-9d,h and Figure 5-10c,f) 

but was similar to control cells following 10 mM glucose stimulation.  Guanosine 

nucleotides were similarly lower than control while CMP, IMP, and FAD levels were 

elevated at 115-256% relative to control (Figure 5-4).  The NADPH/NADP+ ratio varied 

dynamically and was significantly elevated at 161% of control at time 0, significantly 

lower at 70% of control 5 min post glucose stimulation, and not significantly different at 

25 and 45 min time points (Figure 5-10 c).  These observations suggest a modest 
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increase in energy metabolism to generate ATP at basal levels that may contribute to 

elevated insulin release at basal glucose concentrations. 

High Glucose.  In the glucotoxic model, mono- and di-adenosine and guanine 

nucleotides had decreased concentrations at time 0 from 19 to 37% relative to control 

(Figure 5-9e-f).  ATP/ADP and NADPH/NADP+ ratios were elevated at 364 and 289% 

relative to control (Figure 5-9 h and Figure 5-10 f).  ATP levels were slightly lower 

(Figure 5-9c,g) in agreement with observations for a glucotoxic model in MIN6.15 Similar 

to the lipotoxic model, the findings suggest a substantial elevation in energy metabolism 

at basal glucose levels that may contribute to elevated basal insulin release at basal 

glucose concentrations. 
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Figure 5-9.  Time-Course Adenosine Nucleotide Concentrations with Glucose 
Stimulation in Free Fatty Acid and High Glucose Treated INS-1 832/13 Cells. 

Cells incubated in 11 mM glucose + 1 mM fatty acids (1:2 palmitate:oleate) + 1% BSA for 5 d or 
25 mM glucose for 3 d.  Cells transferred to KRHB + 1 mM glucose for 2 h and stimulated with 10 
mM glucose for 45 min.  Metabolite peak areas normalized to maximum value measured in each 
control + experimental group.  Red solid line = experimental, blue dash = control.  Error bars 
represent 1 SEM, n = 3. 
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Figure 5-10.  Time-Course NADP+ and NADPH Profiles with Glucose Stimulation in Free 
Fatty Acid and High Glucose Treated INS-1 832/13 Cells.   

Cells incubated in 11 mM glucose + 1 mM fatty acids (1:2 palmitate:oleate) + 1% BSA for 5 d or 
25 mM glucose for 3 d.  Cells transferred to KRHB + 1 mM glucose for 2 h and stimulated with 10 
mM glucose for 45 min.  Metabolite peak areas normalized to maximum value measured in each 
control + experimental group.  Red solid line = experimental, blue dash = control.  Error bars 
represent 1 SEM, n = 3. 

 

Long-Chain Acyl-CoAs.  Long-chain acyl-CoAs have been implicated as metabolic 

coupling factors in GSIS34 and can open KATP channels35.  In control cells, long-chain 

acyl-CoAs decrease rapidly on glucose stimulation (Figure 5-3) potentially aiding in KATP 

channel closure. 

Fatty Acids.  In the lipotoxic model, 16:0, 18:0, and 18:1-CoAs were significantly 

elevated at all time-points ranging from 137 to 219% of control (Figure 5-4).  16:1-CoA 

levels were significantly lower and ranged from 44 to 58%, presumably due to excess of 

16:0 and 18:1 FFAs supplied by the media. These elevations in long-chain acyl-CoAs 

post stimulation provide a possible mechanism for decreased GSIS as elevated levels 

could hinder KATP channel closure associated with Phase 1 GSIS.   
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High Glucose.  In the glucotoxic model, all measured long-chain acyl-CoAs were 

significantly lower at -120 min (42 to 65%) of control, not significantly different at time-0, 

and elevated following stimulation.  16:0 and 16:1-CoAs were significantly elevated post 

stimulation ranging from 150 to 190% relative to controls.   

Lipid Precursors.  In control cells, glycerol-3-phosphate increases rapidly in 

concert with the decrease in long-chain acyl-CoAs.  These affects may result in 

synthesis of lipid molecules with signaling implications such as diacyl-phosphoglycerols 

as discussed in Chapter 4.   

Fatty Acids.  In the lipotoxic model, malonyl-CoA levels decreased to 42% of 

controls (-120 min) presumably due to decreased fatty acid synthesis inhibited and 

inhibition of acetyl-CoA carboxylase by excess 16:0 and 18:1 supplied by the FFA media 

(Figure 5-11a).  Glycerol-3-phosphate is similar to control at time 0 and elevated pre- 

and post-stimulation (143 to 240% of control) presumably due to up-regulation for 

increased lipid synthesis (Figure 5-11c). 

High Glucose.  Metabolites involved in lipogenesis were enhanced remarkably in the 

glucotoxic model.  Malonyl-CoA levels were 381% of control at -120 min and remained 

elevated at time 0 and throughout simulation at 253-748% of control (Figure 5-11e) 

presumably due to increased rates of fatty acid synthesis.  Glycerol-3-phosphate levels 

were strongly elevated at -120 min (17-fold higher than control) and remained elevated 

at time 0 and throughout stimulation at 340-863% of control (Figure 5-11g).  Most long-

chain fatty acids were elevated as well with significant increases in 20:0, 22:0, 22:1, 

24:0, 24:1, and 24:2 of 137 to 504% of control (Figure 5-4).   
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Figure 5-11.  Time-Course Metabolite Profiles for Lipid Precursors with Glucose 
Stimulation in Free Fatty Acid and High Glucose Treated INS-1 832/13 Cells.   

Cells incubated in 11 mM glucose + 1 mM fatty acids (1:2 palmitate:oleate) + 1% BSA for 5 d or 
25 mM glucose for 3 d.  Cells transferred to KRHB + 1 mM glucose for 2 h and stimulated with 10 
mM glucose for 45 min.  Metabolite peak areas normalized to maximum value measured in each 
control + experimental group.  Red solid line = experimental, blue dash = control.  Error bars 
represent 1 SEM, n = 3. 

 

Sugar Nucleotide Donors.  Sugar nucleotide donors are not often measured in 

β-cells although several metabolites in this class were observed to increase in control 

cells with glucose stimulation (Figure 5-3), particularly GDP-mannose discussed in 

Chapter 4.  These metabolites are particularly interesting in relation to GSIS in 

conditions of excess nutrient flux due to their role in glucose polymerization, protein 

glycosylation, and signaling.  Sugar nucleotide donors mostly increased relative to 

control in lipotoxic and glucotoxic models (Figure 5-4) with sustained elevations in 

UDP-glucuronate for both models ranging from 157 to 635% of control.  UDP-

glucuronate is an intermediate in ascorbic acid synthesis and is involved in cellular 

detoxification.  Increases in this metabolite could serve as an adaptive response to 

oxidative stress caused by lipotoxic and glucotoxic culture conditions. 
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Gluconate.  Gluconate is a non-enzymatically derived metabolite in mammals 

although it was observed at high levels in HG treated cells in agreement with a previous 

observation of INS-130.  Gluconate can be generated from glucose in vitro with hydrogen 

peroxide which suggests a possible mechanism of gluconate formation with HG 

treatment as several studies have reported increased reactive oxygen species in HG 

treated β-cells4, 13.  Gluconate levels in HG treated cells are 50 to 80-fold higher than 

control (Figure 5-4).  This finding is of particular interest in relation to GSIS since 

gluconate is a Ca2+ chelator and could potentially interfere with Ca2+ signaling required 

for insulin release.  Indeed, alterations in Ca2+ signaling have been reported in a 

glucotoxic model of INS-1 cells which exhibited elevated intercellular Ca2+ and increased 

amplitude and shortened duration of depolarization-evoked rises Ca2+.9  The study linked 

these changes to a defect in the final steps of exocytosis supported by down regulation 

of several proteins required for calcium induced exocytosis of secretory granules.  It 

would be of great interest to determine if the presence of high gluconate concentrations 

in β-cells could also be linked to alteration in Ca2+ signaling, perhaps by permeabilizing 

cells with surfactant to allow introduction of exogenous gluconate. 

 

Conclusions 

INS-1 832/13 cells were treated with free fatty acids and high glucose in culture to 

generate models of lipotoxicity and glucotoxicity that exhibited increased insulin 

secretion at basal glucose levels and blunted insulin secretion at high glucose levels.  

Time resolved metabolomic measurements of these cells were made in culture, at basal 

glucose levels, and following glucose stimulation at time points concurrent with Phase 1 

and Phase 2 GSIS.  Dramatic alterations in metabolism were observed in both lipotoxic 

and glucotoxic models.  An elevation in basal rates of energy metabolism was common 

to both models and resulted in increased ATP/ADP ratio, an important parameter in KATP 

channel closure and insulin release.  Long-chain acyl-CoAs that also impact KATP 

channel closure were substantially altered both pre and post stimulation relative to 

controls.  A large increase in glycolytic flux through the PPP was measured in addition to 

decreased levels of reduced and oxidized glutathione.  Gluconate, a rarely measured β-

cell metabolite was measured at concentrations and has potential implications for Ca2+ 

signaling. 
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CHAPTER 6                                                                                                                

Summary and Future Directions 

 

Summary 

We developed an LC-MS separation method and rapid preparation/quenching 

method for the metabolomic analysis of insulin secreting β-cells and applied these 

techniques to investigate the insufficiently understood metabolic mechanisms of GSIS.  

This investigation provided unique insights into the dynamic changes of established and 

novel β-cell metabolites in models of both healthy and disease states on timescales 

relevant to Phase 1 and Phase 2 GSIS. 

The HILIC/AEX LC-MS separation method developed in this work is well suited to 

the analysis of difficult to chromatograph metabolites.  We screened a variety of 

stationary phases (reverse phase and HILIC) and evaluated chromatographic 

performance (e.g. retention, resolution, and peak symmetry) of representative glycolytic, 

TCA, amino acid, and cofactor metabolites.  A HILIC/AEX method provided superior 

performance and was chosen for further development.  We evaluated the impact of ionic 

strength and column temperature on chromatographic performance and chose 

conditions designed to provide enhanced sensitivity and column lifetime.  The final 

method uses a Luna propyl amine stationary phase with 5 mM ammonium acetate 

mobile phase at pH 9.9 (linear gradient with acetonitrile) and has provided robust 

performance in its application to β-cell metabolomics. 

We developed a rapid sample preparation method for the metabolomic analysis of 

adherent mammalian cells.  Through evaluation of metabolite recovery with extraction 

solvent, extraction time, and number of extraction cycles, we defined a procedure that 

uses a quick water rinse, LN2 quenching, and a rapid single step extraction with 75% 9:1 

MC extraction solvent that yields stable extracts.  We demonstrated that a rapid water 

rinse removes contaminants and substantially improves sensitivity without altering the 

metabolome.  We also showed that LN2 quenching provides convenience with equivalent 

results to conventional cold organic solvent quenching.  We demonstrated that our 
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method detects relative changes in the metabolome with GSIS that are similar to 

previous methods but with an overall increase in sensitivity and speed. 

We applied these chromatographic and extraction methods to study GSIS in INS-1 

832/13 cells on a directed and undirected basis.  Through this effort we quantified an 

unprecedented number of metabolites in β-cells (~90) on a directed basis that changed 

significantly concurrent with GSIS.  These metabolites included those deemed relevant 

to GSIS by previous reports as well as several metabolites novel in the study of GSIS or 

not often measured including glycerol-3-phosphate, ZMP, and GDP-mannose which 

were identified through undirected metabolomic analysis.  Metabolite measurements 

were performed in both time-resolved and glucose-dose response experiments and 

generated metabolomic data that allowed us to test and extend several hypotheses for 

the biochemical mechanism of GSIS in parallel.  For example, the simultaneous 

measurement of AMP, citrate, long-chain acyl-CoAs, and malonyl-CoA demonstrate a 

novel interaction of metabolites that are important in both the triggering and amplifying 

pathways of secretion thus helping to refine the malonyl-CoA hypothesis.  We found 

support for the succinate hypothesis with measurements that confirm previous findings 

including rapid increases in NADPH/NADP+ ratio and decreases in HMG-CoA.  We 

detected increases in farnesyl pyrophosphate that may play a role in GSIS from this 

pathway.  Identification of a decrease in AMP prior to decreases in HMG-CoA shows 

that regulation by AMPK may play a role in this pathway as well in the malonyl-CoA 

pathway.  Finally, we find that ZMP can inhibit GSIS suggesting a previously unknown 

role for this compound as an endogenous metabolite.   

We further investigated GSIS in INS-1 832/13 cells treated with free fatty acids and 

high glucose in culture to generate models of lipotoxicity and glucotoxicity.  These 

models exhibited increased insulin secretion at basal glucose levels and blunted insulin 

secretion at high glucose levels, behavior similar to that expressed in patients with type 

2 diabetes.  Time resolved metabolomic measurements of these β-cells were made in 

culture, at basal glucose levels, and following glucose stimulation at time points 

concurrent with Phase 1 and Phase 2 GSIS.  Dramatic alterations in metabolism were 

observed in both lipotoxic and glucotoxic models.  Elevation in basal rates of energy 

metabolism relative to controls was common to both models and resulted in an increase 

in ATP/ADP ratio, an important parameter in KATP channel closure and insulin secretion.  

Long-chain acyl-CoAs that also impact KATP channel closure were substantially elevated 

both pre and post stimulation relative to controls in both glucotoxic and lipotoxic models.  
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A large increase in glycolytic flux through the PPP was measured in cells cultured in HG 

conditions in addition to decreased levels of reduced and oxidized glutathione, 

antioxidant species important for limiting ROS cytotoxicity.  Sugar nucleotide donors also 

increased substantially.  Gluconate, a rarely measured β-cell metabolite was found at 

high concentrations in the glucotoxic model and may have implications for Ca2+ signaling 

involved in insulin secretion. 

Future Directions 

 Non-glucose nutrient secretagogues.  Nutrients other than glucose induce 

insulin secretion and studying their impact on metabolic networks could prove valuable 

in advancing our understanding of GSIS.  These cell-permeable nutrient secretagogues 

include pyruvate, methyl-succinate (converts to succinate in cytosol), glyceraldehyde, 

α-ketoisocaproate, and glutamine + leucine (combined only)1.  Each of these 

secretagogues enter metabolic pathways at different points and evaluating their impact 

on levels of proposed metabolic coupling factors resulting insulin secretion may aid in 

affirming or dismissing current models of GSIS.  For example, stimulation with pyruvate 

should bypass the PPP and limit cycling of glycerol-3-phosphate (from glycolytic 

dihydroxyacetone phosphate).  Comparison of metabolite levels and insulin release 

relative to glucose could reveal the relative importance of these pathways in GSIS.2 In 

addition, it would be of great interest to measure metabolites with glucose stimulation in 

combination with extracellular fatty acids since studies have reported augmented GSIS 

in their presence, even though they do not initiate GSIS independent of glucose.3  

 

 Islets.  The majority of multi-metabolite measurements in β-cells to date have 

been conducted in clonal β-cells such as the INS-1 832/13 line used in our studies.  

Since these immortal tumor cell lines may favor metabolic pathways devoted to cell 

growth rather than cellular respiration, the relevance of experimental observations to 

primary β-cells may be of concern.4  Therefore, performing global metabolomics 

measurements in islets initially or to validate results from the study of clonal lines could 

be of great benefit in diabetes research.  Several challenges have limited the use of 

isolated islets in metabolomic studies including difficulty in islet isolation in quantities 

sufficient for routine LC-MS based analysis and challenges in sample manipulation (e.g. 

rapid rinsing and quenching).  Metabolomic investigations of isolated islets could benefit 
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substantially from LC-MS techniques developed for and ultra-high sensitivity with small 

samples such as nano-LC-MS discussed below.   

 

 Nano-LC-MS.  Capillary chromatography is ideally suited to the analysis of small 

samples.  Capillary columns have internal diameters as low as 25 µm compared to the 

2.1 mm bore columns used in conventional LC-MS.  The ~80 fold decrease in column 

diameter corresponds to an ~7,000 fold decrease in optimal flow rate (to ~300 nL/min) 

compatible with nano-ESI sources.  Nano-ESI can enhance sensitivity relative to 

conventional ESI through improved ionization efficiency in conjunction with the use of 

small electrospray emitters.5 Nano-ESI is also less susceptible to ionization suppression 

further enhancing sensitivity.6 Accordingly, detection limits with nano-ESI in the low 

attomole range have been reported.7 Challenges with band broadening during sample 

loading on capillary columns are more difficult to overcome for metabolite analysis 

compared to peptides where nano-LC is commonly employed.  Metabolites often have 

low retention and organic solvents present in the sample solution broaden bands at the 

column head.8 Although moderate success has been reported for HILIC9 and ion pair10 

methods that provide enhanced retention and therefore improved column focusing for 

polar analytes.  Furthermore, coupling nano-LC with more sensitive mass analyzers 

such as QQQ could provide substantial improvements for directed studies over the 

LC-TOF instrumentation used in our experiments.   

 

Global internal standardization.  The use of stable-labeled internal standards can 

provide improved precision and accuracy in metabolite quantification.  INS-1 832/13 or 

similar cells could be grown in media containing [U-13C]-glucose as the primary energy 

source.  Theoretically, extracts from these cells should contain similar metabolite 

concentrations to those grown in non-labeled media, only with incorporation of large 

percentages of 13C in all endogenously synthesized metabolites.  These labeled species 

can then be quantified using non-labeled standards to determine their absolute 

concentration.  The extracts can then be added to experimental extracts and 

endogenous non-labeled metabolites quantified by isotope dilution.  Alternatively, these 
13C labeled extracts could simply be used as internal references to improve precision by 

correcting for ionization suppression and instrument drift.  Metabolomic investigations 

into GSIS could benefit from this approach by improving precision to discern smaller but 

significant changes in metabolite levels with secretagogue stimulation.  The ability to 



116 
 

routinely quantify the absolute concentration of metabolites would also be beneficial by 

providing information on changes in metabolite pool size for a large number of 

metabolites allowing for an assessment of mass balance in the cell.  This approach has 

been applied to large-scale metabolite quantification in E coli and human fibroblasts.9, 11 

Complications in quantification with these approaches may arise due to incomplete 

isotopic labeling which can generate a wide distribution of metabolite isotopes thereby 

decreasing the sensitivity and specificity of mass spectrometry detection.  Hence, the 

use of higher resolution mass analyzers such as TOF, FT-ICR, and Orbitrap may be 

necessary. 

 

Fluxomics.  The cell-wide quantification of intracellular metabolite turnover rates 

known as fluxomics12 is the next "omics" field to be applied to systems biology and has 

the potential to greatly expand our study of metabolic networks.13, 14 The power of 

metabolomic flux measurements was demonstrated to a limited extent in Chapters 4 and 

5 by showing, for example, that the glutamate pool in INS-1 832/13 cells remains 

constant 25 min after glucose stimulation, but is turned-over ~50% suggesting extensive 

cycling with TCA intermediates.  Hence, the potential for glutamate involvement in GSIS 

through cyclic shuttles could be overlooked without concurrent flux experimentation.  

The pathways of β-cell metabolism related to insulin secretion can be further 

investigated by the use of specifically labeled secretagogues to provide additional 

information on carbon and or nitrogen flux.  For example, glucose flux through PPP 

relative to glycolysis could be measured by determining the differential isotopic 

enrichment of pyruvate between stimulation with [1-13C1]-glucose and [6-13C1]-glucose.  

Carbon 1 of glucose is removed by decarboxylation in the PPP during formation of 

ribose-5-phosphate whereas it is converted to carbon 3 of pyruvate through glycolysis 

(Figure 6-1).  Measuring the difference between isotopic enrichment with 

[1-13C1]-glucose versus [6-13C1]-glucose would yield a relative difference in flux between 

the two pathways.  A second measurement important in the study of β-cell metabolism 

that can be made using this approach is the measurement of glucose flux through 

cataplerotic pyruvate dehydrogenase and anaplerotic pyruvate carboxylase by 

stimulation with [3,4-13C2]-glucose and non-labeled glucose.  Carbon 3 and 4 of glucose 

are removed by decarboxylation during conversion of pyruvate to acetyl-CoA by 

pyruvate dehydrogenase but converted to carbon 3 of oxaloacetate by pyruvate 

carboxylase (Figure 6-1).  Hence the % of carbon entering the TCA through pyruvate 
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dehydrogenase versus pyruvate carboxylase can be determined by measuring the 

isotopic enrichment of TCA metabolites with [3,4-13C2]-glucose compared to non-labeled 

glucose.  Measurement of differential flux through these enzymes has been reported 

using 1H-NMR studies of glutamate15 but at relatively long (2 h) time points and do not 

allow assessment of dynamic changes in rates of flux over shorter timeframes relevant 

to maxima in phase 1 and phase 2 GSIS. 

Advanced mechanistic modeling techniques can be applied to measure in vivo 

reaction rates using time course data and modeling software such as FiatFlux16, 

13C-FLUX17 and OpenFLUX18.  It would be of particular interest to measures changes in 

flux during phase 1 and phase 2 GSIS to help further elucidate biochemical triggering 

mechanisms. 
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Figure 6-1.  Flux of 13C Labeled Carbon from Glucose through Glycolysis and the TCA 
Cycle. 
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