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ABSTRACT

Sequential Decision Making in Decentralized Systems

by

Ashutosh Nayyar

Chair: Demosthenis Teneketzis

We study sequential decision making problems in cooperative systems where different

agents with different information want to achieve a common objective. The sequen-

tial nature of the decision problem implies that all decisions can be arranged in a

sequence such that the information available to make the tth decision only depends

on preceding decisions. Markov decision theory provides tools for addressing sequen-

tial decision making problems with classical information structures. In this thesis,

we introduce a new approach for decision making problems with non-classical infor-

mation structures. This approach relies on the idea of common information between

decision-makers. Intuitively, common information consists of past observations and

decisions that are commonly known to the current and future decision makers. We

show that a common information based approach can allow us to discover new struc-

tural results of optimal decision strategies and provide a sequential decomposition of

the decision-making problems. We first demonstrate this approach on two specific

instances of sequential problems, namely, a real-time multi-terminal communication

system and a decentralized control system with delayed sharing of information. We

then show that the common information methodology applies more generally to any

x



sequential decision making problem. Moreover, we show that our common infor-

mation methodology unifies the separate sequential decomposition results available

for classical and non-classical information structures. We also present sufficient con-

ditions for simplifying common information based sequential decompositions. This

simplification relies on the concept of state sufficient for the input output map of a

coordinator that only knows the common information.
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CHAPTER I

Introduction

Decentralized systems are ubiquitous in the modern technological world. Com-

munication systems like the Internet and wireless networks, information-gathering

systems like sensor networks and surveillance networks, spatially distributed systems

like power generation and transmission systems, transportation networks, and net-

worked control systems are all examples of decentralized systems. Such systems are

characterized by the presence of multiple agents/decision-makers that may observe

their environment, communicate with each other and make decisions that affect the

overall system. Two salient features of such systems are:

1. Decentralization of Information: Different agents have different information

about the system.

2. Decentralization of Decision-Making: Multiple agents have to make decisions

in the absence of a centralized decision-making authority.

The main focus of this thesis is to investigate the relationships between the above

two features of decentralized systems: how does decentralization of information affect

decision-making by different agents?. An agent uses the information it has to make

decisions according to a decision rule/decision strategy. Thus, a decision rule/decision

strategy is a mapping from an agent’s information to its decisions. A decision strategy
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profile is a collection of decision rules/decision strategies for all the decision-makers.

The goal of this thesis is to characterize optimal decision strategy profiles in some

specific instances of decentralized systems as well as to develop general methodologies

for finding optimal decision strategy profiles. In this thesis, we focus on decentralized

decision-making problems that are:

• Cooperative: We consider decentralized decision-making problems where dif-

ferent decision-makers share the same objective. Such problems are called Team

Problems (Radner (1962), Marschak and Radner (1972), Y. C. Ho (1980), Ho

and Chu (1972), Ho et al. (1978) etc.) In contrast, Game Theory deals with

decision-making problems where different decision makers may have different

objectives.

• Stochastic: We consider decision-making problems where the decision-making

environment includes uncertain inputs. We assume stochastic models of uncer-

tainties about the decision-making environment. The presence of uncertainty

implies that under any choice of decision strategy profile, the value of the ob-

jective is a random variable. In this thesis, we seek to find strategy profiles that

maximize the expected value of the objective.

• Sequential: We consider decision-making problems where the decision-makers

act in a pre-determined order that is independent of events in the nature or the

decision strategy profile. Further, the information available to make a decision

does not depend on the decisions to be made in the future.

1.1 Information Structures and Optimization Approaches

A key concept in decision-making problems is the concept of Information Struc-

ture. Information structure of a decision-making problem describes what information

2



is available to each decision-maker. In sequential decision-making problems, informa-

tion structures can be classified as classical or non-classical. In classical information

structures, a decision-maker knows all the information available to all agents that

acted before it. When an information structure does not satisfy this condition, it

is called non-classical. Markov decision theory provides a systematic way of solv-

ing sequential decision-making problems with classical information structure [Kumar

and Varaiya (1986a)]. This theory allows us to decompose the problem of finding

optimal strategies into several smaller problems which must be solved sequentially

backwards in time to obtain the optimal strategies. We refer to this simplification

as sequential decomposition of the problem. For classical information structures,

the sequential decomposition has the additional property that for each sub-problem

optimal decisions for a decision-maker can be found separately for each realization of

its information.

In this thesis, we will focus on sequential decision-making problems with non-

classical information structures. Two different conceptual approaches have been used

for such decision-making problems:

1. Agent-by-Agent Approach: In some decision-making problems, while the overall

problem has a non-classical information structure, it is possible that when the

strategies of all except one agent are fixed, then that agent’s decision-making

problem has a classical information structure. Consider such a problem where

strategies of all agents except Agent 1 are fixed and the resulting decision prob-

lem for Agent 1 has a classical information structure. Then, for the fixed choice

of other agents’ strategies, we can find an optimal strategy for Agent 1 using

ideas from Markov decision theory. If such an optimal strategy has qualitative

features or structural properties that are independent of the choice of strategies

of other agents, then we can conclude that such qualitative features or structural

properties are true for a globally optimal strategy of Agent 1. Such an approach

3



to find structural results of globally optimal strategies has been used in Walrand

and Varaiya (1983a), Walrand and Varaiya (1983b), Teneketzis (2006) etc.

2. Designer’ Approach: The philosophy of this approach is to consider the opti-

mization problem of a designer who has to select a sequence of decision rules.

The designer sequentially decides a decision rule for each time. The designer’s

problem can be thought of as a problem with (trivially) classical information

structure. This approach can be used to decompose the designer’s problem of

choosing a sequence of decision rules into several sub-problems that must be

solved sequentially backwards in time. In each of these sub-problems, the de-

signer has to optimize over one decision rule (instead of the whole sequence).

Such an approach for finding a sequential decomposition of the problem of find-

ing optimal strategies has been described in detail in Witsenhausen (1973) and

Mahajan (2008).

In this thesis, we introduce a new approach for addressing sequential decision

making problems with non-classical information structures. Our new approach relies

on the idea of common information among decision-makers. Intuitively, common

information consists of past observations and decisions that are commonly known to

the current and future decision makers. We show that decision makers can use the

common information to coordinate how they make decisions. Such a coordination

approach can allow us to:

1. Find structural results of optimal decision strategies that cannot be identified

by the agent-by-agent approach.

2. Provide a sequential decomposition of the decision-making problem that is dis-

tinct from (and often simpler than) the decomposition obtained by the designer’s

approach.

4



1.2 Structural Results Using Common Information

In this thesis, we consider two specific sequential decision-making problems with

non-classical information structures. In both these problems, we use the idea of

common information to find structural results for optimal decision strategies.

1.2.1 Delayed Sharing Information Structure in Decentralized Control

An interesting special case of non-classical information structures is the delayed

sharing information structure. This information structure consists of K controllers

that at each time make a private observation of the controlled system and take an

action that affects the evolution of the control system as well as the control objective.

While each controller perfectly remembers its own observation and actions of the

past, it has access to only a delayed version of other controller’s observation and action

history. In a system with n-step delayed sharing, at each time t, every controller knows

prior observations and control actions of all other controllers up to time t− n. This

information structure was proposed in Witsenhausen (1971). Witsenhausen asserted

a structural result for optimal control laws for this model without any proof.Varaiya

and Walrand (1978) proved that Witsenhausen’s assertion was true for n = 1 but

false for n > 1.

In this thesis, we resolve Witsenhausen’s conjecture; we prove two structural re-

sults of the optimal control laws for the delayed sharing information structure. Our

structural results critically rely on the observation that at any time t, the controllers

have some information that is known to all controllers at that time. We call this the

common information at time t. A central idea in our proofs is that when this com-

mon information is increasing with time (as it is in the delayed sharing information

structure), the controllers can use this common information to coordinate how they

use their private information to choose their control action. This approach allows

us to view the control problem from the perspective of a coordinator who knows the

5



common information and who has to provide prescriptions to each controller on how

to use their private information. Since the common information keeps increasing with

time, the coordinator’s problem then becomes a problem with classical information

structure.

In order to address the coordinator’s problem, we identify a state sufficient for

input-output mapping of the controlled system from the coordinator’s perspective.

This allows us to describe the coordinator’s problem as the problem of controlling

the evolution of a Markov chain by means of the prescriptions that the coordina-

tor provides to the controllers. Using Markov decision theory [Kumar and Varaiya

(1986a)] allows to find structural results as well as a sequential decomposition for

finding optimal strategy for the coordinator. These results can then be carried over

to structural results and sequential decomposition for finding optimal strategies for

each controller.

1.2.2 A Real-Time Multi-Terminal Communication System

The second instance of a problem where common information can be used to

find structural results for optimal decision strategies is a real-time multi-terminal

communication system with two encoders communicating with a single receiver. The

two encoders make distinct partial observations of a Markov source. Each encoder

must encode its observations into a sequence of discrete symbols. The symbols are

transmitted over noisy/noiseless channels to a receiver that attempts to reconstruct

some function of the state of the Markov source. Real-time constraint implies that at

each time, the receiver must produce an estimate of the current state of the Markov

source. We view this problem as a sequential decision-making problem with the

encoders and receivers as the decision-makers. We first obtain structural results

of optimal strategies of encoders and receivers using an agent-by-agent approach.

We then show that our common information approach can be used to improve the

6



structural results found by the agent-by-agent approach.

1.3 Common Information and General Sequential Problems

As mentioned above, our results for delayed sharing information structures and the

real-time multi-terminal communication system rely crucially on using the concept of

common information as the basis for coordination among decision-makers. A natural

question then is the following: What is the most general class of decision-making

problems where the concept of common information can be used to find a structural

results of optimal decision strategies and/or sequential decomposition of the problem

of finding optimal decision strategies? In Chapter IV, we show that one can em-

ploy a common information based methodology to find a sequential decomposition

of the problem of finding optimal decision strategies in any sequential decision-

making problem with finite spaces of observation and decisions and finite number

of decisions.

Witsenhausen (1973) showed that any sequential decision-making problem (with

finite number of decisions) can be converted into a standard form and provided a

sequential decomposition of any problem in standard form; thereby providing a a

sequential decomposition of any sequential decision-making problem. To the best of

our knowledge, our result in Chapter IV is the only other methodology to provide a

sequential decomposition for any sequential decision-making problem. In general, our

sequential decomposition differs from that of Witsehnausen’s because of its depen-

dence on common information. Our sequential decomposition coincides with Wit-

senhausen’s only in problems where common information is absent. Further, our

sequential decomposition specializes to the classical dynamic program if the decision-

making problem has a classical information structure.

In addition to the concept of common information, our result in delayed sharing

information structures relies on the identification of a state sufficient for input-output
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map of the system from the coordinator’s point of view. In Chapter V, we investigate

if such a state can be found for general sequential decision-making problems. In broad

terms, such a state should be a summary of past data that is sufficient for an input-

output description of the system from the coordinator’s point of view. Although

we do not have a algorithmic way of identifying such a state, we present sufficient

conditions for a function of past data to be a state sufficient for the coordinator’s

input output map and provide a simplified sequential decomposition when such a

state can be found.

1.4 Computational Aspects

The sequential decompositions that we find in the delayed sharing information

structures in Chapter III and for general sequential problems in V are both similar to

dynamic programs for partially observable Markov decision problems (POMDPs). As

in POMDPs, our sequential decompositions involve value functions that are functions

defined on the continuous space of probability measures on a finite state. Also, each

step of sequential decomposition requires the maximization over a finite set. One can

further show that value functions in our sequential decompositions are piecewise linear

and convex/concave. Such characterization of value functions as piecewise linear

and concave is utilized to find computationally efficient algorithms for POMDPs.

Because of the similarity of our sequential decomposition with the dynamic programs

of POMDPS, such algorithmic solutions to general POMDPs can be employed for

sequential decompositions as well. Thus, our results provide a conceptual link between

sequential decision-making problems with non-classical information structures and

algorithmic solutions of POMDPs.
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1.5 Contribution of the Thesis

The main contributions of this thesis can be summarized as follows:

1. We demonstrate the use of common information in finding structural results of

optimal decision strategies in problems from real-time communication as well as

decentralized control. In particular, our structural results for delayed sharing

information structures resolve a long-standing open problem in decentralized

control.

2. We show that the concept of common information can be used to find a sequen-

tial decomposition of the problem of finding optimal decision strategies in any

sequential decision-making problem with finite spaces of observation and deci-

sions and finite number of decisions. This result unifies the dynamic program-

ming results of classical information structures and Witsenhausen’s sequential

decomposition of general sequential problems.

3. We identify sufficient conditions for identifying a state sufficient for input-output

map from the perspective of a coordinator that knows the common information

and selects prescriptions for decision-makers. We show that the existence of

such a state allows us to find a simplified sequential decomposition in a general

sequential decision-making problem.

4. Finally, our results establish a conceptual link between sequential decision-

making problems with non-classical information structures and algorithmic solu-

tions of Partially Observable Markov decision problems. We believe this will be

crucial in finding algorithmic solutions of decision problems with non-classical

information structures.
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1.6 Organization of the Thesis

This thesis is organized as follows. In Chapter II, we investigate a real-time multi-

terminal communication problem as a decision-making problem and find structural

results for optimal decision strategies for the encoders and the receiver. In Chapter

III, we provide structural results and sequential decomposition for delayed sharing in-

formation structures. In Chapter IV, we consider a general sequential decision-making

problem and finds a sequential decomposition based on common information. We also

show the relationship of our decomposition with the classical dynamic program and

Witsenhausen’s sequential decomposition. In Chapter V, we provide conditions for

finding simpler sequential decompositions in a general sequential problem by using

the ideas of common information and a state sufficient for input-output map. We

conclude in Chapter VI.

1.7 Notation

Random variables are denoted by upper case letters; their realization by the

corresponding lower case letter. For function valued random variables, a tilde ( ˜

) denotes their realization (for example, γ̃kt ). Xa:b is a short hand for the vector

(Xa, Xa+1, . . . , Xb) while Xc:d is a short hand for the vector (Xc, Xc+1, . . . , Xd). The

combined notation Xc:d
a:b is a short hand for the vector (Xj

i : i = a, a + 1, . . . , b,

j = c, c+ 1, . . . , d). E denotes the expectation operator.

For two random variables X and Y taking values in X and Y , P(X = x|Y )

denotes the conditional probability of the event {X = x} given Y and P(X|Y )

denotes the conditional PMF (probability mass function) of X given Y , that is,

it denotes the collection of conditional probabilities {P(X = x|Y ), x ∈ X}. Note

that P(X = x|Y ) (resp. P(X|Y )) are random variables (resp. random vectors) with

realizations P(X = x|Y = y) (resp. P(X|Y = y)), y ∈ Y . Finally, all equalities

10



involving conditional probabilities or conditional expectations are to be interpreted

as almost sure equalities (that is, they hold with probability one).
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CHAPTER II

A Multi-Terminal Communication System

2.1 Introduction

A large variety of decentralized systems require communication between various

devices or agents. In general, since such systems may have multiple senders and re-

ceivers of information, the models of point-to-point communication are not sufficient.

Further, in many decentralized systems, the purpose of communication is to achieve

a higher system objective. Examples include networked control systems where the

overall objective of communication between various sensors and controllers is to con-

trol the plant in order to achieve a performance objective, or sensor networks where

the goal of communication between sensors and a fusion center may be to quickly

estimate a physical variable or to track in real-time the evolution of a physical phe-

nomenon. In such systems, agents (sensors, controllers etc.) have to make decisions

that affect the overall system performance based only on information they currently

have gathered from the environment or from other agents through the underlying

communication system. The communication problem therefore should not only ad-

dress what information can be made available to each agent but also when is this

information available. Thus, the overall system objectives may impose constraints on

the time delay associated with communication.

In the presence of strict delay constraints on information transmission, the commu-
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nication problem becomes drastically different from the classical information-theoretic

formulations. Information theory deals with encoding and decoding of long sequences

which inevitably results in large undesirable delays. For systems with fixed (and typ-

ically small) delay requirements, the ideas of asymptotic typicality can not be used.

Moreover, information-theoretic bounds on the trade-off between delay and reliability

are only asymptotically tight and are of limited value for short sequences (Gallager

(1968)).

In this chapter we address some issues in multi-terminal communication systems

under the real-time constraint. Specifically, we look at problems with multiple senders

(encoders) communicating with a single receiver (decoder). We analyze systems with

two encoders, although our results generalize to n encoders (n > 2) and a single re-

ceiver. The two encoders make distinct partial observations of a discrete-time Markov

source. Each encoder must encode in real-time its observations into a sequence of

discrete variables that are transmitted over separate noisy channels to a common re-

ceiver. The receiver must estimate, in real-time, a given function of the state of the

Markov source. The main feature of this multi-terminal problem that distinguishes it

from a point to point communication problem is the presence of coupling between the

encoders (that is, each encoder must take into account what other encoder is doing).

This coupling arises because of the following reasons : 1) The encoders’ observations

are correlated with each other. 2) The encoding problems are further coupled be-

cause the receiver wants to minimize a non-separable distortion metric. That is, the

distortion metric cannot be simplified into two separate functions each one of which

depends only on one encoder’s observations. The nature of optimal strategies strongly

depends on the nature and extent of the coupling between the encoders.

Our model involves real-time distributed coding of correlated observations that

are to be transmitted over noisy channels. Information-theoretic results on asymptot-

ically achievable rate-regions have been known for some distributed coding problems.
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The first available results on distributed coding of correlated memoryless sources ap-

pear in Slepian and Wolf (1973a) and Slepian and Wolf (1973b). Multiple access

channels with arbitrarily correlated sources were considered in Cover et al. (1980). In

Flynn and Gray (1987), the encoders make noisy observations of an i.i.d source. The

authors in Flynn and Gray (1987) characterize the achievable rates and distortions,

and propose two specific distributed source coding techniques. Coding of depen-

dent sources with separated encoders was considered in Wyner (1974). Constructive

methods for distributed source coding were presented in Zhao and Effros (2001), A.

Kh. Al Jabri and Al-Issa (1997) and Pradhan and Ramchandran (1999). In particu-

lar, Zhao and Effros (2001) address lossless and nearly lossless source coding for the

multiple access system, and A. Kh. Al Jabri and Al-Issa (1997) addresses zero-error

distributed source coding. The CEO problem, where a number of encoders make con-

ditionally independent observations of an i.i.d source, was presented in Berger et al.

(1996). The case where the number of encoders tends to infinity was investigated

there. The quadratic Gaussian case of the CEO problem has been investigated in

Viswanathan and Berger (1997), Oohama (1998) and Draper and Wornell (2002).

Bounds on the achievable rate-regions for finitely many encoders were found in Chen

et al. (2004). A lossy extension of the Slepian-Wolf problem was analyzed in Berger

and S.Tung (1975) and Zamir and Berger (1999). Multi-terminal source coding for

memoryless Gaussian sources was considered in Oohama (1997).

In Krithivasan and Pradhan (2007), Gelfand and Pinsker (1979), Korner and Mar-

ton (1979), Han and Kobayashi (1987), Ahlswede and Han (1983) and Csiszar and

Korner (1981), distributed source coding problems with the objective of reconstruct-

ing a function of the source are investigated. In Krithivasan and Pradhan (2007), the

authors consider distributed source coding of a pair of correlated Gaussian sources.

The objective is to reconstruct a linear combination of the two sources. The authors

discover an inner bound on the optimal rate-distortion region and provide a coding
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scheme that achieves a portion of this inner bound. The problem of distributed source

coding to reconstruct a function of the sources losslessly was considered in Gelfand

and Pinsker (1979). An inner bound was obtained for the performance limit which

was shown to be optimal if the sources are conditionally independent given the func-

tion. The case of lossless reconstruction of the modulo-2 sum of two correlated binary

sources was considered in Korner and Marton (1979). These results were extended

in Csiszar and Korner (1981) (see Problem 23 on page 400) and Han and Kobayashi

(1987). An improved inner bound for the problem in Korner and Marton (1979) was

provided in Ahlswede and Han (1983).

The real-time constraint of our problem differentiates it from the information-

theoretic results mentioned above. Real-time communication problems for point-to-

point systems have been studied using a decision-theoretic/stochastic control perspec-

tive. In general, two types of results have been obtained for point to point systems.

One type of results establish qualitative properties of optimal encoding and decoding

strategies. The central idea here has been to consider the encoders and the decoders

as control agents/decision-makers in a team trying to optimize a common objective

of minimizing a distortion metric between the source and its estimates at the re-

ceiver. Such sequential dynamic teams - where the agents sequentially make multiple

decisions in time and may influence each other’s information - involve the solution

of non-convex functional optimization to find the best strategies for the agents (Y.

C. Ho (1980),Witsenhausen (1968)). However, if the strategies of all but one of the

agents are fixed, the resulting problem of optimizing a single agent’s strategy can, in

many cases, be posed in the framework of Markov decision theory. This approach

can explain some of the structural results obtained in Witsenhausen (1978), Teneket-

zis (2006), Walrand and Varaiya (1983a), Borkar et al. (2001), Yuksel and Basar

(2008). Another class of results establish a decomposition of the problem of choosing

a sequence of globally optimal encoding and decoding functions. In the resulting
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decomposition, at each step, the optimization is over one encoding and decoding

functions instead of a sequence of functions. This optimization, however, must be

repeated for all realizations of an information state that captures the effect of past

encoding/decoding functions (see Walrand and Varaiya (1983a), Borkar et al. (2001),

Mahajan and Teneketzis (2008), Mahajan (2008)).

Inspired by the decision-theoretic approach to real-time point-to-point systems,

we look at our problem from a decentralized stochastic control/team-theoretic per-

spective with the encoders and the receiver as our control agents/decision makers.

We are primarily interested in discovering the structure of optimal real-time encoding

and decoding functions. In other words, given all the observations available to an

agent (i.e, an encoder or the receiver), what is a sufficient statistic to decide its ac-

tion (i.e, the symbol to be transmitted in case of the encoders and the best estimate

in case of the receiver)? The structure of optimal real-time encoding and decoding

strategies provides insights into their essential complexity (for example, the mem-

ory requirements at the encoders and the receiver for finite and infinite time horizon

communication problems) as well as the effect of the coupling between the encoders

mentioned earlier.

A universal approach for discovering the structure of optimal real-time encod-

ing/decoding strategies in a multi-terminal system with any general form of correla-

tion between the encoders’ observations has so far remained elusive. In this chapter,

we restrict ourselves to a simple model for the encoders’ observations. For such a

model (described in Section 2.3), we obtain results on the structure of optimal real-

time encoding strategies when the receiver is assumed to a have a finite memory.

Our results reveal that for any time horizon, however large (or even infinite), there

exists a finite dimensional sufficient statistic for the encoders. This implies that an

encoder with a memory that can store a fixed finite number of real-numbers can per-

form as well as encoders with arbitrarily large memories. Subsequently, we consider
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communication with noiseless channels and remove the assumption of having limited

receiver memory. For this problem, the approach in Section 2.3 results in sufficient

statistics for the encoders that belong to spaces which keep increasing with time. This

is undesirable if one wishes to look at problems with large/infinite time-horizons. In

order to obtain a sufficient statistic with time-invariant domain, we invent a new

methodology for decentralized decision-making problems. This methodology high-

lights the importance of common information/ common knowledge (in the sense of

Aumann (1976)), in determining structural properties of decision makers in a team.

In general, the resulting sufficient statistic belongs to an infinite dimensional space.

However, we present special cases where a finite dimensional representation is pos-

sible. Moreover, we believe that the infinite dimensional sufficient statistic may be

intelligently approximated to obtain real-time finite-memory encoding strategies with

good performance.

The rest of this chapter is organized as follows: In Section 2.2 we present a real-

time multi-terminal communication system and formulate the optimization problem.

In Section 2.3 we present our assumptions on the nature of the source and the receiver

and obtain structural results for optimal real-time encoding and decoding functions.

In Section 2.4 we consider the problem with noiseless channels and perfect receiver

memory. We develop a new methodology to find structural results for optimal real-

time encoders for this case. We look at some extensions and special cases of our

results in Section 2.5. We conclude in Section 2.6.

2.2 A Real-Time Multi-terminal Communication Problem

Consider the real-time communication system shown in Figure 2.1. We have

two encoders that partially observe a Markov source and communicate it to a single

receiver over separate noisy channels. The receiver may be interested in estimating

the state of the Markov source or some function of the state of the source. We wish to
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find sufficient statistics for the encoders and the receiver and/or qualitative properties

for the encoding and decoding functions. Below, we elaborate on the model and the

optimization problem.

X1
t , X

2
t

Encoder 1

Encoder 2

Receiver

X1
t

X2
t

Z1
t

Z2
t Y 2

t

Y 1
t

N1
t

N2
t

X̂t

Markov
Source

Figure 2.1: A Multi-terminal Communication System

2.2.1 Problem Formulation

1) The Model: The state of the Markov source at time t is described as

Xt = (X1
t , X

2
t )

where X i
t ∈ X i, i = 1, 2 and X 1,X 2 are finite spaces. The time-evolution of the

source is given by the following equation

Xt+1 = Ft(Xt,Wt) (2.1)

where Wt, t = 1, 2, .. is a sequence of independent random variables that are indepen-

dent of the initial state X1.

Two encoders make partial observations of the source. In particular, at time

t, encoder 1 observes X1
t and encoder 2 observes X2

t . The encoders have perfect

memory, that is, they remember all their past observations and actions. At each time

t, encoder 1 sends a symbol Z1
t belonging to a finite alphabet Z1 to the receiver. The

encoders operate in real-time, that is, each encoder can select the symbol to be sent
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at time t, based only on the information available to it till that time. That is, the

encoding rule at time t must be of the form:

Z1
t = f 1

t (X1
1:t, Z

1
1:t−1) (2.2)

where X1
1:t represents the sequence X1

1 , X
1
2 , . . . , X

1
t and Z1

1:t−1 represents the sequence

Z1
1 , Z

1
2 , . . . , Z

1
t−1. In general, one can allow randomized encoding rules instead of

deterministic encoding functions. That is, for each realization of its observations till

time t, encoder 1 selects a probability distribution on Z1 and then transmits a random

symbol generated according to the selected distribution. We will show later that,

under our assumptions on the model, such randomized encoding rules cannot provide

any performance gain and we can restrict our attention to deterministic encoding

functions.

Encoder 2 operates in a similar fashion as encoder 1. Thus, encoding rules of encoder 2

are functions of the form:

Z2
t = f 2

t (X2
1:t, Z

2
1:t−1) (2.3)

where Z2
t belongs to finite alphabet Z2.

The symbols Z1
t and Z2

t are transmitted over separate noisy channels to a single

receiver. The channel noises at time t are mutually independent random variables N1
t

and N2
t belonging to finite alphabets N 1 and N 2 respectively. The noise variables

(N1
1 , N

2
1 , N

1
2 , N

2
2 , . . . , N

1
t , N

2
t , . . .) form a collection of independent random variables

that are independent of the source process Xt, t = 1, 2, ....

The receiver receives Y 1
t and Y 2

t which belong to finite alphabets Y1 and Y2

respectively. The received symbols are noisy versions of the transmitted symbols

according to known channel functions h1
t and h2

t , that is,

Y i
t = hit(Z

i
t , N

i
t ) (2.4)
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for i = 1, 2.

At each time t, the receiver produces an estimate of the source X̂t based on the

symbols received till time t, i.e.,

X̂t = gt(Y
1

1:t, Y
2

1:t) (2.5)

A non-negative distortion function ρt(Xt, X̂t) measures the instantaneous distortion

between the source and the estimate at time t. (Note that the distortion function

may take into account that the receiver only needs to estimate a function of X1
t and

X2
t )

2) The Optimization Problem P : Given the source and noise statistics, the en-

coding alphabets, the channel functions h1
t , h

2
t , the distortion functions ρt and a time

horizon T , the objective is to find globally optimal encoding and decoding functions

f 1
1:T , f

2
1:T , g1:T so as to minimize

J(f 1
1:T , f

2
1:T , g1:T ) = E{

T∑
t=1

ρt(Xt, X̂t)} (2.6)

where the expectation in (2.6) is over the joint distribution of X1:T and X̂1:T which

is determined by the given source and noise statistics and the choice of encoding and

decoding functions f 1
1:T , f

2
1:T , g1:T .

We refer to the collection of functions f i1:T as encoder i’s strategy (i = 1, 2). The

collection of functions g1:T is the decoding strategy.

Remarks: 1. Since we consider only finite alphabets for the source, the encoded

symbols, the channel noise, the received symbols and a finite time horizon, the number

of possible choices of encoding and decoding functions is finite. Therefore, an optimal

choice of strategies (f 1
1:T , f

2
1:T , g1:T ) always exists.

2. A brute force search method to find the optimal can always be used in principle.

It is clear however that even for small time-horizons, the number of possible choices

20



would be large enough to make such a search inefficient. Moreover, such a scheme

would not be able to identify any characteristics of optimal encoding and decoding

functions.

The encoding functions and the decoding functions in equations (2.2), (2.3) and

(2.5) require the encoders and the receiver to store entire sequences of their past

observations and actions. For large time-horizons storing all past data becomes pro-

hibitive. Therefore, one must decide what part of the information contained in these

arbitrarily large sequences is sufficient for decision-making at the encoders and the

receiver. In particular, we are interested in addressing the following questions:

1. Is there a sufficient statistic for the encoders and the decoder that belongs to

a time-invariant space? (Clearly, all the past data available at an agent is a

sufficient statistic but it belongs to a space that keeps increasing with time.) If

such a sufficient statistic exists, one can potentially look at problems with large

(or infinite) time-horizons.

2. Is there a finite-dimensional sufficient statistic for the encoders and the receiver?

If such a sufficient statistic exists, then we can replace the requirement of storing

arbitrarily long sequences of past observations/messages with storing a fixed

finite number of real numbers at the encoders and the receiver.

The above communication problem can be viewed as a sequential team problem

where the encoders and the receiver are the decision-making agents that are sequen-

tially making decisions to optimize a common objective. The communication problem

is a dynamic team problem since the encoders’ decisions influence the information

available to the receiver. Dynamic team problems are known to be hard. For dy-

namic teams, a general answer to the questions on the existence of sufficient statistics

that either have time-invariant domains or are finite-dimensional is not known. In
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the next section we will make simplifying assumptions on the nature of the source

and the receiver and present sufficient statistics for the encoders and the receiver.

2.3 Problem P1

We consider the optimization problem (Problem P) formulated in the previous

section under the following assumptions on the source and the receiver.

1. Assumption A1 on the Source: We assume that the time-evolution of the source

can be described by the following model:

X1
t+1 = F 1

t (X1
t , A,W

1
t ) (2.7a)

X2
t+1 = F 2

t (X2
t , A,W

2
t ) (2.7b)

where A is a random-variable taking values in the finite set A and W 1
t , t = 1, 2, ... and

W 2
t , t = 1, 2... are two independent noise processes (that is, sequences of independent

random variables) that are independent of the initial state (X1
1 , X

2
1 ) and A as well.

Thus, the transition probabilities satisfy:

P (X1
t+1, X

2
t+1|X1

t , X
2
t , A)

=P (X1
t+1|X1

t , A) · P (X2
t+1|X2

t , A) (2.8)

The initial state of the Markov source has known statistics that satisfy the following

equation :

P (X1
1 , X

2
1 , A) =P (X1

1 , X
2
1 |A) · P (A)

=P (X1
1 |A) · P (X2

1 |A) · P (A) (2.9)
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Thus, A is a time-invariant random variable that couples the evolution of X1
t and X2

t .

Note that conditioned on A, X1
t and X2

t form two conditionally independent Markov

chains. We define

Xt := (X1
t , X

2
t , A) (2.10)

which belongs to the space X := X 1 ×X 2 ×A.

The encoders’ model is same as before. Thus encoder 1 observes X1
t and encoder 2

observes X2
t . Note that the random variable A is not observed by any encoder. The

encoders have perfect memories and the encoding functions are given by equations

(2.2) and (2.3).

2. Assumption A2 on the Receiver: We have a finite memory receiver that main-

tains a separate memory for symbols received from each channel. This memory is

updated as follows:

M i
1 = li1(Y i

1 ), i = 1, 2 (2.11a)

M i
t = lit(M

i
t−1, Y

i
t ), i = 1, 2 (2.11b)

where M i
t belongs to finite alphabet Mi, i = 1, 2 and lit are the memory update

functions at time t for i = 1, 2. For notational convenience, we define M i
0 := 0 for

i = 1, 2. The receiver produces an estimate of the source X̂t based on its memory

contents at time t− 1 and the symbols received at time t, that is,

X̂t = gt(Y
1
t , Y

2
t ,M

1
t−1,M

2
t−1) (2.12)

We now formulate the following problem.

Problem P1: With assumptions A1 and A2 as above, and given source and noise

statistics, the encoding alphabets, the channel functions h1
t , h

2
t , the distortion func-

tions ρt and a time horizon T , the objective is to find globally optimal encoding,
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decoding and memory update functions f 1
1:T , f

2
1:T , g1:T , l

1
1:T , l

2
1:T so as to minimize

J(f 1
1:T , f

2
1:T , g1:T , l

1
1:T , l

2
1:T ) = E{

T∑
t=1

ρt(Xt, X̂t)} (2.13)

where the expectation in (2.13) is over the joint distribution of X1:T and X̂1:T which

is determined by the given source and noise statistics and the choice of encoding,

decoding and memory update functions f 1
1:T , f

2
1:T , g1:T , l

1
1:T , l

2
1:T .

Encoder 1

Encoder 2

Receiver

X1
t

X2
t

Z1
t

Z2
t Y 2

t

Y 1
t

N1
t

N2
t

X̂t
Markov
Source

X1
t , X

2
t , A

M1
t−1

M2
t−1

Figure 2.2: Problem P1

2.3.1 Features of the Model

We discuss situations that give rise to models similar to that of Problem P1.

1. A Sensor Network: Consider a sensor network where the sensors’ observations

are influenced by a slowly varying global parameter and varying local phenomena.

Our model is an approximation of this situation where A models the global param-

eter that is constant over the time-horizon T and X i
t are the local factors at the

location of the ith sensor at time t. A finite memory assumption on the receiver may

be justified in situations where the receiver is itself a node in the network and is

coordinating the individual sensors. We will show that this assumption implies that

the sensors (encoders in our model) themselves can operate on finite-dimensional suf-

ficient statistics without losing any optimality with respect to sensors with perfect

(infinite) memory.
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2. Decentralized Detection/Estimation Problem: Consider the following scenario

of a decentralized detection problem; Sensors make noisy observations X i
t on the state

A of environment. Sensors must encode their information in real-time and send it to a

fusion center. Assuming that sensor noises are independent, we have that, conditioned

on A, the sensor observations are independent. (Typically, the observations are also

assumed to be i.i.d in time conditioned on the state of the environment, but we allow

them to be a Markov process.) Thus, the encoding rule for the ith sensor must be of

the form:

Zi
t = f it (X

i
1:t, Z

i
1:t−1)

Consider the case where Zi
t can either be “blank” or a value from the set A. Each

sensor is restricted to send only one non-blank message, and within a fixed time-

horizon each sensor must send its final non-blank message. When a sensor sends a

non-blank message Zi
t , the fusion center receives a noisy version Y i

t of this message. As

long as the fusion center does not receive final (non-blank) messages from all sensors,

its decision is X̂t = “no decision”. If all sensors have sent a non-blank message, the

fusion center produces an estimate X̂t ∈ A as its final estimate on A and incurs a

distortion cost ρ(A, X̂t). Thus, we can view the receiver as maintaining a separated

memory for messages from each sensor which is initialized to “blank” and updated

as follows:

M i
t =

 Y i
t if M i

t−1 was “blank”

M i
t−1 otherwise

(2.14)

The receiver’s decision is X̂t = “no decision”, if Y i
t = M i

t−1 = “blank” for some sensor

i, else the receiver uses a function gt to find an estimate

X̂t = gt(Y
1
t , Y

2
t ,M

1
t−1,M

2
t−1) (2.15)
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The above detection problem therefore is a special case of our model with fixed

memory update rules from (2.14).

Clearly, our model also includes the case when the encoders’ observations are

independent Markov chains (not just conditionally independent). In this case, the

coupling between encoders is only due to the fact the receiver may be interested

in estimating some function of the state of the two Markov chains and not their

respective individual states.

2.3.2 Structure Result for Encoding Functions

We define the following probability mass functions (pmf) for encoder i, (i = 1, 2):

Definition II.1. For t = 1, 2, . . . , T and a ∈ A,

bit(a) := P (A = a|X i
1:t)

Definition II.2. For t = 2, 3, . . . , T and m ∈Mi,

µit(m) := P (M i
t−1 = m|Zi

1:t−1, l
i
1:t−1)

where li1:t−1 in the conditioning indicate that µit is defined for a fixed choice of the

memory update rules li1:t−1. For notational convenience, we also define for each m ∈

Mi, i = 1, 2,

µi1(m) := 0

Theorem II.3. There exist globally optimal encoding rules of the form :

Zi
t = f it (X

i
t , b

i
t, µ

i
t) (2.16)

where f it are deterministic functions for t = 1, 2, . . . , T and i = 1, 2.
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Discussion: In contrast to equation (2.2), Theorem II.3 says that an optimal

encoder 1 only needs to use the current observation X1
t and the probability mass

functions b1
t , µ

1
t that act as a compressed representation of the past observations X1

1:t−1

and Z1
1:t−1. These pmfs represent the encoder 1’s belief on A and M1

t−1.

To obtain the result of Theorem II.3 for the encoder 1, we fix arbitrary encoding

rules for the encoder 2 of the form in (2.3), arbitrary memory update rules of the form

in (2.11) and arbitrary decoding rules of the form in (2.12). Given these functions, we

consider the problem of selecting optimal encoding rules for encoder 1. We identify

a structural property of the optimal encoding rules of encoder 1 that is independent

of the arbitrary choice of strategies for encoder 2 and the receiver. We conclude that

the identified structure of optimal rules of encoder 1 must also be true when encoder

2 and the receiver are using the globally optimal strategies. Hence, the identified

structure is true for globally optimal encoding rules of encoder 1. We now present

this argument in detail.

Consider arbitrary (but fixed) encoding rules for encoder 2 of the of the form

in (2.3), arbitrary memory update rules for the receiver of the form in (2.11) and

arbitrary decoding rules of the form in (2.12). We will prove Theorem II.3 using the

following lemmas.

Lemma II.4. The belief of encoder 1 about the random variable A can be updated as

follows:

b1
t = α1

t (b
1
t−1, X

1
t , X

1
t−1) (2.17)

where α1
t , t = 2, 3, . . . , T are deterministic functions.

Proof. See Appendix A.

Lemma II.5. The belief of encoder 1 about the receiver memory M1
t−1 can be updated

as follows:

µ1
t = β1

t (µ
1
t−1, Z

1
t−1) (2.18)
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where β1
t , t = 2, 3, . . . , T are deterministic functions.

Proof. See Appendix A.

We now define the following random variables:

R1
t := (X1

t , b
1
t , µ

1
t ), (2.19)

for t = 1, 2, . . . , T .

Observe thatR1
t is a function of encoder 1’s observations till time t, that is, X1

1:t, Z
1
1:t−1.

Moreover, any encoding rule of the form in (2.2) can also be written as

Z1
t = f 1

t (R1
1:t, Z

1
1:t−1)

Lemma II.6. R1
t , t = 1, 2, ..., T is a perfectly observed controlled Markov process for

encoder 1 with Z1
t as the control action at time t.

Proof. Since R1
t is a function of encoder 1’s observations till time t, that is, X1

1:t, Z
1
1:t−1,

it is perfectly observed at encoder 1.

Let x1
1:t, z

1
1:t−1 be a realization of the encoder 1’s observations X1

1:t, Z
1
1:t−1. Similarly,

let r1
t be a realization of R1

t and b̃1
t and µ̃1

t be realizations of b1
t and µ1

t respectively.

Then,

P (R1
t+1 = (x1

t+1, b̃
1
t+1, µ̃

1
t+1)|r1

1:t, z
1
1:t)

= P (x1
t+1, b̃

1
t+1, µ̃

1
t+1|x1

1:t, b̃
1
1:t, µ̃

1
1:t, z

1
1:t)

= P (b̃1
t+1, µ̃

1
t+1|x1

t+1, x
1
1:t, b̃

1
1:t, µ̃

1
1:t, z

1
1:t)

×P (x1
t+1|x1

1:t, b̃
1
1:t, µ̃

1
1:t, z

1
1:t) (2.20)

= P (b̃1
t+1, µ̃

1
t+1|x1

t+1, x
1
t , b̃

1
t , µ̃

1
t , z

1
t )

×P (x1
t+1|x1

1:t, b̃
1
1:t, µ̃

1
1:t, z

1
1:t) (2.21)
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where the first term in (2.21) is true because of Lemma II.4 and Lemma II.5. Consider

the second term in (2.21). It can be expressed as follows:

P (x1
t+1|x1

1:t, b̃
1
1:t, µ̃

1
1:t, z

1
1:t)

=
∑
a∈A

P (x1
t+1, A = a|x1

1:t, b̃
1
1:t, µ̃

1
1:t, z

1
1:t) (2.22)

=
∑
a∈A

P (x1
t+1|A = a, x1

1:t, b̃
1
1:t, µ̃

1
1:t, z

1
1:t)

×P (A = a|x1
1:t, b̃

1
1:t, µ̃

1
1:t, z

1
1:t) (2.23)

=
∑
a∈A

P (x1
t+1|A = a, x1

t ).b̃
1
t (a) (2.24)

where the first term in (2.24) is true because of the Markov property of X1
t when

conditioned on A. Therefore, substituting (2.24) in (2.21), we get

P (R1
t+1 = (x1

t+1, b̃
1
t+1, µ̃

1
t+1)|x1

1:t, b̃
1
1:t, µ̃

1
1:t, z

1
1:t)

=P (b̃1
t+1, µ̃

1
t+1|x1

t+1, x
1
t , b̃

1
t , µ̃

1
t , z

1
t )

×
∑
a∈A

[P (x1
t+1|A = a, x1

t )× b̃1
t (a)] (2.25)

The right hand side of (2.25) depends only on x1
t ,b̃

1
t , µ̃

1
t and z1

t from the entire collection

of conditioning variables in the left hand side of (2.25). Hence,

P (R1
t+1|r1

1:t, z
1
1:t) =P (R1

t+1|x1
1:t, b̃

1
1:t, µ̃

1
1:t, z

1
1:t)

=P (R1
t+1|x1

t , b̃
1
t , µ̃

1
t , z

1
t )

=P (R1
t+1|r1

t , z
1
t ) (2.26)

This establishes the lemma.

Lemma II.7. The expected instantaneous distortion cost for encoder 1 can be ex-
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pressed as :

E{ρt(Xt, X̂t)|X1
1:t, Z

1
1:t} = ρ̂t(R

1
t , Z

1
t ) (2.27)

where ρ̂t, t = 1, 2, . . . , T are deterministic functions.

Proof. For any realization x1
1:t, z

1
1:t of X1

1:t, Z
1
1:t, we have

E{ρt(Xt, X̂t)|x1
1:t, z

1
1:t}

=E{ρt(x1
t , X

2
t , A, gt(Y

1
t , Y

2
t ,M

1
t−1,M

2
t−1)|x1

1:t, z
1
1:t)} (2.28)

The expectation in (2.28) depends on x1
t (appearing in the argument of ρt) and the

conditional probability: P (X2
t , A, Y

1
t , Y

2
t ,M

1
t−1,M

2
t−1|x1

1:t, z
1
1:t). We can evaluate this

conditional probability as follows:

P (X2
t = x2

t , A = a, Y 1
t = y1

t , Y
2
t = y2

t ,M
1
t−1 = m1

t−1,M
2
t−1 = m2

t−1|x1
1:t, z

1
1:t) (2.29)

=P (X2
t = x2

t , Y
2
t = y2

t ,M
2
t−1 = m2

t−1|A = a, Y 1
t = y1

t ,M
1
t−1 = m1

t−1, x
1
1:t, z

1
1:t)

× P (Y 1
t |A = a,M1

t−1 = m1
t−1, x

1
1:t, z

1
1:t)

× P (M1
t−1 = m1

t−1|A = a, x1
1:t, z

1
1:t)

× P (A = a|x1
1:t, z

1
1:t) (2.30)

=P (X2
t = x2

t , Y
2
t = y2

t ,M
2
t−1 = m2

t−1|A = a)×

P (Y 1
t = y1

t |z1
t )× P (M1

t−1 = m1
t−1|z1

1:t)× P (A = a|x1
1:t) (2.31)

=P (X2
t = x2

t , Y
2
t = y2

t ,M
2
t−1 = m2

t−1|A = a)×

P (Y 1
t = y1

t |z1
t )× µ̃1

t (m
1
t−1)× b̃1

t (a) (2.32)

In the first term of (2.31), we used the fact that conditioned on A, the observations

of encoder 2 and received messages from the second channel are independent of the

observations of encoder 1 and the messages received from the first channel. We used

the fact that the noise variables N1
t are i.i.d and independent of the source in the
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second and third term of (2.31). Thus, the conditional probability in (2.29) depends

only on z1
t , µ̃

1
t and b̃1

t . Therefore, the expectation in (2.28) is a function of x1
t , z

1
t , µ̃

1
t , b̃

1
t .

That is,

E{ρt(Xt, X̂t)|x1
1:t, z

1
1:t} = ρ̂t(x

1
t , z

1
t , µ̃

1
t , b̃

1
t ) (2.33)

= ρ̂t(r
1
t , z

1
t ) (2.34)

Proof of Theorem II.3. From Lemma II.6 and Lemma II.7, we conclude that the op-

timization problem for encoder 1, when the strategies of encoder 2 and the receiver

have been fixed, is equivalent to controlling the transition probabilities of the con-

trolled Markov chain R1
t through the choice of the control actions Z1

t (where Z1
t can

be any function of R1
1:t and Z1

1:t−1) in order to minimize
∑T

t=1E{ρ̂t(R1
t , Z

1
t )}. It is a

well-known result of Markov decision theory (Kumar and Varaiya (1986b), Chapter

6) that there is an optimal control law of the form:

Z1
t = f 1

t (R1
t )

or equivalently,

Z1
t = f 1

t (X1
t , b

1
t , µ

1
t )

Moreover, it also follows from Markov decision theory that allowing randomized con-

trol policies for encoder 1 cannot provide any performance gain. Since the above

structure of the optimal choice of encoder 1’s strategy is true for any arbitrary choice

of encoder 2’s and the receiver’s strategies, we conclude that the above structure of

optimal encoder 1 is true when the encoder 2 and the receiver are using their globally

optimal choices as well. Therefore, the above structure is true for globally optimal

strategy of encoder 1 as well. This completes the proof of Theorem II.3. Structural
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result for encoder 2 follows from the same arguments simply by interchanging the

roles of encoder 1 and encoder 2.

2.3.3 Structural result for Decoding Functions

We now present the structure of an optimal decoding strategy. Consider fixed

encoding rules of the form in (2.2) and (2.3) and fixed memory update rules of the

form in (2.11). We define the following probability mass function for the receiver :

Definition II.8. For x ∈ X and t = 1, 2, . . . , T ,

ψt(x) := P (Xt = x|Y 1
t , Y

2
t ,M

1
t−1,M

2
t−1, f

1
1:t, f

2
1:t, l

1
1:t, l

2
1:t)

where the functions f 1
1:t, f

2
1:t, l

1
1:t, l

2
1:t in the conditioning indicate that ψt is defined

for a fixed choice of encoding and memory update strategies.

Let ∆(X ) denote the set of probability mass functions on the finite set X . We

define the following functions on ∆(X ).

Definition II.9. For any ψ ∈ ∆(X ) and t = 1, 2, . . . , T ,

τt(ψ) = argmin
s∈X

∑
x∈X

ψ(x)ρt(x, s)

With the above definitions, we can present the result on the structure of a globally

optimal decoding rule.

Theorem II.10. For any fixed encoding rules of the form in (2.2) and (2.3) and

memory update rules of the form in (2.11), there is an optimal decoding rule of the

form

X̂t = τt(ψt) (2.35)
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where the belief ψt is formed using the fixed encoding and memory update rules. In

particular, equation (2.35) is true for a globally optimal receiver, when the fixed en-

coding rules and memory update rules are the globally optimal rules.

Proof. The result follows from standard statistical decision theory DeGroot (1970).

2.3.4 Discussion of the Result

Theorem II.3 identifies sufficient statistics for the encoders. Instead of storing

all past observations and transmitted messages, each encoder may store only the

probability mass functions (pmf) on the finite sets A and Mi generated from past

observations and transmitted messages. Thus we have finite-dimensional sufficient

statistics for the encoders that belong to time-invariant spaces (the space of pmfs on

A and Mi). Clearly, this amounts to storing a fixed number of real-numbers in the

memory of each encoder instead of arbitrarily large sequences of past observations

and past transmitted symbols. However, the encoders now have to incur an addi-

tional computational burden involved in updating their beliefs on A and the receiver

memory.

We would like to emphasize that the presence of a finite dimensional sufficient

statistic that belong to time-invariant spaces is strongly dependent on the nature of

the source and the receiver. Indeed, without the conditionally independent nature of

the encoders’ observations or the separated finite memories at the receiver, we have

not been able to identify a sufficient statistic whose domain does not keep increasing

with time. For example, if the finite memory receiver maintained a coupled memory

which is updated as:

Mt = lt(Mt−1, Y
1
t , Y

2
t )

then one may conjecture that the encoder could use a belief on Mt−1 as a sufficient

representation of past transmitted symbols, analogous to µ1
t in Theorem II.3. How-
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ever, such a statistic cannot be updated without remembering all past data, that is,

an update equation analogous to Lemma II.5 for µ1
t does not hold. This implies that

the Markov decision-theoretic arguments of Theorem II.3 do not work for this case.

In the case when encoders’ observations have a more general correlation structure,

a finite dimensional statistic like b1
t that compresses all the past observations seems

unlikely. It appears that in the absence of the assumptions mentioned above, the

optimal encoders should remember all their past information.

If the receiver has perfect memory, that is, it remembers all past messages received,

(M i
t−1 = Y i

1:t−1, i = 1, 2), Theorem II.3 implies µit = P (Y i
1:t−1|Zi

1:t−1) as a part of the

sufficient statistic for encoder i. Thus, Theorem II.3 says that each encoder needs

to store beliefs on the increasing space of all past observations at the receiver. This

sufficient statistic does not belong to a time-invariant space. In the next section, we

will consider this problem with noiseless channels and show that for noiseless channels

there is in fact a sufficient statistic that belongs to a time-invariant space. However,

this sufficient statistic is no longer finite dimensional and for implementation purposes,

one would have to come up with approximate representations of it.

2.4 Problem P2

We now look at the Problem P1 with noiseless channels. Firstly, we assume the

same model for the nature of the source and the separated memories at the receiver

as in Problem P1. The result of Theorem II.3 then holds with the belief on M i
t−1

replaced by the true value of M i
t−1. The presence of noiseless channels implies that

encoder i and the receiver have some common information. That is, at time t they

both know the state of M i
t−1.In this section, we will show that the presence of common

information allows us to explore the case when the receiver may have perfect memory.

We will present a new methodology that exploits the presence of common information

between the encoder and the receiver to find sufficient statistics for the encoders that

34



belong to time-invariant spaces.

2.4.1 Problem Formulation

1. The Model: We consider the same model as in P1 with following two modifica-

tions:

(a) The channels are noiseless; thus the received symbol Y i
t is same as the

transmitted symbol Zi
t , for i = 1, 2 and t = 1, 2, . . . , T .

(b) The receiver has perfect memory, that is, it remembers all the past received

symbols. Thus, M i
t−1 = Zi

1:t−1, for i = 1, 2 and t = 2, 3, . . . , T . (See Fig.

2.3)

2. The Optimization Problem, P2 : Given the source statistics, the encoding al-

phabets, the time horizon T, the distortion functions ρt, the objective is to

find globally optimal encoding and decoding functions f 1
1:T , f

2
1:T , g1:T so as to

minimize

J(f 1
1:T , f

2
1:T , g1:T ) = E[

T∑
t=1

ρt(Xt, X̂t)] (2.36)

where the expectation in (2.36) is over the joint distribution of X1:T and X̂1:T

which is determined by the given source statistics and the choice of encoding

and decoding functions f 1
1:T , f

2
1:T , g1:T .

2.4.2 Structure of the Receiver

Clearly, problem P2 is a special case of problem P1. The decoder structure of P1

can now be restated for P2 as follows: For fixed encoding rules of the form in (2.2)

and (2.3), we can define the receiver’s belief on the source as:

ψt(x) := P (Xt = x|Z1
1:t, Z

2
1:t, f

1
1:t, f

2
1:t)
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Figure 2.3: Problem P2

for x ∈ X and t = 1, 2, . . . , T .

Theorem II.11. For any fixed encoding rules of the form in (2.2) and (2.3), there

is an optimal decoding rule of the form

X̂t = τt(ψt) (2.37)

where the belief ψt is formed using the fixed encoding rules and τt is as defined in

Definition II.9. In particular, equation (2.37) is true for a globally optimal receiver,

when the fixed encoding rules are globally optimal rules.

2.4.3 Structural Result for Encoding Functions

For a fixed realization of Zi
1:t−1, encoder i’s belief on the receiver memory M i

t−1 is

simply:

µ̃it(m) = P (M i
t−1 = m|zi1:t−1) =

 1 if m = z1
1:t−1

0 otherwise
(2.38)

Therefore, using Theorem II.3, we conclude that there is a globally optimal encoder

of the form:

Zi
t = f it (X

i
t , b

i
t, µ

i
t)
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for t = 1, 2, . . . , T and i = 1, 2.

Or equivalently,

Zi
t = f it (X

i
t , b

i
t, Z

i
1:t−1) (2.39)

Observe that the domain of the encoding functions in (2.39) keeps increasing with

time since it includes all past transmitted symbols Z1
1:t−1. We would like to find a

sufficient statistic that belongs to a time-invariant space. Such a statistic would allow

us to address problems with large (or infinite) time horizons.

For that matter, let us first review the approach used for obtaining the first struc-

tural result for the encoders (Theorem II.3). We fixed the strategy of encoder 2 and

the receiver to any arbitrary choice and looked at the optimization problem P1 from

encoder 1’s perspective. Essentially, we addressed the following question: if encoder 2

and the receiver have fixed their strategies, how can we characterize the best strategy

of encoder 1 in response to the other agents’ fixed strategies? In other words, with

f 2
1:T and g1:T as fixed, what kind of strategies of encoder 1 (f 1

1:T ) minimize the ob-

jective in equation (2.13)? This approach allowed us to formulate a Markov decision

problem for encoder 1. The Markov decision problem gave us a sufficient statistic for

encoder 1 that holds for any choice of strategies of encoder 2 and the receiver and this

led to the result of Theorem II.3. In problem P2, such an approach gives the result

of equation (2.39) - which implies a sufficient statistic whose domain keeps increasing

with time.

To proceed further, we need to adopt a different approach. As before, we will

make an arbitrary choice of encoder 2’s strategy of the form in (2.3). Given this fixed

encoder 2, we will now ask, what are the jointly optimal strategies for encoder 1 and

the receiver? That is, assuming f 2
1:T is fixed, what choice of f 1

1:T and g1:T together

minimize the objective in equation (2.36)? From our previous structural results, we

know that we can restrict to encoding rules f 1
1:T of the form in (2.39) and decoding

rules from Theorem II.11 without any loss of optimality. We thus have the following
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problem:

Problem P2’: In Problem P2, with encoder 2’s strategy fixed to an arbitrary choice

f ′21:T , find the jointly optimal strategies of encoder 1 of the form in (2.39) and of the

receiver in Theorem II.11 to minimize

J(f 1
1:T , f

′2
1:T , g1:T ) = E[

T∑
t=1

ρt(Xt, X̂t)]

Problem P2’ is in some sense a real-time point-to-point communication problem

with side information at the receiver. This is now a decentralized team problem with

the first encoder and the receiver as the two agents. Note that encoder 1 influences

the decisions at the receiver not only by the symbols Z1
t it sends but by the entire

encoding functions it employs (since the receiver’s belief ψt depends on the choice

of encoding functions f 1
1:t). A general way to solve such dynamic team problems

is to search through the space of all strategies to identify the best choice. For our

problem (and for many team problems), this is not a useful approach for two reasons:

1) Complexity - the space of all strategies is clearly too large even for small time

horizons, thus making a brute force search prohibitive. 2) More importantly, such

a method does not reveal any characteristic of the optimal strategies and does not

lead to the identification of a sufficient statistic. We will therefore adopt a different

philosophy to address our problem.

Our approach is to first consider a modified version of problem P2’. We will con-

struct this modified problem in such a way so as to ensure that:

(a) The new problem is a single agent problem instead of a team problem. Single

agent centralized problems (in certain cases) can be studied through the framework

of Markov decision theory and dynamic programming.

(b) The new problem is equivalent to the original team problem. We will show that

the conclusions from the modified problem remain true for the problem P2’ as well.
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Figure 2.4: Coordinator’s Problem P2”

We proceed as follows:

Step 1: We introduce a centralized stochastic control problem from the point of view

of a fictitious agent who knows the “common information” between encoder 1 and

the receiver.

Step 2: We argue that the centralized problem of Step 1 is equivalent to the original

decentralized team problem.

Step 3: We solve the centralized stochastic control problem by identifying an infor-

mation state and employing dynamic programming arguments. The solution of this

problem will reveal a sufficient statistic with a time-invariant domain for encoder 1.

Below, we elaborate on these steps.

Step 1: We observe that the first encoder and the receiver have some common

information. At time t, they both know Z1
1:t−1. We now formulate a centralized prob-

lem from the perspective of a fictitious agent that knows just the common information

Z1
1:t−1. We call this fictitious agent the “coordinator” (See Fig. 2.4).

The system operates as follows in this new problem: Based on Z1
1:t−1, the coordi-

nator selects a partial-encoding function

w1
t : X 1 ×∆(A) −→ Z1

An encoding function of the form in (2.39) can be thought of as a collection of

mappings from X 1 × ∆(A) to Z1 - one for each realization of Z1
1:t−1. Clearly, w1

t
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represents one such mapping corresponding to the true realization of Z1
1:t−1 that was

observed by the coordinator. (At t = 1, since there is no past common information,

the partial-encoding rule w1
1 is simply f 1

1 which is a mapping from X 1×∆(A) to Z1.)

The coordinator informs the encoder 1 of its choice w1
t . The encoder 1 then uses w1

t

on its observations X1
t and b1

t to find the symbol to be transmitted, i.e,

Z1
t = w1

t (X
1
t , b

1
t ) (2.40)

The coordinator also informs the receiver of the partial-encoding function. The re-

ceiver at each time t, forms its belief on the state of the source based on the received

symbols, the partial-encoding functions and the fixed strategy of encoder 2. This

belief is

ψt(x) := P (Xt = x|z1
1:t, z

2
1:t, w

1
1:t, f

′2
1:t)

for x ∈ X . The receiver’s optimal estimate at time t is then given as:

X̂t = argmin
s∈X

∑
x∈X

ψt(x)ρt(x, s) (2.41)

The coordinator then observes the symbol Z1
t sent from encoder 1 to the receiver and

then selects the partial-encoding function for time t+1 (w1
t+1). The system continues

like this from time t = 1 to T . The objective of the coordinator is to minimize the

performance criterion of equation (2.36), that is, to minimize

E[
T∑
t=1

ρt(Xt, X̂t)]

We then have the following problem:

Problem P2”: In Problem P2, with encoder 2’s strategy fixed to the same choice f ′21:T

as in P2’ and with a coordinator between encoder 1 and the receiver as described

above, find an optimal selection rule for the coordinator, that is find the mappings
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Λt, t = 1, 2, ..., T that map the coordinator’s information to its decision

w1
t = Λt(Z

1
1:t−1, w

1
1:t−1)

so as to minimize the total expected distortion over time T .

(Note we have included the past decisions (w1
1:t−1) of the coordinator in the argument

of Λt since they themselves are functions of the past observations Z1
1:t−1).

Remark: Under a given selection rule for the coordinator, the function w1
t is a ran-

dom variable whose realization depends on the realization of past Z1
t−1 which, in

turn, depends on the realization of the source process and the past partial-encoding

functions.

Step 2: We now argue that the original team problem P2’ is equivalent to the

problem in the presence of the coordinator (Problem P2”). Specifically, we show that

any achievable value of the objective (that is, the total expected distortion over time

T ) in problem P2’ can also be achieved in problem P2” and vice versa. Consider

first any selection rule Λt, t = 1, 2, ..., T for the coordinator. Since the coordinator in

Step 1 only knows the common information between encoder 1 and the receiver, it

implies that all information available at the coordinator is in fact available to both

encoder 1 and the receiver. Thus, the selection rule Λt of the coordinator can be used

by both encoder 1 and the receiver to determine the partial-encoding function, w1
t ,

to be used at time t even when the coordinator is not actually present. Therefore,

the coordinator can effectively be simulated by encoder 1 and the receiver, and hence

any achievable value of the objective in Problem P2” with the coordinator can be

achieved even in the absence of a physical coordinator.

Conversely, in Problem P2’ consider any strategy f 1
1:T of encoder 1 and the cor-

responding optimal receiver given by Theorem II.11. Now consider the following

selection rule for the coordinator in P2”: At each time t, after having observed z1
1:t−1,
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the coordinator selects the following partial encoding function.

w1
t (·) = f 1

t (·, z1
t−1)

Then it is clear that for every realization of the source, encoder 1 in Problem P2”

will produce the same realization of encoded symbols as encoder 1 of Problem P2’.

Consequently the above selection rule of the coordinator will induce the same joint

distribution P (X1:T , Z
1
1:T , Z

2
1:T ) as the encoding rules f 1

1:T for encoder 1 in problem P2’.

Then the receivers in Problem P2’ and Problem P2” will have the same conditional

belief ψt and will make the same estimates (given by Theorem II.11 and equation

(2.41) respectively). Thus any achievable value of the objective in Problem P2’ can

also be achieved in Problem P2”.

The above equivalence allows us to focus on the coordinator’s problem to solve

the original problem P2’. We now argue that the coordinator’s problem is in fact a

single agent centralized problem for which Markov decision-theoretic results can be

employed.

Step 3: To further describe the coordinator’s problem we need the following

definition and lemma.

Definition II.12. For t = 1, 2, . . . , T , let ξ1
t be the coordinator’s belief on X1

t , b
1
t .

That is,

ξ1
t (x

1
t , b̃

1
t ) := P (X1

t = x1
t , b

1
t = b̃1

t |Z1
1:t, w

1
1:t)

for x1
t ∈ X 1 and b̃1

t ∈ ∆(A).

For notational convenience, we define ξ1
0 := 0.

Remark: Recall that b1
t is encoder 1’s posterior belief on A given its observations

X1
t . Due to finiteness of the space X 1, b1

t can only take one of finitely many values

from the set ∆(A). Hence, ξ(x1
t , ·) is a purely atomic measure on the space ∆(A)

with finite number of atoms.
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Lemma II.13. For a fixed strategy of encoder 2, there is an optimal decoding rule of

the form:

X̂t = τt(ψt) = τt(δt(ξ
1
t , Z

2
1:t)) (2.42)

where δt, t = 1, 2, . . . , T are fixed transformations that depend only on source statistics

and the fixed strategy of encoder 2 and τt, t = 1, 2, . . . , T are the decoding functions

as defined in Definition II.9.

Proof. See Appendix A.

From equations (2.40) and (2.42), it follows that in the coordinator’s problem

P2”, encoder 1 and the receiver are simply implementors of fixed transformations.

They do not make any decisions. Thus, in this formulation, the coordinator is the

sole decision maker. We now analyze the centralized problem for the coordinator.

Firstly, observe that at time t, the coordinator knows its observations so far - Z1
1:t−1

and the partial encoding functions it used so far - w1
1:t−1; it then selects an “action”

w1
t and makes the next “observation” Z1

t . In particular, note that the coordinator

has perfect recall, that is, it remembers all its past observations and actions-this is

a critical characteristic of classical centralized problems for which Markov decision-

theoretic results hold.

We can now prove the following lemma :

Lemma II.14. 1. With a fixed strategy of the second encoder, ξ1
t can be updated

as follows:

ξ1
t = γ1

t (ξ
1
t−1, Z

1
t , w

1
t ) (2.43)

where γ1
t , t = 2, . . . , T are fixed transformations that depend only on the source

statistics.

2. For a fixed strategy of the second encoder, the expected instantaneous cost from
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the coordinator’s perspective can be written as:

E{ρt(Xt, X̂t)|Z1
1:t, w

1
1:t} = ρt(ξ

1
t ) (2.44)

for t = 1, 2, . . . , T , where ρt are deterministic functions.

Proof. See Appendix A.

Based on Lemma II.14, we obtain the following result on the coordinator’s opti-

mization problem.

Theorem II.15. For any given selection rule Λt, t = 1, 2..., T for the coordinator,

there exists another selection rule Gt, t = 1, 2, ..., T that selects the partial-encoding

function to be used at time t, (w1
t ) based only on ξ1

t−1 and whose performance is no

worse than that of Λt, t = 1, 2, ..., T . Therefore, one can optimally restrict to selection

rules for the coordinator of the form:

w1
t = Gt(ξ

1
t−1) (2.45)

Proof. Because of Lemma II.14, the optimization problem for the coordinator is to

control the evolution of ξ1
t (given by (2.43)) through its actions w1

t , when the instan-

taneous cost depends only on ξ1
t . Since ξ1

t is known to the coordinator, this problem

is similar to the control of a perfectly observed Markov process. This observation es-

sentially implies the result of the theorem, as it follows from Markov decision theory

(Kumar and Varaiya (1986b), Chapter 6) that to control a perfectly observed Markov

process one can restrict attention to policies that depend only on the current state of

the Markov process without any loss of optimality.

We have therefore identified the structure of the coordinator’s selection rule. The

coordinator does not need to remember all of its information - Z1
1:t−1 and w1

1:t−1. It
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can operate optimally by just using ξ1
t−1. We can thus conclude the following result.

Theorem II.16. In Problem P2, there is no loss of optimality in considering decoding

rules of the form in Theorem II.11 with encoders that operate as follows:

For i = 1, 2, define ξi0 := 0 and for t = 1, 2, ...T ,

Zi
t = f it (X

i
t , b

i
t, ξ

i
t−1) (2.46)

and

ξit = γit(ξ
i
t−1, Z

i
t , f

i
t (·, ξit−1)) (2.47)

where γit are fixed transformations (Lemma II.14).

Proof. The assertion of the the theorem follows from Theorem II.15 and the equiv-

alence between problem P2’ and P2” established in Step 2. The coordinator (either

real or simulated by encoder 1 and receiver) can select the partial encoding functions

by a selection rule of the form:

w1
t = Gt(ξ

1
t−1)

and the encoder 1’s symbol to be transmitted at time t is given as:

Z1
t = w1

t (X
1
t , b

1
t )

Thus, Z1
t is a function of X1

t , b
1
t and ξ1

t−1 that was used to select w1
t . That is,

Z1
t = f 1

t (X1
t , b

1
t , ξ

1
t−1)

where w1
t (·) = f 1

t (·, ξ1
t−1). The coordinator (real or simulated) then updates ξ1

t−1
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according to Lemma II.14 as:

ξ1
t = γ1

t (ξ
1
t−1, Z

1
t , w

1
t )

The same argument holds for encoder 2 as well.

2.4.4 Discussion

Observe that Z1
1:t−1 appearing in the argument of optimal encoding functions in

(2.39) have been replaced by ξ1
t−1. By definition, ξ1

t is a joint belief on X 1 and ∆(A),

therefore, ξ1
t belongs to a time-invariant space, namely, the space of joint beliefs on

X 1 and ∆(A). Thus the domain of the optimal encoding functions in (2.46) is time-

invariant. However, ξ1
t above is a joint belief on a finitely-valued random variable

(X1
t ) and a real-valued vector (b1

t ). Thus, we have an infinite-dimensional sufficient

statistic for the encoder. Clearly, such a sufficient statistic can not be directly used

for implementation. However, it may still be used in identifying good approximations

to optimal encoders. Below, we present some cases where the above structural result

may suggest finite-dimensional representations of the sufficient statistic.

2.4.5 Special Cases

2.4.5.1 A observed at the Encoders

Consider the case when the encoder’s observations at time t = 1 include the

realization of the random variable A. Clearly, the encoder’s belief on A, (bit) can be

replaced by the true value of A in Theorem II.16. Thus, for problem P2, there is an

optimal encoding rule of the form:

Z1
t = f 1

t (X1
t , A, P (X1

t−1, A|Z1
1:t−1, f

1
1:t−1)) (2.48)
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Since A belongs to a finite set, the domain of the encoding functions in (2.48) consists

of the scalars X1
t and A and a belief on the finite space X 1 × A. Thus when A is

observed at the encoders, we have a finite dimensional sufficient statistic for each

encoder.

2.4.5.2 Independent Observations at Encoders

Consider the case when the encoders’ observations are independent Markov chains.

This is essentially the case when A is constant with probability 1. Then, effectively,

all agents know A. In this case, the result of (2.48) reduces to

Z1
t = f 1

t (X1
t , P (X1

t−1|Z1
1:t−1, f

1
1:t−1)) (2.49)

and we have a finite dimensional sufficient statistic for the encoders.

2.5 Extensions

We apply our results for Problems P1 to P2 to other related problems in this

section.

2.5.1 Multiple (n) encoders and single receiver problem

Encoder 1

Encoder 2

X1
t

X2
t

Z1
t

Z2
t Y 2

t

Y 1
t

X̂t

Markov

Source

M1
t−1

M2
t−1

Encoder n

Xn
t Zn

t Y n
t

Mn
t−1

X1
t , ..., X

n
t , A

Figure 2.5: Problem with n encoders

Consider the model of Figure 2.5 where we have n (n > 2) encoders that partially
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observe a Markov source and encode their observations, in real-time, into sequences of

discrete symbols that are transmitted over separate noisy channels (with independent

noise) to a common receiver. We make assumptions analogous to assumptions A1 and

A2 for Problem P1, that is,

1. Assumption 1: The state of the Markov source is given as :

Xt := (X1
t , X

2
t , ..., X

n
t , A)

where A is a time-invariant random variable and conditioned on A, X1
t , X

2
t , ..., X

n
t

are conditionally independent Markov chains. The ith encoder observes the process

X i
t , t = 1, 2, ... and uses encoding functions of the form :

Zi
t = f it (X

i
1:t, Z

i
i:t−1)

for i = 1, 2, ..., n.

2. Assumption 2: We have a finite memory receiver that maintains a separate

memory for symbols received from each channel. This memory is updated as follows:

M i
1 = li1(Y i

1 ), i = 1, 2, ..., n (2.50a)

M i
t = lit(M

i
t−1, Y

i
t ), i = 1, 2, ..., n (2.50b)

where M i
t belongs to finite alphabet Mi, and lit are the memory update functions at

time t for i = 1, 2, ..., n. The receiver produces an estimate of the source X̂t based on

its memory contents at time t− 1 and the symbols received at time t, that is,

X̂t = gt(Y
1
t , Y

2
t , ..., Y

n
t ,M

1
t−1,M

2
t−1, ...,M

n
t−1) (2.51)

A non-negative distortion function ρt(Xt, X̂t) measures the instantaneous distortion
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at time t. We can now formulate the following problem.

Problem P3: With the assumptions 1 and 2 as above, and given source and channel

statistics, the encoding alphabets, the distortion functions ρt and a time horizon T,

the objective is to find globally optimal encoding, decoding and memory update

functions f 1
1:T , f

2
1:T , ..., f

n
1:T , g1:T , l

1
1:T , l

2
1:T , ..., l

n
1:T so as to minimize

E{
T∑
t=1

ρt(Xt, X̂t)} (2.52)

For this problem we can establish, by arguments similar to those used in the problems

with two encoders, the following results that are analogous to Theorem II.3 and

Theorem II.16 respectively.

Theorem II.17. There exist globally optimal encoding rules of the form :

Zi
t = f it (X

i
t , b

i
t, µ

i
t) (2.53)

where bit := P (A|X i
1:t) and µit := P (M i

t−1|Zi
1:t−1, l

i
1:t−1). The optimal decoding rules

are of the form:

X̂t = τt(ψt) (2.54)

where ψt := P (Xt|Y 1
t , Y

2
t , ..., Y

n
t ,M

1
t−1,M

2
t−1, ...,M

n
t−1) and τt is as defined in Defini-

tion II.9.

Proof. Consider any arbitrary choice of encoding functions for encoder 2 through

encoder n and arbitrary choice of the decoding and memory update functions at the

receiver. Then the problem for encoder 1 is essentially same as in the case when

n = 2.

Theorem II.18. Consider Problem P3 with noiseless channel (that is, Y i
t = Zi

t) and

perfect receiver memory (that is , M i
t−1 = Zi

1:t−1). Then there is no loss of optimality

in considering decoding rules of the form X̂t = τt(ψt) where ψt = P (Xt|Z1
1:t, ..., Z

n
1:t)
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with encoders that operate as follows:

For i = 1, 2, ..., n, define ξi0 := 0 and for t = 1, 2, ...T ,

Zi
t = f it (X

i
t , b

i
t, ξ

i
t−1) (2.55)

and

ξit = γit(ξ
i
t−1, Z

i
t , f

i
t (·, ξit−1)) (2.56)

where γit are fixed transformations (Lemma II.14).

Proof. The result follows from Theorem II.16 using similar arguments as in the proof

of Theorem II.17.

2.5.2 Point-to-Point Systems

2.5.2.1 A Side Information Channel

Receiver
X1

t Z1
t

Y 2
t

Y 1
t

N2
t

X̂t

X2
t

Encoder

N1
t

Source

X1
t
, X2

t
, A

Figure 2.6: Side-Information Problem

Consider Problem P1 or P2 with encoder 2’s strategy fixed as follows:

Z2
t = X2

t

Then the multi-terminal communication problems reduce to a point-to-point commu-

nication problems with side-information available at the receiver (See, for example,

Fig 2.6). It is clear that the results of Theorem II.3 and Theorem II.10, for noisy chan-
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nels, and Theorem II.16, for noiseless channels, remain valid for these side-information

problems as well (since they are true for any arbitrary choice of encoder 2’s strategy).

2.5.2.2 Unknown Transition Matrix

Consider a point-to-point communication system where an encoder is communi-

cating its observations of a Markov source Xt to a receiver (Fig. 2.7). The channel

may be noisy or noiseless, the receiver may have finite memory or perfect recall. Struc-

tural results for optimal real-time encoding rules have been obtained in cases when

the transition probabilities of the Markov source are known (Witsenhausen (1978),

Teneketzis (2006)). Consider now the case where the encoder observes a Markov

chain Xt whose transition matrix is not known. However, the set of possible tran-

sition matrices is parameterized by a parameter A with a known prior distribution

over a finite set A. The encoding functions are of the form:

Zt = ft(X1:t, Z1:t−1)

where Zt is the transmitted symbol at time t. The receiver receives a noisy version

of Zt given by

Yt = ht(Zt, Nt)

where Nt is the noise in the channel. The receiver maintains a finite memory that is

updated as follows:

M1 = l1(Y1)

Mt = lt(Yt,Mt−1)

where Mt ∈M, ∀t. The receiver’s estimate at time t is given as:

X̂t = gt(Yt,Mt−1)
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A non-negative distortion function ρt(Xt, X̂t) measures the instantaneous distortion

at time t. We consider the following problem:

Receiver X̂t

Nt

YtZt
Encoder

Markov Source
with unknown

statistics

Xt

Mt−1

Figure 2.7: Point-to-point system with unknown source statistics

Problem P4: Given the source and receiver model as above and the noise statistics,

the encoding alphabets, the channel functions ht, the distortion functions ρt and

a time horizon T, the objective is to find globally optimal encoding, decoding and

memory update functions f1:T , g1:T , l1:T so as to minimize

J(f1:T , g1:T , l1:T ) = E{
T∑
t=1

ρt(Xt, X̂t)} (2.57)

The methodology employed for the analysis of Problem P1 can be used to establish

the following result.

Theorem II.19. There exist globally optimal encoding rules of the form :

Zt = ft(Xt, bt, µt) (2.58)

where bt := P (A|X1:t) and µt := P (Mt−1|Z1:t−1, l1:t−1). The optimal decoding rules

are of the form:

X̂t = τt(ψt) (2.59)

where ψt := P (Xt|Yt,Mt−1, f1:t, l1:t) and τt is as defined in Definition II.9.

Proof. We can view the optimization problem P4 as a special case of Problem P1 with

an imaginary second encoder that makes no observations of the source and sends no

message to the receiver (that is, the set X 2 and Z2 are empty). Thus, the results of

the above theorem follow from Theorem II.3 and Theorem II.10.
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The methodology developed for the analysis of Problem P2 can be used to obtain

the following result.

Theorem II.20. Consider Problem P4 with noiseless channel (that is, Yt = Zt) and

perfect receiver memory (that is , Mt−1 = Z1:t−1). Then there is no loss of optimality

in considering encoding rules of the form:

Zt = ft(Xt, bt, ξt−1)

where bt := P (A|X1:t) and

ξt−1 := P (Xt−1, bt−1|Z1:t−1)

with decoding rules of the form:

X̂t = τt(ψt) (2.60)

where ψt := P (Xt = x|Z1:t) and τt is as defined in Definition II.9.

Proof. The result follows from Theorem II.16 using similar arguments as in the proof

of Theorem II.20.

2.5.3 kth order Markov Source

Consider Problem P1 or P2 with a source model given by the following equations:

X1
t+1 = F 1

t (X1
t , X

1
t−1, .., X

1
t+1−k, A,W

1
t ) (2.61a)

X2
t+1 = F 2

t (X2
t , X

2
t−1, .., X

2
t+1−k, A,W

2
t ) (2.61b)

Thus, conditioned on a global, time-invariant random variable A, X1
t and X2

t are con-

ditionally independent kth order Markov processes. It is straightforward to consider
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a Markovian reformulation of the source by defining

Bi
t := (X i

1, X
i
2, ..., X

i
t)

for i = 1, 2 and t ≤ k and

Bi
t := (X i

t , X
i
t−1, .., X

i
t+1−k)

for i = 1, 2 and t > k. We then have that

Bi
t+1 = F̃ 1

t (Bi
t, A,W

1
t ) (2.62)

for i = 1, 2. Thus, we now have a Markov system (when conditioned on A) - with Bi
t

as the encoder i’s observations - for which our structural results directly apply.

2.5.4 Communication with Finite Delay

Consider the models of Problem P1 or P2 with the following objective function:

T+d∑
t=d+1

E[ρt(Xt−d, X̂t)]

The above objective can be interpreted as the total expected distortion incurred

when the receiver can allow a small finite delay, d, before making its final estimate on

the state of the source. Thus, the receiver produces a sequence of source estimates

X̂d+1, X̂d+2, ..., X̂T+d, and incurs a distortion
T+d∑
t=d+1

E[ρt(Xt−d, X̂t)]. We can transform

this problem to our problem by the following regrouping of variables.

For i = 1, 2 and t = 1, 2, .., d define

Bi
t := (X i

1, X
i
2, .., X

i
t) (2.63)
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For t = d+ 1, ..., T , define

Bi
t := (X i

t−d, X
i
t−d+1, .., X

i
t) (2.64)

and for t = T + 1, T + 2, ..T + d

Bi
t := (X i

t−d, X
i
t−d+1, .., X

i
T ) (2.65)

Then, it is easily seen that conditioned on A, B1
t and B2

t are two conditionally in-

dependent Markov chains. Moreover, the distortion function ρt(Xt−d, X̂t) can be

expressed as ρ̃(B1
t , B

2
t , A, X̂t). Thus, we have modified the problem to an instance of

Problem P1 or P2 with Bi
t as the encoder i’s observation.

2.6 Conclusion

We considered a real-time communication problem where two encoders make dis-

tinct partial observations of a discrete-time Markov source and communicate in real-

time with a common receiver which needs to estimate some function of the state of

the Markov source in real-time. We assumed a specific model for the source that

arises in some applications of interest. In this model, the encoders’ observations are

conditionally independent Markov chains given an unobserved, time-invariant ran-

dom variable. We formulated a communication problem with separate noisy channels

between each encoder and the receiver and a separated finite memory at the receiver.

We obtained finite-dimensional sufficient statistics for the encoders in this problem.

The structure of the source and the receiver played a critical role in obtaining these

results.

We then considered the communication problem over noiseless channels and per-

fect receiver memory. We used the presence of common information between an
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encoder and the receiver to identify a sufficient statistic of the decoder that has a

time-invariant domain.

The sufficient statistics we found for the encoders are analogous to the belief state

of partially observable Markov decision problems Kumar and Varaiya (1986b). For

such problems, under suitable conditions, it is known that the expected future cost

of an action is a continuous function of the belief state Smallwood and Sondik (1973).

We believe such results also hold for the encoder’s decision problem in Problem P1 and

the coordinator’s decision problem in Problem P2. This would suggest that sufficient

statistics that are “close to” each other will have similar future costs and the quanti-

zation of sufficient statistics may not result in large performance loss. Characterizing

the effect of such quantization on system performance as well as the robustness of

system performance with respect to quantization are currently open problems.

We have also not addressed the problem of finding globally optimal real-time en-

coding and decoding strategies in this paper. A sequential decomposition of the global

optimization problem, for a special case of the problems formulated here, appears in

Nayyar and Teneketzis (2008).
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CHAPTER III

Delayed Sharing Information Structures

3.1 Introduction

3.1.1 Motivation

One of the difficulties in optimal design of decentralized control systems is handling

the increase of data at the control stations with time. This increase in data means that

the domain of control laws increases with time which, in turn, creates two difficulties.

Firstly, the number of control strategies increases doubly exponentially with time;

this makes it harder to search for an optimal strategy. Secondly, even if an optimal

strategy is found, implementing functions with time increasing domain is difficult.

In centralized stochastic control (Kumar and Varaiya (1986a)), these difficulties

can be circumvented by using the conditional probability of the state given the data

available at the control station as a sufficient statistic (where the data available to a

control station comprises of all observations and control actions till the current time).

This conditional probability, called information state, takes values in a time-invariant

space. Consequently, we can restrict attention to control laws with time-invariant

domain. Such results, where data that is increasing with time is “compressed” to a

sufficient statistic taking values in a time-invariant space, are called structural results.

While the information state and structural result for centralized stochastic control
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problems is well known, no general methodology to find such information states or

structural results exists for decentralized stochastic control problems.

The structural results in centralized stochastic control are related to the concept

of separation. In centralized stochastic control, the information state, which is con-

ditional probability of the state given all the available data, does not depend on the

control strategy (which is the collection of control laws used at different time in-

stants). This has been called a one-way separation between estimation and control.

An important consequence of this separation is that for any given choice of control

laws till time t−1 and a given realization of the system variables till time t, the infor-

mation states at future times do not depend on the choice of the control law at time

t but only on the realization of control action at time t. Thus, the future information

states are separated from the choice of the current control law. This fact is crucial for

the formulation of the classical dynamic program where at each step the optimization

problem is to find the best control action for a given realization of the information

state. No analogous separation results are known for general decentralized systems.

In this chapter, we find structural results for decentralized control systems with

delayed sharing information structures. In a system with n-step delayed sharing,

every control station knows the n-step prior observations and control actions of all

other control stations. This information structure, proposed by Witsenhausen in Wit-

senhausen (1971), is a link between the classical information structures, where infor-

mation is shared perfectly among the controllers, and the non-classical information

structures, where there is no “lateral” sharing of information among the controllers.

Witsenhausen asserted a structural result for this model without any proof in his

seminal paper Witsenhausen (1971). Varaiya and Walrand Varaiya and Walrand

(1978) proved that Witsenhausen’s assertion was true for n = 1 but false for n > 1.

For n > 1, Kurtaran Kurtaran (1979) proposed another structural result. However,

Kurtaran proved his result only for the terminal time step (that is, the last time
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step in a finite horizon problem); for non-terminal time steps, he gave an abbreviated

argument, which we believe is incomplete. (The details are given in Section 3.5 of the

paper).

We prove two structural results of the optimal control laws for the delayed sharing

information structure. We compare our results to those conjectured by Witsenhausen

and show that our structural results for n-step delay sharing information structure

simplify to that of Witsenhausen for n = 1; for n > 1, our results are different from

the result proposed by Kurtaran.

We note that our structural results do not have the separated nature of centralized

stochastic control. That is, for any given realization of the system variables till time t,

the realization of information states at future times depend on the choice of the control

law at time t. However, our second structural result shows that this dependence only

propagates to the next n − 1 time steps. Thus, the information states from time

t+n− 1 onwards are separated from the choice of control laws before time t. We call

this a delayed separation between information states and control laws.

The absence of classical separation rules out the possibility of a classical dynamic

program to find the optimum control laws. However, optimal control laws can still

be found in a sequential manner. Based on the two structural results, we present

two sequential methodologies to find optimal control laws. Unlike classical dynamic

programs, each step in our sequential decomposition involves optimization over a

space of functions instead of the space of control actions.

3.1.2 Model

Consider a system consisting of a plant and K controllers (control stations) with

decentralized information. At time t, t = 1, . . . , T , the state of the plant Xt takes

values in a finite set X ; the control action Uk
t at control station k, k = 1, . . . , K, takes

values in a finite set Uk. The initial state X0 of the plant is a random variable taking
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value in X . With time, the plant evolves according to

Xt = ft(Xt−1, U
1:K
t , Vt) (3.1)

where Vt is a random variable taking values in a finite set V . {Vt; t = 1, . . . , T} is a

sequence of independent random variables that are also independent of X0.

The system has K observation posts. At time t, t = 1, . . . , T , the observation

Y k
t of post k, k = 1, . . . , K, takes values in a finite set Yk. These observations are

generated according to

Y k
t = hkt (Xt−1,W

k
t ) (3.2)

where W k
t are random variables taking values in a finite set Wk. {W k

t ; t = 1, . . . , T ;

k = 1, . . . , K} are independent random variables that are also independent of X0 and

{Vt; t = 1, . . . , T}.

The system has n-step delayed sharing. This means that at time t, control station

k observes the current observation Y k
t of observation post k, the n steps old observa-

tions Y 1:K
t−n of all posts, and the n steps old actions U1:K

t−n of all stations. Each station

has perfect recall; so, it remembers everything that it has seen and done in the past.

Thus, at time t, data available at station k can be written as (Ct, P
k
t ), where

Ct := (Y 1:K
1:t−n, U

1:K
1:t−n)

is the data known to all stations and

P k
t := (Y k

t−n+1:t, U
k
t−n+1:t−1)

is the additional data known at station k, k = 1, . . . , K. Let Ct be the space of all

possible realizations of Ct; and Pk be the space of all possible realizations of P k
t .
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Table 3.1: Summary of the control laws in the model for K = 2.
Controller 1 Controller 2

Observations (actual)

(
Y 1

1:t Y 2
1:t−n

U1
1:t−1 U2

1:t−n

) (
Y 1

1:t−n Y 2
1:t

U1
1:t−n U2

1:t−1

)
Observations (shorthand) (Ct, P

1
t ) (Ct, P

2
t )

Control action U1
t U2

t

Control laws g1
t g2

t

Station k chooses action Uk
t according to a control law gkt , i.e.,

Uk
t = gkt (P k

t , Ct). (3.3)

The choice of g = {gkt ; k = 1, . . . , K; t = 1, . . . , T} is called a design or a

control strategy. G denotes the class of all possible designs. At time t, a cost

Rt(Xt, U
1
t , . . . , U

K
t ) is incurred. The performance J (g) of a design is given by the

expected total cost under it, i.e.,

J (g) = Eg{
T∑
t=1

Rt(Xt, U
1:K
t )} (3.4)

where the expectation is with respect to the joint measure on all the system variables

induced by the choice of g. For reference, we summarize the notation of this model

in Table 3.1. We consider the following problem.

Problem 1. Given the statistics of the primitive random variables X0, {Vt; t =

1, . . . , T}, {W k
t ; k = 1, . . . , K; t = 1, . . . , T}, the plant functions {ft; t = 1, . . . , T},

the observation functions {hkt ; k = 1, . . . , K; t = 1, . . . , T}, and the cost functions

{Rt; t = 1, . . . , T} choose a design g∗ from G that minimizes the expected cost given

by (3.4).
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Remarks on the Model

1. We assumed that all primitive random variables and all control actions take

values in finite sets for convenience of exposition. Similar results can be obtained

with uncountable sets under suitable technical conditions.

2. In the standard stochastic control literature, the dynamics and observations

equations are defined in a different manner than (3.1) and (3.2). The usual

model is

Xt+1 = ft(Xt, U
1:K
t , Vt) (3.5)

Y k
t = hkt (Xt,W

k
t ) (3.6)

However, Witsenhausen Witsenhausen (1971) as well as Varaiya and Walrand Varaiya

and Walrand (1978) used the model of (3.1) and (3.2) in their papers. We use

the same model so that our results can be directly compared with earlier conjec-

tures and results. The arguments of this chapter can be used for the dynamics

and observation model of (3.5) and (3.6) with minor changes.

3.1.3 The structural results

Witsenhausen Witsenhausen (1971) asserted the following structural result for

Problem 1. Structural Result (Witsenhausen’s Conjecture Witsenhausen (1971)): In

Problem 1, without loss of optimality we can restrict attention to control strategies

of the form

Uk
t = gkt (P k

t ,P(Xt−n|Ct)). (3.7)

Witsenhausen’s structural result claims that all control stations can “compress”

the common information Ct to a sufficient statistic P(Xt−n|Ct). Unlike Ct, the size of

P(Xt−n|Ct) does not increase with time.
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As mentioned earlier, Witsenhausen asserted this result without a proof. Varaiya

and Walrand Varaiya and Walrand (1978) proved that the above separation result is

true for n = 1 but false for n > 1. Kurtaran Kurtaran (1979) proposed an alternate

structural result for n > 1.

Structural Result (Kurtaran Kurtaran (1979)): In Problem 1, without loss of

optimality we can restrict attention to control strategies of the form

Uk
t = gkt

(
Y k
t−n+1:t,Pg

1:K
1:t−1(Xt−n, U

1:K
t−n+1:t−1|Ct)

)
. (3.8)

Kurtaran used a different labeling of the time indices, so the statement of the

result in his paper is slightly different from what we have stated above.

Kurtaran’s result claims that all control stations can “compress” the common

information Ct to a sufficient statistic Pg1:K
1:t−1(Xt−n, U1:K

t−n+1:t−1|Ct), whose size does

not increase with time.

Kurtaran proved his result for only the terminal time-step and gave an abbreviated

argument for non-terminal time-steps. We believe that his proof is incomplete for

reasons that we point out in Section 3.5. In this chapter, we prove two alternative

structural results.

First Structural Result: In Problem 1, without loss of optimality we can restrict

attention to control strategies of the form

Uk
t = gkt

(
P k
t ,Pg

1:K
1:t−1(Xt−1, P

1:K
t |Ct)

)
. (3.9)

This result claims that all control stations can “compress” the common informa-

tion Ct to a sufficient statistic Pg1:K
1:t−1(Xt−1, P

1:K
t |Ct), whose size does not increase

with time.

Second Structural Result: In Problem 1, without loss of optimality we can restrict

63



attention to control strategies of the form

Uk
t = gkt

(
P k
t ,P(Xt−n|Ct), r1:K

t

)
. (3.10)

where r1:K
t is a collection of partial functions of the previous n − 1 control laws of

each controller,

rkt := {(gkm(·, Y k
m−n+1:t−n, U

k
m−n+1:t−n, Cm),m = t − n + 1, t − n + 2, . . . , t − 1},

for k = 1, 2, . . . , K. Observe that rkt depends only on the previous n− 1 control laws

(gkt−n+1:t−1) and the realization of Ct (which consists of Y 1:K
1:t−n, U

1:K
1:t−n). This result

claims that the belief P(Xt−n|Ct) and the realization of the partial functions r1:K
t

form a sufficient representation of Ct in order to optimally select the control action

at time t.

Our structural results cannot be derived from Kurtaran’s result and vice-versa.

At present, we are not sure of the correctness of Kurtaran’s result. As we mentioned

before, we believe that the proof given by Kurtaran is incomplete. We have not been

able to complete Kurtaran’s proof; neither have we been able to find a counterexample

to his result.

Kurtaran’s and our structural results differ from those asserted by Witsenhausen

in a fundamental way. The sufficient statistic (also called information state) P(Xt−n|Ct)

of Witsenhausen’s assertion does not depend on the control strategy. That is, for any

realization ct of Ct, the knowledge of control laws is not required in evaluating the con-

ditional probabilities P(Xt−n = x|ct). The sufficient statistics Pg1:K
1:t−1(Xt−n, U1:K

t−n+1:t−1|Ct)

of Kurtaran’s result and Pg1:K
1:t−1(Xt−1, P

1:K
t |Ct) of our first result depend on the con-

trol laws used before time t. Thus, for a given realization ct of Ct, the realization of

information state depends on the choice of control laws before time t. On the other

hand, in our second structural result, the belief P(Xt−n|Ct) is indeed independent
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of the control strategy, however information about the previous n − 1 control laws

is still needed in the form of the partial functions r1:K
t . Since the partial functions

r1:K
t do not depend on control laws used before time t− n+ 1, we conclude that the

information state at time t is separated from the choice of control laws before time

t − n + 1. We call this a delayed separation between information states and control

laws.

The rest of this chapter is organized as follows. We prove our first structural

result in Section 3.2. Then, in Section 3.3 we derive our second structural result. We

discuss a special case of delayed sharing information structures in Section 3.4. We

discuss Kurtaran’s structural result in Section 3.5 and conclude in Section 3.6.

3.2 Proof of the first structural result

In this section, we prove the structural result (3.9) for optimal strategies of the

K control stations. For the ease of notation, we first prove the result for K = 2, and

then show how to extend it for general K.

3.2.1 Two Controller system (K = 2)

The proof for K = 2 proceeds as follows:

1. First, we formulate a centralized stochastic control problem from the point of

view of a coordinator who observes the shared information Ct, but does not

observe the private information (P 1
t , P

2
t ) of the two controllers.

2. Next, we argue that any strategy for the coordinator’s problem can be imple-

mented in the original problem and vice versa. Hence, the two problems are

equivalent.

3. Then, we identify states sufficient for input-output mapping for the coordina-

tor’s problem.
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4. Finally, we transform the coordinator’s problem into a MDP (Markov decision

process), and obtain a structural result for the coordinator’s problem. This

structural result is also a structural result for the delayed sharing information

strucutres due to the equivalence between the two problems.

Below, we elaborate on each of these stages.

Stage 1

We consider the following modified problem. In the model described in Sec-

tion 3.1.2, in addition to the two controllers, a coordinator that knows the common

(shared) information Ct available to both controllers at time t is present. At time t,

the coordinator decides the partial functions

γkt : Pk 7→ Uk

for each controller k, k = 1, 2. The choice of the partial functions at time t is based on

the realization of the common (shared) information and the partial functions selected

before time t. These functions map each controller’s private information P k
t to its

control action Uk
t at time t. The coordinator then informs all controllers of all the

partial functions it selected at time t. Each controller then uses its assigned partial

function to generate a control action as follows.

Uk
t = γkt (P k

t ). (3.11)

The system dynamics and the cost are same as in the original problem. At next

time step, the coordinator observes the new common observation

Zt+1 := {Y 1
t−n+1, Y

2
t−n+1, U

1
t−n+1, U

2
t−n+1}. (3.12)
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Table 3.2: Summary of the model with a coordinator.
Coordinator Controller k

(passive)
Observations

(actual) (Y 1:K
1:t−n, U

1:K
1:t−n) (Y k

t−n+1:t, U
k
t−n+1:t−1)

Observations
(shorthand) Ct P k

t

Control action γ1:K
t Uk

t

Control laws ψt γkt

Thus at the next time, the coordinator knows Ct+1 = (Zt+1, Ct) and its choice of all

past partial functions and it selects the next partial functions for each controller. The

system proceeds sequentially in this manner until time horizon T .

In the above formulation, the only decision maker is the coordinator: the indi-

vidual controllers simply carry out the necessary evaluations prescribed by (3.11).

At time t, the coordinator knows the common (shared) information Ct and all past

partial functions γ1
1:t−1 and γ2

1:t−1. The coordinator uses a decision rule ψt to map

this information to its decision, that is,

(γ1
t , γ

2
t ) = ψt(Ct, γ

1
1:t−1, γ

2
1:t−1), (3.13)

or equivalently,

γkt = ψkt (Ct, γ
1
1:t−1, γ

2
1:t−1), k = 1, 2. (3.14)

For reference, we summarize the notation of this model in Table 3.2.

The choice of ψ = {ψt; t = 1, . . . , T} is called a coordination strategy. Ψ denotes

the class of all possible coordination strategies. The performance of a coordinating

strategy is given by the expected total cost under that strategy, that is,

Ĵ (ψ) = Eψ{
T∑
t=1

Rt(Xt, U
1
t , U

2
t )} (3.15)

where the expectation is with respect to the joint measure on all the system variables
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induced by the choice of ψ. The coordinator has to solve the following optimization

problem.

Problem 2 (The Coordinator’s Optimization Problem). Given the system model of

Problem 1, choose a coordination strategy ψ∗ from Ψ that minimizes the expected cost

given by (3.15).

Stage 2

We now show that the Problem 2 is equivalent to Problem 1. Specifically, we

will show that any design g for Problem 1 can be implemented by the coordinator in

Problem 2 with the same value of the problem objective. Conversely, any coordination

strategy ψ in Problem 2 can be implemented in Problem 1 with the same value of

the performance objective.

Any design g for Problem 1 can be implemented by the coordinator in Problem 2 as

follows. At time t the coordinator selects partial functions (γ1
t , γ

2
t ) using the common

(shared) information ct as follows.

γkt (·) = gkt (·, ct) =: ψkt (ct), k = 1, 2. (3.16)

Consider Problems 1 and 2. Use design g in Problem 1 and coordination strategy

ψ given by (3.16) in Problem 2. Fix a specific realization of the initial state X0,

the plant disturbance {Vt; t = 1, . . . , T}, and the observation noise {W 1
t ,W

2
t ; t =

1, . . . , T}. Then, the choice of ψ according to (3.16) implies that the realization

of the state {Xt; t = 1, . . . , T}, the observations {Y 1
t , Y

2
t ; t = 1, . . . , T}, and the

control actions {U1
t , U

2
t ; t = 1, . . . , T} are identical in Problem 1 and 2. Thus, any

design g for Problem 1 can be implemented by the coordinator in Problem 2 by

using a coordination strategy given by (3.16) and the total expected cost under g in

Problem 1 is same as the total expected cost under the coordination strategy given
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by (3.16) in Problem 2.

By a similar argument, any coordination strategy ψ for Problem 2 can be imple-

mented by the control stations in Problem 1 as follows. At time 1, both stations know

c1; so, all of them can compute γ1
1 = ψ1

1(c1), γ2
1 = ψ2

1(c1). Then station k chooses

action uk1 = γk1 (pk1). Thus,

gk1(pk1, c1) = ψk1(c1)(pk1), k = 1, 2. (3.17a)

At time 2, both stations know c2 and γ1
1 , γ

2
1 , so both of them can compute γk2 =

ψk2(c2, γ
1
1 , γ

2
1), k = 1, 2. Then station k chooses action uk2 = γk2 (pk2). Thus,

gk2(pk2, c2) = ψk2(c2, γ
1
1 , γ

2
1)(pk2), k = 1, 2. (3.17b)

Proceeding this way, at time t both stations know ct and γ1
1:t−1 and γ2

1:t−1, so both

of them can compute (γ1
1:t, γ

2
1:t) = ψt(ct, γ

1
1:t−1, γ

2
1:t−1). Then, station k chooses action

ukt = γkt (pkt ). Thus,

gkt (pkt , ct) = ψkt (ct, γ
1
1:t−1, γ

2
1:t−1)(pkt ), k = 1, 2. (3.17c)

Now consider Problems 2 and 1. Use coordinator strategy ψ in Problem 2 and

design g given by (3.17) in Problem 1. Fix a specific realization of the initial state

X0, the plant disturbance {Vt; t = 1, . . . , T}, and the observation noise {W 1
t ,W

2
t ;

t = 1, . . . , T}. Then, the choice of g according to (3.17) implies that the realization

of the state {Xt; t = 1, . . . , T}, the observations {Y 1
t , Y

2
t ; t = 1, . . . , T}, and the

control actions {U1
t , U

2
t ; t = 1, . . . , T} are identical in Problem 2 and 1. Hence,

any coordination strategy ψ for Problem 2 can be implemented by the stations in

Problem 1 by using a design given by (3.17) and the total expected cost under ψ

in Problem 2 is same as the total expected cost under the design given by (3.17) in
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Problem 1.

Since Problems 1 and 2 are equivalent, we derive structural results for the latter

problem. Unlike, Problem 1, where we have multiple control stations, the coordinator

is the only decision maker in Problem 2.

Stage 3

We now look at Problem 2 as a controlled input-output system from the point of

view of the coordinator and identify a state sufficient for input-output mapping. From

the coordinator’s viewpoint, the input at time t has two components: a stochastic

input that consists of the plant disturbance Vt and observation noises W 1
t ,W

2
t ; and

a controlled input that consists of the partial functions γ1
t , γ

2
t . The output is the

observations Zt+1 given by (3.12). The cost is given by Rt(Xt, U
1
t , U

2
t ). We want

to identify a state sufficient for input-output mapping for this system. A variable

is a state sufficient for input output mapping of a control system if it satisfies the

following properties (see Witsenhausen (1976)).

1. P1: The next state is a function of the current state and the current inputs.

2. P2: The current output is function of the current state and the current inputs.

3. P3: The instantaneous cost is a function of the current state, the current control

inputs, and the next state.

We claim that such a state for Problem 2 is the following.

Definition III.1. For each t define

St := (Xt−1, P
1
t , P

2
t ) (3.18)

Next we show that St, t = 1, 2, . . . , T+1, satisfy properties (P1)–(P3). Specifically,

we have the following.
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Proposition III.2.

1. There exist functions f̂t, t = 2, . . . , T such that

St+1 = f̂t+1(St, Vt,W
1
t+1,W

2
t+1, γ

1
t , γ

2
t ). (3.19)

2. There exist functions ĥt, t = 2, . . . , T such that

Zt = ĥt(St−1). (3.20)

3. There exist functions ĉt, t = 1, . . . , T such that

Rt(Xt, U
1
t , U

2
t ) = R̂t(St, γ

1
t , γ

2
t , St+1). (3.21)

Proof. Part 1 is an immediate consequence of the definitions of St and P k
t , the dy-

namics of the system given by (3.1), and the evaluations carried out by the control

stations according to (3.11). Part 2 is an immediate consequence of the definitions

of state St, observation Zt, and private information P k
t . Part 3 is an immediate

consequence of the definition of state and the evaluations carried out by the control

stations according to (3.11).

Stage 4

Proposition III.2 establishes St as the state sufficient for input-output mapping

for the coordinator’s problem. We now define information states for the coordinator.

Definition III.3 (Information States). For a coordination strategy ψ, define infor-

mation states Πt as

Πt(st) := Pψ(St = st|Ct, γ1
1:t−1, γ

2
1:t−1). (3.22)

71



As shown in Proposition III.2, the state evolution of St depends on the controlled

inputs (γ1
t , γ

2
t ) and the random noise (Vt,W

1
t+1,W

2
t+1). This random noise is inde-

pendent across time. Consequently, Πt evolves in a controlled Markovian manner as

below.

Proposition III.4. For t = 1, . . . , T − 1, there exists functions Ft (which do not

depend on the coordinator’s strategy) such that

Πt+1 = Ft+1(Πt, γ
1
t , γ

2
t , Zt+1). (3.23)

Proof. See Appendix B.

At t = 1, since there is no shared information, Π1 is simply the unconditional

probability P(S1) = P(X0, Y
1

1 , Y
2

1 ). Thus, Π1 is fixed a priori from the joint dis-

tribution of the primitive random variables and does not depend on the choice of

coordinator’s strategy ψ. Proposition III.4 shows that at t = 2, . . . , T , Πt depends

on the strategy ψ only through the choices of γ1
1:t−1 and γ2

1:t−1. Moreover, as shown

in Proposition III.2, the instantaneous cost at time t can be written in terms of the

current and next states (St, St+1) and the control inputs (γ1
t , γ

2
t ). Combining the

above two properties, we get the following:

Proposition III.5. The process Πt, t = 1, 2, . . . , T is a controlled Markov chain with

γ1
t , γ

2
t as the control actions at time t, i.e.,

P(Πt+1|Ct,Π1:t, γ
1
1:t, γ

2
1:t) = P(Πt+1|Π1:t, γ

1
1:t, γ

2
1:t)

= P(Πt+1|Πt, γ
1
t , γ

2
t ).

(3.24)

Furthermore, there exists a deterministic function Ct such that

E{R̂t(St, γ
1
t , γ

2
t , St+1)|Ct,Π1:t, γ

1
1:t, γ

2
1:t} = R̃t(Πt, γ

1
1 , γ

2
t ). (3.25)
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Proof. See Appendix B.

The controlled Markov property of the process {Πt, t = 1, . . . , T} immediately

gives rise to the following structural result.

Theorem III.6. In Problem 2, without loss of optimality we can restrict attention

to coordination strategies of the form

(γ1
t , γ

2
t ) = ψt(Πt), t = 1, . . . , T. (3.26)

Proof. From Proposition III.5, we conclude that the optimization problem for the

coordinator is to control the evolution of the controlled Markov process {Πt, t =

1, 2, . . . , T} by selecting the partial functions {γ1
t , γ

2
t , t = 1, 2, . . . , T} in order to min-

imize
∑T

t=1 E{R̃t(Πt, γ
1
t , γ

2
t )}. This is an instance of the well-known Markov decision

problems where it is known that the optimal strategy is a function of the current

state. Thus, the structural result follows from Markov decision theory Kumar and

Varaiya (1986a).

The above result can also be stated in terms of the original problem.

Theorem III.7 (Structural Result). In Problem 1 with K = 2, without loss of opti-

mality we can restrict attention to coordination strategies of the form

Uk
t = gkt (P k

t ,Πt), k = 1, 2. (3.27)

where

Πt = P(g1
1:t−1,g

2
1:t−1)(Xt−1, P

1
t , P

2
t |Ct) (3.28)

where Π1 = P(X0, Y
1

1 , Y
2

1 ) and for t = 2, . . . , T , Πt is evaluated as follows:

Πt+1 = Ft+1(Πt, g
1
t (·,Πt), g

2
t (·,Πt), Zt+1) (3.29)
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Proof. Theorem III.6 established the structure of the optimal coordination strategy.

As we argued in Stage 2, this optimal coordination strategy can be implemented in

Problem 1 and is optimal for the objective (3.4). At t = 1, Π1 = P(X0, Y
1

1 , Y
2

1 )

is known to both controllers and they can use the optimal coordination strategy to

select partial functions according to:

(γ1
1 , γ

2
1) = ψ1(Π1)

Thus,

Uk
1 = γk1 (P k

1 ) = ψk1(Π1)(P k
1 ) =: gk1(P k

1 ,Π1), k = 1, 2. (3.30)

At time instant t + 1, both controllers know Πt and the common observations

Zt+1 = (Y 1
t−n+1, Y

2
t−n+1, U

1
t−n+1, U

2
t−n+1); they use the partial functions (g1

t (·,Πt), g
2
t (·,Πt))

in equation (3.23) to evaluate Πt+1. The control actions at time t+ 1 are given as:

Uk
t+1 = γkt+1(P k

t+1) = ψt+1(Πt+1)(P k
t+1)

=: gkt+1(P k
t+1,Πt+1), k = 1, 2. (3.31)

Moreover, using the design g defined according to (3.31), the coordinator’s informa-

tion state Πt can also be written as:

Πt = Pψ(Xt−1, P
1
t , P

2
t |Ct, γ1

1:t−1, γ
2
1:t−1)

= Pg(Xt−1, P
1
t , P

2
t |Ct, g1:2

1 (·,Π1), . . . , g1:2
t−1(·,Πt−1))

= P(g1
1:t−1,g

2
1:t−1)(Xt−1, P

1
t , P

2
t |Ct) (3.32)

where we dropped the partial functions from the conditioning terms in (3.32) because

under the given control laws (g1
1:t−1, g

2
1:t−1), the partial functions used from time 1 to

t− 1 can be evaluated from Ct (by using Proposition III.4 to evaluate Π1:t−1).
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Theorem III.7 establishes the first structural result stated in Section 3.1.3 for

K = 2. In the next section, we show how to extend the result for general K.

3.2.2 Extension to General K

Theorem III.7 for two controllers (K = 2) can be easily extended to general K

by following the same sequence of arguments as in stages 1 to 4 above. Thus, at

time t, the coordinator introduced in Stage 1 now selects partial functions γkt : Pk 7→

Uk, for k = 1, 2, . . . , K. The state sufficient for input output mapping from the

coordinator’s perspective is given as St := (Xt−1, P
1:K
t ) and the information state Πt

for the coordinator is

Πt(st) := Pψ(St = st|Ct, γ1:K
1:t−1). (3.33)

Results analogous to Propositions III.2–III.5 can now be used to conclude the struc-

tural result of Theorem III.7 for general K.

3.2.3 Sequential Decomposition

In addition to obtaining the structural result of Theorem III.7, the coordinator’s

problem also allows us to write a dynamic program for finding the optimal control

strategies as shown below. We first focus on the two controller case (K = 2) and then

extend the result to general K.

Theorem III.8. The optimal coordination strategy can be found by the following

dynamic program: For t = 1, . . . , T , define the functions Jt : P{S} 7→ R as follows.

For π ∈ P{S} let

JT (π) = inf
γ̃1,γ̃2

R̃T (π, γ̃1, γ̃2). (3.34)

For t = 1, . . . , T − 1, and π ∈ P{S} let

Jt(π) = inf
γ̃1,γ̃2

[
R̃t(π, γ̃

1, γ̃2) + E{Jt+1(Πt+1)|Πt = π, γ1:2
t = γ̃1:2}

]
. (3.35)

75



The arg inf (γ∗,1t , γ∗,2t ) in the RHS of Jt(π) is the optimal action for the coordinator

at time t then Πt = π. Thus,

(γ∗,1t , γ∗,2t ) = φ∗t (π)

The corresponding control strategy for Problem 1, given by (3.17) is optimal for Prob-

lem 1.

Proof. As in Theorem III.6, we use the fact that the coordinator’s optimization prob-

lem can be viewed as a Markov decision problem with Πt as the state of the Markov

process. The dynamic program follows from standard results in Markov decision

theory Kumar and Varaiya (1986a). The optimality of the corresponding control

strategy for Problem 1 follows from the equivalence between the two problems.

The dynamic program of Theorem III.8 can be extended to general K in a manner

similar to Section 3.2.2.

3.2.4 Computational Aspects

In the dynamic program for the coordinator in Theorem III.8, the value func-

tions at each time are functions defined on the continuous space P{S}, whereas the

minimization at each time step is over the finite set of functions from the space of

realizations of the private information of controllers (Pk, k = 1, 2) to the space of con-

trol actions (Uk, k = 1, 2). While dynamic programs with continuous state space can

be hard to solve, we note that our dynamic program resembles the dynamic program

for partially observable Markov decision problems (POMDP). In particular, just as in

POMDP, the value-function at time T is piecewise linear in ΠT and by standard back-

ward recursion, it can be shown that value-function at time t is piecewise linear and

concave function of Πt. (See Appendix B). Indeed, the coordinator’s problem can be

viewed as a POMDP, with St as the underlying partially observed state and the belief
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Πt as the information state of the POMDP. The characterization of value functions

as piecewise linear and concave is utilized to find computationally efficient algorithms

for POMDPs. Such algorithmic solutions to general POMDPs are well-studied and

can be employed here. We refer the reader to Zhang (2009) and references therein

for a review of algorithms to solve POMDPs.

3.2.5 One-step Delay

We now focus on the one-step delayed sharing information structure, i.e., when n =

1. For this case, the structural result (3.7) asserted by Witsenhausen is correct Varaiya

and Walrand (1978). At first glance, that structural result looks different from our

structural result (3.9) for n = 1. In this section, we show that for n = 1, these two

structural results are equivalent.

As before, we consider the two-controller system (K = 2). When delay n = 1, we

have

Ct = (Y 1
1:t−1, Y

2
1:t−1, U

1
1:t−1, U

2
1:t−1),

P 1
t = (Y 1

t ), P 2
t = (Y 2

t ),

and

Zt+1 = (Y 1
t , Y

2
t , U

1
t , U

2
t ).

The result of Theorem III.7 can now be restated for this case as follows:

Corollary III.9. In Problem 1 with K = 2 and n = 1, without loss of optimality we

can restrict attention to control strategies of the form:

Uk
t = gkt (Y k

t ,Πt), k = 1, 2. (3.36)
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where

Πt := P(g1
1:t−1,g

2
1:t−1)(Xt−1, Y

1
t , Y

2
t |Ct) (3.37)

We can now compare our result for one-step delay with the structural result (3.7),

asserted in Witsenhausen (1971) and proved in Varaiya and Walrand (1978). For

n = 1, this result states that without loss of optimality, we can restrict attention to

control laws of the form:

Uk
t = gkt (Y k

t ,P(Xt−1|Ct)), k = 1, 2. (3.38)

The above structural result can be recovered from (3.37) by observing that there

is a one-to-one correspondence between Πt and the belief P(Xt−1|Ct). We first note

that

Πt = P(g1
1:t−1,g

2
1:t−1)(Xt−1, Y

1
t , Y

2
t |Ct)

= P(Y 1
t |Xt−1) · P(Y 2

t |Xt−1)

· P(g1
1:t−1,g

2
1:t−1)(Xt−1|Ct) (3.39)

As pointed out in Witsenhausen (1971); Varaiya and Walrand (1978) (and proved

later in this chapter in Proposition III.11), the last probability does not depend on

the functions (g1
1:t−1, g

2
1:t−1). Therefore,

Πt = P(Y 1
t |Xt−1) · P(Y 2

t |Xt−1) · P(Xt−1|Ct) (3.40)

Clearly, the belief P(Xt−1|Ct) is a marginal of Πt and therefore can be evaluated from

Πt. Moreover, given the belief P(Xt−1|Ct), one can evaluate Πt using equation (3.40).

This one-to-one correspondence between Πt and P(Xt−1|Ct) means that the structural

result proposed in this chapter for n = 1 is effectively equivalent to the one proved
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in Varaiya and Walrand (1978).

3.3 Proof of the second structural result

In this section we prove the second structural result (3.10). As in Section 3.2, we

prove the result for K = 2 and then show how to extend it for general K. To prove the

result, we reconsider the coordinator’s problem at Stage 3 of Section 3.2 and present

an alternative characterization for the coordinator’s optimal strategy in Problem 2.

The main idea in this section is to use the dynamics of the system evolution and the

observation equations (equations (3.1) and (3.2)) to find an equivalent representation

of the coordinator’s information state. We also contrast this information state with

that proposed by Witsenhausen.

3.3.1 Two controller system (K = 2)

Consider the coordinator’s problem with K = 2. Recall that γ1
t and γ2

t are the

coordinator’s actions at time t. γkt maps the private information of the kth controller

(Y k
t−n+1:t, U

k
t−n+1:t−1) to its action Uk

t . In order to find an alternate characterization

of coordinator’s optimal strategy, we need the following definitions:

Definition III.10. For a coordination strategy ψ, and for t = 1, 2, . . . , T we define

the following:

1. Θt := P(Xt−n|Ct)

2. For k = 1, 2, define the following partial functions of γkm

rkm,t(·) := γkm(·, Y k
m−n+1:t−n, U

k
m−n+1:t−n),

m = t− n+ 1, t− n+ 2, . . . , t− 1 (3.41)
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Since γkm is a function that maps (Y k
m−n+1:m, U

k
m−n+1:m−1) to Uk

m, rkm,t(·) is a

function that maps (Y k
t−n+1:m, U

k
t−n+1:m−1) to Uk

m. We define a collection of

these partial functions as follows:

rkt := (rkm,t(·),m = t− n+ 1, t− n+ 2, . . . , t− 1) (3.42)

Note that for n = 1, rkt is empty.

We need the following results to address the coordinator’s problem:

Proposition III.11. 1. For t = 1, . . . , T − 1, there exists functions Qt, Q
k
t , k =

1, 2, (which do not depend on the coordinator’s strategy) such that

Θt+1 = Qt(Θt, Zt+1)

rkt+1 = Qk
t (r

k
t , Zt+1, γ

k
t ) (3.43)

2. The coordinator’s information state Πt is a function of (Θt, r
1
t , r

2
t ). Conse-

quently, for t = 1, . . . , T , there exist functions R̃t (which do not depend on the

coordinator’s strategy) such that

E{R̂t(St, γ
1
t , γ

2
t , St+1)|Ct,Π1:t, γ

1
1:t, γ

2
1:t} = R̃t(Θt, r

1
t , r

2
t , γ

1
t , γ

2
t ) (3.44)

3. The process (Θt, r
1
t , r

2
t ), t = 1, 2, . . . , T is a controlled Markov chain with γ1

t , γ
2
t

as the control actions at time t, i.e.,

P(Θt+1, r
1
t+1, r

2
t+1|Ct,Θ1:t, r

1
1:t, r

2
1:t, γ

1
1:t, γ

2
1:t)

= P(Θt+1, r
1
t+1, r

2
t+1|Θ1:t, r

1
1:t, r

2
1:t, γ

1
1:t, γ

2
1:t)

= P(Θt+1, r
1
t+1, r

2
t+1|Θt, r

1
t , r

2
t , γ

1
t , γ

2
t ). (3.45)
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Proof. See Appendix B.

At t = 1, since there is no sharing of information, Θ1 is simply the unconditioned

probability P(X0). Thus, Θ1 is fixed a priori from the joint distribution of the primi-

tive random variables and does not depend on the choice of the coordinator’s strategy

ψ. Proposition 4 shows that the update of Θt depends only on Zt+1 and not on the

coordinator’s strategy. Consequently, the belief Θt depends only on the distribution

of the primitive random variables and the realizations of Z1:t. We can now show that

the coordinator’s optimization problem can be viewed as an MDP with (Θt, r
1
t , r

2
t ),

t = 1, 2, . . . , T as the underlying Markov process.

Theorem III.12. (Θt, r
1
t , r

2
t ) is an information state for the coordinator. That is,

there is an optimal coordination strategy of the form:

(γ1
t , γ

2
t ) = ψt(Θt, r

1
t , r

2
t ), t = 1, . . . , T. (3.46)

Moreover, this optimal coordination strategy can be found by the following dynamic

program:

JT (θ, r̃1, r̃2) = inf
γ̃1,γ̃2

E
{
R̃T (ΘT , r

1
T , r

2
T , γ

1
T , γ

2
T )
∣∣
ΘT = θ, r1:2

T = r̃1:2, γ1:2
T = γ̃1:2

}
. (3.47)

For t = 1, . . . , T − 1, let

Jt(θ, r̃
1, r̃2) = inf

γ̃1,γ̃2
E
{
R̃t(Θt, r

1
t , r

2
t , γ

1
1 , γ

2
t )

+ Jt+1(Θt+1, r
1
t+1, r

2
t+1)

∣∣
Θt,= θ, r1:2

t = r̃1:2, γ1:2
t = γ̃1:2

}
(3.48)

where θ ∈ P(X ), and r̃1, r̃2 are realizations of partial functions defined in (3.41)
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and (3.42). The arg inf (γ∗,1t , γ∗,2t ) in the RHS of (3.48) is the optimal action for the

coordinator at time t when (Θt, r
1
t , r

2
t ) = (θ, r̃1, r̃2). Thus,

(γ∗,1t , γ∗,2t ) = ψ∗t (Θt, r
1
t , r

2
t )

The corresponding control strategy for Problem 1, given by (3.17) is optimal for Prob-

lem 1.

Proof. Proposition III.11 implies that the coordinator’s optimization problem can be

viewed as an MDP with (Θt, r
1
t , r

2
t ), t = 1, 2, . . . , T as the underlying Markov process

and R̃t(Θt, r
1
t , r

2
t , γ

1
t , γ

2
t ) as the instantaneous cost. The MDP formulation implies the

result of the theorem.

The following result follows from Theorem III.12.

Theorem III.13 (Second Structural Result). In Problem 1 with K = 2, without loss

of optimality we can restrict attention to coordination strategies of the form

Uk
t = gkt (P k

t ,Θt, r
1
t , r

2
t ), k = 1, 2. (3.49)

where

Θt = P(Xt−n|Ct) (3.50)

and

rkt = {(gkm(·, Y k
m−n+1:t−n, U

k
m−n+1:t−n, Cm), t − n + 1 ≤ m ≤ t − 1} (3.51)

Proof. As in Theorem III.7, equations (3.17) can be used to identify an optimal

control strategy for each controller from the optimal coordination strategy given in

Theorem III.12.
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Theorem III.12 and Theorem III.13 can be easily extended for K controllers by

identifying (Θt, r
1:K
t ) as the information state for the coordinator.

3.3.2 Comparison to Witsenhausen’s Result

We now compare the result of Theorem III.12 to Witsenhausen’s conjecture which

states that there exist optimal control strategies of the form:

Uk
t = gkt (P k

t ,P(Xt−n|Ct)). (3.52)

Recall that Witsenhausen’s conjecture is true for n = 1 but false for n > 1. Therefore,

we consider the cases n = 1 and n > 1 separately:

Delay n = 1

For a two-controller system with n = 1, we have

Ct = (Y 1
1:t−1, Y

2
1:t−1, U

1
1:t−1, U

2
1:t−1),

P 1
t = (Y 1

t ), P 2
t = (Y 2

t ),

and

r1
t = ∅, r2

t = ∅

Therefore, for n = 1, Theorem III.13 implies that there exist optimal control strategies

of the form:

Uk
t = gkt (P k

t ,P(Xt−n|Ct)), k = 1, 2. (3.53)

Equation (3.53) is the same as equation (3.52) for n = 1. Thus, for n = 1, the

result of Theorem III.12 coincides with Witsenhausen’s conjecture which was proved

in Varaiya and Walrand (1978).
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Delay n > 1

Witsenhausen’s conjecture implied that the controller k at time t can choose its

action based only on the knowledge of P k
t and P(Xt−n|Ct), without any dependence on

the choice of previous control laws (g1:2
1:t−1). In other words, the argument of the control

law gkt (that is, the information state at time t) is separated from g1:2
1:t−1. However,

as Theorem III.13 shows, such a separation is not true because of the presence of

the collection of partial functions r1
t , r

2
t in the argument of the optimal control law at

time t. These partial functions depend on the choice of previous n− 1 control laws.

Thus, the argument of gkt depends on the choice of g1:2
t−n+1:t−1. One may argue that

Theorem III.13 can be viewed as a delayed or partial separation since the information

state for the control law gkt is separated from the choice of control laws before time

t− n+ 1.

Witsenhausen’s conjecture implied that controllers employ common information

only to form a belief on the state Xt−n; the controllers do not need to use the common

information to guess each other’s behavior from t− n+ 1 to the current time t. Our

result disproves this statement. We show that in addition to forming the belief on

Xt−n, each controller should use the common information to predict the actions of

other controllers by means of the partial functions r1
t , r

2
t .

3.4 A Special Case of Delayed Sharing Information Structure

Many decentralized systems consist of coupled subsystems, where each subsystem

has a controller that perfectly observes the state of the subsystem. If all controllers

can exchange their observations and actions with a delay of n steps, then the system

is a special case of the n-step delayed sharing information structure with the following

assumptions:

1. Assumption 1: At time t = 1, . . . , T , the state of the system is given as the
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vector Xt := (X1:K
t ), where X i

t is the state of subsystem i.

2. Assumption 2: The observation equation of the kth controller is given as:

Y k
t = Xk

t−1 (3.54)

This model is similar to the model considered in Aicardi et al. (1987). Clearly,

the first structural result and the sequential decomposition of Section 3.2 apply here

as well with the observations Y k
t being replaced by Xk

t . Our second structural result

simplifies when specialized to this model. Observe that in this model

Ct = (Y 1:K
1:t−n, U

1:K
1:t−n) = (X1:t−n−1, U

1:K
1:t−n) (3.55)

and therefore the belief,

Θt = P(Xt−n|Ct) = P(Xt−n|Xt−n−1, U
1:K
t−n) (3.56)

where we used the controlled Markov nature of the system dynamics in the second

equality in (3.56). Thus, Θt is a function only of Xt−n−1, U
1:K
t−n . The result of Theo-

rem III.12 can now be restated for this case as follows:

Corollary III.14. In Problem 1 with assumptions 1 and 2, there is an optimal co-

ordination strategy of the form:

(γ1
t , γ

2
t ) = ψt(Xt−n−1, U

1
t−n, U

2
t−n, r

1
t , r

2
t ), t = 1, . . . , T. (3.57)

Moreover, this optimal coordination strategy can be found by the following dynamic
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program:

JT (x, u1, u2, r̃1, r̃2)

= inf
γ̃1,γ̃2

E
{
R̃T (XT−n, r

1
T , r

2
T , γ

1
T , γ

2
T )
∣∣XT−n−1 = x,

U1:2
T−n = u1:2, r1:2

T = r̃1:2, γ1:2
T = γ̃1:2

}
. (3.58)

For t = 1, . . . , T − 1, let

Jt(x, u
1, u2, r̃1, r̃2) = inf

γ̃1,γ̃2
E{R̃t(Xt−n, r

1
t , r

2
t , γ

1
1 , γ

2
t )

+ Jt+1(Xt−n+1, r
1
t+1, r

2
t+1)

∣∣Xt−n−1 = x,

U1:2
t−n = u1:2, r1:2

t = r̃1:2, γ1:2
t = γ̃1:2

}
. (3.59)

We note that the structural result and the sequential decomposition in the corol-

lary above is analogous to (Aicardi et al., 1987, Theorem 1).

3.4.1 An Example

We consider a simple example of a delayed sharing information structure with

two controllers (K = 2), a time horizon T = 3 and delay n = 2. Varaiya and

Walrand Varaiya and Walrand (1978) used this example to show that Witsenhausen’s

proposed structure was suboptimal.
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The system dynamics are given by

X0 = (X1
0 , X

2
0 )

X1 = (X1
1 , X

2
1 ) = (X1

0 +X2
0 , 0)

X2 = (X1
2 , X

2
2 ) = (X1

1 , U
2
2 ) = (X1

0 +X2
0 , U

2
2 )

X3 = (X1
3 , X

2
3 ) = (X1

2 −X2
2 − U1

3 , 0)

= (X1
0 +X2

0 − U2
2 − U1

3 , 0)

X1
0 , X

2
0 are zero-mean, jointly Gaussian random variables with variance 1 and covari-

ance −0.5. The observation equations are:

Y k
t = Xk

t−1

and the total cost function is

J (g) = Eg{(X1
3 )2 + (U1

3 )2} (3.60)

We can now specify the common and private informations. Common Information:

C1 = ∅, C2 = ∅,

C3 = {Y 1
1 , Y

2
1 , U

1
1 , U

2
1} = {X1

0 , X
2
0 , U

1
1 , U

2
1}

Private Information for Controller 1:

P 1
1 = {Y 1

1 } = {X1
0},

P 1
2 = {Y 1

1 , Y
1

2 , U
1
1} = {X1

0 , (X
1
0 +X2

0 ), U1
1}

P 1
3 = {Y 1

2 , Y
1

3 , U
1
2} = {(X1

0 +X2
0 ), (X1

0 +X2
0 ), U1

2}

87



Private Information for Controller 2:

P 2
1 = {Y 2

1 } = {X2
0},

P 2
2 = {Y 2

1 , Y
2

2 , U
2
1} = {X2

0 , 0, U
2
1}

P 2
3 = {Y 2

2 , Y
2

3 , U
2
2} = {0, U2

2 , U
2
2}

The total cost can be written as:

J (g) = Eg{(X1
0 +X2

0 − U2
2 − U1

3 )2 + (U1
3 )2} (3.61)

Thus, the only control actions that affect the cost are U2
2 and U1

3 . Hence, we can

even assume that all other control laws are constant functions with value 0 and the

performance of a design is completely characterized by control laws g2
2 and g1

3. Using

the fact that all control actions other than U2
2 and U1

3 are 0, we get the following

simplified control laws:

U2
2 = g2

2(P 2
2 , C2) = g2

2(X2
0 )

U1
3 = g1

3(P 1
3 , C3) = g1

3((X1
0 +X2

0 ), X1
0 , X

2
0 )

= g1
3(X1

0 , X
2
0 )

Now consider control laws of the form given in Theorem III.13 given by

Uk
t = gkt (P k

t ,Θt, r
1
t , r

2
t ) (3.62)

For k = 2 and t = 2, Θ2 is a fixed prior distribution of X0, while r1
2, r

2
2 are constant

functions. Hence, Θt, r
1
t , r

2
t provide no new information and the structure of equation

(3.62) boils down to

U2
2 = g2

2(P 2
2 ) = g2

2(X2
0 ) (3.63)
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For k = 1 and t = 3,

Θ3 = P(X1|C3) = P((X1
0 +X2

0 , 0)|X1
0 , X

2
0 )

and

r2
3 = {(g2

m(·, Y 2
m−1:1, U

2
m−1:1, Cm), 2 ≤ m ≤ 2}

= {(g2
2(·, Y 2

1 , U
2
1 , C2)}

= {(g2
2(·, X2

0 )} = U2
2 ,

while r1
3 are partial functions of constant functions. Therefore, equation (3.62) can

now be written as:

U1
3 = g1

3((X1
0 +X2

0 ),P((X1
0 +X2

0 , 0)|X1
0 , X

2
0 ), U2

2 )

= g1
3((X1

0 +X2
0 ), (X1

0 +X2
0 ), U2

2 ) (3.64)

= g1
3((X1

0 +X2
0 ), U2

2 ) (3.65)

where we used the fact that knowing P((X1
0 +X2

0 , 0)|X1
0 , X

2
0 ) is same as knowing the

value of (X1
0 +X2

0 ) in (3.64).

The optimal control laws can be obtained by solving the coordinator’s dynamic

program given in Theorem III.12. Observe that Θ3 = P((X1
0 + X2

0 , 0)|X1
0 , X

2
0 ) is

equivalent to (X1
0 +X2

0 ) and that r2
3 is equivalent to U2

2 . Thus, the dynamic program

can be simplified to:

J3((x1
0 + x2

0), u2
2)

= inf
γ̃1

E{(X1
3 )2 + (U1

3 )2|
(X1

0 +X2
0 ) = (x1

0 + x2
0),

U2
2 = u2

2, γ
1
3 = γ̃1

}
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where, for the given realization of ((x1
0 + x2

0), u2
2), γ̃1 maps P 1

3 = (X1
0 + X2

0 ) to U1
3 .

Further simplification yields:

J3((x1
0 + x2

0), u2
2)

= inf
γ̃1

E
{

(X1
0 +X2

0 − U2
2 − U1

3 )2 + (U1
3 )2

∣∣∣∣
(X1

0 +X2
0 ) = (x1

0 + x2
0), U2

2 = u2
2, γ

1
3 = γ̃1

}
≥ (x1

0 + x2
0 − u2

2)2/2, (3.66)

where the right hand side in (3.66) is the lower bound on the expression (x1
0 + x2

0 −

u2
2−u1

3)2 + (u1
3)2 for any u1

3. Given the fixed realization of ((x1
0 +x2

0), u2
2), choosing γ1

as a constant function with value (x1
0 +x2

0−u2
2)/2 achieves the lower bound in (3.66).

For t = 2, the coordinator has no information and the value function at time t = 2 is

J2 = inf
γ̃2

E{J3((X1
0 +X2

0 ), U2
2 )|γ2

2 = γ̃2}

= inf
γ̃2

E{(X1
0 +X2

0 − U2
2 )2/2|γ2

2 = γ̃2} (3.67)

where γ̃2 maps P 1
2 = (X2

0 ) to U2
2 . The optimization problem in (3.67) is to choose,

for each value of x2
0, the best estimate (in a mean squared error sense) of (X1

0 +X2
0 ).

Given the Gaussian statistics, the optimal choice of γ̃2 can be easily shown to be

γ2(x2
0) = x2

0/2.

Thus, the optimal strategy for the coordinator is to choose γ2
2(x2

0) = x2
0/2 at time

t = 2, and at t = 3, given the fixed realization of ((x1
0 + x2

0), u2
2), choose γ1(·) =
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(x1
0 + x2

0 − u2
2)/2. Thus, the optimal control laws are:

U2
2 = g2

2(X2
0 ) = X2

0/2 (3.68)

U1
3 = g1

3((X1
0 +X2

0 ), U2
2 )

= (X1
0 +X2

0 − U2
2 )/2 (3.69)

These are same as the unique optimal control laws identified in Varaiya and Walrand

(1978).

3.5 Kurtaran’s Separation Result

In this section, we focus on the structural result proposed by Kurtaran Kurtaran

(1979). We restrict to the two controller system (K = 2) and delay n = 2. For this

case, we have

Ct = (Y 1
1:t−2, Y

2
1:t−2, U

1
1:t−2, U

2
1:t−2),

P 1
t = (Y 1

t , Y
1
t−1, U

1
t−1), P 2

t = (Y 2
t , Y

2
t−1, U

2
t−1),

and

Zt+1 = (Y 1
t−1, Y

2
t−1, U

1
t−1, U

2
t−1).

Kurtaran’s structural result for this case states that without loss of optimality we

can restrict attention to control strategies of the form:

Uk
t = gkt (P k

t ,Φt), k = 1, 2, (3.70)

where

Φt := Pg{Xt−2, U
1
t−1, U

2
t−1|Ct}.

Kurtaran Kurtaran (1979) proved this result for the terminal time-step T and sim-
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ply stated that the result for t = 1, . . . , T − 1 can be established by the dynamic

programming argument given in Kurtaran (1976). We believe that this is not the

case.

In the dynamic programming argument in Kurtaran (1976), a critical step is the

update of the information state Φt, which is given by (Kurtaran, 1976, Eq (30)). For

the result presented in Kurtaran (1979), the corresponding equation is

Φt+1 = Ft(Φt, Y
1
t−1, Y

2
t−1, U

1
t−1, U

2
t−1). (3.71)

We believe that such an update equation cannot be established.

To see the difficulty in establishing (3.71), lets follow an argument similar to the

proof of (Kurtaran, 1976, Eq (30)) given in (Kurtaran, 1976, Appendix B). For a

fixed strategy g, and a realization ct+1 of Ct+1, the realization ϕt+1 of Φt+1 is given

by

ϕt+1 = P(xt−1, u
1
t , u

2
t |ct+1)

= P(xt−1, u
1
t , u

2
t |ct, y1

t−1, y
2
t−1, u

1
t−1, u

2
t−1)

=
P(xt−1, u

1
t , u

2
t , y

1
t−1, y

2
t−1, u

1
t−1, u

2
t−1|ct)∑

(x′,a1,a2)∈X×U1×U2

P(Xt−1 = x′, U1
t = a1, U2

t = a2, y1
t−1, y

2
t−1, u

1
t−1, u

2
t−1 | ct)

(3.72)

The numerator can be expressed as:

P(xt−1, u
1
t , u

2
t , y

1
t−1, y

2
t−1, u

1
t−1, u

2
t−1|ct)

=
∑

(xt−2,y1
t ,y

2
t )∈X·Y1·Y2

P(xt−1, u
1
t , u

2
t , y

1
t−1, y

2
t−1, u

1
t−1, u

2
t−1, xt−2, y

1
t , y

2
t |ct)

92



=
∑

(xt−2,y1
t ,y

2
t )∈X·Y1·Y2

1g1
t (ct,u1

t−1,y
1
t−1,y

1
t )[u

1
t ] · 1g2

t (ct,u2
t−1,y

2
t−1,y

2
t )[u

2
t ]

· P(y1
t |xt−1) · P(y2

t |xt−1) · P(xt−1|xt−2, u
1
t−1, u

2
t−1)

· 1g1
t−1(ct−1,u1

t−2,y
1
t−2,y

1
t−1)[u

1
t−1] · 1g2

t (ct−1,u2
t−2,y

2
t−2,y

2
t−1)[u

2
t−2]

· P(y1
t−1|xt−2) · P(y2

t−1|xt−2) · P(xt−2|ct) (3.73)

If, in addition to ϕt, y
1
t−1, y2

t−1, u1
t−1, and u2

t−1, each term of (3.73) depended only

on terms that are being summed over (xt−2, y1
t , y

2
t ), then (3.73) would prove (3.71).

However, this is not the case: the first two terms also depend on ct. Therefore, the

above calculation shows that ϕt+1 is a function of ϕt, Y
1
t−1, Y

2
t−1, U

1
t−1, U

2
t−1 and ct.

This dependence on ct is not an artifact of the order in which we decided to use the

chain rule in (3.73) (we choose the natural sequential order in the system). No matter

how we try to write ϕt+1 in terms of ϕt, there will be a dependence on ct.

The above argument shows that it is not possible to establish (3.71). Conse-

quently, the dynamic programming argument presented in Kurtaran (1976) breaks

down when working with the information state of Kurtaran (1979), and, hence, the

proof in Kurtaran (1979) is incomplete. So far, we have not been able to correct the

proof or find a counterexample to it.

3.6 Conclusion

We studied the stochastic control problem with n-step delay sharing information

structure and established two structural results for it. Both the results characterize

optimal control laws with time-invariant domains. Our second result also establishes

a partial separation result, that is, it shows that the information state at time t is

separated from choice of laws before time t − n + 1. Both the results agree with

Witsenhausen’s conjecture for n = 1. To derive our structural results, we formulated

an alternative problem from the point of a coordinator of the system that knows
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the common information among the controllers. In the subsequent chapters, we will

extend this idea of formulating an alternative problem from the point of view of a

coordinator which has access to common information for general sequential decision

making problems.
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CHAPTER IV

Common Information and the General Sequential

Decision-Making Problems

4.1 General Sequential Decision-Making Problems

In this Chapter, we consider a general model of sequential decision-making prob-

lems with finite number of decisions. We borrow the general model of a sequential

decision making problem from Witsenhausen (1973). We impose the assumption of

finiteness of the underlying probability space and finiteness of all observation and

decision spaces. Other than the assumptions of finiteness, the following model is gen-

eral enough to capture any sequential decision-making problem. As pointed out in

Witsenhausen (1973), any sequential stochastic control problem can be reduced to our

model by elimination of intermediate random variables.

We define the concepts of common information and private information for the

general problem. We then investigate the general sequential problem from the per-

spective of a coordinator who knows the common information and who has to pro-

vide prescriptions to each decision-maker on how to use their private information. We

show that the coordinator’s perspective allows us to formulate an equivalent decision-

making problem where the coordinator is the only decision maker (acting at multiple

times). The coordinator’s problem is a sequential problem with classical information
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structure for which we can identify an information state and a dynamic program

to find the optimal prescriptions that the coordinator prescribes to each decision-

maker. The coordinator’s dynamic program implies a sequential decomposition for

the general sequential decision-making problem.

The result of this chapter show that the common information methodology used in

Chapters II,III can be extended to any sequential decision-making problem with

finite spaces of observation and decisions and finite number of decisions. To the best of

our knowledge, the only other result that provides a sequential decomposition for the

general model is that by Witsenhausen (1973). Our result, however, is the first to use

the concept of common information. Thus, our sequential decomposition is different

from Witsehausen’s. Our sequential decomposition coincides with Witsenhausen’s

only in problems where common information is absent.

Further, our sequential decomposition specializes to the classical dynamic pro-

gram if the decision-making problem has a classical information structure. Thus, our

common information methodology shows that the classical dynamic programming

results of classical information structures and Witsenhausen’s sequential decomposi-

tion for non-classical information structures both follow from the same conceptual

framework of common information in sequential decision-making problems.

The rest of this chapter is organized as follows. We present a general model of

sequential decision making problems in Section 4.1.1. We define private and common

information for this model in Section 4.1.2 and present a sequential decomposition

based on common information in Section 4.1.3. We consider two special cases of

sequential problems in Section 4.2 and conclude in Section 4.3.

Remark IV.1. When dealing with collections of random variables, we will at times

treat the collection as a random vector of appropriate dimension. At other times,

it will be convenient to think of different collections of random variables as sets on

which one can define the usual set operations. For example consider random vectors
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A = (A1, A2, A3) and Ã = (A1, A2). Then, treating A and Ã as sets would allow us

to write A ∩ Ã = {A1, A2}.

4.1.1 The Model

The model we study consists of the following components:

Components of a general sequential decision making problem:

1. A finite probability space (Ω,B,P).

2. Primitive Random Variables: A collection Q = {Q1, Q2, . . . , QN} defined on

the above probability space (where N is a finite positive number). We will treat

Q as a random vector that takes values in a finite space Q endowed with the

power-set sigma algebra 2Q.

3. A finite number T of decision-makers (DMs) that make decisions in a pre-

determined sequence. Since the order of decisions is fixed, we may think of

each decision being made at the tick of a discrete time clock that runs from the

initial time t = 1 to the final time t = T . Any correspondence with physical

time is irrelevant for the decision problem.

4. Decision Spaces: For t = 1, 2, . . . , T , (Ut, 2Ut) are finite measurable spaces.

5. Observation Spaces and Observation Maps: For t = 1, 2, . . . , T , Nt is the finite

number of observations available for making the tth decision. We have the

following finite observation space

It = Y1
t × Y2

t × . . .× YNt
t

equipped with the power-set sigma algebra.
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Further, we define the collection of observation maps

Ht = (h1
t , h

2
t , . . . , h

Nt
t ),

where for each j = 1, 2, . . . , Nt, h
j
t is a measurable map from (Q × U1 × U2 ×

. . .× Ut−1, 2
Q × 2U1 × . . .× 2Ut−1) to (Yjt , 2Y

j
t ).

6. Reward: R is a real-valued function defined on the measurable space (Q×U1×

U2 × . . .× UT , 2Q × 2U1 × . . .× 2UT ).

7. Decision Strategy Space: The decision strategy space Gt is the set of all mea-

surable mappings from (It, 2It) to (Ut, 2Ut). The space of strategy profiles is

G := G1 × . . .× GT .

Description of the Decision-Making Problem:

The above components of the sequential decision making problem can be interpreted

as follows. The primitive random variablesQ = {Q1, Q2, . . . , QN} are variables chosen

by nature over which the designer has no control. In other words, the statistics and

the realizations of these random variables are independent of the choice of decision

strategy profile. The information available to the first decision-maker is a random vec-

tor I1 that takes values in the observation space I1. Further, I1 = (Y 1
1 , Y

2
1 , . . . , Y

N1
1 ),

where for each j = 1, . . . , N1, Y j
1 is related to the primitive random variables via an

observation map hj1. That is,

Y j
1 = hj1(Q) (4.1)

The first decision maker uses a decision strategy g1 ∈ G1 to map its information to

its decision. Thus,

U1 = g1(I1) (4.2)

Subsequently, the information available to the second decision-maker is a random

vector I2 that takes values in the observation space I2. Further, I2 = (Y 1
2 , Y

2
2 , . . . , Y

N2
2 ),
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where for each j = 1, . . . , N2, Y j
2 is related to the primitive random variables and U1

via an observation map hj2. That is,

Y j
2 = hj2(Q,U1) (4.3)

The second decision maker uses a decision strategy g2 ∈ G2 to map its information to

its decision. Thus,

U2 = g2(I2) (4.4)

Proceeding sequentially, the tth decision-maker’s information is a random vector

It = (Y 1
t , Y

2
t , . . . , Y

Nt
t ) that takes values in the observation space It and is given by

the observation maps

Y j
t = hjt(Q,U1, U2, . . . , Ut−1), (4.5)

for j = 1, 2, . . . , Nt. The tth decision maker uses a decision strategy gt ∈ Gt to map

its information to its decision. Thus,

Ut = gt(It) (4.6)

The collection g = (g1, g2, . . . , gT ) is referred to as a decision strategy profile,

while the function gt is referred to as a decision strategy/decision rule at time t.

Given a choice of decision strategy, the decisions U1, U2, . . . UT , the observation vec-

tors I1, I2, . . . IT as well as the reward R(Q,U1, U2, . . . , UT ) are well-defined random

variables.

The value of a decision strategy profile g is defined as

J (g) = Eg[R(Q,U1, U2, . . . , UT )] (4.7)

We can now formulate the following problem:
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Problem 3. For the general model of sequential decision making problems described

above, choose a decision strategy profile g ∈ G in order to maximize the value J (g)

given by equation (4.7).

4.1.2 Private and Common Information

For each decision-maker, we have a collection of observation maps Ht = (h1
t , h

2
t ,

. . . , hNt
t ), where for each j = 1, 2, . . . , Nt, h

j
t is a measurable map from (Q × U1 ×

U2× . . .×Ut−1, 2
Q× 2U1 × . . .× 2Ut−1) to (Yjt , 2Y

j
t ). These observation maps represent

information about primitive random variables and preceding decisions that is available

to tth decision-maker.

Definition IV.2 (Equivalent Observation Maps). Consider the decision makers at

time t and t′, with t < t′. We will say that two observation maps hjt and hkt′ are

equivalent if Yjt = Ykt′ and for any q ∈ Q, and (u1, u2, . . . , ut′−1) ∈ U1×U2 . . .×Ut′−1,

hjt(q, u1, u2, . . . , ut−1) = hkt′(q, u1, u2, . . . , ut′−1)

Because equivalent observation maps provide the same information, we will treat

them as identical observation maps. With the above equivalence between observation

maps of different decision-makers, we will now define the common observation maps

at each time.

Definition IV.3 (Common Observation Maps). At each time t, we define Hcommon
t

to be the collection of all observation maps that are available to all decision makers

that act at or after time t. That is,

Hcommon
t := ∩k≥tHk, (4.8)

where we use the equivalence of observation maps defined in Definition IV.2 to identify
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identical observation maps in the right hand side of equation 4.8. We refer to Hcommon
t

as the collection of common observation maps.

Definition IV.4 (Private Observation Maps). At each time t, we define Hprivate
t to

be the collection of all observation maps that is available to the tth decision maker

but not to all decision makers that act after the tth decision-maker. That is,

Hprivate
t := Ht \Hcommon

t (4.9)

We refer to Hprivate
t as the collection of private observation maps.

Definition IV.5 (Common Information). When a decision strategy profile has been

chosen, the common observation maps will result in observations that are available

to the tth decision maker as well as all decision makers that act after it. We define

the collection of these commonly known observations as the common information

at the tth decision, and we denote it by Ct. In terms of random variables that

are observable to different decision makers, we have

Ct = ∩k≥tIk, (4.10)

where Ik is interpreted as a collection of random variables. We denote by Ct the set

of all possible values of the random vector Ct.

Definition IV.6 (Private Information). When a decision strategy profile has been

chosen, the private observation maps will result in observations that are available to

the tth decision maker but not to all decision makers that act after it. We define the

collection of these observations as the private information at the tth decision,

and we denote it by Pt. In terms of random variables that are observable to

101



different decision makers, we have

Pt = It \ Ct, (4.11)

where It, Ct is interpreted as collections of random variables. We denote by Pt the

set of all possible values of the random vector Pt.

Remark IV.7. By definition, we have that C1 ⊆ C2 ⊆ . . . ⊆ CT . We can define

Zt = Ct \ Ct−1 as the increase in common information from time t− 1 to t.

Remark IV.8. From the definitions of common and private information, any decision

rule of the form Ut = gt(It) can be written as Ut = gt(Pt, Ct).

4.1.3 A Sequential Decomposition

In this section, we provide a sequential decomposition for the problem of obtaining

an optimal decision strategy profile for Problem 3. We follow the same philosophy as

in the delayed sharing problem. We proceed as follows:

1. First, we formulate a centralized stochastic control problem from the point of

view of a coordinator who observes the common information Ct at each time

t, but does not observe the private information Pt. The coordinator’s problem

is to provide prescriptions to each decision-maker on how to map its private

information to its decision.

2. Next, we argue that for any strategy for the coordinator’s problem there is an

equivalent decision strategy profile in the original problem that achieves the

same expected reward and vice versa. Hence, the two problems are equivalent.

3. Finally, we transform the coordinator’s problem into a MDP (Markov decision

process), and obtain a sequential decomposition for the coordinator’s problem.
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This sequential decomposition is also a sequential decomposition for the original

problem due to the equivalence between the two problems.

Below, we elaborate on each of these stages.

Stage 1

We consider the following modified problem. In the model described in Sec-

tion 4.1.1, we introduce a coordinator that knows the common information Ct at

each time t. At time t, the coordinator decides the partial decision rule

γt : Pt 7→ Ut

In case Pt is empty, γt is simply an element of the set Ut.

The partial decision rule is to be interpreted as a prescription from the coordinator

to the tth decision maker informing it on how to use its private information to make

its decision. In the case where there is no private information (that is, It = Ct),

the prescription from the coordinator will simply be the decision for the tth decision

maker.

The choice of the partial decision rule at time t is based on the realization of

the common information and the partial decision rules selected before time t. The

coordinator then informs all decision makers that act at or after time t of the partial

decision rule it selected at time t. The decision maker acting at time t then uses its

assigned partial decision rule to generate a control action as follows.

Ut = γt(Pt). (4.12)

In the above formulation, the only decision maker is the coordinator: the individ-

ual decision makers simply carry out the necessary evaluations prescribed by (4.12).

At time t, the coordinator knows the common information Ct and all past partial
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decision rules γ1:t−1. The coordinator uses a decision rule ψt to map this information

to its decision, that is,

γt = ψt(Ct, γ1:t−1). (4.13)

The choice of ψ = {ψt; t = 1, . . . , T} is called a coordination strategy. Ψ denotes

the class of all possible coordination strategies. The performance of a coordinating

strategy is given by the expected total reward under that strategy, that is,

Ĵ (ψ) = Eψ{R(Q,U1, U2, . . . , UT )} (4.14)

where the expectation is with respect to the joint measure on all the system variables

induced by the choice of ψ. The coordinator has to solve the following optimization

problem.

Problem 4 (The Coordinator’s Optimization Problem). For the coordinator’s prob-

lem described above, choose a coordination strategy ψ from Ψ in order to maximize

the value J (ψ) given by equation (4.14).

Stage 2

We now show that the Problem 4 is equivalent to Problem 3. Specifically, we will

show that any decision strategy profile g for Problem 3 can be implemented by the

coordinator in Problem 4 with the same value of the problem objective. Conversely,

any coordination strategy ψ in Problem 4 can be implemented in Problem 3 with the

same value of the objective.

Any decision strategy profile g for Problem 3 can be implemented by the coordi-

nator in Problem 4 as follows. Let ct be the realization of common information at

time t. The coordinator selects partial decision rule γ̃t using the common information
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ct as follows.

γ̃t(·) = gt(·, ct) =: ψt(ct). (4.15)

Then, for any given realization of the primitive random variables, the choice of

ψ = (ψ1, ψ2, . . . , ψT ) according to (4.15) implies that the realization of the the obser-

vations {It; t = 1, . . . , T}, and the control actions {Ut; t = 1, . . . , T} are identical in

Problems 3 and 4. Thus, any strategy profile g for Problem 3 can be implemented

by the coordinator in Problem 4 by using a coordination strategy given by (4.15) and

the total expected reward under g in Problem 3 is same as the total expected cost

under the coordination strategy given by (4.15) in Problem 4.

By a similar argument, any coordination strategy ψ for Problem 4 can be imple-

mented by the decision makers in Problem 3 as follows. At time 1, decision maker 1

knows c1; so, it can compute γ̃1 = ψ1(c1) and chooses action u1 = γ̃1(p1). Thus,

g1(p1, c1) = ψ1(c1)(p1). (4.16a)

At time 2, decision maker 2 knows c2 and γ̃1, since γ̃1 was chosen based on c1 which

is contained in c2. Therefore, decision maker 2 can compute γ̃2 = ψ2(c2, γ̃1). Then

decision maker 2 chooses action u2 = γ̃2(p2). Thus,

g2(p2, c2) = ψ2(c2, γ̃1)(p2). (4.16b)

Proceeding this way, at time t decision maker t knows ct and γ̃1:t−1, so it can compute

γ̃t = ψt(ct, γ̃1:t−1). Then, decision maker t chooses action ut = γ̃t(pt). Thus,

gt(pt, ct) = ψt(ct, γ̃1:t−1)(pt). (4.16c)

Then, for any given realization of the primitive random variables, the choice of

g according to (4.16) implies that the realization of the the observations {It; t =
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1, . . . , T}, and the control actions {Ut; t = 1, . . . , T} are identical in Problems 4

and 3. Thus, any design ψ for Problem 4 can be implemented in Problem 3 with the

same expected reward.

Since Problems 3 and 4 are equivalent, we derive a sequential decomposition for

the latter problem.

Stage 3

We now consider the coordinator’s problem formulated in Problem 4. We first

define information states for the coordinator.

Definition IV.9 (Information States). For a coordination strategy ψ, define infor-

mation states Πt, t = 1, 2, . . . , T as

Πt(q, u1, u2, . . . , ut−1) := Pψ(Q = q, U1 = u1, U2 = u2, . . . , Ut−1 = ut−1|Ct, γ1:t−1).

(4.17)

We also define

ΠT+1(q, u1, u2, . . . , uT ) := Pψ(Q = q, U1 = u1, U2 = u2, . . . , UT = uT |CT , γ1:T ).

(4.18)

The following result shows how the coordinator’s information state evolves de-

pending on its observations and its decisions.

Proposition IV.10. For t = 1, . . . , T − 1, there exists functions Ft (which do not

depend on the coordinator’s strategy) such that

Πt+1 = Ft+1(Πt, γt, Zt+1), (4.19)

where Zt+1 = Ct+1 \ Ct. Further, there exists functions FT+1 (which does not depend

106



on the coordinator’s strategy) such that

ΠT+1 = FT+1(ΠT , γT ). (4.20)

Proof. See Appendix C.

At t = 1, Π1(q) := Pψ(Q = q|C1) Since C1 ⊆ I1 which only depends on the

primitive random variables, it follows that the above conditional probability is inde-

pendent of the coordinator’s strategy ψ. Thus, Π1 does not depend on the choice of

coordinator’s strategy ψ. Proposition IV.10 shows that at t = 2, . . . , T , Πt depends

on the strategy ψ only through the choices of γ1:t−1.

Proposition IV.11. For the coordinator, the process Πt, t = 1, 2, . . . , T is a con-

trolled Markov chain with γt as the control action at time t, i.e.,

Pψ(Πt+1|Ct,Π1:t, γ1:t) = P(Πt+1|Π1:t, γ1:t) (4.21)

= P(Πt+1|Πt, γt), (4.22)

where the transition probabilities on the right hand side of (4.22) do not depend on

the coordination strategy ψ. Furthermore, there exists a deterministic real-valued

function R̃ defined on the space of PMFs on Q× U1 × . . .× UT such that

E{R(Q,U1, U2, . . . , UT )} = E{R̃(ΠT+1)}. (4.23)

Proof. See Appendix C.

The controlled Markov property of the process {Πt, t = 1, . . . , T} immediately

gives rise to the following result.

Theorem IV.12. In Problem 4, without loss of optimality we can restrict attention
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to coordination strategies of the form

γt = ψt(Πt), t = 1, . . . , T. (4.24)

Further, we can write a dynamic program for the coordinator as follows: For any

PMF π on the Q× U1 × . . .× UT−1, define

JT (π) = sup
γ̃T

E{R̃(ΠT+1)|ΠT = π, γT = γ̃T}

= sup
γ̃T

E{R̃(FT+1(π, γ̃T ))|ΠT = π, γT = γ̃T}

= sup
γ̃T

R̃(FT+1(π, γ̃T )) (4.25)

For t = 1, . . . , T − 1, and for any PMF π on the Q× U1 × . . .× Ut−1, define

Jt(π) = sup
γ̃t

E{Jt+1(Πt+1)|Πt = π, γt = γ̃t}

= sup
γ̃t

E{Jt+1(Ft+1(π, γ̃t, Zt+1))|Πt = π, γt = γ̃t} (4.26)

The arg sup γ∗t in the RHS of (4.26) is the optimal action for the coordinator at time

t when Πt = π. Thus,

γ∗t = ψ∗t (π)

Proof. From Proposition IV.11, we conclude that the optimization problem for the

coordinator is to control the evolution of the controlled Markov process {Πt, t =

1, 2, . . . , T} by selecting the partial functions {γt, t = 1, 2, . . . , T} in order to maximize

E{R̃(ΠT+1)}.

Thus, the coordinator’s optimization problem can be viewed as a Markov decision

problem with Πt as the state of the Markov process. The structural result and the

dynamic program follow from standard results in Markov decision theory [Kumar and

Varaiya (1986a)].

108



Theorem IV.12 provides a sequential decomposition to find the optimal coordina-

tion strategy in Problem 4. Because of the equivalence between Problems 4 and 3,

optimal decision strategies in Problem 3 can be constructed from an optimal coordi-

nation strategy. Thus, we have the following result:

Theorem IV.13. In Problem 3, without loss of optimality we can restrict attention

to decision strategies of the form

Ut = gt(Pt,Πt), t = 1, . . . , T, (4.27)

where

Πt(q, u1, . . . , ut−1) := Pg1:t−1(Q = q, U1 = u1, . . . , Ut−1 = ut−1|Ct).

Further, the optimal strategy at time t ,g∗t , is related to the arg sup γ∗t in the RHS of

Jt(π) in Theorem IV.12 (equation (4.26)) as follows:

g∗t (·, π) = γ∗t

4.2 Two Important Special Cases

The previous section establishes the role of common information in finding sequen-

tial decompositions for general sequential decision making problems. The fictitious

coordinator approach allows us to sequentially find prescriptions for decision makers

that map their private information to their decision. In the following two sections, we

will specialize our results to two specific cases. The two cases present two extremes

of information structures: in the first case, all information of the tth decision maker

is private and not shared with any future decision maker while in the second case all

information of the tth decision maker is shared with all future decision makers. The
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second case is also commonly known as the case of perfect recall in stochastic control

problems.

4.2.1 No Common Information

In this section, we specialize the results of Section 4.1 to the case when there is

no common information at any time t < T . That is, we have

Ct = ∩k≥tIk = ∅,

for t < T . This has the following implications for t < T :

1. Pt = It \ Ct = It

2. Zt+1 = Ct+1 \ Ct = ∅.

3. The coordinator’s partial decision rule maps private information to decision.

Since, in this case, all information is private, we have that γt : It 7→ Ut. In

other words, the coordinator’s partial decision rule is in fact the actual decision

rule for the tth decision-maker. Because of this, we will replace γt by our usual

notation for decision rule gt.

4. In absence of any common information, the coordinator selects gt as

gt = ψt(g1:t−1)

Thus, under any given coordination strategy ψt, the sequence of decision rules

gt, 1 ≤ t ≤ T is a deterministic sequence.

5. In absence of common information, Proposition IV.10 implies that the coordi-
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nator’s information states

Πt = P(Q = q, U1 = u1, U2 = u2, . . . , Ut−1 = ut−1|g1:t−1),

evolve deterministically as: Πt+1 = Ft+1(Πt, gt).

Note that at the final time, CT = ∩k≥T Ik = IT , thus PT = ∅ and the prescription

from the coordinator is the decision for the T th decision maker.

The result of Theorem IV.12 gives us the following sequential decomposition for

this case

Theorem IV.14. In Problem 3 with no common information at any time, we can

restrict attention to coordination strategies of the form

gt = ψt(Πt), t = 1, . . . , T − 1, (4.28)

and

UT = ψT (ΠT ). (4.29)

Further, we can write a dynamic program for the coordinator as follows: For any

PMF π on the Q× U1 × . . .× UT−1, define

JT (π) = sup
uT

R̃(FT+1(π, uT )) (4.30)

For t = 1, . . . , T − 1, and for any PMF π on the Q× U1 × . . .× Ut−1, define

Jt(π) = sup
gt

E{J̃t+1(Ft+1(π, gt))|Πt = π, gt}

= sup
gt

Jt+1(Ft+1(π, gt)) (4.31)

The arg sup g∗t in the RHS of Jt(π) is the optimal decision rule at time t when Πt = π.
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Thus,

g∗t = ψ∗t (π)

The dynamic program in Theorem IV.14 provides a sequential decomposition

for the problem of finding an optimal decision strategies in the sequential decision

making problem with no common information at any time. In absence of common

information, the coordinator’s problem is to choose decision strategies g1, g2, . . . , gT .

The dynamic program of Theorem IV.14 provides a backward inductive method of

finding an optimal strategy where at each step the coordinator selects an optimal

decision rule g∗t given that the future strategies are chosen optimally. In its essence,

this sequential decomposition is identical to the designer’s approach first described

in Witsenhausen (1973). Thus, in absence of common information, the coordinator’s

approach described in this chapter is identical to the designer’s approach suggested

in Witsenhausen (1973).

In all sequential problems, the designer’s approach will result in a deterministic

dynamic program where the optimization at each step is over the space of decision

rules. In the next section, we consider a case where the coordinator’s approach based

on common information results in a dynamic program that is stochastic and in which

the optimization at each step is over the space of decisions.

4.2.2 No Private Information: The Case of Perfect Recall

In this section, we specialize the results of Section 4.1 to the case when there is

no private information at any time t. This happens if we have for all t = 1, ..T ,

Ct = ∩k≥tIk = It (4.32)

which implies that

Pt = It \ Ct = ∅ (4.33)

112



Remark IV.15 (Perfect Recall). A direct implication of equation (4.32) is that It ⊂ Ik,

∀k > t. That is, all decision makers that act after time t “remember” the information

available to the tth decision maker. Since this holds for all t, we have that the kth

decision maker has all the information of all preceding decision makers. That is,

I1 ⊂ I2 ⊂ · · · ⊂ Ik ⊂ · · · ⊂ IT (4.34)

This is commonly referred to as the condition of perfect recall in sequential decision

making problems. For decision problems with perfect recall, classical dynamic pro-

gram provide a sequential decomposition where at each time step the optimization is

over the space of decisions [Bertsekas (1976)].

We can now conclude the following from equations (4.32) and (4.33):

1. As mentioned earlier, the coordinator’s decision is a prescription to the tth

decision maker informing it on how to use its private information to make its

decision. In the case where there is no private information, the prescription from

the coordinator will simply be the decision for the tth decision maker. In other

words, the coordinator’s partial decision rule is in fact the actual decision for

the tth decision-maker. Because of this, we will replace γt by our usual notation

for decision Ut.

2. The coordinator selects Ut as

Ut = ψt(Ct, U1:t−1) = ψt(It, U1:t−1)

3. Further, the coordinator’s information states are

Πt = P(Q = q, U1 = u1, U2 = u2, . . . , Ut−1 = ut−1|Ct, U1:t−1)

= P(Q = q, U1 = u1, U2 = u2, . . . , Ut−1 = ut−1|It, U1:t−1) (4.35)
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4. Replacing γt by Ut in propositions IV.10 and IV.11 give us the following results:

For t = 1, . . . , T − 1, there exists functions Ft (which do not depend on the

coordinator’s strategy) such that

Πt+1 = Ft+1(Πt, Ut, Zt+1), (4.36)

where Zt+1 = Ct+1 \ Ct. Also, there exists functions FT+1 (which does not

depend on the coordinator’s strategy) such that

ΠT+1 = FT+1(ΠT , UT ). (4.37)

Further, Πt, t = 1, 2, . . . , T + 1 is a controlled Markov chain with Ut as the

control actions.

With the above implications, the result of Theorem IV.12 can be specialized to

give the following sequential decomposition for this case.

Theorem IV.16. In Problem 3 with no private information at any time, we can

restrict attention to decision strategies of the form

Ut = ψt(Πt), t = 1, . . . , T. (4.38)

Further, we can write a dynamic program for the coordinator as follows: For any

PMF π on the Q× U1 × . . .× UT−1, define

JT (π) = sup
uT

R̃(FT+1(π, uT )) (4.39)
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For t = 1, . . . , T − 1, and for any PMF π on the Q× U1 × . . .× Ut−1, define

Jt(π) = sup
ut

E{Jt+1(Πt+1)|Πt = π, Ut = ut}

= sup
ut

E{Jt+1(Ft+1(π, ut, Zt+1))|Πt = π, Ut = ut} (4.40)

The arg sup u∗t in the RHS of Jt(π) is the optimal decision at time t when Πt = π.

Thus,

u∗t = ψ∗t (π)

The dynamic program of Theorem IV.16 is identical to the classical dynamic

program of sequential decision problems of classical information structure. At the

final time, the decision maker selects a decision that is optimal with respect to its

belief on the primitive random variables and past actions. (In this case, the past

actions are known exactly.) Then, proceeding backwards, at time t, the decision

maker selects a decision optimal to its current belief on primitive random variables

and past actions assuming that the future decisions will be chosen optimally given its

current decision. Thus, when all information is common, the coordinator’s approach

described in this chapter is identical to the classical backward inductive dynamic

program.

4.3 Conclusion

In this Chapter, we presented a general model of sequential decision making prob-

lem and derived a sequential decomposition of the problem of finding optimal strate-

gies based on the common information methodology. This result shows the universal

applicability of the common information idea to sequential decision making prob-

lems. We also showed that our sequential decomposition unifies the separate results

of dynamic programming in classical information structures and the designer based
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sequential decompositions of Witsenhausen (1973) for non-classical information struc-

tures. We showed that both these results are special cases of our common information

based sequential decomposition.
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CHAPTER V

Common Information and the Notion of State

The result of Chapter IV provides a sequential decomposition for any sequential

problem. The information state for this sequential decomposition is a probability

distribution on all primitive random variables and preceding decisions con-

ditioned on the common information. In terms of the coordinator’s perspective

that we used to obtain that result, we require that at any time t, the coordinator

forms a belief on all relevant system variables that have been realized so far. The

question we want to address in this chapter is the following: When can we simplify

the information state for sequential decomposition? In other words, are there cases

when the coordinator does not need to form a belief on all system variables?

Our approach for simplifying the coordinator’s information state is to use the

concept of state. In broad terms, a state is a summary of past data that is sufficient

for an input-output description of the system from the coordinator’s point of view.

What is the past data? At time t, clearly the decisions made before time t are a part

of past data. But what about the primitive random variables? In our general model

of a sequential problem, we did not assume any temporal order in the realization of

the primitive random variables. In order to develop the concept of state, we will now

impose a temporal order on the primitive random variables. That is, we will classify

the primitive random variables into sub-groups each of which is realized at a different
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time instant. With this modification, we can exactly identify the primitive random

variables that are part of the past data at time t - these are simply the variables

realized before the decision is made at time t.

In general, there is no algorithmic way of identifying a state sufficient for input-

output map from the coordinator’s perspective. Instead, we will present sufficient

conditions for a function of past data to be a state sufficient for the coordinator’s

input-output map. We will show that when these conditions are met, we can simplify

the information state for the coordinator. Instead of a posterior on all past data, the

coordinator would only need a posterior on the state sufficient for input-output map

as its information state.

Organization: The rest of this chapter is organized as follows. In Section 5.1, we

present a modified model of sequential decision making problems with a temporal or-

der on the primitive random variables. In Section 5.2, we present sufficient conditions

for a function of past data to be a state sufficient for coordinator’s input-output map

and provide a simplified sequential decomposition when such a state can be found.

We finally consider the special cases of partially observable Markov decision problems

and a two agent team problem in Section 5.3.

5.1 The Model

We modify the model in Section 4.1.1 of Chapter Chapter IV to introduce a

temporal order in the realization of primitive random variables. The model we now

study consists of the following components:

Components of a Sequential Decision Making Problem:

1. A finite probability space (Ω,B,P).

2. Primitive Random Variables: A collection Q = {Q1, Q2, . . . , QT} of random

vectors defined on the above probability space. We assume that the primitive
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random variables are selected by nature sequentially. The random vector Qt is

realized at time t just before the tth decision is made. We will assume Qt takes

values in a finite space Qt endowed with the power-set sigma algebra 2Qt .

3. A finite number T of decision-makers (DMs) that make decisions in a pre-

determined sequence.

4. Decision Spaces: For t = 1, 2, . . . , T , (Ut, 2Ut) are finite measurable spaces.

5. Observation Spaces and Observation Maps: For t = 1, 2, . . . , T , Nt is the finite

number of observations available for making the tth decision. We have the

following finite observation space

It = Y1
t × Y2

t × . . .× YNt
t

equipped with the power-set sigma algebra.

Further, we define the collection of observation maps

Ht = (h1
t , h

2
t , . . . , h

Nt
t ),

where for each j = 1, 2, . . . , Nt, h
j
t is a measurable map from (Q1 × Q2 . . . ×

Qt×U1×U2× . . .×Ut−1, 2
Q1 × . . .× 2Qt × 2U1 × . . .× 2Ut−1) to (Yjt , 2Y

j
t ). Note

that the domain of hjt does not include Qt+1,Qt+2, . . . ,QT .

6. Reward: Let R be a real-valued function defined on the measurable space (Q1×

Q2 × . . .×QT × U1 × U2 × . . .× UT , 2Q × 2U1 × . . .× 2UT ).

7. Decision Strategy Space: Let Gt be the set of all measurable mappings from

(It, 2It) to (Ut, 2Ut) and G = G1 × . . .× GT .

Description of the Decision-Making Problem:

The above components of the sequential decision making problem can be interpreted
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as follows. The information available to the first decision-maker is a random vector

I1 that takes values in the observation space I1. Further, I1 = (Y 1
1 , Y

2
1 , . . . , Y

N1
1 ),

where for each j = 1, . . . , N1, Y j
1 is related to the primitive random vector Q1 via an

observation map hj1. That is,

Y j
1 = hj1(Q1) (5.1)

The first decision maker uses a decision rule g1 ∈ G1 to map its information to its

decision. Thus,

U1 = g1(I1) (5.2)

Subsequently, the information available to the second decision-maker is a random

vector I2 that takes values in the observation space I2. Further, I2 = (Y 1
2 , Y

2
2 , . . . , Y

N2
1 ),

where for each j = 1, . . . , N2, Y j
2 is related to the primitive random vectors Q1, Q2

and U1 via an observation map hj2. That is,

Y j
2 = hj2(Q1, Q2, U1) (5.3)

The second decision maker uses a decision rule g2 ∈ G2 to map its information to its

decision. Thus,

U2 = g2(I2) (5.4)

Proceeding sequentially, the tth decision-maker’s information is a random vector

It that takes values in the observation space It and is given by the observation maps

Y j
t = hjt(Q1, Q2, . . . , Qt, U1, U2, . . . , Ut−1), (5.5)

for j = 1, 2, . . . , Nt. Note that the observations of the tth decision maker depend only

on the primitive random vectors chosen before the tth decision, i.e., Q1, Q2, . . . , Qt.

The tth decision maker uses a decision rule gt ∈ Gt to map its information to its
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decision. Thus,

Ut = gt(It) (5.6)

The collection g = (g1, g2, . . . , gT ) is referred to as a decision strategy profile, while

the function gt is referred to as a decision rule/decision strategy at time t. Given a

choice of decision strategy profile, the decisions U1, U2, . . . UT , the observation vectors

I1, I2, . . . IT as well as the reward R(Q1:T , U1:T ) are well-defined random variables.

The value of a decision strategy g is defined as

J (g) = Eg[R(Q1, Q2, . . . , QT , U1, U2, . . . , UT )] (5.7)

We can now formulate the following problem:

Problem 5. For the model of sequential decision making problems described above,

choose a decision strategy profile g ∈ G in order to maximize the value J (g) given by

equation (5.7).

5.2 The Coordinator’s Input-Output State

Clearly, the model described above is a special case of the sequential decision-

making problems of Chapter IV. Therefore, the information state established for the

coordinator in Theorem IV.12 applies here as well. Our goal in this section is to

find conditions under which the coordinator’s information state can be simplified. To

do so, our approach is to check if we can find a “state description” of the system

when viewed from the coordinator’s perspective. The state we want to find should

be a summary of past data that is sufficient for input-output map as viewed from the

coordinator.

We do not have an algorithmic way of identifying a state sufficient for input-output

map from the coordinator’s perspective. Instead, we will present sufficient conditions
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for a function of past data to be a state sufficient for coordinator’s input-output map.

Thus, in specific instances of the model described above, we will have to guess a

potential state for the coordinator and then use the conditions presented below to

verify if our guess is indeed a true state sufficient for coordinator’s input-output map.

We now present sufficient conditions for a function of past data to be a state

sufficient for the coordinator’s input-output map. (Recall that we denote by Ct

the common information at time t, by Pt the private information at time t and

Zt+1 = Ct+1/Ct.)

Definition V.1 (State Sufficient for the Coordinator’s Input-Output Map). For each

t = 1, 2, . . . , T , let Lt = dt(Q1:t, U1:t−1) be a function of the past primitive random

variables and decisions and let St = (Lt, Pt). We assume Lt takes values in the set

Lt and St takes values in the set St = Lt × Pt. Then, St is a state sufficient for

coordinator’s input-output map if the following two conditions hold:

1. Condition 1: Under any coordination strategy ψ,

Pψ(St+1, Zt+1|Q1:t, U1:t) = P(St+1, Zt+1|St, Ut), (5.8)

where the right hand side of equation (5.8) does not depend on the coordination

strategy ψ.

2. Condition 2: The reward function can be expressed as an accumulated sum

of the form:

R(Q1:T , U1:T ) =
T∑
t=1

Rt(St, Ut)

5.2.1 A Sequential Decomposition

In this section, we provide a sequential decomposition for the coordinator when

a state sufficient for the coordinator’s input output map (that is, a state satisfying
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Conditions 1 and 2) can be found. The main idea here is that instead of a posterior

probability distribution on all primitive random variables and preceding decisions,

the coordinator can use its posterior belief on the state sufficient for the input-output

map as its information state.

Definition V.2 (Information States). For a coordination strategy ψ, define infor-

mation states Πt, t = 1, 2, . . . , T as

Πt(l, p) := Pψ(Lt = l, Pt = p|Ct, γ1:t−1). (5.9)

Recall, from Chapter IV, that γt is the partial decision rule prescribed by the coordi-

nator to the decision-maker at time t.

The following result shows how the coordinator’s information state evolves de-

pending on its observations and its decisions.

Proposition V.3. For t = 1, . . . , T − 1, there exists functions Ft (which do not

depend on the coordinator’s strategy) such that

Πt+1 = Ft+1(Πt, γt, Zt+1), (5.10)

Proof. See Appendix D.

At t = 1, Π1(l, p) := Pψ(L1 = l, P1 = p|C1). Since L1, P1 and C1 only depend on

the primitive random variables, it follows that the above conditional probability is

independent of the coordinator’s strategy ψ. Thus, Π1 does not depend on the choice

of coordinator’s strategy ψ. Proposition V.3 shows that at t = 2, . . . , T , Πt depends

on the strategy ψ only through the choices of γ1:t−1.

Proposition V.4. The process Πt, t = 1, 2, . . . , T is a controlled Markov chain with
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γt as the control action at time t, i.e.,

Pψ(Πt+1|Ct,Π1:t, γ1:t) = P(Πt+1|Π1:t, γ1:t)

= P(Πt+1|Πt, γt), (5.11)

where the transition probabilities on the right hand side of (5.11) do not depend on

the coordination strategy ψ. Furthermore, there exist deterministic functions R̃t such

that

E{Rt(St, Ut))} = E{R̃t(Πt, γt)}. (5.12)

Proof. See Appendix D.

The controlled Markov property of the process {Πt, t = 1, . . . , T} immediately

gives rise to the following result.

Theorem V.5. In Problem 5, when there exists a state process St as defined in Defi-

nition V.1 and satisfying Conditions 1 and 2, we can restrict attention to coordination

strategies of the form

γt = ψt(Πt), t = 1, . . . , T. (5.13)

without loss of optimality. Further, we can write a dynamic program for the coordi-

nator as follows: For any PMF π on the Lt × Pt, define

JT (π) = sup
γ̃T

E{R̃T (ΠT , γT )|ΠT = π, γT = γ̃T}

= sup
γ̃T

R̃T (π, γ̃T ) (5.14)
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For t = 1, . . . , T − 1, and for any PMF π on the Lt × Pt, define

Jt(π) = sup
γ̃t

E{R̃t(Πt, γt) + Jt+1(Πt+1)|Πt = π, γt = γ̃t}

= sup
γ̃t

E{R̃t(π, γ̃t) + Jt+1(Ft+1(π, γ̃t, Zt+1))|Πt = π, γt = γ̃t} (5.15)

The arg sup γ∗t in the RHS of Jt(π) is the optimal action for the coordinator at time

t then Πt = π. Thus,

γ∗t = ψ∗t (π)

Proof. From Proposition V.4, we conclude that the optimization problem for the

coordinator is to control the evolution of the controlled Markov process {Πt, t =

1, 2, . . . , T} by selecting the partial functions {γt, t = 1, 2, . . . , T} in order to maximize

E{
∑T

t=1 R̃t(Πt, γt)}.

Thus, the coordinator’s optimization problem can be viewed as a Markov decision

problem with Πt as the state of the Markov process. The structural result and the

dynamic program follow from standard results in Markov decision theory [Kumar and

Varaiya (1986a)].

The solution of the coordinator’s problem given by Theorem V.5 can be adapted

to the original problem Problem 5 as follows:

Theorem V.6. Consider Problem 5 described in Section 5.1. Suppose there exist a

state process St, t = 1, 2, . . . , T as defined in Definition V.1 and satisfying Condi-

tions 1 and 2. Then, without loss of optimality we can restrict attention to decision

strategies of the form

Ut = gt(Pt,Πt), t = 1, . . . , T, (5.16)

where

Πt(l, p) := Pg1:t−1(Lt = l, Pt = p|Ct).
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Further, the optimal strategy is related to the arg inf γ∗t in the RHS of Jt(π) in

Theorem V.5 as follows:

g∗t (·, π) = γ∗t

5.3 Examples

In this Section, we use the result of Theorem V.6 to two special models of sequen-

tial decision making problems. We first consider the well-studied partially observable

Markov decision problem (POMDP) and show that the result of Theorem V.6 spe-

cialize to well-known structural and dynamic programming results for this problem.

We then consider a model of two-agent teams similar to the one studied in Mahajan

(2008) and show that the result of Theorem V.6 are analogous to the sequential decom-

position presented in Mahajan (2008). As in Chapter IV, our common information

methodology shows that the classical results of centralized models like POMDPs and

the sequential decomposition for non-classical team problems both follow from the

same conceptual framework of common information and an input-output

state description for the coordinator who only knows the common information.

5.3.1 Partially Observable Markov Decision Problems

5.3.1.1 The Model

Consider a system consisting of a plant and a controller. At time t = 1, the plant

is in the initial state given by the random variable X1. With time, the plant evolves

according to

Xt+1 = ft(Xt, Ut, Vt) (5.17)

where Vt is a random variable taking values in a finite set V . {Vt; t = 1, . . . , T − 1} is

a sequence of independent random variables that are also independent of X1.
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The controller’s observations are generated according to

Yt = ht(Xt,Wt) (5.18)

whereWt are random variables taking values in a finite setWt. {Wt; t = 1, . . . , T ; } are

independent random variables that are also independent of X1 and {Vt; t = 1, . . . , T}.

The controller must select its action Ut as a function of the form:

Ut = gt(Y1:t, U1:t−1) (5.19)

The controller’s objective is to choose g := (g1, g2, . . . , gT ) to maximize

Eg
[ T∑
t=1

Rt(Xt, Ut)
]

(5.20)

5.3.1.2 The Input-Output State for the Coordinator

The above decision-making problem can be easily described in terms of the model

of Section 5.1. The primitive random variables are given as Q = {Q1, Q2, . . . , QT}

where Q1 = (X1,W1) and Qt = (Vt−1,Wt), for 1 < t ≤ T . The information available

for making the tth decision is It = (Y1:t, U1:t−1). It is easy to see that in this case, we

have

Ct = ∩k≥tIk = It (5.21)

and

Pt = It \ Ct = ∅

and

Zt+1 = Ct+1 \ Ct = (Yt+1, Ut)
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As mentioned earlier, the coordinator’s decision is a prescription to the tth decision

maker informing it on how to use its private information to make its decision. Since

in this case there is no private information, the prescription from the coordinator will

simply be the decision for the tth decision maker. Because of this, we will replace γt

by our usual notation for decision Ut. The coordinator selects its prescription Ut as

a function of the common information at time t and the past prescriptions. Thus,

Ut = ψt(Ct, U1:t−1) = ψt(It, U1:t−1) = ψt(It)

A Candidate for Input-Output State

As a summary of the past data, we define Lt = Xt. Then, St = (Lt, Pt) = Lt = Xt

(since Pt is empty). With the above definition of St, we can now verify if Conditions

1 and 2 are satisfied.

1. Condition 1:

Pψ(St+1, Zt+1|q1:t, u1:t)

= Pψ(Xt+1, Yt+1, Ut|x1, w1:t, v1:t−1, u1:t)

= 1{Ut=ut}P(Yt+1|Xt+1)Pψ(Xt+1|x1, w1:t, v1:t−1, u1:t, xt) (5.22)

where we added xt in the conditioning in (5.22) since it is a function of the

other terms already fixed in the conditioning. Because of the nature of plant

dynamics and independence of primitive random variables, we can write (5.22)

as

1{Ut=ut}P(Yt+1|Xt+1)P(Xt+1|xt, ut)

= P(Ut, Yt+1, Xt+1|xt, ut)

= P(Zt+1, St+1|st, ut) (5.23)

128



2. Condition 2: The reward function trivially satisfies Condition 2.

Since St satisfies Conditions 1 and 2, we can define the coordinator’s information

states as

Πt = P(St|Ct, γ1:t−1)

= P(Xt|Y1:t, U1:t−1) (5.24)

Replacing γt by Ut and Zt+1 by Yt+1, Ut in propositions V.3 and V.4 gives us the

following results:

For t = 1, . . . , T − 1, there exists functions Ft (which do not depend on the coordina-

tor’s strategy) such that

Πt+1 = Ft+1(Πt, Ut, Yt+1), (5.25)

since Yt+1 = Zt+1; and

E{Rt(St, Ut))} = E{R̃t(Πt, Ut)}

Further, Πt, t = 1, 2, . . . , T is a controlled Markov chain with Ut as the control

actions.

With the above results, Theorem V.5 can be specialized to give the following

sequential decomposition for this case.

Theorem V.7. In the partially observable Markov decision problem described in Sec-

tion 5.3.1.1, we can restrict attention to decision strategies of the form

Ut = ψt(Πt), t = 1, . . . , T. (5.26)

Further, we can write a dynamic program for the coordinator as follows: For any
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PMF π on the ST , define

JT (π) = sup
uT

R̃T (π, uT ) (5.27)

For t = 1, . . . , T − 1, and for any PMF π on the St, define

Jt(π) = sup
ut

E{R̃t(π, ut) + Jt+1(Ft+1(π, ut, Zt+1))|Πt = π, Ut = ut} (5.28)

The arg sup u∗t in the RHS of Jt(π) is the optimal decision at time t when Πt = π.

Thus,

u∗t = ψ∗t (π)

The above result is identical to the classical structural and dynamic programming

result for POMDPs [Kumar and Varaiya (1986a)].

5.3.2 A General Two Agent Team Problem

We next consider a general model of two-agent team similar to the model described

in Mahajan (2008). The model consists of a plant and two agents. In the original

model, at each time, Agent 1 takes an action followed by Agent 2. For the ease of

notation in our setup, we will divide each time instant into two sub-time instants

such that Agent 1 acts on odd times and Agent 2 acts on even times. The total time

horizon is thus effectively 2T . Also, unlike the original model of Mahajan (2008), we

will assume memory update rules of each agent (described further below) are fixed.

5.3.2.1 The Model

At time t = 1, the plant is in the initial state given by the random variable X1.

With time, the plant evolves according to
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X2k = X2k−1, (5.29a)

for k = 1, 2, . . . , T and

X2k+1 = f2k(X2k, U
1
2k−1, U

2
2k, V2k), (5.29b)

for k = 1, 2, . . . , T − 1, where V2k is a random variable taking values in a finite set

V . {V2k; k = 1, . . . , T − 1} is a sequence of independent random variables that are

also independent of X1. At each odd time t = 2k − 1, Agent 1 makes an observation

according to

Y 1
2k−1 = h1

2k−1(X2k−1,W2k−1) (5.30)

At each even time t = 2k, Agent 2 makes an observation according to

Y 2
2k = h2

2k(X2k, U
1
2k−1,W2k) (5.31)

Each agent has a memory that is initialized to 0 (M1
1 = M2

2 = 0) and updated as

follows:

M1
2k+1 = d1

2k−1(M1
2k−1, Y

1
2k+1, U

1
2k+1) (5.32a)

M2
2k+2 = d2

2k(M
2
2k, Y

2
2k+2, U

2
2k+2) (5.32b)

We assume that the memory update rules are fixed. The decisions are chosen as:

U1
2k+1 = g1

2k+1(M1
2k−1, Y

1
2k+1) (5.33a)

U2
2k = g2

2k(M
2
2k−2, Y

2
2k) (5.33b)
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The agents’ objective is choose g1 := (g1
1, g

1
3, . . . , g

1
2T−1) and g2 := (g2

2, g
2
4, . . . , g

2
2T ) to

maximize

Eg
1,g2

[
T∑
k=1

Rk(X2k, U
1
2k−1, U

2
2k)] (5.34)

5.3.2.2 The Input-Output State for the Coordinator

The above decision-making problem can be described in terms of the model of

Section 5.1. The primitive random variables are given as Q = {Q1, Q2, . . . , Q2T}

where Q1 = (X1,W1) and Q2k = W2k and Q2k+1 = (V2k,W2k+1). The information

available for making the tth decision is

It = (Y 1
t ,M

1
t−2), if t is odd

and

It = (Y 2
t ,M

2
t−2), if t is even

. It is easy to see that in this case, we have

Ct = ∩k≥tIk = ∅ (5.35)

and

Pt = It \ Ct = It

and

Zt+1 = Ct+1 \ Ct = ∅

Since in this case all information is private, the prescription from the coordinator will

be the decision rule for the tth decision maker. The coordinator selects its prescription

gt as a function of the common information at time t and the past prescriptions. Thus,

gt = ψt(Ct, g1:t−1) = ψt(g1:t−1)
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A Candidate for Input-Output State

For k = 1, 2, . . . , T , we define L2k+1 = (X2k+1,M
2
2k) and L2k = (X2k,M

1
2k−1, U

1
2k−1).

Then, we have

S2k+1 = (L2k+1, P2k+1) = (X2k+1,M
2
2k, Y

1
2k+1,M

1
2k−1)

and

S2k = (L2k, P2k) = (X2k,M
1
2k−1, U

1
2k−1, Y

2
2k,M

2
2k−2)

We can now verify if St, t = 1, 2, ..., 2T , satisfies Conditions 1 and 2:

1. Condition 1: We first focus on t = 2k,

Pψ(S2k+1, Z2k+1|q1:2k, u
1
1, . . . , u

1
2k−1, u

2
2, . . . , u

2
2k)

= Pψ(X2k+1,M
2
2k, Y

1
2k+1,M

1
2k−1|x1, w1:2k, v2, v4, . . . , v2k−2, u

1
1, . . . , u

1
2k−1, u

2
2, . . . , u

2
2k)

= Pψ

X2k+1,M
2
2k, Y

1
2k+1,M

1
2k−1

∣∣∣∣∣ x1:2k, w1:2k, v2, v4, . . . , v2k,

u1
1, . . . , u

1
2k−1, u

2
2, . . . , u

2
2k,m

1
2k−1,m

2
2k−2, y

2
2k


(5.36)

where we added x2:2k, y
2
2k,m

1
2k−1,m

2
2k−2 in the conditioning in (5.36) since they

are function of the primitive random variables and decisions included in the

conditioning terms. Equation (5.36) can then be written as

P(Y 1
2k+1|X2k+1)P(X2k+1|x2k, u

1
2k−1, u

2
2k)1{M1

2k−1=m1
2k−1}1{M2

2k=d2
2k(m2

2k−2,y
2
2k,u

2
2k)}

(5.37)

= P(S2k+1|s2k, u
2
2k) (5.38)

where (5.38) follows from (5.36) and (5.37) since of all the conditioning terms

in (5.36), its simplification in (5.37) only uses those included in s2k, u
2
2k.
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Also, for t = 2k − 1,

Pψ(S2k, Z2k|q1:2k−1, u
1
1, . . . , u

1
2k−1, u

2
2, . . . , u

2
2k−2)

= Pψ

X2k,M
1
2k−1, U

1
2k−1Y

2
2k,M

2
2k−2

∣∣∣∣∣ x1, w1:2k−1, v2, v4, . . . , v2k−2,

u1
1, . . . , u

1
2k−1, u

2
2, . . . , u

2
2k−2


= Pψ

X2k,M
1
2k−1, U

1
2k−1Y

2
2k,M

2
2k−2

∣∣∣ x1:2k−1, w1:2k−1, v2, v4, . . . , v2k−2,

u1
1, . . . , u

1
2k−1, u

2
2, . . . , u

2
2k−2,m

1
2k−1,m

2
2k−2, y

1
2k−1


(5.39)

where we added x2:2k−1,m
1
2k−3,m

2
2k−2, y

1
2k−1 in the conditioning in (5.39) since

they are function of the primitive random variables and decisions included in

the conditioning terms. Equation (5.39) can then be written as

P(Y 1
2k|X2k, u

1
2k−1)P(X2k|x2k−1)1{M1

2k−1=d1
2k−1(m1

2k−3,y
1
2k−1,u

1
2k−1)}1{M2

2k−2=m2
2k−2}

(5.40)

= P(S2k|s2k−1, u
1
2k−1) (5.41)

where (5.41) follows from (5.39) and (5.40) since of all the conditioning terms

in (5.39), its simplification in (5.40) only uses those included in s2k−1, u
1
2k−1.

Thus, condition 1 is satisfied at all times t = 1, 2, . . . , 2T .

2. Condition 2: By a simple change of variables, the reward function can be

written as

T∑
k=1

R2k(S2k, U
2
2k)

which is of the form required in Condition 2 with the reward at odd times being

0.
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Since St satisfies Conditions 1 and 2, we can define the coordinator’s information

states as

Πt = P(St|Ct, γ1:t−1)

= P(St|g1:t−1) (5.42)

Replacing γt by gt in propositions V.3 and V.4 gives us the following results:

For t = 1, . . . , 2T − 1, there exists functions Ft (which do not depend on the coordi-

nator’s strategy) such that

Πt+1 = Ft+1(Πt, gt) (5.43)

and for k = 1, 2, . . . , T

E{R2k(S2k, U
2
2k)} = E{R̃2k(Π2k, g

2
2k)}

Further, Πt, t = 1, 2, . . . , T + 1 is a controlled Markov chain with gt as the control

actions.

With the above results, Theorem V.5 can be specialized to give the following

sequential decomposition for this case

Theorem V.8. In the two agent team problem described in Section 5.3.2.1, we can

write a dynamic program for the coordinator as follows: For any PMF π on ST , define

J2T (π) = sup
g2
2T

R̃2T (π, g2
2T ) (5.44)

For k = 1, . . . , T , and for any PMF π on S2k−1, define

J2k−1(π) = sup
g1
2k−1

J2k(F2k(π, g
1
2k−1)) (5.45)
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For k = 1, . . . , T − 1, and for any PMF π on S2k, define

J2k(π) = sup
g2
2k

[R̃2k(π, g
2
2k) + J2k+1(F2k+1(π, g2

2k))] (5.46)

The arg sup in the RHS of Jt(π) is the optimal decision at time t when Πt = π.

Theorem V.8 provides a sequential decomposition of a two-agent team problem

that is similar to the sequential decomposition of Mahajan (2008).

5.4 Other Simplifications of the Coordinator’s Problem

In the preceding sections, we identified conditions under which the coordinator

can simplify its information state. We now focus on another aspect of simplifying the

coordinator’s dynamic program. Recall that at each time t, the coordinator selects

a partial decision rule γt that maps private information at time t to decision at time

t. The optimal choice of γt must be chosen from the set of all functions from the

space of private information Pt to space of decisions Ut. Let Γ(Pt,Ut) be the set of

all functions from Pt to Ut. The size of the set Γ(Pt,Ut) is a natural measure of

the complexity of the coordinator’s optimization problem at each step of its dynamic

program. One way to simplify the coordinator’s optimization is to characterize a set

A ⊂ Γ(Pt,Ut) for which we can guarantee that there always exists an optimal choice

of coordinator’s decision in the set A. We state, without proof, the following lemma

that provides sufficient conditions for one such characterization.

Lemma V.9. Consider a sequential decision making problem of the form described

in Section 5.1. For t = 1, 2, . . . , T , let P ′t ⊂ Pt, such that the following conditions

hold:

1. For any choice of decision strategies g1:T−1 of the form Ut = gt(Pt, Ct), 1 ≤ t ≤
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T − 1, and for all u ∈ UT

E[R(Q1:T , U1:T )|pT , cT , UT = u] = E[R(Q1:T , U1:T )|p′T , cT , UT = u] (5.47)

where pT , p
′
T , cT are any realizations of PT , P

′
T , CT that occur with non-zero prob-

ability;

2. For any choice of decision strategies g1:t−1 of the form Uk = gk(Pk, Ck), 1 ≤

k ≤ t − 1, and gt+1:T of the form Uk = gk(P
′
k, Ck), t + 1 ≤ k ≤ T and for all

u ∈ UT

E[R(Q1:T , U1:T )|pt, ct, Ut = u] = E[R(Q1:T , U1:T )|p′t, ct, Ut = u] (5.48)

where pt, p
′
t, ct are any realizations of Pt, P

′
t , Ct that occur with non-zero proba-

bility.

Then, there exist optimal decision strategies of the form Ut = gt(P
′
t , Ct), for all t =

1, 2, . . . , T . In particular, the coordinator can select its partial decision rule from

Γ(P ′t,Ut) ⊂ Γ(Pt,Ut) without losing optimality.

5.5 Conclusions

In this Chapter, we used the concept of state to simplify the common information

based sequential decomposition described in Chapter IV. In broad terms, a state is a

summary of past data that is sufficient for an input-output description of the system

from the point of view of a coordinator that knows the common information. We

identified sufficient conditions for a function of past data to be a state sufficient for the

coordinator’s input output map. We obtained a simplified sequential decomposition

for the coordinator when such a state exists. We re-derived sequential decompositions

of POMDP and a general two-agent team problem by identifying a suitable state for
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the coordinator and using the common information based sequential decomposition.
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CHAPTER VI

Conclusions and Reflections

In this thesis, we studied sequential decision making problems in cooperative sys-

tems where different agents with different information want to achieve a common

objective. The sequential nature of the decision problem implies that all decisions

can be arranged in a sequence such that the information available to make the tth

decision only depends on preceding decisions. Markov decision theory provides tools

for addressing sequential decision making problems with classical information struc-

tures. In this thesis, we focused on decision making problems with non-classical

information structures. We introduced a new approach for such decision making

problems. This approach relies on the idea of common information among decision-

makers. Intuitively, common information consists of past observations and decisions

that are commonly known to the current and future decision makers. We showed

that a common information based approach can allow us to discover new structural

results of optimal decision strategies; and provide simpler sequential decomposition

of the decision-making problems than earlier approaches. We first demonstrated

this approach on two specific instances of sequential problems, namely, a real-time

multi-terminal communication system and a decentralized control system with de-

layed sharing of information. We then showed that the common information method-

ology applies more generally to any sequential decision making problem. Moreover,
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we showed that our common information methodology unifies the separate sequential

decomposition results available for classical and non-classical information structures.

We also presented sufficient conditions for simplifying common information based se-

quential decompositions using the concept of state sufficient for the input output map

of a coordinator that only knows the common information.

6.1 Common Knowledge and Common Information

The central question in decentralized decision making in cooperative systems is one

of coordination. How can two (or more) agents with different information coordinate

their decisions to achieve the best performance? For effective coordination, an agent

needs to infer what other agents know about the system, what other agents know

about what it knows about the system, what other agents know about what it knows

about their knowledge about the system and so on. Common knowledge, as defined

in Aumann (1976), describes the knowledge that all agents know, that all agents

know that all agents know it and all agents know that all agents know that all agents

know it and so on. The above self-referential verbal logic is expressed much easily

mathematically: if two agents’ knowledge is identified with sigma algebras F and

G, then the common knowledge is simply F ∩ G. Now consider two agents that

observe the following set of primitive random variables defined on a probability space

(Ω,F ,P):

Agent Observations

1 X, Y

2 Y, Z

Then, one can identify Agent 1’s knowledge with the sigma field σ(X, Y ) ⊂ F and

Agent 2’s knowledge with the sigma field σ(Y, Z) ⊂ F . Then, the common knowledge

between the agents is σ(X, Y )∩σ(Y, Z). Note that the common information between

the agents (as per our definition) is simply the observation Y . Clearly, σ(Y ) ⊂
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σ(X, Y )∩σ(Y, Z). Thus, common information describes a part of common knowledge

between the agents. Although, common information may capture only a part of

the entire common knowledge, describing common information is much simpler than

describing the entire common knowledge.

In the above example, all observations were primitive random variables. Hence,

one could define agents’ knowledge and the common knowledge without specifying

any decision strategy. In more general problems, an agent’s observation depends on

other agents decisions. For example, the observation Z in the above example could be

a function of primitive random variable and the decision U1 of agent 1. In this case,

Z is well-defined as a random variable only if a decision strategy of agent 1 has been

specified. If g1 is the strategy of agent 1, then one may define agent 2’s knowledge

as σg1(Y, Z) ⊂ F , where we include g1 in the superscript to denote the dependence

of this sub-sigma field on the choice of strategy g1. Thus, the common knowledge

between two agents depends, in general, on the choice of strategies. Note, however,

we can define common information without specifying any decision strategies.

6.2 Common Information and Decision Strategies

The goal of any decision problem is to identify optimal decision strategies for all

agents. Each decision strategy is a complete prescription of an agent’s behavior for

all possible realizations of its information. A common information methodology is

essentially a way of dividing the problem of finding behavioral prescriptions into sub-

problems. When all agents observe the realization of the common information, they

only need prescriptions for the commonly known realization of common information

and prescriptions for unobserved realizations of common information are inconsequen-

tial.

Consider again a sequential problem with two agents where agent 1 observes the

primitive random variables X and Y and agent 2 observes the primitive random vari-
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ables Y and Z. The two agents are required to make decisions U1 ∈ U1 and U2 ∈ U2

respectively in order to maximize the expected value of a reward R(X, Y, Z, U1, U2).

Assume that the primitive random variables X, Y, Z take values in finite sets X ,Y ,Z

respectively. Then, in order to find the best strategy profile, one has to search from

N := |U1||X ||Y|×|U2||Y||Z| possible strategy profiles for this decision problem. Consider

now a common information based approach. For each realization of common infor-

mation Y , we only need to find how agents use their information given the realization

of Y . Thus, to find the best prescription for the given realization of Y , we need to

search from n = |U1||X | × |U2||Z| possible choices. Since, we need prescriptions for

all realizations of Y , the complexity of this approach is roughly |Y| · |U1||X | × |U2||Z|.

This is a considerable improvement from the complexity of a brute force search over

N choices of strategy profiles.

In the above simple example, the second agent’s observation did not depend on the

first agent’s decision. This is not the case in more general forms of decision problems.

In problems where second agent’s observation depends on the decision of the first

agent, there is a communication aspect in the decision problem. This is because the

first agent may try to convey some information to the second agent by means of

its decision. In order for agent 2 to interpret what information agent 1 is trying to

convey, agent 2 needs to know how agent 1 maps information to decision, that is,

agent 2 needs to know the decision strategy of agent 1. This communication aspect

of decision problems has been identified as the reason that sequential decompositions

based on designer’s approach result in optimization over strategy space [Mahajan

(2008)].

Consider again a two agent problem where agent 1 observes the primitive random

variables X, Y . Agent 1 has to make a decision U1 = g1(X, Y ) according to a decision

strategy g1. Agent 2 observes the primitive random variable Y and the decision of

agent 1, U1. Agent 2 must make a decision U2 in order to maximize the expected value
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of a reward R(X, Y, U2). Consider a sequential decomposition based on designer’s

approach. Proceeding backwards, the designer needs to start with specifying agent 2’s

strategy. What should agent 2 do if it observes a realization y, u1 of its observations?

In order to find agent 2’s best decision, the designer must know how can agent 2

interpret u1. That is, the designer needs to know what values of agent 1’s observations

X, Y could have led to the observed decision. In other words, the designer needs to

know the decision strategy g1. This is the main reason why the designer’s sequential

decomposition always involve optimization over strategies.

Consider now a common information based approach for the above problem. Given

a realization y of the common information Y , agent 2 only needs to know what

values of agent 1’s observation X along with the observed realization y of common

information could have led to the observed decision u1. That is, agent 2 only needs

to know the partial decision strategy g(·, y) to interpret agent 1’s decision. This is

one of the main reasons why common information based sequential decompositions

involve optimization over partial decision strategies. Thus, the common information

methodology simplifies the communication aspect of decision problems.

6.3 Future Directions

The common information methodology developed in this thesis relies only on

the sequentiality of decision-making problems. This suggests that this approach can

be used to address a wide class of decision-making problems- especially those with

substantial common information. The delayed sharing information structure is an

example of decentralized control problem where the system architecture (that is, the

sharing of information over a communication medium with delay) introduces common

information among decision-makers. Other kinds of information sharing mechanisms

in decentralized control - namely, sharing of control actions, periodic sharing of infor-

mation, sharing with random delay- also result in the presence of common informa-
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tion among controllers. Thus, we expect that the common information methodology

should be able to provide structural results and sequential decompositions for decen-

tralized control problems with the above mentioned information sharing mechanisms.

In Chapter V, (Section 5.4), we presented one way of simplifying the coordinator’s

sequential decomposition. Essentially, this approach relied on removing redundant

private information from decision-makers’ information. Lesser the private informa-

tion, the simpler are the prescriptions that the coordinator has to find. Another way

of reducing private information can be to make it common information. Can we add

redundant information to a decision-maker’s information so as to have more common

information? Consider a simple two-stage decision problem as an example. DM1 ob-

serves a random variable X1, takes an action U1, DM 2 observes X2 = X1 +U1 +W1,

where W1 is a random variable independent of X1. DM 2 takes an action U2 and

a reward R(X2, U2) is received. Is there common information at time t = 1? No,

since X1 is unavailable to DM 2. However, it is possible to show that even if X1 were

available to DM 2, it will not alter the optimal decision strategy for DM 2. Thus,

as far as DM 2 is concerned, X1 is a redundant observation. Adding this redundant

observation to DM 2, however, allows us to have X1 as common information at time

t = 1. This implies that the coordinator’s prescription at time t = 1 can now simply

be a decision (since there is no private information). Finding appropriate redundant

information that may be added or removed from a decision-makers information in

order to simplify the coordinator’s problem seems to require guesswork and ingenu-

ity, although the work in Mahajan and Tatikonda (2009) suggests an automated way

may be possible.

In general, having more information as common information among decision-

makers can provide improvements in performance. If a group of decision-makers

have more information as common information, they will do no worse than in the

case where they had less common information. Moreover, having more information
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as common implies lesser private information which results in a simpler problem for

the coordinator. If the amount of information that should be common can be altered

(say, by a system designer), how can we decide how much information should be com-

mon information? In other words, can we assess different information structures in

terms of the cost of making more information common versus the benefit of enhanced

performance and simpler solutions?

Finally, in this thesis we developed the common information methodology only for

decision-making problems where all agents have the same objective. The cooperative

nature of the problem is essential for this methodology. When the fictitious coor-

dinator makes its prescriptions, the cooperative nature of the problem ensures that

all agents have no reason to deviate from the prescribed behavior. This is clearly

not the case in game-theoretic problems where different agents may have different

objectives. Can common information methodology have any role to play in game-

theoretic problems? We believe the answer is yes. Using the fact that all agents have

some information in common may simplify the problem of finding equilibrium deci-

sion strategies. Instead of finding decision strategies that are in Nash equilibrium,

we expect that one may be able to simplify the problem to finding partial decision

strategies that are in Nash equilibrium for each realization of common information.

We hope the above questions will provide useful starting points in future efforts to

extend the work presented in this thesis.
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APPENDIX A

Appendix for Multi-Terminal Communication

System

Proof of Lemma II.4

For a realization x1
1:t of X1

1:t, we have by definition,

b1
t (a) =P (A = a|x1

1:t)

=P (A = a, x1
t |x1

1:t−1)/
∑
a′∈A

P (A = a′, x1
t |x1

1:t−1) (A.1)

where we used Bayes’ rule in (A.1). The numerator in (A.1) can be written as,

P (X1
t = x1

t |A = a, x1
1:t−1).P (A = a|x1

1:t−1)

=P (X1
t = x1

t |A = a, x1
t−1).b1

t−1(a) (A.2)

where we used the Markov nature of X1
t when conditioned on A. Thus, for a fixed a,

the numerator in (A.1) depends only on x1
t , x

1
t−1 and the previous belief b1

t−1. Since
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the same factorization holds for each term in the denominator, we have that

b1
t = α1

t (b
1
t−1, X

1
t , X

1
t−1),

where α1
t , t = 2, 3, ..., T are deterministic transformations.

Proof of Lemma II.5

By definition of µ1
t , we have

µ1
t (m) = P (M1

t−1 = m|Z1
1:t−1, l

1
1:t−1)

= P (l1t−1(M1
t−2, Y

1
t−1) = m|Z1

1:t−1, l
1
1:t−1) (A.3)

With the memory update rules l11:t−1 fixed, the probability in (A.3) can be evaluated

from the conditional distribution P (M1
t−2, Y

1
t−1|Z1

1:t−1, l
1
1:t−1). For m′ ∈ M1 and y ∈

Y1, this conditional distribution is given as

P (M1
t−2 = m′, Y 1

t−1 = y|Z1
1:t−1, l

1
1:t−1) (A.4)

=P (Y 1
t−1 = y|M1

t−2 = m′, Z1
1:t−1, l

1
1:t−1)×

P (M1
t−2 = m′|Z1

1:t−1, l
1
1:t−1)

=P (Y 1
t−1 = y|Z1

t−1).P (M1
t−2 = m′|Z1

1:t−2, l
1
1:t−2) (A.5)

=P (Y 1
t−1 = y|Z1

t−1).µ1
t−1(m′) (A.6)

where we used the fact that the channel noise at time t (N1
t ) is independent of the

past noise variables and the Markov source in (A.5). Thus, we only need Z1
t−1 and

µ1
t−1 to form the joint belief in (A.4). Consequently, we can evaluate µ1

t (m) just from

Z1
t−1 and µ1

t−1. Thus,

µ1
t = β1

t (µ
1
t−1, Z

1
t−1)
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where β1
t , t = 2, 3, ..., T are deterministic transformations.

Proof Of Lemma II.13

For fixed f 2
1:T and for a given realization of the received symbols z1

1:t, z
2
1:t and the

partial encoding functions w̃1
1:t, the receiver’s belief on the state of the source at time

t is given as:

ψt(x) := P (Xt = x|z1
1:t, z

2
1:t, w̃

1
1:t, f

2
1:t) (A.7)

where x = (x1, x2, a). Using Bayes’ rule, we have

ψt(x) = P (Xt = x, Z2
1:t = z2

1:t|z1
1:t, w̃

1
1:t, f

2
1:t)/∑

x′∈X
P (Xt = x′, Z2

1:t = z2
1:t|z1

1:t, w̃
1
1:t, f

2
1:t) (A.8)

The numerator in right hand side of (A.8) can be written as

P (Z2
1:t = z2

1:t|z1
1:t, Xt = x, w̃1

1:t, f
2
1:t)

× P (Xt = x|z1
1:t, w̃

1
1:t, f

2
1:t)

=P (Z2
1:t = z2

1:t|X2
t = x2, A = a, f 2

1:t)

× P (X2
t = x2|A = a)× P (X1

t = x1
t , A = a|z1

1:t, w̃
1
1:t) (A.9)

where we used conditional independence of Z2
1:t, X

2
t and Z1

1:t, X
1
t given A for the first

term in (A.9) and the fact that Xt = (X1
t , X

2
t , A) in the second term of left hand side

of (A.9).

Since the second encoder is fixed, the first term in the right hand side of (A.9) is

a known statistic which depends on z2
1:t. The second term is again a known source
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statistic. Consider the last term in (A.9). It can be expressed as follows:

∑
b′∈∆(A)

P (X1
t = x1

t , A = a, b1
t = b′|z1

1:t, w̃
1
1:t)

=
∑

b′∈∆(A)

[P (A = a|b1
t = b′, x1

t , z
1
1:t, w̃

1
1:t)

× P (X1
t = x1

t , b
1
t = b′|z1

1:t, w̃
1
1:t)] (A.10)

=
∑

b′∈∆(A)

b′(a)× P (X1
t = x1

t , b
1
t = b′|z1

1:t, w̃
1
1:t)

=
∑

b′∈∆(A)

b′(a)× ξ̃1
t (x

1
t , b
′) (A.11)

Similar representations also hold for each term in the denominator of (A.8). It follows

then that with a fixed f 2
1:t, ψt(x) depends only on the realization of second encoder’s

messages Z2
1:t and ξ1

t . Thus, from (A.9) and (A.11), we conclude that ψt can be

evaluated from ξ1
t and Z2

1:t by means of deterministic transformations. We will call

this overall transformation as δt. Thus, we have

ψt = δt(ξ
1
t , Z

2
1:t) (A.12)

Since the estimate X̂t is a function of ψt (cf. Theorem II.11), we conclude that

X̂t = τt(δt(ξ
1
t , Z

2
1:t))

Proof of Lemma II.14

1) Consider a realization z1
1:t and w̃1

1:t.

By definition, the realization of ξ1
t−1 is given as

ξ̃1
t (x

1
t , b̃

1
t ) = P (X1

t = x1
t , b

1
t = b̃1

t |z1
1:t, w̃

1
1:t) (A.13)
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Using Bayes’ rule, we have

ξ̃1
t (x

1
t , b̃

1
t ) = P (X1

t = x1
t , b

1
t = b̃1

t , Z
1
t = z1

t |z1
1:t−1, w̃

1
1:t)

/
∑
x′∈X1

∑
b′∈∆(A)

P (X1
t = x′, b1

t = b′, Z1
t = z1

t |z1
1:t−1, w̃

1
1:t) (A.14)

We can write the numerator as:

P (Z1
t = z1

t |X1
t = x1

t , b
1
t = b̃1

t , z
1
1:t−1, w̃

1
1:t)

× P (X1
t = x1

t , b
1
t = b̃1

t |z1
1:t−1, w̃

1
1:t)

= P (Z1
t = z1

t |X1
t = x1

t , b
1
t = b̃1

t , w̃
1
t )

× P (X1
t = x1

t , b
1
t = b̃1

t |z1
1:t−1, w̃

1
1:t) (A.15)
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the first term in (A.15) is true since z1
t = w1

t (x
1
t , b̃

1
t ). The second term in (A.15) can

be further written as:

∑
x′′∈X1,
a∈A

∑
b′∈∆(A)

P (X1
t = x1

t , b
1
t = b̃1

t , X
1
t−1 = x′′

, A = a, b1
t−1 = b′|z1

1:t−1, w̃
1
1:t)

=
∑

x′′∈X1,
a∈A

∑
b′∈∆(A)

[P (b1
t = b̃1

t |b1
t−1 = b′, X1

t = x1
t , X

1
t−1 = x′′)

× P (X1
t = x1

t |A = a,X1
t−1 = x′′)

× P (A = a|b1
t−1 = b′, X1

t−1 = x′′,

z1
1:t−1, w̃

1
1:t−1)

× P (X1
t−1 = x′′, b1

t−1 = b′|z1
1:t−1, w̃

1
1:t−1)] (A.16)

=
∑

x′′∈X1,
a∈A

∑
b′∈∆(A)

[P (b1
t = b̃1

t |b1
t−1 = b′, X1

t = x1
t , X

1
t−1 = x′′)

× P (X1
t = x1

t |A = a,X1
t−1 = x′′)

× P (A = a|b1
t−1 = b′)× ξ̃1

t−1(x′′, b′)] (A.17)

where we used Lemma II.4 and the Markov property of X1
t given A in (A.16). The

first term in (A.17) is simply 1 or 0 since b1
t is a deterministic function of b1

t−1, X1
t

and X1
t−1. The second term is a known source statistic and the third term is b′(a).

Similar expressions hold for the denominator in (A.14). Thus, from (A.14)-(A.17),

we conclude that to evaluate ξ1
t (x

1
t , b̃

1
t ) we only need Z1

t , w
1
t and ξ1

t−1. This establishes

equation (2.43).

2) With encoder 2’s strategy fixed, the expected instantaneous cost from the
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coordinator’s perspective is given as:

E{ρt(Xt, X̂t)|z1
1:t, w̃

1
1:t}

=E{ρt(X1
t , X

2
t , A, τt(δt(ξ

1
t , Z

2
1:t)))|z1

1:t, w̃
1
1:t, ξ̃

1
t }, (A.18)

since ξ̃1
t is a function of z1

1:t, w̃
1
1:t, hence it can be included in the conditioning vari-

ables. Thus, the only random variables in the above expectation are X1
t , X

2
t , A and

Z2
1:t. Therefore, the above expectation is a function of the following probability mass

function:

P (X1
t = x1

t , X
2
t = x2

t , A = a, Z2
1:t = z2

1:t|z1
1:t, w̃

1
1:t, ξ̃

1
t )

=P (Z2
1:t = z2

1:t, X
2
t = x2

t |A = a,X1
t = x1

t , z
1
1:t, w̃

1
1:t, ξ̃

1
t )

× P (X1
t = x1

t , A = a|z1
1:t, w̃

1
1:t, ξ̃

1
t )

=P (Z2
1:t = z2

1:t, X
2
t = x2

t |A = a)×∑
b′∈∆(A)

[P (X1
t = x1

t , A = a, b1
t = b′|z1

1:t, w̃
1
1:t, ξ̃

1
t )]

=P (Z2
1:t = z2

1:t, X
2
t = x2

t |A = a)×∑
b′∈∆(A)

[P (A = a|b1
t = b′, z1

1:t, w̃
1
1:t, ξ̃

1
t ) (A.19)

× P (X1
t = x1

t , b
1
t = b′|z1

1:t, w̃
1
1:t, ξ̃

1
t )]

=P (Z2
1:t = z2

1:t, X
2
t = x2

t |A = a)×
∑

b′∈∆(A)

[b′(a)

× P (X1
t = x1

t , b
1
t = b′|z1

1:t, w̃
1
1:t, ξ̃

1
t )]

=P (Z2
1:t = z2

1:t, X
2
t = x2

t |A = a)×
∑

b′∈∆(A)

[b′(a)

× ξ̃1
t (x

1
t , b
′)] (A.20)
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where we used conditional independence of the encoder’s observations and actions

given A in (A.19). In (A.20), the first term is a fixed statistic when encoder 2’s

strategy is fixed and the second term depends only on ξ̃1
t . Thus, the expectation in

(A.18) can be evaluated using ξ̃1
t . This establishes the second part of the Lemma

(equation 2.44).
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APPENDIX B

Appendix for Delayed Sharing Information

Structures

Proof of Proposition III.4

Fix a coordinator strategy ψ. Consider a realization ct+1 of the common in-

formation Ct+1. Let (γ̃1
1:t, γ̃

2
1:t) be the corresponding realization of partial functions

until time t. Assume that the realization (ct+1, π1:t, γ
1
1:t, γ̃

2
1:t) has non-zero probability.

Then, the realization πt+1 of Πt+1 is given by

πt+1(st+1) = Pψ(St+1 = st+1|ct+1, γ̃
1
1:t, γ̃

2
1:t). (B.1)

Using Proposition III.2 , this can be written as

∑
st,vt,w1

t+1,w
2
t+1

1st+1(f̂t+1(st, vt, w
1
t+1, w

2
t+1, γ̃

1
t , γ̃

2
t ))

· P(Vt = vt) · P(W 1
t+1 = w1

t+1)

· P(W 2
t+1 = w2

t+1) · Pψ(St = st|ct+1, γ̃
1
1:t, γ̃

2
1:t). (B.2)
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Since ct+1 = (ct, zt+1), the last term of (B.2) can be written as

Pψ(St = st|ct, zt+1, γ̃
1
1:t, γ̃

2
1:t)

=
Pψ(St = st, Zt+1 = zt+1|ct, γ̃1

1:t, γ̃
2
1:t)∑

s′ Pψ(St = s′, Zt+1 = zt+1|ct, γ̃1
1:t, γ̃

2
1:t)

. (B.3)

Use (3.20) and the sequential order in which the system variables are generated

to write

Pψ(St = st, Zt+1 = zt+1|ct, γ̃1
1:t, γ̃

2
1:t)

= 1ĥt(st)(zt+1) · Pψ(St = st|ct, γ̃1
1:t−1, γ̃

2
1:t−1) (B.4)

= 1ĥt(st)(zt+1) · πt(st). (B.5)

where γ̃1
t , γ̃

2
t are dropped from conditioning in (B.4) because for the given coordina-

tor’s strategy, they are functions of the rest of the terms in the conditioning. Substi-

tute (B.5), (B.3), and (B.2) into (B.1), to get

πt+1(st+1) = Ft+1(πt, γ̃
1
t , γ̃

2
t , zt+1)(st+1)

where Ft+1(·) is given by (B.1), (B.2), (B.3), and (B.5).

Proof of Proposition III.5

Fix a coordinator strategy ψ. Consider a realization ct+1 of the common in-

formation Ct+1. Let π1:t be the corresponding realization of Π1:t and (γ̃1
1:t, γ̃

2
1:t) the

corresponding choice of partial functions until time t. Assume that the realization

(ct+1, π1:t, γ
1
1:t, γ̃

2
1:t) has a non-zero probability. Then, for any Borel subset A ⊂ P{S},

where P{S} is the space of probability mass functions over the finite set S (the space
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of realization of St), use Proposition III.4 to write

P(Πt+1 ∈ A|ct, π1:t, γ̃
1
1:t, γ̃

2
1:t)

=
∑
zt+1

1A(Ft+1(πt, γ̃
1
t , γ̃

2
t , zt+1))

· P(Zt+1 = zt+1|ct, π1:t, γ̃
1
1:t, γ̃

2
1:t) (B.6)

Now, use (3.20), to obtain

P(Zt+1 = zt+1|ct, π1:t, γ̃
1
1:t, γ̃

2
1:t)

=
∑
st

1ĥt(st)(zt+1) · P(St = st|ct, π1:t, γ̃
1
1:t, γ̃

2
1:t)

=
∑
st

1ĥt(st)(zt+1) · πt(st) (B.7)

where we used the fact that for any realization (ct, π1:t, γ̃
1
1:t, γ̃

2
1:t) of positive probabil-

ity, the conditional probability P(St = st|ct, π1:t, γ̃
1
1:t, γ̃

2
1:t) is same as πt(st). Substi-

tute (B.7) back in (B.6), to get

P(Πt+1 ∈ A|ct, π1:t, γ̃
1
1:t, γ̃

2
1:t)

=
∑
zt+1

∑
st

1A(Ft+1(πt, γ̃
1
t , γ̃

2
t , zt+1))

· 1ĥt(st)(zt+1) · πt(st)

= P(Πt+1 ∈ A|πt, γ̃1
t , γ̃

2
t ), (B.8)

thereby proving (3.24).
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Now, use Proposition III.2 to write,

E{R̂t(St, γ
1
t , γ

2
t , St+1)|ct, π1:t, γ̃

1
1:t, γ̃

2
1:t}

=
∑

st,vt,w1
t+1,w

2
t+1

R̂t(st, γ̃
1
t , γ̃

2
t , f̂t+1(st, vt, w

1
t+1, w

2
t+1, γ̃

1
t , γ̃

2
t ))

· P(Vt = vt) · P(W 1
t+1 = w1

t+1) · P(W 2
t+1 = w2

t+1)

· P(St = st|ct, π1:t, γ̃
1
1:t, γ̃

2
1:t)

=
∑

st,vt,w1
t+1,w

2
t+1

R̂t(st, γ̃
1
t , γ̃

2
t , f̂t+1(st, vt, w

1
t+1, w

2
t+1, γ̃

1
t , γ̃

2
t ))

· P(Vt = vt) · P(W 1
t+1 = w1

t+1)

· P(W 2
t+1 = w2

t+1) · πt(st)

=: R̃t(πt, γ̃
1
t , γ̃

2
t ). (B.9)

This proves (3.25).

Piecewise linearity and concavity of value function

Lemma B.1. For any realization γ̃1:2
t of γ1:2

t , the cost R̃t(πt, γ̃
1
t , γ̃

2
t ) is linear in πt.

Proof.

R̃t(πt, γ̃
1
t , γ̃

2
t )

= E{R̂t(St, γ
1
t , γ

2
t , St+1|Πt = πt, γ

1:2
t = γ̃1:2

t }

=
∑

R̂t(st, γ̃
1, γ̃2, f̂t+1(st, vt, w

1
t+1, w

2
t+1, γ̃

1, γ̃2))

· P(Vt = vt) · P(W 1:2
t+1 = w1:2

t+1) · πt(st)

where the summation is over all realizations of (st, vt, w
1:2
t+1). Hence R̃t(πt, γ̃

1
t , γ̃

2
t ) is

linear in πt.

We prove the piecewise linearity and concavity of the value function by induction.
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For t = T ,

JT (π) = inf
γ̃1:2
t

R̃T (π, γ̃1
t , γ̃

2
t ).

Lemma B.1 implies that JT (π) is the inifimum of finitely many linear functions of π.

Thus, JT (π) is piecewise linear and concave in π. This forms the basis of induction.

Now assume that Jt+1(π) is piecewise linear and concave in π. Then, Jt+1 can be

written as the infimum of a finite family I of linear functions as

Jt+1(π) = inf
i∈I

{∑
s∈S

ai(s) · π(s) + bi

}
, (B.10)

where ai(s), bi, i ∈ I, s ∈ S are real numbers. Using this, we will prove that the

piecewise linearity and concavity of Jt(π).

Jt(π) = inf
γ̃1,γ̃2

[
R̃t(π, γ̃

1, γ̃2) + E{Jt+1(Πt+1)|Πt = π, γ1:2
t = γ̃1:2}

]
. (B.11)

For a particular choice of γ̃1:2, we concentrate on the terms inside the square brackets.

By Lemma B.1 the first term is linear in π. The second term can be written as

E{Jt+1(Πt+1)|Πt = π, γ1:2
t = γ̃1:2} (B.12)

=
∑
zt+1

Jt+1(Ft+1(π, γ̃1, γ̃2, zt+1))

· P(Zt+1 = zt+1|Πt = π, γ1:2
t = γ̃1:2)

=
∑
zt+1

[
inf
i∈I

{∑
s

ai(s) · (Ft+1(π, γ̃1, γ̃2, zt+1))(s) + bi

}
· P(Zt+1 = zt+1|Πt = π, γ1:2

t = γ̃1:2)

]
(B.13)

where the last expression follows from (B.10).
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Note that

P(Zt+1 = zt+1|Πt = π, γ1:2
t = γ̃1:2) =

∑
s′∈S

1ĥt(s′)(zt+1) · π(s′) (B.14)

Focus on each term in the outer summation in (B.13). For each value of zt+1,

these terms can be written as:

inf
i∈I

{∑
s

ai(s) · (Ft+1(π, γ̃1, γ̃2, zt+1))(s)

·
∑
s′∈S

1ĥt(s′)(zt+1) · π(s′)

+ bi ·
∑
s′∈S

1ĥt(s′)(zt+1) · π(s′) (B.15)

The second summand is linear in π. Using the characterization of Ft+1 from the proof

of Proposition III.4 (Appendix B), we can write the first summand as

ai(s) ·
{ ∑
st,vt,w1

t+1,w
2
t+1

1s(f̂t+1(st, vt, w
1
t+1, w

2
t+1, γ̃

1
t , γ̃

2
t ))

· P(Vt = vt) · P(W 1:2
t+1 = w1:2

t+1)

· 1ĥ(st)
(zt+1)π(st)

}
(B.16)

which is also linear in π. Substituting (B.15) and (B.16) in (B.13), we get that for

a given choice of γ̃1, γ̃2, the second expectation in (B.11) is concave in π. Thus, the

value function Jt(π) is the minimum of finitely many functions each of which is linear

in π. This implies that Jt is piecewise linear and concave in π. This completes the

induction argument.

Proof of Proposition III.11

We prove the three parts separately.
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Part 1)

We first prove that Θt+1 is a function of Θt and Zt+1. Recall that Zt+1 =

(Y 1
t−n+1, Y

2
t−n+1, U

1
t−n+1, U

2
t−n+1) and Ct+1 = (Ct, Zt+1). Fix a coordination strategy ψ

and consider a realization ct+1 of Ct+1. Then,

θt+1(xt−n+1)

:= P(Xt−n+1 = xt−n+1|ct+1)

= P(Xt−n+1 = xt−n+1|ct, y1:2
t−n+1, y

2
t−n+1, u

1:2
t−n+1)

=
∑
x∈X

P(Xt−n+1 = xt−n+1|Xt−n = x, u1:2
t−n+1)

· P(Xt−n = x|ct, y1:2
t−n+1, u

1:2
t−n+1)

=
∑
x∈X

P(Xt−n+1 = xt−n+1|Xt−n = x, u1:2
t−n+1)

·
P(Xt−n = x, y1:2

t−n+1, u
1:2
t−n+1|ct)∑

x′ P(Xt−n = x′, y1:2
t−n+1, u

1:2
t−n+1|ct)

(B.17)

Consider the second term of (B.17), and note that under any coordination strategy

ψ, the variables u1:2
t−n+1 are deterministic functions of y1:2

t−n+1 and ct (which is same as

y1:2
1:t−n, u

1:2
1:t−n). Therefore, the numerator of the second term of (B.17) can be written

as

Pψ(xt−n, y
1:2
t−n+1, u

1:2
t−n+1|ct)

= Pψ(u1:2
t−n+1|xt−n, y1:2

t−n+1, ct)

· Pψ(y1:2
t−n+1|xt−n, ct) · Pψ(xt−n|ct)

= Pψ(u1:2
t−n+1|y1:2

t−n+1, ct)

· P(y1:2
t−n+1|xt−n) · θt(xt−n) (B.18)
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Substitute (B.18) in (B.17) and cancel Pψ(u1:2
t−n+1|y1:2

t−n+1, ct) from the numerator and

denominator. Thus, θt+1 is a function of θt and zt+1.

Next we prove that rkt+1 is a function of rkt , Zt+1 and γkt . Recall that

rkt+1 := (rkm,(t+1), t− n+ 2 ≤ m ≤ t).

We prove the result by showing that each component rkm,(t+1), t− n+ 2 ≤ m ≤ t is a

function of rkt , Zt+1 and γkt .

1. For m = t, we have rkt,(t+1) := γkt (·, Y k
t−n+1). Since Y k

t−n+1 is a part of Zt+1, rkt,(t+1)

is a function of γkt and Zt+1.

2. For m = t− n+ 2, t− n+ 3, . . . , t− 1,

rkm,t+1(·) := γkm(·, Y k
m−n+1:t+1−n, U

k
m−n+1:t+1−n)

= γkm(·, Y k
t−n+1, U

k
t−n+1, Y

k
m−n+1:t−n, U

k
m−n+1:t−n)

= rkm,t(·, Y k
t−n+1, U

k
t−n+1) (B.19)

Thus, for m = t−n+ 2, t−n+ 3, . . . , t−1, rkm,t+1 is a function of rkm,t and Zt+1.

Part 2)

First, let us assume that the coordinator’s belief Πt defined in (3.22) is a function

of (Θt, r
1
t , r

2
t ), that is, there exist functions Ht, for t = 1, 2, . . . , T , such that

Πt = Ht(Θt, r
1
t , r

2
t ) (B.20)
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From (3.25) of Proposition III.5, we have that

E{R̂t(St, γ
1
t , γ

2
t , St+1)|Ct,Π1:t, γ

1
1:t, γ

2
1:t}

= R̃t(Θt, r
1
t , r

2
t , γ

1
1 , γ

2
t ) (B.21)

where the last equation uses (B.20). Thus, to prove this part of the proposition, only

need to prove (B.20). For that matter, we need the following lemma.

Lemma B.2. St := (Xt−1, P
1
t , P

2
t ) is a deterministic function of (Xt−n, Vt−n+1:t−1,W 1

t−n+1:t,

W 2
t−n+1:t, r

1
t , r

2
t ), that is, there exists a fixed deterministic function Dt such that

St := (Xt−1, P
1
t , P

2
t )

= Dt(Xt−n, Vt−n+1:t−1,W
1:2
t−n+1:t, r

1:2
t ) (B.22)

Proof. We first prove a slightly weaker result: for t− n+ 1 ≤ m ≤ t− 1, there exists

a deterministic function D̂m,t such that

(Xt−n+1:m, Y
1:2
t−n+1:m, U

1:2
t−n+1:m)

= D̂m,t(Xt−n, Vt−n+1:m,W
1:2
t−n+1:m, r

1:2
t−n+1:m,t) (B.23)

using induction. First consider m = t−n+1. For this case, the LHS of (B.23) equals

(Xt−n+1, Y
1:2
t−n+1, U

1:2
t−n+1). For k = 1, 2,

Y k
t−n+1 = hkt−n+1(Xt−n,W

k
t−n+1)

Uk
t−n+1 = rkt−n+1,t(Y

k
t−n+1)

Furthermore, by the system dynamics,

Xt−n+1 = ft(Xt−n, U
1:2
t−n+1, Vt−n+1)
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Thus (Xt−n+1, Y
1:2
t−n+1, U

1:2
t−n+1) is a deterministic function of (Xt−n,W 1:2

t−n+1, Vt−n+1, r
1:2
t−n+1,t).

This proves (B.23) for m = t − n + 1. Now assume that (B.23) is true for some m,

t− n+ 1 ≤ m < t− 1. We show that this implies that (B.23) is also true for m+ 1.

For k = 1, 2,

Y k
m+1 = hkm+1(Xm,W

k
m+1)

Uk
m+1 = rkm+1,t(Y

k
t−n+1:m+1, U

k
t−n+1:m)

Furthermore, by the system dynamics,

Xm+1 = ft(Xm, U
1:2
m+1, Vm+1)

Thus, (Xm+1, Y
1:2
m+1, U

1:2
m+1) is a deterministic function of

(Xm, Y
1:2
t−n+1:m, U

1:2
t−n+1:m,W

1:2
m+1, Vm+1, r

1:2
m+1,t)

Combining this with the induction hypothesis, we conclude that

(Xt−n+1:m+1, Y
1:2
t−n+1:m+1, U

1:2
t−n+1:m+1) is a function of

(Xt−n,W 1:2
t−n+1:m+1, Vt−n+1:m+1, r

1:2
t−n+1:m+1,t). Thus, by induction (B.23) is true for

t− n+ 1 ≤ m ≤ t− 1.

Now we use (B.23) to prove the lemma. For k = 1, 2

Y k
t = hkt (Xt−1,W

k
t )

rkt = rkt−n+1:t−1,t

Combining this with (B.23) for m = t − 1 implies that there exists a deterministic
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function D̂t such that

(Xt−n+1:t−1, Y
1:2
t−n+1:t, U

1:2
t−n+1:t−1) = D̂t(Xt−n, Vt−n+1:t−1,W

1:2
t−n+1:t, r

1:2
t )

This implies that there exists a function Dt such that Lemma B.2 is true.

Now consider

Πt(st) := Pψ(St = st|Ct, γ1
1:t−1, γ

2
1:t−1)

=
∑

1st{Dt(xt−n, vt−n+1:t−1, w
1:2
t−n+1:t, r̃

1:2
t }

· P(xt−n, vt−n+1:t−1, w
1:2
t−n+1:t, r̃

1:2
t |Ct, γ1:2

1:t−1) (B.24)

where the summation is over all choices of (xt−n, vt−n+1:t−1, w
1:2
t−n+1:t, r̃

1:2
t ). The vec-

tors r1:2
t are completely determined by Ct and γ1:2

1:t−1; the noise random variables

vt−n+1:t−1, w
1:2
t−n+1:t are independent of the conditioning terms and Xt−n. Therefore,

we can write (B.24) as

∑
1st{Dt(xt−n, vt−n+1:t−1, w

1:2
t−n+1:t, r̃

1
t , r̃

2
t )}

· P(vt−n+1:t−1, w
1:2
t−n+1:t) · 1r̃1

t ,r̃
2
t
(r1
t , r

2
t )

· P(xt−n|Ct, γ1
1:t−1, γ

2
1:t−1) (B.25)

In the last term of (B.25), we dropped γ1:2
1:t−1 from the conditioning terms because

they are functions of Ct. The last term is therefore same as P(xt−n|Ct) = Θt. Thus,

Πt is a function of Θt and r1
t , r

2
t , thereby proving (B.20).
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Part 3)

Consider the LHS of (3.45)

P(Θt+1 = θt+1, r
1:2
t+1 = r̃1:2

t+1, |ct, θ1:t, γ̃
1:2
1:t , r̃

1:2
1:t )

=
∑
zt+1

1θt+1(Qt+1(θt, zt+1)) · 1r̃1
t+1

(Q1
t+1(r̃1

t , γ̃
1
t , zt+1))

· 1r̃2
t+1

(Q2
t+1(r̃2

t , γ̃
2
t , zt+1))

· P(Zt+1 = zt+1|ct, γ̃1:2
1:t , r̃

1
1:t, r̃

2
1:t) (B.26)

The last term of (B.26) can be written as

P(Zt+1 = zt+1|ct, γ̃1:2
1:t , r̃

1
1:t, r̃

2
1:t)

=
∑
st

1ĥt(st)(zt+1) · P(St = st|ct, γ̃1:2
1:t , r̃

1
1:t, r̃

2
1:t)

=
∑
st

1ĥt(st)(zt+1) · P(St = st|ct)

=
∑
st

1ĥt(st)(zt+1) · πt(st)

=
∑
st

1ĥt(st)(zt+1) ·Ht(θt, r̃
1
t , r̃

2
t )(st) (B.27)

Substituting (B.27) back in (B.26), we get

P(Θt+1 = θt+1, r
1:2
t+1 = r̃1:2

t+1|ct, θ1:t, γ̃
1:2
1:t , r̃

1:2
1:t )

=
∑
zt+1,st

1θt+1(Qt+1(θt, zt+1))

· 1r̃1
t+1

(Q1
t+1(r̃1

t , γ̃
1
t , zt+1))

· 1r̃2
t+1

(Q2
t+1(r̃2

t , γ̃
2
t , zt+1))

· 1ĥt(st)(zt+1) ·Ht(θt, r̃
1
t , r̃

2
t )(st)

= P(Θt+1 = θt+1, r
1:2
t+1 = r̃1:2

t+1|θt, r̃1:2
t , γ̃1:2

t ) (B.28)
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thereby proving (3.45).
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APPENDIX C

Appendix for General Sequential Problem

Proof of Proposition IV.10

Fix a coordinator strategy ψ. Let 1 ≤ t ≤ T − 1. Consider a realization ct+1

of the common information Ct+1. Let (γ̃1:t) be the corresponding realization of par-

tial functions until time t. Assume that the realization (ct+1, π1:t, γ̃1:t) has non-zero

probability. Then, the realization πt+1 of Πt+1 is given by

πt+1(q, u1, u2, . . . , ut)

= Pψ(Q = q, U1 = u1, U2 = u2, . . . , Ut = ut|ct+1, γ̃1:t)

= Pψ(Q = q, U1 = u1, U2 = u2, . . . , Ut = ut|ct, zt+1, γ̃1:t) (C.1)

=
Pψ(Q = q, U1 = u1, U2 = u2, . . . , Ut = ut, Zt+1 = zt+1|ct, γ̃1:t)∑
q′,u′1,..,u

′
t
Pψ(Q = q′, U1 = u′1, . . . , Ut = u′t, Zt+1 = zt+1|ct, γ̃1:t)

(C.2)
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where we used the fact that ct+1 consists of ct and zt+1 in (C.1) and Bayes’ rule in

(C.2). Focusing on the numerator in (C.2) gives

Pψ(Q = q, U1 = u1, U2 = u2, . . . , Ut = ut, Zt+1 = zt+1|ct, γ̃1:t)

= P(Zt+1 = zt+1|Q = q, U1 = u1, U2 = u2, . . . , Ut = ut)

· Pψ(Q = q, U1 = u1, U2 = u2, . . . , Ut = ut|ct, γ̃1:t), (C.3)

where we used the fact that the random vector Zt+1 (being a part of It+1) is a known

measurable function of the primitive random variables and the decisions U1:t. The

above expression can be further written as

P(Zt+1 = zt+1|Q = q, U1 = u1, U2 = u2, . . . , Ut = ut)

· P(Ut = ut|Q = q, U1 = u1, U2 = u2, . . . , Ut−1 = ut−1, ct, γ̃1:t)

· Pψ(Q = q, U1 = u1, U2 = u2, . . . , Ut−1 = ut−1|ct, γ̃1:t)

= P(Zt+1 = zt+1|Q = q, U1 = u1, U2 = u2, . . . , Ut = ut)

· P(Ut = ut|Q = q, U1 = u1, U2 = u2, . . . , Ut−1 = ut−1, γ̃t)

· Pψ(Q = q, U1 = u1, U2 = u2, . . . , Ut−1 = ut−1|ct, γ̃1:t−1) (C.4)

where we used the fact that Ut = γ̃t(Pt) and Pt is a known measurable function of

the primitive random variables and the decisions U1:t−1 to simplify the second term

in (C.4). Also, we dropped γ̃t from the conditioning terms in the third term of (C.4)

since it is a fixed function of the remaining terms in the conditioning under the given

coordination strategy. Recognizing the last term in (C.4) to be πt(q, u1, . . . , ut), we
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get the following expression for the numerator of (C.2)

P(Zt+1 = zt+1|Q = q, U1 = u1, U2 = u2, . . . , Ut = ut)

· P(Ut = ut|Q = q, U1 = u1, U2 = u2, . . . , Ut−1 = ut−1, γ̃t)

· πt(q, u1, . . . , ut) (C.5)

Similar expressions hold for the denominator terms in (C.2). Thus, we get that

πt+1 = Ft+1(πt, γ̃t, zt+1)

where Ft+1(·) is given by (C.2), (C.3), and (C.5).

Finally, for πT+1 we have

πT+1(q, u1, u2, . . . , uT )

= Pψ(Q = q, U1 = u1, U2 = u2, . . . , UT = uT |cT , γ̃1:T )

= P(UT = uT |Q = q, U1 = u1, U2 = u2, . . . , UT−1 = uT−1, cT , γ̃1:T )

· Pψ(Q = q, U1 = u1, U2 = u2, . . . , UT−1 = uT−1|cT , γ̃1:T )

= P(UT = uT |Q = q, U1 = u1, U2 = u2, . . . , UT−1 = uT−1, γ̃T )

· Pψ(Q = q, U1 = u1, U2 = u2, . . . , UT−1 = uT−1|cT , γ̃1:T−1) (C.6)

where we used the fact that UT = γ̃T (PT ) and PT is a known measurable function of

the primitive random variables and the decisions U1:T−1 to simplify the second term

in (C.6). Also, we dropped γ̃T from the conditioning terms in the third term of (C.6)

since it is a fixed function of the remaining terms in the conditioning under the given

coordination strategy. Recognizing the last term in (C.6) to be πT (q, u1, . . . , uT−1),
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we get

πT+1(q, u1, u2, . . . , uT )

P(UT = uT |Q = q, U1 = u1, U2 = u2, . . . , UT−1 = uT−1, γ̃T ) · πT (q, u1, . . . , uT−1)

(C.7)

Thus,

πT+1 = FT+1(πT , γ̃T )

Proof of Proposition IV.11

Fix a coordinator strategy ψ. Let 1 ≤ t ≤ T − 1. Consider a realization ct+1

of the common information Ct+1. Let γ̃1:t be the corresponding realization of par-

tial functions until time t. Assume that the realization (ct+1, π1:t, γ̃1:t) has non-zero

probability. Consider,

Pψ(Πt+1 = πt+1|ct, π1:t, γ̃1:t)

= Pψ(Ft+1(πt, γ̃t, Zt+1) = πt+1|ct, π1:t, γ̃1:t)

=
∑
zt+1

1πt+1(Ft+1(πt, γ̃t, zt+1))Pψ(Zt+1 = zt+1|ct, π1:t, γ̃1:t) (C.8)

Focusing on the conditional probability of Zt+1 in the above summation, we have

Pψ(Zt+1 = zt+1|ct, π1:t, γ̃1:t)

=
∑

q,u1,..,ut

Pψ(Q = q, U1 = u1, U2 = u2, . . . , Ut = ut, Zt+1 = zt+1|ct, π1:t, γ̃1:t)

=
∑

q,u1,..,ut

P(Zt+1 = zt+1|Q = q, U1 = u1, U2 = u2, . . . , Ut = ut)

· Pψ(Q = q, U1 = u1, U2 = u2, . . . , Ut = ut|ct, π1:t, γ̃1:t), (C.9)
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where we used the fact that the random vector Zt+1 (being a part of It+1) is a known

measurable function of the primitive random variables and the decisions U1:t. Each

term in the above summation can be further written as

P(Zt+1 = zt+1|Q = q, U1 = u1, U2 = u2, . . . , Ut = ut)

· P(Ut = ut|Q = q, U1 = u1, U2 = u2, . . . , Ut−1 = ut−1, γ̃t)

· Pψ(Q = q, U1 = u1, U2 = u2, . . . , Ut−1 = ut−1|ct, γ̃1:t−1) (C.10)

where we used the fact that Ut = γ̃t(Pt) and Pt is a known measurable function of

the primitive random variables and the decisions U1:t−1 to simplify the second term in

(C.10). Also, we dropped γ̃t from the conditioning terms in the third term of (C.10)

since it is a fixed function of the remaining terms in the conditioning under the given

coordination strategy. Recognizing the last term in (C.10) to be πt(q, u1, . . . , ut−1)

gives the following simplification of (C.10)

P(Zt+1 = zt+1|Q = q, U1 = u1, U2 = u2, . . . , Ut = ut)

· P(Ut = ut|Q = q, U1 = u1, U2 = u2, . . . , Ut−1 = ut−1, γ̃t) · πt(q, u1, . . . , ut−1) (C.11)

Using expressions (C.9), (C.10) and (C.11) in (C.8), we get

Pψ(Πt+1 = πt+1|ct, π1:t, γ̃1:t)

=
∑
zt+1

1πt+1(Ft+1(πt, γ̃t, zt+1))

·
∑

q,u1,..,ut

P(Zt+1 = zt+1|Q = q, U1 = u1, U2 = u2, . . . , Ut = ut)

· P(Ut = ut|Q = q, U1 = u1, U2 = u2, . . . , Ut−1 = ut−1, γ̃t) · πt(q, u1, . . . , ut−1) (C.12)

Among all the conditioning terms in the left hand side of equation (C.12), the right

hand side of equation (C.12) depends only on the realization πt and γ̃t. Also, it should
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be noted that none of the terms on the right hand side of (C.12) depend on ψ. Thus,

we can conclude that

Pψ(Πt+1 = πt+1|ct, π1:t, γ̃1:t)

= P(Πt+1 = πt+1|πt, γ̃t). (C.13)

Similar arguments establish the Markovian property at time T + 1.

Finally, we note that the expected reward can be written as

E{R(Q,U1, U2, . . . , UT )} = E
[
E{R(Q,U1, U2, . . . , UT )|CT , γ1:T}

]
(C.14)

The inner expectation in (C.14) can be written as:

∑
q,u1,..uT

R(q, u1, u2, .., uT )P(Q = q, U1 = u1, U2 = u2, . . . , UT = uT |CT , γ1:T )

=
∑

q,u1,..uT

R(q, u1, u2, .., uT )ΠT+1(q, u1, u2, . . . , uT )

=: R̃(ΠT+1) (C.15)

Thus,

E{R(Q,U1, U2, . . . , UT )} = E{R̃(ΠT+1)}. (C.16)
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APPENDIX D

Appendix for Sequential Problems with State

Proof of Proposition V.3

Fix a coordinator strategy ψ. Let 1 ≤ t ≤ T − 1. Consider a realization ct+1

of the common information Ct+1. Let γ̃1:t be the corresponding realization of par-

tial functions until time t. Assume that the realization (ct+1, π1:t, γ̃1:t) has non-zero

probability. Then, the realization πt+1 of Πt+1 is given by

πt+1(l, p)

= Pψ(Lt+1 = l, Pt+1 = p|ct+1, γ̃1:t)

= Pψ(Lt+1 = l, Pt+1 = p|ct, zt+1, γ̃1:t) (D.1)

=
Pψ(Lt+1 = l, Pt+1 = p, Zt+1 = zt+1|ct, γ̃1:t)∑
l′,p′ Pψ(Lt+1 = l′, Pt+1 = p′, Zt+1 = zt+1|ct, γ̃1:t)

(D.2)
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where we used the fact that ct+1 consists of ct and zt+1 in (D.1) and Bayes’ rule in

(D.2). Focusing on the numerator in (D.2) gives

Pψ(Lt+1 = l, Pt+1 = p, Zt+1 = zt+1|ct, γ̃1:t)

=
∑
l′,p′,u

Pψ(Lt+1 = l, Pt+1 = p, Zt+1 = zt+1, Lt = l′, Pt = p′, Ut = u|ct, γ̃1:t)

=
∑
l′,p′,u

Pψ(Lt+1 = l, Pt+1 = p, Zt+1 = zt+1|Lt = l′, Pt = p′, Ut = u, ct, γ̃1:t)

× Pψ(Lt = l′, Pt = p′, Ut = Ut|ct, γ̃1:t)

=
∑
l′,p′,u

Pψ(Lt+1 = l, Pt+1 = p, Zt+1 = zt+1|Lt = l′, Pt = p′, Ut = u)

× Pψ(Lt = l′, Pt = p′, Ut = Ut|ct, γ̃1:t) (D.3)

where we used Condition 1 of the definition of state sufficient for input output map

in the first term of equation (D.3). Since the conditioning terms include Lt, Pt, Ut,

Condition 1 allows us to remove the remaining terms that are functions of Q1:t, U1:t.

The above expression can be further written as

∑
l′,p′,u

Pψ(Lt+1 = l, Pt+1 = p, Zt+1 = zt+1|Lt = l′, Pt = p′, Ut = u)

× 1u{γ̃t(p′)}Pψ(Lt = l′, Pt = p′|ct, γ̃1:t) (D.4)

=
∑
l′,p′,u

Pψ(Lt+1 = l, Pt+1 = p, Zt+1 = zt+1|Lt = l′, Pt = p′, Ut = u)

× 1u{γ̃t(p′)}Pψ(Lt = l′, Pt = p′|ct, γ̃1:t−1) (D.5)

where we used the fact that Ut = γ̃t(Pt) in (D.4). Also, we dropped γ̃t from the con-

ditioning terms in the third term of (D.5) since it is a fixed function of the remaining

terms in the conditioning under the given coordination strategy. Recognizing the last
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term in (D.5) to be πt(l
′, p′), we get the following expression for numerator in (D.2):

∑
l′,p′,u

Pψ(Lt+1 = l, Pt+1 = p, Zt+1 = zt+1|Lt = l′, Pt = p′, Ut = u)

× 1u{γ̃t(p′)}π(l′p′) (D.6)

Similar expressions hold for the denominator terms in (D.2). Thus, we get that

πt+1 = Ft+1(πt, γ̃t, zt+1)

where Ft+1(·) is given by (D.2), (D.3), and (D.6).

Proof of Proposition V.4

Fix a coordinator strategy ψ. Let 1 ≤ t ≤ T − 1. Consider a realization ct+1

of the common information Ct+1. Let γ̃1:t be the corresponding realization of par-

tial functions until time t. Assume that the realization (ct+1, π1:t, γ̃1:t) has non-zero

probability. Consider,

Pψ(Πt+1 = πt+1|ct, π1:t, γ̃1:t)

= Pψ(Ft+1(πt, γ̃t, Zt+1) = πt+1|ct, π1:t, γ̃1:t)

=
∑
zt+1

1πt+1(Ft+1(πt, γ̃t, zt+1))Pψ(Zt+1 = zt+1|ct, π1:t, γ̃1:t) (D.7)
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Focusing on the conditional probability of Zt+1 in the above summation, we have

Pψ(Zt+1 = zt+1|ct, π1:t, γ̃1:t)

=
∑
lt,pt

Pψ(Zt+1 = zt+1|Lt = lt, Pt = pt, ct, π1:t, γ̃1:t)

× Pψ(Lt = lt, Pt = pt|ct, π1:t, γ̃1:t)

=
∑
lt,pt

Pψ(Zt+1 = zt+1|Lt = lt, Pt = pt, ct, π1:t, γ̃1:t)

× πt(lt, pt) (D.8)

where we used the definition of πt in (D.8). Since Ut = γt(Pt), we can add Ut in the

list of conditioning terms in (D.8) to get

∑
lt,pt

Pψ(Zt+1 = zt+1|Lt = lt, Pt = pt, ct, π1:t, γ̃1:t, Ut = γ̃t(pt))πt(lt, pt) (D.9)

A direct consequence of Condition 1 is that

Pψ(Zt+1|Q1:t, U1:t) = P(Zt+1|St, Ut) (D.10)

Using equation (D.10) in (D.9), we get

∑
lt,pt

P(Zt+1 = zt+1|Lt = lt, Pt = pt, Ut = γ̃t(pt))πt(lt, pt) (D.11)
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Since the conditioning terms in (D.9) include Lt, Pt, Ut, (D.10) allowed us to remove

the remaining terms that are functions of Q1:t, U1:t. Using (D.11) in (D.7), we get

Pψ(Πt+1 = πt+1|ct, π1:t, γ̃1:t)

=
∑
zt+1

1πt+1(Ft+1(πt, γ̃t, zt+1))

·
∑
lt,pt

P(Zt+1 = zt+1|Lt = lt, Pt = pt, Ut = γ̃t(pt))πt(lt, pt) (D.12)

Among all the conditioning terms in the left hand side of equation (D.12), the right

hand side of equation (D.12) depends only on the realization πt and γ̃t. Also, it should

be noted that none of the terms on the right hand side of (D.12) depend on ψ. Thus,

we conclude that

Pψ(Πt+1 = πt+1|ct, π1:t, γ̃1:t)

= P(Πt+1 = πt+1|πt, γ̃t). (D.13)

Finally, we note that the expected reward at time t can be written as

E{Rt(St, Ut)} = E{Rt(Lt, Pt, Ut)} = E{Rt(Lt, Pt, γt(Pt))} (D.14)

= E[E{Rt(Lt, Pt, γt(Pt))|Ct, γ1:t}] (D.15)

The inner expectation in (D.15) can be written as:

∑
l,p

Rt(l, p, γt(p))P(Lt = l, Pt = p|Ct, γ1:t)

=
∑
l,p

Rt(l, p, γt(p))Πt(l, p)

=: R̃t(Πt, γt) (D.16)
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Thus,

E{Rt(St, Ut))} = E{R̃t(Πt, γt)}. (D.17)
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