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CHAPTER I

Introduction

Prostate cancer is the second leading cause of cancer mortality among American

men. Statistics from the Surveillance, Epidemiology and End Results (SEER) pro-

gram of the National Cancer Institute show that US prostate cancer mortality rates

over the period of increased utilization of prostate-specific antigen (PSA) screening

follow the unimodal shape of the incidence rates (Figure 1.1) . However, changes in

the incidence due to screening are expected to lag those of mortality as patients with

prostate cancer typically have good prognosis.

One of possible explanations for the observed trend could be a misattribution of

the underlying cause of death in prostate cancer deaths. With the introduction of

PSA screening in the late 1980s, increasingly many men get a diagnosis of prostate

cancer. Although many of these men will die from causes other than prostate cancer,

because prostate tumors are often slow growing, a proportion of these deaths is likely

to be misattributed to prostate cancer just because the men were diagnosed with the

disease. This is often referred to as over-attribution. Feuer et al. (1999) argued

that this phenomenon would lead to a peak in mortality coinciding with the peak in

incidence even if the misattributtion rate were a constant. A recent review of death

certificates in New Mexico and a descriptive study by Hoffman et al. (2003) indicated
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Figure 1.1: Prostate cancer incidence and mortality rates for men aged between 50 and 84 by
calendar year.

that misattribution bias may explain up to a half of mortality increase before 1995.

Motivated by the suggestion we study a competing risks survival model where

other causes of a death may be misattributed as a death of interest (prostate cancer)

in Chapter II and III. Then, we incorporate the adjusted survival model into a

mortality model, and assess the effects of over-attribution on cancer mortality in

Chapter IV. To be specific,

Chapter II. We derive isotonic estimation of survival in univariate

model under a misattribution of cause of death

Under misattribution the observed cause-specific hazard is distorted compared to
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the true one. Nonparametric maximum likelihood estimation (NPMLE) yields con-

sistent but non-monotonic estimates for cause-specific survival function, defined as

näıve estimates. Constrained NPMLE is generally used to solve the problem of

non-monotonicity. In Chapter II, we study some interesting topics observed through

these estimators. Monotonicity of näıve estimates is not guaranteed even with large

samples. Constrained estimator to which EM algorithm also converges is not consis-

tent although it is monotonic. We consider other isotonic estimation approaches to

achieve both consistency and monotonicity using the supremum (SUP) method and

the Pooled-Adjacent-Violators (PAV) algorithm.

Chapter III. We develop an estimating equation for the semiparametric

proportional hazards model assuming nonparametric cause-specific base-

line hazards under a misattribution of cause of death

Analysis of competing risks data has received considerable attention when causes of

failures are misclassified. However, two assumptions are generally required. The first

is a missing-at-random (MAR) assumption: the probability of missing cause of fail-

ure does not depend on the failure type. Since we only assume that over-attribution

exists in this article, the MAR assumption is violated. Another restriction is to

make parametric assumptions on the cause-specific baseline hazards. However, as

expected, it could yield a serious bias of estimator of interest due to misspecified

model on nuisance parameter. In Chapter III, we develop an estimating equation

approach with the Cox proportional hazards model which does not require any fur-

ther assumption on cause-specific baseline hazards under over-attribution.
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Chapter IV. We derive adjusted mortality rates by attribution bias using

a statical model, a convolution of cause-specific survival and distributions

for variables measured at diagnosis of tumor.

To assess the effects of misattribution on mortality rates, we use a mortality model

which incorporates a cause-specific survival model under misattribution using the

Kullback-Leibler’s estimating equation introduced in Chapter III. PSA screening

results in the lead time effect on survival. Hence, we present a cause-specific survival

model which is a convolution of baseline survival in the absence of screening and the

lead time distribution. With a variety of misattribution models, a sensitivity analysis

is performed to assess the effect of attribution bias on recent trends in mortality rates

using data from the Surveillance, Epidemiology, and End Results (SEER) Program.



CHAPTER II

Isotonic Estimation of Survival under a Misattribution of
Cause of Death

2.1 Introduction

The rise and fall of US prostate cancer mortality follow the shape of incidence in

the PSA-era. The cause for the trends in prostate cancer mortality rates is unclear.

Several authors have indicated that incorrectly classified cause of death for prostate

cancer survivors may have played a role in the observed recent peak and decline of

prostate cancer mortality. A recent review of death certificates in New Mexico and

a descriptive study by Hoffman et al. (2003) showed that about 5.6% misattribution

bias is observed among the deaths in 1995.

Misattribution of the cause of death leads to a loss of monotonicity in näıve

estimators of cause-specific survival. While there have been studies on inference

under a masked cause of failure (e.g., Dinse (1982); Goetghebeur and Ryan (1995);

Flehinger et al. (1998); Dewanji and Sengupta (2003); Craiu and Duchesne (2004)),

isotonic methods dealing with the monotonicity constraint received little attention.

The reason for this is the belief that the problem is of a small-sample origin, and

that non-monotonicity disappears in large samples as all methods approach the näıve

NPMLE asymptotically. We found this generally not to be true in our setting.

A nonparametric maximum likelihood estimation (NPMLE) approach was used

5
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for the post-treatment survival under misattribution. Since unknown true cause of

death is a missing data problem, we developed an EM algorithm in Section 2.3.2.

Small-sample and asymptotic properties of the procedure are discussed in Section

2.3.3. Expecting EM to solve an unconstrained (näıve) NPMLE problem we found

to our surprise that EM and constrained NPMLE are equivalent and both give biased

solutions in the continuous setting. We studied other isotonic estimation techniques

to remedy the problem in Section 2.4, and also explored their asymptotic properties.

A simulation study is done to investigate the performance of the estimators in Section

2.5, and the methods are applied to real data from the SEER program in Section

2.6.

2.2 Assumption and notation

Suppose that we observe n independent individuals and that each individual can

fail from one of two possible causes, which we term type 1 (prostate cancer) and

2 (other cause), respectively, or can be subject to an independent right censoring

mechanism (type 0 failure). The observed data for individual i can be represented as

(Ti, ωi), where T is time of failure or censoring (whichever comes first), and ω = 0, 1, 2

is the observed failure type. Define the corresponding true failure type as Ω which is

not observed for some individuals. The true cause-specific hazard for type j failure

is given by

λj(t) = lim
h→0

1

h
Pr[t ≤ T < t+ h,Ω = j|T ≥ t] for j = 0, 1, 2.

We assume the competing true causes of failure to be independent. Under this

assumption, the crude hazards will be equal to their net counterparts. By the non-

identifiability aspect of competing risks (Tsiatis (1975)) the dependence of risks can-

not be recovered without additional assumptions. The same maximum likelihood
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solution is achieved for the crude cause-specific hazards regardless of whether com-

peting risks are assumed dependent or independent (Prentice et al. (1978)).

Typically, there are two types of misattribution in this setting. Assuming our in-

terest focuses on a failure from prostate cancer (type 1 cause), define over-attribution

as a death from other cause (type 2) attributed to prostate cancer (type 1). On the

other hand, under-attribution is defined as a death from prostate cancer (type 1)

attributed to other cause (type 2). Hoffman et al. (2003) found no under-attribution

in recent prostate cancer data, and we consider over-attribution as the only type

operating; that is,

Pr[ω = 1|T = t,Ω = 2] = r(t)

Pr[ω = 2|T = t,Ω = 1] = 0

(2.1)

where r is considered to be a known function of t. However, the results are easily

extendable when under-attribution is also present.

Goetghebeur and Ryan (1995), Dewanji and Sengupta (2003) and Gao and Tsiatis

(2005) proposed semi- and nonparametric inference procedures under a ’missing-at-

random’ mechanism of Little and Rubin (1987). This, however, is not generally the

case unless the second probability in (2.1) is 1 − r(t); more precisely, the chance of

observing failure from type j cause does not depend on its true failure types.

Under misattribution the observed cause-specific hazard is distorted compared to

the true one

λobsj (t) = lim
h→0

1

h
Pr[t ≤ Ti < t+ h, ω = j|Ti ≥ t] =

(2.2)


λ0(t), ω = 0, censoring

λ1(t) + r(t)λ2(t), ω = 1, observed prostate cancer death

λ2(t)(1− r(t)), ω = 2, observed other cause death.
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Note that

(2.3) λ1(t) + λ2(t) = λobs1 (t) + λobs2 (t) = λ(t),

the marginal hazard of any type, as misattribution is a re-distribution of cases over

the causes of failure.

2.3 Nonparametric maximum likelihood estimation

Let Nj(t) be the process counting failures of type j, and Y (t) be the at risk

process. In the nonparametric context the model is parameterized by the jumps of

the cumulative hazard function dΛj(t) = λj(t)dt. In terms of the hazard function,

the loglikelihood can be written as

(2.4) l =

∫
dN1(t) log[dΛ1(t) + r(t)dΛ2(t)] + dN2(t) log[r̄(t)dΛ2(t)]− Y (t)dΛ(t),

where dΛ = dΛ1 + dΛ2 is the jump of the marginal hazard of any type, r̄ = 1 − r,

and the integral is taken over t and all the three terms. By taking derivatives of the

loglikelihood with respect to dΛj(t) for all distinct observed failure times t

∂l

∂dΛ1(t)
= −Y (t) +

dN1(t)

dΛ1(t) + rdΛ2(t)

∂l

∂dΛ2(t)
= −Y (t) +

dN2(t)

dΛ2(t)
+

rdN1(t)

dΛ1(t) + rdΛ2(t)
(2.5)

and setting them to zero, we get the näıve nonparametric maximum likelihood esti-

mates (näıve NPMLE) for type 1 and 2 failure hazard rates

dΛ̃1(t) =
1

Y (t)
{dN1(t)−Odds[r(t)]dN2(t)}

dΛ̃2(t) =
dN2(t)

r̄(t)Y (t)
,

(2.6)

where Odds[r] = r/(1 − r). Here and in the sequel 1/Y is assumed to be 0 when

Y = 0. Note that näıve NPMLE is a linear function of empirical estimates for the
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observed hazard rates

dΛ̃1(t) = dΛ̂obs
1 (t)−Odds[r(t)]dΛ̂obs

2 (t)

dΛ̃2(t) = [r̄(t)]−1dΛ̂obs
2 (t),

(2.7)

where Λ̂obs
j (t) = dNj(t)/Y (t) are the Nelson-Aalen estimators for the hazard of the

observed failures of type j. The näıve NPMLE is unique, and the corresponding

information matrix is positive-definite.

Note that we define the näıve estimator as the one derived from the equation

(2.6) even when some of dNj’s are zeros. When dN1(tα) is zero at a time tα, the

näıve estimate is negative −Odds[r(tα)]dΛ̂obs
2 (tα). It seems reasonable to have the

corresponding estimate forced to zero to respect the monotonicity restriction on

the cumulative hazard (cf. constrained estimator defined below). Unfortunately,

allowing for negative dΛ̃1 is essential for the consistency of the estimator
∫ t

0
dΛ̃1(s),

which will be discussed in Section 2.3.3.

Note that from (2.7) the monotonicity is violated when

(2.8) dΛ̂obs
1 (t) < dΛ̂obs(t)r(t) or r̄(t)dN1(t) < r(t)dN2(t),

where dΛ̂obs = dΛ̂obs
1 +dΛ̂obs

2 = (dN1 +dN2)/Y = dN/Y is the Nelson-Aalen estimate

of the marginal hazard of any type.

When violation of monotonicity at a time tα is corrected by setting dΛ1(tα) =

0, the model assumes all failures of type 1 at tα are misattributed. Under this

assumption, Y rdΛ̂obs = Y rdΛ̃ represents an estimate of the expected number of

failures of type 1, by virtue of (2.3), while the left part of (2.8) is the observed

counterpart of the same quantity. Hence, monotonicity is violated whenever the

expected number of failures of type 1 is greater than the observed number of failures

under the assumption of full misattribution. In case of untied data, according to
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(2.8), violations of monotonicity occur whenever dN1(t) = 0 and dN2(t) = 1, i.e.

whenever type 2 failure (other cause) is observed.

2.3.1 Constrained estimation

Define a constrained estimator Λ̂j, j = 1, 2 by maximizing the likelihood under

the constraint of monotone Λjs:

(2.9) max
dΛj(t)≥0, j=1,2

l(Λ1,Λ2).

Note that the likelihood (2.4) is a sum of independently parameterized terms l =∑
α lα(dΛ1(tα), dΛ2(tα)) over distinct event times tα. Therefore enforcement of the re-

striction proceeds separately for each such event time. The likelihood has the unique

point of maximum defined by the score equations. When this point is outside of the

admissible subset of parameters defined by dΛ1(t) ≥ 0, the constrained maximum

must be on the border. Therefore, constrained solution corresponds to setting any

monotonicity violator in the näıve NPMLE to zero, dΛ̂1(tα) = 0. When dΛ1(tα) = 0,

the optimal dΛ̂2(tα) = dΛ̂obs(tα). As noted above in this case the model presumes

all observed type 1 failures are misattributed true type 2 failures in which case their

incidence is the same as the observed marginal one at tα.

As a result, the non-negative counterpart of the näıve NPMLE (2.7) becomes

dΛ̂1(t) = dΛ̃1(t)I [r̄(t)dN1(t) ≥ r(t)dN2(t)]

dΛ̂2(t) = dΛ̃2(t)I [r̄(t)dN1(t) ≥ r(t)dN2(t)] + dΛ̂obs(t)I [r̄(t)dN1(t) < r(t)dN2(t)] ,

(2.10)

where I is an indicator function I(A) = 1 if A is true and 0 otherwise. The role of

indicator function in the constrained NPMLE for type 1 failure is to force the näıve

estimates to zero whenever they are negative.
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If data are untied, any non-empty event time point will be populated by only one

failure, either type 1 or type 2, but not both types. It is clear that in this case (2.10)

becomes

(2.11) dΛ̂i(t) = dΛ̂obs
i (t), i = 1, 2,

i.e. the constrained estimators for cause-specific (net) hazards for the true failure

type coincide with the (crude) estimators specific to the observed failure types. Mis-

classification mechanism makes the latter a distorted version of the former and leads

to bias. Note that both types of estimators yield the same (asymptotically unbiased)

Nelson-Aalen estimator for the marginal hazard

(2.12) dΛ̂(t) =
2∑
i=1

dΛ̂i(t) =
2∑
i=1

dΛ̃i(t) =
2∑
i=1

dΛ̂obs
i (t) =

dN(t)

Y (t)
.

Therefore, because of the “zero sum game” expressed by (2.12), Λ̂i, will be biased in

opposite directions for i = 1 vs. 2. We will study the bias later in greater detail.

2.3.2 EM algorithm

Several papers have developed nonparametric estimates using EM algorithm when

there are some missing failure types under a non-missing at random mechanism;

see, for example, Dinse (1982) and Craiu and Duchesne (2004). Pretending Ωi is

observed, define the processes counting the true failures N0
j (t), where j is the type

of failure. Then the complete data loglikelihood is

(2.13) l =

∫
dN0

1 (t) log[dΛ1(t)] + dN0
2 (t) log[dΛ2(t)]− Y (t)[dΛ1(t) + dΛ2(t)].

The estimates are improved by maximizing conditional expectation of the complete

loglikelihood given observed data.

Suppose a failure of type ω = 1 or 2 is observed (ω = 1 corresponds to the

failure type of interest while ω = 2 corresponds to other cause of failure). Given this
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information and the model assumptions, the distribution of the unknown true cause

of failure Ω takes the form

(2.14) PΩ|ω(t) = Pr(Ω|ω, T = t) =
r(t)I(Ω=2)λΩ(t)

λ1(t) + r(t)λ2(t)
× I(ω = 1) + I(Ω = ω = 2).

Consequently, imputation of the unobserved dN0
k (t), k = 1, 2 is given by

(2.15) E
{
dN0

k

∣∣Y, dN1, dN2

}
=

rI(k=2)dΛk

dΛ1 + rdΛ2

dN1 + I(k = 2)dN2,

where the dependence on t is suppressed for brevity. Assuming dΛm
k in the E-step

(2.15) is indexed by the current iteration number, m, and maximizing the complete

data likelihood (2.13) with dN0
k replaced by (2.15) (M-Step), we obtain the EM

iteration sequence

(2.16) dΛm+1
k =

rI(k=2)dΛm
k

dΛm
1 + rdΛm

2

dΛ̂obs
1 + I(k = 2)dΛ̂obs

2 .

A common perception is that EM solves an unrestricted MLE problem. If this

were true, EM algorithm would converge to the näıve estimator (2.6). In our case,

however, counter to this intuition, the EM solves the constrained problem (2.9)

resulting in the estimator (2.10) that is biased. The key to this unexpected property

is that the iterations (2.16) have two fixed points. The problem at hand is simple

enough so we can find the fixed points explicitly. To do so assume dΛm+1
k and dΛm

k

have a common limit dΛk, k = 1, 2, as m→∞. Substituting the common limit into

(2.16), written for a particular point t, and solving the resultant equations for dΛk(t)

results in two distinct solutions. Let us write the first equation explicitly

(2.17) dΛ1(t) =
dΛ1(t)

dΛ1(t) + rdΛ2(t)
dΛ̂obs

1 .

First, assuming dΛ1(t) > 0 cancels from (2.17), this equation enforces that the

observed hazard is equal to the predicted marginal one dΛ̂obs
1 = dΛ1(t) + rdΛ2(t).
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This, jointly with the second equation

(2.18) dΛ2(t) =
rdΛ2(t)

dΛ1(t) + rdΛ2(t)
dΛ̂obs

1 + dΛ̂obs
2

gives the naive estimator (2.6). Second, note that dΛ1(t) = 0 also satisfies (2.17)!

Solving the second equation (2.18) under dΛ1(t) = 0 results in dΛ2(t) = dΛobs(t)

indicating that the whole marginal incidence is explained by type 2 failures. Under a

violation of monotonicity when (2.8) is satisfied, this coincides with the constrained

estimator.

Technically, when monotonicity is not violated, EM converges to the näıve es-

timator represented by the first fixed point. When a violation is present, the first

fixed point is outside of the restricted parameter space. Trying to reach it, the EM

algorithm hits the border dΛ1 = 0. At this point it is stuck in the restricted subspace

because (2.17) is satisfied, and converges to the second fixed point. The proof that

(2.10) is actually the point of convergence is given in Appendix .1.

2.3.3 Asymptotic properties

Let A(t) = (A1(t), A2(t)) denote the compensator processes for N(t) = (N1(t), N2(t))

A1(t) =

∫ t

0

Y (s){dΛ1(s) + r(s)dΛ2(s)}

A2(t) =

∫ t

0

Y (s)(1− r(s))dΛ2(s).

We have N(t) = A(t) + M(t) where M(t) = (M1(t),M2(t)) is a vector of 2 local

square integrable martingales (Andersen and Gill (1982)). Näıve NPMLE of Λ(t)

is given by
∫ t

0
I(Y (s) > 0)dΛ̃(s). By Rebolledo’s theorem (Andersen et al. (1993)),

√
n(Λ̃(t) − Λ(t)) converges weakly to a zero-mean Gaussian vector process whose
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covariance function can be consistently estimated by

(2.19) n

∫ t0 1
Y (s)2
{dN1(s) + Odds2[r(s)]dN2(s)} −

∫ t
0

Odds2[r(s)] dN2(s)
r(s)Y (s)2

−
∫ t

0
Odds2[r(s)] dN2(s)

r(s)Y (s)2

∫ t
0

Odds2[r(s)] dN2(s)
[r(s)Y (s)]2

 .

Negative covariance terms off the diagonal are a consequence of the components

of Λ̃ taking simultaneous jumps in opposite directions with the occurrence of type

2 failure. Consistency of the näıve estimates follows an application of Lenglart’s

inequality. Furthermore, they attain the Cramer-Rao lower bound. However, we

cannot directly apply the results to constrained estimates because of the monotonicity

restriction. It turns out that estimates show different behavior in the continuous

and discrete case. The indicator function in constrained estimates (2.10) can be

represented by summation over subject-i-specific processes Nik(t), k = 1, 2

(2.20) I

(
n∑
i=1

dNi1(t)−Odds[r(t)]dNi2(t) > 0

)
.

Under the continuous time setting where no two events can occur at the same time,

(2.20) behaves like a linear function in the sense that I and Σ can be interchanged.

This results in the asymptotic bias of the estimator. To put it more accurately, as

we show in Appendix .2, E[Λ̂(t)−Λ(t)] converges in probability to(∫ t

0

r(s)dΛ2(s),

∫ t

0

−r(s)dΛ2(s)

)
,

as n→∞, which can be consistently estimated by(∫ t

0

Odds[r(s)]
dN2(s)

Y (s)
,

∫ t

0

−Odds[r(s)]
dN2(s)

Y (s)

)
.

Namely, the same amount of bias is added to both type 1 and 2 estimator but in an

opposite direction.

The vector process
√
n

(
Λ̂1(t)−(

∫ t
0
dΛ1(s)+r(s)dΛ2(s)), Λ̂2(t)−

∫ t
0
(1−r(s))dΛ2(s)

)
is a martingale that converges weakly to a zero-mean Gaussian vector process with
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a consistent estimate of covariance as follows:

(2.21) n

∫ t0 dN1(s)
Y 2(s)

0

0
∫ t

0
dN2(s)
Y 2(s)

 .

Discrete time setting, on the contrary, yields asymptotically unbiased estimators.

Discrete random variable, T , in survival analysis often arises due to rounding off

measurements or grouping of failure times into intervals. In case of a continuous

model coarsened to a discrete one, average probabilities corresponding to grouping

intervals represent the target of estimation, and bias is understood relative to this

target. In discrete time setting, the summation in (2.20) can no longer be inter-

changed with the indicator function since empirical probabilities of events occurring

at the same time are not negligible asymptotically. Let ∆(tk) denote the observation

time interval, tk+1−tk, between two adjacent event times that may in general possess

some multiplicity (ties). The asymptotic properties of Nelson-Aalen or Kaplan-Meier

estimator for discrete lifetimes are based on ∆(tk) and Pr{T ∈ [tk, tk+1)} becoming

negligibly small uniformly in probability as the sample size increases. However, the

monotonicity restriction indicator (2.20) converges to 1 in probability only if the

number of failures in [tk, tk+1) is allowed to accumulate. Consider the simple case:

T grouped into intervals of unit length and no censoring. Let ∆Nj(t) denote the

number of failures of type j at the interval [t, t + 1). Suppose the random vector(
∆N1(t),∆N2(t)

)
conditional on Y (t) has the following distribution:

Pr(∆N1(t) = x1,∆N2(t) = x2|Y (t) = n)

=
n!

x1!x2!(n− x1 − x2)!
[λ1(t) + r(t)λ2(t)]x1 [(1− r(t))λ2(t)]x2 [1− λ1(t)− λ2(t)]n−x1−x2

where λj(t) = Pr(t ≤ T < t + 1,Ω = j|T ≥ t) for j = 1, 2. Maximizing∏
t≥0 Pr(∆N1(t),∆N2(t)|Y (t)) under non-negative restriction on λ, we obtain an
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estimator for λ1(t) as

1

Y (t)
{∆N1(t)−Odds[r(t)]∆N2(t)}I[r̄(t)∆N1(t) ≥ r(t)∆N2(t)]

that is almost identical with the constrained NPMLE in the continuous setting ex-

cept that the monotonicity constraint I converges to 1 in probability as sample size

increases (see discussion below). This makes the above estimator asymptotically

equivalent to the näıve (unbiased) one.

2.4 Isotonic estimation

In addition to the constrained NPMLE, there are other approaches to achieve

monotonicity. One of them is to replace a näıve estimate at time t with the maximum

value of estimates up to t: that is,

Λ̂S
1 (t) = sup

0≤s≤t
Λ̃1(s).

This is motivated by Lin and Ying (1994). The sup-estimator Λ̂S
1 (SUP) is consistent.

Indeed, Λ̂S
1 (t) = Λ̃1(τt) for some τt ≤ t. Then, since Λ1 is increasing and τt ≤ t, we

have

Λ̃1(t)− Λ1(t) ≤ Λ̂S
1 (t)− Λ1(t) ≤ sup

0≤x≤t
(Λ̃1(x)− Λ1(x)),

and consistency of the sup-estimator follows from the uniform consistency of the

näıve one.

Lin and Ying (1994) argue that Λ̂S
1 is asymptotically equivalent to Λ̃1 in the

sense that
√
n(Λ̂S

1 −Λ1) converges to the same limiting distribution as
√
n(Λ̃1−Λ1).

Finding the distribution of a supremum of a stochastic process over a finite interval is

a challenge. Such properties are only known for a very restricted set of processes such

as the Brownian motion possibly with a linear drift and stationary Gaussian processes

with very specific correlation structures (Adler (1990)). Our
√
n(Λ̂S

1 −Λ1) process is
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non-stationary and only becomes Gaussian in the limit. Lin and Ying (1994) argued

heuristically that the sup-estimator is asymptotically equivalent to the näıve one, and

their argument is applicable to our case. According to the argument Λ̂S
1 − Λ̃1 goes to

zero in probability faster than 1/
√
n because the natural 1/

√
n rate of convergence

of both estimators to the common limit Λ1 is accelerated by the convergence of τt to

t. We have found in simulations that the variance of the sup-estimator is very close

to the näıve one (2.19), and we have adopted the working hypothesis of equivalence

implied by the heuristic argument of Lin and Ying (1994).

Another isotonic estimator, PAV, Λ̂P
1 , can be constructed using the so-called

pool-adjacent-violators algorithm; see Ayer et al. (1955) and Barlow et al. (1972)

(pp. 13-5). Λ̂P ’s are derived as a set of Λ’s minimizing a weighted sum of squared

deviations of the isotonic estimate from the näıve estimate

(2.22) Λ̂P = arg min
{Λ∈Ψ}

K∑
k=1

[Λ(tk)− Λ̃(tk)]
⊗2W(tk),

where Ψ is the class of non-decreasing functions, and A⊗2 = AAT , and W is a vector

of non-negative weights. This is a promising approach since the näıve estimator

is consistent. Using Doob-Meyer decomposition we have the corresponding linear

regression model with correlated errors

Λ̃ = Λ + ε,

where ε(t) is an asymptotically Gaussian martingale (noise) with covariance obtained

from a large sample limit of (2.19). The näıve estimator Λ̃ given by (2.6) is a

saturated solution to the above regression problem. Therefore, absent restrictions,

the solution to (2.22) is the näıve estimator regardless of W as long as weights are

non-negative. In the above approach the näıve estimator serves as the response

variable.
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Alternatively, the problem can be re-formulated as a regression with the observed

hazard

dΛ̂obs = (dΛ̂obs
1 , dΛ̂obs

2 )′ =

(
dN1

Y
,
dN2

Y

)′
as a response, where the prime means a transposed vector. We have the model

(2.23)

dN1(t)
Y (t)

dN2(t)
Y (t)

 =

1 r(t)

0 1− r(t)


dΛ1(t)

dΛ2(t)

 + dε(t),

where ε is asymptotically Gaussian with uncorrelated components and the covari-

ance matrix given by (2.21)/n. Since the näıve estimate Λ̃2 does not violate the

restrictions, we will apply the corrections to Λ̃1 only, setting Λ̂P
2 (t) = Λ̃2(t). The

contribution to the sum of squares containing Λ1 has the form(∫
dΛ1 + rdΛ2 −

dN1

Y

)2

W,

where W is some weight. On substitution of the näıve estimator for Λ2, the above

expression turns into (∫
dΛ1 − dΛ̃1

)2

W,

and the problem is equivalent to (2.22). We found hardly any difference between the

optimal weights derived based on the error covariance matrices and constant weights,

so constant weights are used for simplicity.

The consistency of Λ̂P
1 follows from Theorem 1.6 (Barlow et al. (1972)). The

details are presented in Appendix .3.

2.5 Simulation

Simulated data were generated from a population with constant cause-specific

hazards, λ1 = 0.05 and λ2 = 0.15, and independent censoring which is uniformly

distributed on (0, 15). In the continuous time setting, the observation time T is
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obtained by a minimum of these three event times. Five choices of misattribution

were examined: (ψ0, ψ1) = (0.1, 0), (0.3, 0), (0.5, 0), (0.5,−0.5) and (0.5,−0.1) in logit

r(t) = (logit ψ0)+ψ1t. First three choices represent constant misattribution 0.1, 0.3,

and 0.5. In the last two models, misattribution decreases as the survival time is pro-

longed, which yield 0.24 and 0.43 misattribution on average, respectively. We carried

out 2000 simulations with three different sample sizes, 100, 200 and 500. The means

of the näıve, constrained (EM) and isotonic estimators using the supremum (SUP)

function and the Pool-Adjacent-Violator (PAV) algorithm over 2000 simulations are

calculated, and values at time 4.32, Pr(T ≤ 4.32) = 0.7 in the continuous setting,

are reported in Table 2.1. Constant versus variable weights yield very similar results,

so only constant weight PAV estimates are shown. Asymptotic variances are given

as the first value in parentheses. They are estimated based on the asymptotic distri-

bution (2.19) and (2.21), for the näıve and the constrained estimator, respectively.

Näıve variance estimators were used with the isotonic methods for comparison and

as an approximation. The empirical standard deviations based on 2000 simulations

are also given as the second value in parentheses.

The näıve nonparametric maximum likelihood estimates are in excellent agree-

ment with the true value. On the other hand, the constrained estimates are seriously

biased, although they have uniformly less variability than the other estimators. Inter-

estingly, the bias keeps increasing with sample size, and converges to the theoretically

predicted
∫ t

0
r(s)dΛ2(s). Both of the SUP and PAV estimator seem to behave similar

to the näıve estimates. However, the rate of decrease in bias with sample size for the

SUP estimator becomes slower than the one for the PAV estimator as misattribution

increases.

Using the same simulated data, we again compared the properties of the estimators
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in the discrete time case. In this setting, T is only observed as an integer value

through a ceiling function; dT e = min{n ∈ Z|T ≤ n} where Z is the set of integers.

The corresponding simulation-based estimates at time 7, Pr(dT e ≤ 7) = 0.82, are

reported in Table 2.2.

Overall, the constrained estimator has uniformly the smallest variance, at the cost

of the highest small sample bias representing an extreme point on the bias-variance

trade-off. The SUP estimator is more small-sample efficient than the PAV estimator

in both continuous and discrete case. Unlike the continuous case, consistency of

the constrained estimator is guaranteed in the discrete case. However, the rate of

decrease in bias is slower than the other two isotonic estimators. In fact, it has the

highest small-sample bias. Among the estimators that guarantee monotonicity, the

largest bias occurs at the smallest sample size of 100 and largest attribution bias of

0.5, where mean difference between the SUP and PAV estimates is also the largest. In

this case, none of the estimators seems to be appropriate. It is reasonable to take an

average of the SUP and PAV estimators because their biases go in opposite directions

(Table 2.3), and they have the same asymptotic properties as the naive estimator in

the sense that
√
n(Λ̂S

1 + Λ̂P
1 )/2− Λ̃1) converges to zero in probability by the heuristic

argument of Lin and Ying (1994). By the same argument the asymptotic variance

of the averaged estimator is the same as the näıve one.

Although the estimates were presented at a single time point in each setting, they

all have similar results at any time point. Since type 2 failure is not of primary

interest, and the properties of the estimators are similar to those for type 1 failure,

the corresponding results are not shown.
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2.6 Real Data Example

We illustrate our results using data from the Surveillance, Epidemiology, and End

Results (SEER) cancer registry program. Staying close to the misattribution study

of Hoffman et al. (2003), we looked at 1,094 New Mexico residents diagnosed with

prostate cancer in 1993. There are two causes of failure: death due to prostate cancer

(type 1) and death due to causes other than prostate cancer (type 2). We tried two

values for misattribution, 0.05 and 0.1, within the range deemed plausible based on

Hoffman et al. (2003).

Figure 2.1 displays the näıve and constrained nonparametric maximum likelihood

estimates for the cumulative type 1 failure hazard. In addition, the Nelson-Aalen

estimates for the observed type 1 failure are also presented (dotted lines). We have

omitted the isotonic estimates since they are very close to the näıve estimates. Note

that monotonicity for the näıve estimates still breaks down even though the sample

size is large and misattribution is low, as expected. Predictably, it gets worse as

misattribution increases. In this example, the failure time is recorded by month,

ranging from 0 to 132, making it close to the continuous model setting. Less discrep-

ancy between the näıve and constrained estimates would be expected if failure time

is grouped into larger bins such as year, or if more data is available. It is not sur-

prising that the näıve estimates are nondecreasing when using the data on 9 SEER

registries, 25,088 men, not just New Mexico. The corresponding estimates and 95%

point-wise confidence limits are presented in Figure 2.2.

2.7 Discussion

In this project, we have considered the problem of fitting a hazard model to com-

peting risks data when there is a misattribution of failure type. The nature of the
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misattribution mechanism makes the true failure status missing, but not at random,

with the observed distorted status and time of failure providing some information.

We first presented the näıve nonparametric maximum likelihood estimator. We

found that it violates the monotonicity constraint although it is consistent. Contrary

to common belief, in this particular problem setting, violation of monotonicity never

goes away with increasing sample size, even though the size of negative jumps of the

cumulative hazard goes to zero. Following a common recipe we then derived the con-

strained nonparametric maximum likelihood estimator which achieved monotonicity

and showed smaller variability, and surprisingly a substantial bias in the continuous

setting. This led us to consider isotonic approaches using the supremum function

and the pool-adjacent-violators algorithm, both providing consistent and monotonic

estimates.

Another surprising finding is that the EM algorithm perceived as a local maxi-

mization method actually solves the constrained problem and converges to the biased

constrained estimator. We traced the phenomenon to the specific structure of the

EM iterative equations that have two fixed points, one of them associated with the

unrestricted (näıve) solution, while the other fixed point corresponds to the restricted

non-negative one. When the näıve solution is not admissible (non-monotonic), the

iteration path of the EM is eventually locked in the restricted subspace associated

with the second fixed point.

It has been generally taken for granted that constrained NPMLE and the EM

algorithm have useful properties such as consistency. Consistency is perceived to

be a consequence of the estimator satisfying the monotonicity constraint for large

samples. However, in the present setting, we found that the constrained estimator

is no longer consistent, but only when the failure time follows a continuous model.
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These methods do behave well in the discrete setting when information is allowed

to accumulate at distinct time points. This is counterintuitive to the properties of

standard estimators such as Nelson-Aalen or Kaplan-Meier which serve both discrete

and continuous cases well.

If one is prepared to overlook a violation of monotonicity of the cumulative haz-

ard estimates, the naive NPMLE is preferred to any other estimates. However,

interpreting such estimates involves reading a monotonic curve visually into the esti-

mate without formalizing the procedure. With this project we are offering a tool to

do this rigorously. We have found that the isotonic estimators obtained by using the

supremum method and the pool-adjacent-violator algorithm behave similar to the

näıve estimator yet provide monotonic cumulative hazards. From a purely function

approximation standpoint, the issue is not much of a problem in large samples, since

the näıve estimator is consistent.

We defined ’the discrete setting’ as the case where the number of failures can

accumulate over a discrete mesh of the observed failure times as the sample size

increases. In this setting, the constrained estimator is consistent and attains the

Cramer-Rao lower bound. However, we are still faced with non-monotonicity prob-

lem in small samples. An example showed a discrepancy between the naive and

constrained estimates even with a sample size over a thousand (Figure 2.1), result-

ing in a substantial small-sample bias (Table 2.2). Thus, isotonic estimators are still

useful in the discrete setting.

A simulation study showed that both SUP and PAV estimators, in most cases,

work well even with a sample size as small as 100. The SUP estimator was found to

be uniformly more efficient. Nevertheless, we prefer the PAV for several reasons. The

PAV technique takes the naive estimates as a foundation and provides the amount
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of smoothing that is just right to fix them. Thus, the bias of this estimator is

less affected by small samples and high misclassification rates, and its small-sample

variance is readily available through the model-based estimator (2.19). However,

the approach will eventually break down under small-sample high misclassification

challenge (see Table 2.2, 0.5 misattribution, sample size of 100, discrete setting). Our

practical recommendation is to consider the näıve and PAV estimators, and report

the PAV results if they are close to the näıve. If the PAV deviates from the näıve

indicating a small sample bias, the SUP is expected to be biased in the opposite

direction. Therefore in this situation we recommend reporting an average of SUP

and PAV.

We argued that the naive estimator for dΛ1(tα) is negative if dN1(tα) is zero. It

is generally true when misattribution is assumed to be known or estimated with a

parametric model, constant or a function of t. Interestingly, this problem would not

necessarily arise if r(tα) is non-parametrically defined. Namely, if r(tα) is estimated

only with data at tα, it becomes zero when dN1(tα) is zero. Thus, it makes the naive

estimate for dΛ1(tα) equal to zero.

Throughout this work, we have assumed that the misattribution may depend on

the time of failure and the true failure type. It is, however, possible that it is affected

by other factors. Dependence on such covariates can be incorporated, for example,

by assuming a logistic model for r, and a proportional hazard model for the true

failure types. This refinement will be addressed in the next section.
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Table 2.1: Simulation means for various estimators of the cumulative type 1 failure hazards at
time 4.32 in the continuous setting with a sample size n = 100, 200 and 500 under
misattribution, logit r(t) = (logit ψ0)+ψ1t. The average of the standard error estimates
and sample standard deviations are also given in parentheses. The true value is 0.216.

(ψ0, ψ1) Estimator n = 100 n = 200 n = 500

(0.1, 0) Näıve .216 (.074, .075) .215 (.052, .053) .216 (.033, .033)
Constrained (EM) .281 (.073, .073) .280 (.051, .053) .281 (.033, .032)
SUP .223 (.074, .073) .219 (.052, .052) .218 (.033, .033)
PAV .216 (.074, .073) .215 (.052, .053) .216 (.033, .033)

(0.3, 0) Näıve .214 (.097, .099) .217 (.069, .070) .216 (.044, .043)
Constrained (EM) .410 (.088, .089) .411 (.063, .064) .411 (.040, .040)
SUP .233 (.097, .091) .227 (.069, .067) .221 (.044, .042)
PAV .212 (.097, .095) .216 (.069, .068) .216 (.044, .042)

(0.5, 0) Näıve .214 (.129, .127) .217 (.091, .093) .216 (.058, .057)
Constrained (EM) .540 (.102, .101) .540 (.072, .073) .541 (.046, .045)
SUP .249 (.129, .110) .237 (.091, .084) .226 (.058, .054)
PAV .209 (.129, .119) .215 (.091, .089) .216 (.058, .056)

(0.5, -0.5) Näıve .214 (.091, .092) .217 (.064, .067) .216 (.041, .040)
Constrained (EM) .390 (.083, .083) .391 (.059, .061) .392 (.037, .037)
SUP .224 (.091, .088) .221 (.064, .066) .217 (.041, .040)
PAV .215 (.091, .090) .217 (.064, .066) .216 (.041, .040)

(0.5, -0.1) Näıve .214 (.118, .116) .219 (.083, .084) .217 (.053, .052)
Constrained (EM) .505 (.097, .097) .506 (.069, .070) .507 (.044, .043)
SUP .241 (.118, .104) .233 (.083, .079) .224 (.053, .050)
PAV .212 (.118, .111) .218 (.083, .081) .217 (.053, .051)

SUP=supremum, Λ̂S
1 (t), PAV=Pool-Adjacent-Violators algorithm, Λ̂P

1 (t)
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Table 2.2: Simulation means for various estimators of the cumulative type 1 failure hazards at time
7 in the discrete setting with a sample size n = 100, 200 and 500 under misattribution,
logit r(t) = (logit ψ0) + ψ1t. The average of the standard error estimates and sample
standard deviations are also given in parentheses. The true value is 0.305.

(ψ0, ψ1) Estimator n = 100 n = 200 n = 500

(0.1, 0) Näıve .301 (.103, .100) .304 (.074, .076) .304 (.047, .045)
Constrained (EM) .314 (.102, .094) .308 (.073, .074) .304 (.046, .045)
SUP .308 (.103, .096) .306 (.074, .075) .304 (.047, .045)
PAV .294 (.103, .098) .302 (.074, .075) .303 (.047, .045)

(0.3, 0) Näıve .303 (.137, .139) .310 (.097, .098) .305 (.061, .062)
Constrained (EM) .338 (.124, .120) .322 (.089, .090) .307 (.056, .059)
SUP .320 (.137, .126) .316 (.097, .093) .306 (.061, .060)
PAV .288 (.137, .134) .302 (.097, .098) .303 (.061, .061)

(0.5, 0) Näıve .310 (.183, .183) .307 (.128, .128) .306 (.081, .078)
Constrained (EM) .381 (.144, .144) .339 (.101, .108) .313 (.064, .073)
SUP .345 (.183, .155) .323 (.128, .114) .310 (.081, .075)
PAV .284 (.183, .177) .289 (.128, .127) .299 (.081, .080)

(0.5, -0.5) Näıve .302 (.105, .108) .305 (.075, .074) .302 (.047, .046)
Constrained (EM) .312 (.102, .102) .308 (.073, .072) .302 (.046, .046)
SUP .304 (.105, .106) .306 (.075, .073) .302 (.047, .046)
PAV .301 (.105, .107) .305 (.075, .073) .302 (.047, .046)

(0.5, -0.1) Näıve .300 (.152, .154) .308 (.108, .107) .304 (.068, .068)
Constrained (EM) .347 (.131, .130) .327 (.094, .096) .308 (.059, .065)
SUP .320 (.152, .139) .315 (.108, .102) .306 (.068, .066)
PAV .290 (.152, .147) .301 (.094, .104) .303 (.068, .068)

SUP=supremum, Λ̂S
1 (t), PAV=Pool-Adjacent-Violators algorithm, Λ̂P

1 (t)

Table 2.3: Simulation means for the average between SUP and PAV estimators of the cumulative
type 1 failure hazards at time 7 in the discrete setting with a sample size n = 100, 200
and 500 under misattribution, logit r(t) = (logit ψ0) +ψ1t. The average of the standard
error estimates and sample standard deviations are also given in parentheses. The true
value is 0.305.

(ψ0, ψ1) Estimator n = 100 n = 200 n = 500

(0.5, 0) SUP .345 (.183, .155) .323 (.128, .114) .310 (.081, .075)
PAV .284 (.183, .177) .289 (.128, .127) .299 (.081, .080)
(SUP+PAV)/2 .307 (.183, .160) .310 (.128, .120) .302 (.081, .078)

SUP=supremum, Λ̂S
1 (t), PAV=Pool-Adjacent-Violators algorithm, Λ̂P

1 (t)
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Figure 2.1: Näıve and constrained NPMLE of cumulative type 1 failure hazards when (a) r = 0.05
and (b) r = 0.1 with a sample size of 1,094 in the discrete setting.
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Figure 2.2: Näıve NPMLE of cumulative type 1 failure hazards when r = 0.05 and 0.1 with a
sample size of 25,088 in the discrete setting. The dotted lines represent 95% point-wise
confidence limits.



CHAPTER III

Semiparametric Estimation in the Proportional Hazard
Model Accounting for a Misclassified Cause of Failure

3.1 Introduction

Competing risks data arise in many clinical studies where time to failure is of

primary interest. The Cox (1972; 1975) proportional hazards model has been widely

used; the effect of covariates is estimated using partial likelihood. Misclassified causes

of failures are very common in competing risks data due to various reasons such as

inaccuracies of cancer death certificates (Percy et al. (1981)). For example, many au-

thors have pointed out that with the introduction of prostate-specific antigen (PSA)

screening in the late 1980s, a proportion of deaths may be mistakenly classified as

prostate cancer just because the men were diagnosed with the disease (Feuer et al.

(1999); Hoffman et al. (2003)).

Under the missing-at-random assumption (Little and Rubin (1987)), in the sense

that the probability of missing cause of failure does not depend on the failure type,

analysis of competing risks data has received considerable attention. Lu and Tsiatis

(2001) used multiple imputation procedures to impute missing causes of failures using

the probability that a missing cause is the cause of interest deduced from the complete

cases. Goetghebeur and Ryan (1995) proposed an approach that utilizes two types

of partial likelihoods assuming that the baseline hazard function for the failure of

28
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interest is proportional to the one for the other cause (proportionality assumption).

Lu and Tsiatis (2005) derived a semiparametric efficient score function which also

allows the dependence of the probability of missing cause of failure on covariates.

Recently, several authors have investigated the approaches which do not require any

parametric assumptions between the two baseline hazard functions. Gao and Tsiatis

(2005) derived the augmented inverse probability weighted complete-case-estimator

with linear transformation models under the missing-at-random mechanism. Lu and

Liang (2008) applied their approach to the semiparametric additive hazards model.

In addition, Chen et al. (2009) adopted the sieve approach by approximating the two

baseline hazard rates using piecewise constant functions.

However, the missing-at-random (MAR) assumption may not be true in practice

such as our prostate cancer data mentioned above. A proportionality assumption is

often unrealistic. Therefore, the primary goal of the present study is to develop an

estimating equation approach for estimation of regression parameters in Cox propor-

tional hazards model that does not require a proportionality assumption under a non

missing-at-random (NMAR) mechanism. First, we show that the standard partial

likelihood is no longer identical with the profile likelihood and introduce a semipara-

metric efficient score function which requires a parametric assumption between the

two baseline hazard functions. In the next section, we define a function motivated by

the Kullback-Leibler divergence. By making a few adjustments to the corresponding

score functions, we propose Kullback-Leibler estimating equation which does not re-

quire any assumption for baseline hazards. Martingale theory is applied to establish

consistency and asymptotic properties of the resulting estimators. A simulation is

provided to study the performance of the estimators.
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3.2 Assumption and notation

In this project, we consider a sample of n independent individuals, each of whom

can fail from one of two possible causes, which we term type 1 (prostate cancer)

and 2 (other causes), respectively, or can be subject to independent right censoring

mechanism (type 0). Typically, the data for individual i consist of (Ti,Ωi, Zi, Xi),

where Ti is time of failure or censoring, Ωi is an indicator taking values 0, 1 or 2 which

correspond to censoring, type 1 or 2 failure, respectively, Z and X are p and q-variate

vector of covariates related to cause-specific hazards, possibly time dependent. To

avoid nonidentifiability problems, we assume independence of competing risks in the

rest of study.

Suppose the effect of (Z,X) on the cause-specific hazard rates is multiplicative,

namely,

λ1(t|Z,X) = λ1(t) exp(βTZ(t)) := λ1(t)θ1(t; β),

λ2(t|Z,X) = λ2(t) exp(γTX(t)) := λ2(t)θ2(t; γ),

where := is equality by definition, and X may or may not overlap with Z. When

there are some misclassified failures, we observe the indicator ωi for subject i in-

stead of true failure-type indicator Ωi. Then, the observed data are summarized as

{Ti, Zi, Xi, Ai, ωi}, independent across i. Here, A are auxiliary covariates that are not

used to model the hazards but may be used to describe the missingness mechanism.

In general, failures can be misclassified to either type 1 or type 2 cause with

different probabilities. For simplicity in the present development we assume that

only type 1 failures can be misattributed to type 2 cause (over-misattribution). This

assumption is motivated by prostate cancer data (Hoffman et al. (2003)). Over-
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misattribution can depend on T and W = (Z,X,A); that is,

Pr[ωi = 1|Ωi = 2, Ti = t,Wi] = r(Ti = t,Wi) := ri(t),

P r[ωi = 2|Ωi = 1, Ti = t,Wi] = 0.

Unfortunately, this misattribution probability cannot be estimated with the data

structure of this project. External studies are necessary to establish the underlying

true causes of failures for a random sample of the data (Percy et al. (1981); Hoffman

et al. (2003); Fall et al. (2008)). To avoid the nonidentifiability problem, we assume

r is a known function through this study.

3.3 Parameter Estimation

Let (Ni1(t), Ni2(t)) be the counting process for failures where Nij(t) represents the

number of observed type j failures for individual i up to time t. To simplify the

notation, we write λi1(t; β) and λi2(t; γ) instead of λ1(t)θi1(t; β) and λ2(t)θi2(t; γ),

respectively.

It is straightforward to show that the full loglikelihood is proportional to

n∑
i=1

∫
dNi1(t) log{λi1(t; β) + ri(t)λi2(t; γ)}+ dNi2(t) log{r̄i(t)λi2(t; γ)}

−
n∑
j=1

Yj(t){λj1(t; β) + λj2(t; γ)}dt,

where ā = 1−a for any a. The corresponding score functions for η = (λ1(t), λ2(t), β, γ)
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are given by∑
i

dNi1(t)ρi(t; η)− Yi(t)λi1(t; β)dt = 0,

∑
i

dNi1(t)ρ̄i(t; η) + dNi2(t)− Yi(t)λi2(t; γ)dt = 0,

∑
i

∫
Zi(t){dNi1(t)ρi(t; η)− Yi(t)λi1(t; β)dt} = 0,

∑
i

∫
Xi(t){dNi1(t)ρ̄i(t; η) + dNi2(t)− Yi(t)λi2(t; γ)dt} = 0,

(3.1)

where

ρi(t; η) =
λi1(t; β)

λi1(t; β) + ri(t)λi2(t; γ)
.(3.2)

Unfortunately, we cannot derive a profile likelihood by eliminating functional nui-

sance parameters (λ1(t), λ2(t)) without a restriction. Restricting the hazard ratio

to φ(t), we have the profile likelihood, Ln for (φ(t) = λ2(t)/λ1(t), β, γ) assuming

that λ̂1(t;φ(t), β, γ)dt = dN(t)/
∑

j Yj(t){θj1(t; β) + θj2(t; γ)φ(t)} is the NPMLE of

λ1(t)dt for a given value of (φ(t), β, γ),

logLn =
n∑
i=1

∫
dNi1(t) log{θi1(t; β) + ri(t)θi2(t; γ)φ(t)}+ dNi2(t) log{r̄i(t)θi2(t; γ)φ(t)}

− dNi(t) log{
∑
j

Yj(t){θj1(t; β) + θj2(t; γ)φ(t)}},

where dNi(t) = dNi1(t) + dNi2(t) and
∑

i dNi(t) = dN(t). Note that this is not

the standard partial likelihood built with the conditional probabilities of an event of

specified type given the type of event. In fact, it is equivalent to the more informative

partial likelihood (Kalbfleisch and Prentice (1980), pp.170-1) that it utilizes the

conditional probabilities of an event of specified type, given that one event occurs.

The score function of φ(t) is given by the functional derivative

∂ logLn
∂φ(t)

=
∑
i

dNi1(t)ρ̄i(t;φ(t), β, γ) + dNi2(t)− Yi(t)θi2(t)φ(t)λ̂1(t;φ(t), β, γ)dt = 0,
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where ρi(t;φ(t), β, γ) = θi1(t; β)/[θi1(t; β) + ri(t)θi2(t; γ)φ(t)]. Unfortunately, these

equations do not lead to suitable estimators. In the classical survival setting, it

is generally assumed that there is at most one jump for each subject at time t.

Asymptotically unbiased nonparametric maximum likelihood estimator (NPMLE)

for φ(t) cannot be derived in the continuous setting. It leads to a breakdown of the

EM algorithm as described in the case of no covariates (Chapter II).

One simple way to avoid this problem is to put a parametric assumption on φ(t).

Let α denote the unknown parameters for time t: φ(t;α). The most commonly used

assumption for φ(t;α) is that the ratio between two cause-specific baseline hazards

is constant.

λ2(t) = λ1(t) exp(α).

It is often referred to as the proportionality assumption (Goetghebeur and Ryan

(1995); Lu and Tsiatis (2005)). Then, we have the following score functions for

ξ = (α, β, γ), Un(ξ)

∂ logLn
∂α

=
∑
i

∫
dNi1(t)ρ̄i(t; ξ) + dNi2(t)− Yi(t)θi2(t; γ) exp(α)λ̂1(t; ξ)dt = 0,

∂ logLn
∂β

=
∑
i

∫
Zi(t){dNi1(t)ρi(t; ξ)− Yi(t)θi1(t)λ̂1(t; ξ)dt} = 0,

∂ logLn
∂γ

=
∑
i

∫
Xi(t){dNi1(t)ρ̄i(t; ξ) + dNi2(t)− Yi(t)θj2(t) exp(α)λ̂1(t; ξ)dt} = 0

(3.3)

where

ρi(t; ξ) =
θi1(t; β)

θi1(t; β) + ri(t)θi2(t; γ) exp(α)
,

λ̂1(t; ξ)dt =
dN(t)∑

j Yj(t){θj1(t; β) + θj2(t; γ) exp(α)}
.

The profile likelihood estimator ξ̂n is semiparametric efficient within the class of

regular and asymptotically linear (RAL) estimators for ξ (Appendix .4). Note that
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dN1ρ and dN1ρ̄+dN2 can be considered as an estimate of the number of true failures

from type 1 and 2 cause, dN̂0
1 and dN̂0

2 , respectively. The estimators ξ̂n, dN̂0
1 and

dN̂0
2 are consistent and asymptotically unbiased, given correct specification of φ(t).

3.4 Kullback-Leibler Estimator

It is convenient to introduce the following notation

S(t;mj) =
∑
i

Yi(t)θij(t;mj), SA(t;mj) =
∑
i

Yi(t)Ai(t)θij(t;mj),

for j = 1, 2, m1 = β, m2 = γ and A ∈ {Z,X, r, r̄, r̄X}.

Consider the martingale processes

Mi1(t; η0) =

∫ t

0

dNi1(s)− Yi(s){λ0
i1(s; β0) + ri(s)λ

0
i2(s; γ0)}ds,

Mi2(t; η0) =

∫ t

0

dNi2(s)− Yi(s)r̄i(s)λ0
i2(s; γ0)ds,

(3.4)

where Yi(s) indicates whether or not individual i is at risk at time s, Yi(s) = I(Ti ≥ s),

and a0 denotes the true value of a.

The true functions λ0
i1(t; β0) + ri(t)λ

0
i2(t; γ0) and r̄i(t)λ

0
i2(t; γ0) represent the true

hazards of observed type 1 and type 2 failure for subject i, respectively. Their

empirical estimates can be defined as dNi1(t)/Yi(t) and dNi2(t)/Yi(t) where Yi(t) is

the empirical estimate for the survival function F 0
i (t) = P (Ti ≥ t).

Introduce a function υ(x) = log x−x+ 1 which has a unique maximum of 0 when

x = 1. Using this function, we define a mean risk functional

KL∞ = −
∫
EW

[{
(λ0

1(t|Z) + r(t,W )λ0
2(t|X))υ

(
λ1(t|Z) + r(t,W )λ2(t|X)

λ0
1(t|Z) + r(t,W )λ0

2(t|X)

)
+ r̄(t,W )λ0

2(t|X)υ

(
λ2(t|X)

λ0
2(t|X)

)}
F 0(t)

]
dt,

where W is the combined covariate vector W = (Z,X,A), and λ0
1(t|Z)=λ0

1(t; β0) and

λ0
2(t|X)=λ0

2(t; γ0) are the true hazards. KL∞ represents an expectation of v(x) with
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x being a hazard ratio of a model versus the true model at an observed data point

averaged over the data generating mechanism. The true model quantities indexed

by 0 will be replaced by their empirical counterparts to derive the estimates. It is

proportional to

−
∫
EW [{(λ0

1(t|Z) + r(t,W )λ0
2(t|X)) log(λ1(t|Z) + r(t,W )λ2(t|X))

+ r̄(t,W )λ0
2(t|X) log(r̄(t,W )λ2(t|X))− (λ1(t|Z) + λ2(t|X))}F 0(t)]dt.

(3.5)

KL∞ is similar to the Kullback-Leibler divergence. It is often considered a measure

of ”distance” between the true probability distribution and some model probability

distribution, although it does not have the properties of a mathematical distance. In

our case the divergence is between {λ0
1(t|Z) + r(t,W )λ0

2(t|X)}F 0(t) and {λ1(t|Z) +

r(t,W )λ2(t|X)}F 0(t), and between r̄(t,W )λ0
2(t|X)F 0(t) and r̄(t,W )λ2(t|X)F 0(t).

Clearly, KL∞ is minimized when the model and true functions are same (v(x) =

0, x = 1): λ0
1(t|Z) = λ1(t|Z) and λ0

2(t|X) = λ2(t|X) which is a desirable result. Note

that this approach yields the maximum likelihood estimator when the true quantities

are replaced by their empirical counterparts. The empirical counterpart of KL∞ in

(3.5) turns out to be the negated full loglikelihood divided by sample size n.

The first functional derivative of KL∞ with respect to λ1(t) is given by

EW [{−(λ0
1(t|Z) + r(t,W )λ0

2(t|X))
λ1(t|Z)

λ1(t|Z) + r(t,W )λ2(t|X)
(3.6)

+ λ1(t|Z)}F 0(t)]

=EW [{−(λ0
1(t|Z) + r(t,W )λ0

2(t|X))

(
1− r(t,W )λ2(t|X)

λ1(t|Z) + r(t,W )λ2(t|X)

)
(3.7)

+ λ1(t|Z)}F 0(t)].

It is straightforward to show that an empirical version of (3.6) is identical with the

full likelihood score function of λ1(t) in (3.1). However, asymptotic bias of nuisance
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parameter φ(t) is a major problem in deriving consistent estimators from a profile

likelihood. Thus, we eliminate φ(t) by modifying the form of KL∞ and replace

the model-based denominator λ1(t|Z) + r(t,W )λ2(t|X) with the corresponding true

hazard function λ0
1(t|Z) + r(t,W )λ0

2(t|X) in the above equation. This does not

disrupt the estimating mechanism in the sense that KL∞ is still minimized when

λ0
1(t|Z) = λ1(t|Z) and λ0

2(t|X) = λ2(t|X). However, the empirical version of KL∞

will now be different and will no longer have MLE form. Note that this adjustment

makes the equation (3.6) identically zero. The modified equation (3.7) is used as the

basis for the corresponding empirical counterpart. Applying similar modifications to

the equations for λ2(t), β and γ, we have the following Kullback-Leibler estimating

equations for η, UKL
n =

∑
i U

KL
i (.):

∑
i

dMi1(t; η) = 0,

∑
i

dMi2(t; η) = 0,

∑
i

∫
Zi(t)dMi1(t; η) = 0,

∑
i

∫
Xi(t)dMi2(t; η) = 0.

(3.8)

We denote the Kullback-Leibler estimator (KLE) representing the solutions of (3.8)

by λ̂KL1 , λ̂KL2 , β̂KLn and γ̂KLn . It can be also derived by replacing model-based ρi in

(3.1) with the empirical (dNi1 − Yiriλi2dt)/dNi1.

From the first two equations in (3.8), we have Breslow-type estimators for fixed

(β, γ).

λ̂KL1 (t; β, γ)dt =
1

S(t; β)

{
dN1(t)− Sr(t; γ)

Sr̄(t; γ)
dN2(t)

}
,

λ̂KL2 (t; γ)dt =
dN2(t)

Sr̄(t; γ)
.
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Note that λ̂KL1 can be negative; thus, the corresponding estimates of cumulative

hazards
∫
λ̂KL1 dt can decrease at some time intervals. Interestingly, the negative

estimates are necessary to preserve consistency of
∫
λ̂KL1 dt. Isotonic approaches such

as the supremum function and pooled-adjacent-violators algorithm can be used to

achieve monotonicity (Chapter II).

Estimating equations for β and γ are summarized as

∑
i

∫ {
dNi1(t)− Yi(t)ri(t)θi2(t, γ)

dN2(t)

Sr̄(t, γ)

}{
Zi(t)−

SZ(t; β)

S(t; β)

}
= 0,

∑
i

∫
dNi2(t)

{
Xi(t)−

Sr̄X(t; γ)

Sr̄(t; γ)

}
= 0.

KLE is computationally efficient because concave functions can be deduced from the

above equations. First, it is easy to see that γ̂KLn maximizes the following function

∑
i

∫
dNi2(t) log

θi2(t; γ)

Sr̄(t; γ)
.

For a fixed γ̂KLn , β̂KLn is obtained by maximizing

∑
i

∫ {
dNi1(t)− Yi(t)ri(t)θ2i(t; γ̂

KL
n )

dN2(t)

Sr̄(t; γ̂KLn )

}
log

θi1(t; β)

S(t; β)
.

3.5 Asymptotic Properties

3.5.1 Profile likelihood estimator

If the model φ(t;α) = exp(α) is correctly specified, the martingale process (3.4)

can be written as

Mi1(t; ξ0) =

∫
dNi1(t)− Yi(t)[θi1(t; β0) + ri(t)θi2(t; γ0) exp(α0)]λ0

1(t)dt,

Mi2(t; ξ0) =

∫
dNi2(t)− Yi(t)r̄i(t)θi2(t; γ0) exp(α0)λ0

1(t)dt.
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Then, Un is a martingale transform at the true value.

Un(ξ0) =∑
i

∫
dMi1(t; ξ0)

ḣi1(t; ξ)ξ
hi1(t; ξ)

+ dMi2(t; ξ0)
ḣi2(t; ξ)ξ
hi2(t; ξ)

−dMi(t; ξ
0)

∑
j Yj(t)ḣj.(t; ξ)ξ∑
j Yj(t)hj.(t; ξ)

∣∣∣∣∣
ξ=ξ0

,

where dMi = dMi1 + dMi2, hi1(t; ξ) = θi1(t, β) + ri(t)θi2(t, γ) exp(α) and hi2(t; ξ) =

r̄i(t)θi2(t, γ) exp(α). Here and in the sequel, ḟ(t;x)x denotes the first derivative

of f with respect to x: ∂f(t;x)/∂x. Consistency and asymptotic normality of

the estimators ξ̂n are easily proved by using the arguments of Andersen and Gill

(1982). The asymptotic covariance matrix of n1/2(ξ̂n − ξ0) is the inverse of I(ξ0) =

E[−n−1U̇n(ξ)ξ|ξ=ξ0 ].

The assumption of constant baseline hazard ratio is crucial in the profile likelihood

approach. If the assumption is violated, it is clear that the asymptotic properties dis-

cussed above are not valid anymore. Specifically, ξ̂n is asymptotically consistent for

a value ξ∗ that maximizes the function E[logLn(ξ)], where the expectation is taken

under the true underlying distribution (van der Vaart (1998), pp.55-6). Namely,

ξ∗ = (α∗, β∗, γ∗) is the unique solution to the equations∫
E

[
Y (t){θ1(t; β0)λ0

1(t) + r(t)θ2(t; γ0)λ0
2(t)}

{
ḣ1(t; ξ)ξ
h1(t; ξ)

− E[Y (t)ḣ.(t; ξ)ξ]

E[Y (t)h.(t; ξ)]

}]

+E

[
Y (t)r̄(t)θ2(t; γ0)λ0

2(t)

{
ḣ2(t; ξ)ξ
h2(t; ξ)

− E[Y (t)ḣ.(t; ξ)ξ]

E[Y (t)h.(t; ξ)]

}]
dt = 0.

n1/2(ξ̂n− ξ∗) is asymptotically normal with mean zero and with a covariance matrix,

Σ∗ = I∗−1V ∗I∗−1T , the so-called ”sandwich” estimator. I∗(ξ∗) can be consistently

estimated by −n−1∂2 logLn(ξ)/∂ξ2|ξ=ξ∗ . The main difference is the matrix V ∗ be-

cause Un(ξ∗) is no longer a martingale integral due to a misspecified model. However,

n−1/2Un(ξ∗) is asymptotically equivalent to n−1/2
∑

i ui(ξ
∗) by an argument similar

to theorem 2.1 by Lin and Wei (1989). By the multivariate Central Limit Theorem,
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it follows an asymptotically zero mean normal distribution with covariance matrix

E[u(ξ∗)⊗2] where A⊗2 = AAT . It is consistently estimated by n−1
∑

i ûi(ξ
∗)⊗2, where

ûi(ξ) = Ui(ξ)−
∫
Yi(t)

{
ḣi(t; ξ)ξ −

∑
j Yj(t)ḣj(t; ξ)ξ∑
j Yj(t)hj(t; ξ)

hi(t; ξ)

}
dN(t)∑

j Yj(t)hj(t; ξ)

and Ui(ξ) is the contribution from the ith observation to the score function Un(ξ).

3.5.2 Kullback-Leibler estimator

The KL estimating equation UKL
n is a martingale at the true value:

UKL
n (β0) =

∑
i

∫ {
dMi1(t)− Yi(t)ri(t)θi2(t; γ0)

dM2(t)

Sr̄(t; γ0)

}{
Zi(t)−

SZ(t; β0)

S(t; β0)

}
= 0,

UKL
n (γ0) =

∑
i

∫
dMi2(t)

{
Xi(t)−

Sr̄X(t; γ0)

Sr̄(t; γ0)

}
= 0.

The consistency of estimators can be proved in almost identical fashion to that of Lu

and Ying (2004). It then follows that n−1/2UKL
n converges weakly to a (p+q)-variate

normal with mean zero and with a covariance matrix V KL. However, V KL is no

longer equivalent to IKL which is the limit of −n−1U̇KL
n (ξ)ξ|ξ=ξ0 . This is a typical

characteristic of Z−estimators (for zero) obtained by solving estimating equations.

Under suitable classical conditions (van der Vaart (1998), pp.67-70), n1/2(β̂KLn − β0)

converges weakly to a p-variate normal with mean zero and with a covariance matrix

ΣKL|ββ = [IKL−1V KLIKL−1T ]|ββ, the ”sandwich” estimator;

IKL =

 IKLββ IKLβγ

0 IKLγγ

 , V KL =

 V KL
ββ 0

0 IKLγγ

 ,

where A|ββ denotes the upper left-hand quadrant of the matrix A corresponding to

β. The formulations of IKL and V KL are given in the Appendix .5.

3.6 Simulation

The univariate covariate Z was chosen to take values 1 or 0 with equal probabilities

0.5 and X = 0. Given Z, the cause-of-interest failure time T1 follows an exponential



40

distribution with hazard function λ1(t|Z) = λ1 exp(βZ). The other failure time T2

follows an exponential distribution with hazard function λ2(t|X) = λ2 in scenario 1

and a Gompertz distribution with hazard function λ2(t|X) = α1 exp(α2t) in scenario

2. Thus, a proportionality assumption is not correct in scenario 2. Also, assume

that there is no censoring. Then, for the observed failure time T = min(T1, T2),

misattribution is assumed to have a logistic regression model: logit{r(T,W )} =

ψ0 + ψ1T + ψ2Z + ψ3A where the auxiliary covariate A follows a standard normal

distribution. We chose λ1 = 1, λ2 = 0.7, α1 = α2 = 0.5, ψ0 = 0.1, ψ1 = ψ2 = −0.5

and ψ3 = 0.1. For each β ∈ {−2, 0, 2}, these yield, on average, (63%, 41%, 25%) and

(63%, 40%, 24%) failures from the cause of type 2 in scenario 1 and 2, respectively.

We carried out 1, 000 simulations with a sample size of 300. The simulation results

are summarized in Table 3.1: the sample standard deviations and the average of the

standard error estimates are given in parenthesis.

The simulation results are consistent with the theoretical results. Both profile and

KL estimators work well when φ(t) is correctly specified and the profile likelihood

estimator β̂n is more efficient as expected. KL estimator is almost as efficient as the

profile one under the null hypothesis H0 : β0 = 0.

In case of misspecified φ(t), β̂n is biased while β̂KLn is unbiased asymptotically.

Interestingly, the KL estimator is more efficient than the profile one in this simulation.

3.7 Discussion

A general estimating equation procedure has enjoyed considerable attention in

semiparametric analysis of survival data. In cases where the partial likelihood ap-

proach cannot be used to eliminate a nuisance parameter, estimating equations based

on a martingale structure have been considered as an alternative (Lin and Ying



41

(1994); Chen et al. (2002)). Our Kullback-Leibler estimating procedure is similar in

spirit to their approaches. However, we provided a motivation for derivation of the

equations using Kullback-Leibler divergence.

We found that the standard profile likelihood is not applicable with misattributed

causes of failures. As is well known, Breslow estimator of baseline hazard rate, dΛ̂, in

the Cox model is not consistent even when there is no attribution bias (Burr (1994)).

The main problem is that its asymptotically unbiased nonparametric estimator of

φ(t) cannot be derived in the continuous survival setting targeting step-function es-

timators for hazards. This fact has led many authors to a parametric φ(t) or use

smoothing. A key contribution of this article is that it provides a formal estimat-

ing procedure for all cumulative hazards in the step-function setting without any

assumption restricting the ratio.

The score function derived from the profile likelihood is semiparametric efficient,

whereas consistency of the resulting estimators relies entirely on a parametric as-

sumption for φ(t). A simulation study showed that the profile estimator can be

seriously biased and lose efficiency when a proportionality assumption on φ(t) is

violated.

Although Goetghebeur and Ryan (1995) proposed partial likelihood approach

which is quite robust against misspecification, inconsistency of the estimator with a

misspecified φ(t) is still an issue. Of course, the model assumption for φ(t) can be

relaxed, if necessary; a piecewise constant model (Chen et al. (2009)) or smoothing

is a possibility. However, our approach is still appealing when restrictions are unde-

sirable for risk of bias. Also, our method can be used to suggest a pertinent form of

φ(t) as a model-building step before this form is enforced in a parametric fashion.

Derivation of the estimating equations from the KL function can be done in a
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variety of ways. Further research is needed to understand which ways lead to better

estimators and whether the concept of efficiency can be formulated in a setting where

MLE does not make sense. A study of efficiency among RAL estimators assuming no

parametric assumptions on the cause-specific baseline hazards is worth pursuing. We

compared our approach to other martingale-based estimating equations with some

examples, and Kullback-Leibler estimators turn out to be most efficient (the results

are omitted from this article).
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Table 3.1: Simulation results for the covariate effect estimated using the profile likelihood and
Kullback-Leibler estimator based on 1000 simulations with n = 300. The sample stan-
dard deviations and the average of the standard error estimates are given in parenthesis.

φ(t) β E[r] E[ρ̄] Profile KLE

-2 0.341 0.364 -2.042 (.377, .386) -2.063 (.458, .468)
Constant 0 0.395 0.218 0.001 (.174, .173) 0.001 (.175, .174)

2 0.443 0.129 2.006 (.180, .182) 2.012 (.208, .207)
-2 0.336 0.364 -2.246 (.504, .531) -2.064 (.452, .475)

Time-dependent 0 0.383 0.206 0.015 (.182, .180) 0.012 (.171, .170)
2 0.435 0.118 2.108 (.189, .189) 2.016 (.197, .196)

φ(t) = λ2(t)/λ1(t) : a proportionality assumption is violated when φ(t) is time-dependent.

E[r]: mean of estimates of the probability that failures due to type 2 cause are misclassified as type 1 cause.

E[ρ̄]: mean of estimates of the probability that observed type 1 failures are misclassified as type 2 cause.



CHAPTER IV

Adjusted Prostate Cancer Mortality Rates under
Misattributed Cause of Death

4.1 Introduction

Prostate cancer is the second leading cause of cancer mortality among American

men. Since the prostate-specific antigen (PSA) screening test was introduced in

the late 1980s, increasingly many men get a diagnosis of prostate cancer. Despite

the PSA test’s successful dissemination, there has been considerable debate and

uncertainty as to its benefits.

Generally, mortality response to a diagnostic intervention lags incidence as it

takes the duration of post-treatment survival for the mortality effect to exhibit itself.

However, Statistics from the Surveillance, Epidemiology and End Results (SEER)

program of the National Cancer Institute show that US prostate cancer mortality

trends follow the incidence rates (Figure 1.1) that peak for a few years around 1991

when PSA testing was at its highest intensity.

The most credible explanation for the trend in mortality rates seems to be the

attribution bias in the cause of death. Namely, some of deaths of other causes are

mistakenly attributed to prostate cancer just because this disease had been previously

diagnosed. Feuer et al. (1999) argued that this phenomenon would lead to a peak

in mortality coinciding with the peak in incidence even if the attribution bias were

44
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constant. Hoffman et al. (2003) reviewed the New Mexico Bureau of Vital Statistics’

(BVS) assignment of causes of deaths. They have concluded that misattribution

could account for 53% of the observed increase in mortality rates. However, little

has been done to model the effect quantitatively in its dynamics. Motivated by

these studies, we explore the possibility that incorrect attribution of cause of death

may have made a substantial contribution to the recent mortality trends, using a

statistical model.

The primary goal of the present article is to estimate the adjusted mortality rates

in the presence of misattribution of cause of death. We first present a mortality model

derived from the prostate cancer specific survival function. Using Kullback-Leibler’s

estimating equation in Chapter III, misattribution can be explicitly introduced into

a semiparametric survival model. New survival estimates adjusted for misattribu-

tion are used to derive adjusted mortality rates. Finally, we perform the sensitivity

analysis to study variations in the mortality trends over the plausible range of mis-

attribution.

4.2 Mortality Model

Conditional on birth year x, cancer mortality rate by age (at death) aM is the

hazard function, λM , given by,

λM(aM |x)daM = λM(aM , tM)daM

= −dGM(aM |x)

GM(aM |x)
,

where tM = x + aM is the calendar time (year) of death, and GM(aM |x) is the

probability of surviving from prostate cancer for a man at age aM born in year x.
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This can be represented by the following convolution

GM(aM |x) =

∫ aM

0

∑
φ

fI(aI , φ|x)
∑
τ

fτ (τ |aI , φ, x)G(aM − aI |aI , φ, τ, x)daI

+GI(aM |x),

(4.1)

where for a x-year birth cohort,

• fI(aI , φ|x) is the joint probability of age (aI) and disease characteristics (φ) at

incidence. In this article, φ is represented by four possible combinations of stage

and grade classification: local/regional (LR) and distant (D) stage, and well or

moderately (WM) differentiated and poorly differentiated or undifferentiated

(PU) grade of the cancer: i.e. φ = D/PU,D/WM,LR/PU or LR/WM .

• fτ (τ |aI , φ, x) is the treatment model providing probability of administering

treatment τ , given disease presentation at diagnosis. Using SEER data, we

classify treatments into three major categories: Watchful Waiting (WW), Ra-

diation Therapy (RT), and Radical Prostatectomy (RP): i.e. τ = WW,RT or

RP . Most likely RT includes a hormonal regimen.

• G(aM − aI |aI , φ, τ, x) is the prostate cancer-specific survival function from the

point of diagnosis. It describes the probability for a man to survive at least by

aM , given a diagnosis of prostate cancer at the age aI with φ-stage/grade tumor

in year tI = x+ aI and the treatment τ .

• GI(aM |x) is the prostate cancer incidence survival function. It represents the

probability for a man to have no diagnosis of prostate cancer by the age aM .

The first term in (4.1) models survival of a man with prostate cancer, while the

second term represents the possibility that prostate cancer is not diagnosed by the

age aM .
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4.2.1 Survival Model

We consider two competing causes of failures, type 1 cause of interest (prostate

cancer) and type 2 cause (other causes), both of which can be censored. The type

1 is our main interest. Let Ω denote the indicator of event: 0 if censored, 1 if

type 1 cause, and 2 if type 2 cause. T is the time from diagnosis to death or

censoring, and Z is a p-variate vector of covariates. Then, the observed data post-

diagnosis are summarized as (T,Ω, Z). To avoid nonidentifiability problems, risks

are assumed to be conditionally independent given Z in the rest of the article. Under

the proportional hazards assumption, the cause-specific hazards for type 1 and type

2 are given by

λj(t|Z) = lim
h→0

h−1Pr[t ≤ T < t+ h,Ω = j|T ≥ t, Z]

=


λ1(t) exp(βTZ) := λ1(t)θ1 if j = 1,

λ2(t) exp(γTZ) := λ2(t)θ2 if j = 2,

(4.2)

where ’:=’ is equality by definition. PSA screening results in the so-called lead time

effect on survival. Lead time measures an advance in the diagnosis of prostate cancer

due to screening generally accompanied by a favorable stage shift. The bias would

be operating even if early detection and treatment were of no benefit. Tsodikov

et al. (2006) estimated lead time distribution for prostate cancer. We make the lead

time adjustment to the baseline survival Gb (for clinical diagnosis in the absence of

screening) as follows

G(t|aI , φ, τ, x) = G(t|aI , φ, τ, tI)

= GLT (t|aI , φ, tI) +

∫ t

0

fLT (s|aI , φ, tI)Gb(t− s|aI + s, φ, τ, tI)ds,

where lead time survival function GLT and probability density function fLT depends

on age at diagnosis, tumor characteristics and year of diagnosis. Figure 4.1 presents



48

0 10 20 30

0.
0

0.
2

0.
4

sg = LR/WM
sg = D/PU

(a)

lead time (t)

G
LT

(t
|s

g,
 a

I=
55

, t
I=

19
90

)

0 10 20 30

0.
0

0.
2

0.
4

(b)

lead time (t)

G
LT

(t
|s

g,
 a

I=
75

, t
I=

19
90

)
Figure 4.1: Lead time survival probability in year 1990 of diagnosis, tI , for patients with lo-

cal/regional stage and well/moderately differentiated grade (LR/WM) and distant stage
and poorly/undifferentiated (D/PU) grade of tumor, φ, diagnosed at the age of aI , (a)
55 and (b) 75.

estimates of lead time survival probability for a man diagnosed LR/WM or D/PU

tumor at age 55 or 75 in 1990 (Tsodikov et al. (2006)). As expected, lead time is

likely to be larger for older patients.

4.3 Misattribution

Here we assume that some of type 2 failures are mistakenly attributed to type 1

cause, and thus the observed type 1 hazard is over-estimated. Under this scenario,

we cannot observe the true indicator Ω. Assuming that such an attribution bias

can depend on survival time T since diagnosis of prostate cancer, the probability of

misattribution can be written as

r(t) = Pr[ωi = 1|Ωi = 2, Ti = t],
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where ω is observed indicator of the cause of death. This is often referred to as over-

misattribution since the number of failures from cause-of-interest (type 1) is inflated.

To be specific, the observed hazards are expressed in terms of true cause-specific

hazards as follows:

λ1(t|Zi) + r(t)λ2(t|Zi) if ωi = 1 ; observed prostate cancer death

(1− r(t))λ2(t|Zi) if ωi = 2 ; observed other death.

To derive adjusted estimates, we use an estimating equation motivated by a Kullback-

Leibler information argument (Chapter III) which leads to consistent estimates with-

out any further assumption constraining the two cause-specific baseline hazards func-

tions. First, we define the counting process Nij(t) as the process counting failures

of type j cause for a subject i by time t and Yi(t) as the at-risk indicator process

I(Ti ≥ t). The corresponding martingale processes are given by

∑
i

∫ t

0

dMi1(s; η0) =
∑
i

∫ t

0

dNi1(s)− Yi(s){θ0
i1λ

0
1(s) + r(s)θ0

i2λ
0
2(s)}ds,

∑
i

∫ t

0

dMi2(s; η0) =
∑
i

∫ t

0

dNi2(s)− Yi(s)(1− r(s))θ0
i2λ

0
2(s)ds,

where η0 is the true value of η = (λ1(·), λ2(·), β, γ).

Kullback-Leibler function (KL∞) introduced in Chapter III describes the distance

between a model-based and true hazards. The attractive feature of KL∞ is that

full-likelihood function converges to the negated KL∞ as sample size increases; thus,

estimators can be derived from an empirical version of KL∞. Using this approach,
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we have proposed estimating equations for η as follows:∑
i

dMi1(t; η) = 0,

∑
i

dMi2(t; η) = 0,

∑
i

∫
ZidMi1(t; η) = 0,

∑
i

∫
ZidMi2(t; η) = 0.

(4.3)

From the above equations, Kullback-Leibler estimating equations (KLE) for β and

γ are given by∑
i

∫
dNi1(t){Zi − Z̄(t; β)} − dNi2(t)

r(t)

1− r(t)
{Z̄(t; γ)− Z̄(t; β)} = 0,

∑
i

∫
dNi2(t){Zi − Z̄(t; γ)} = 0,

where

Z̄(t; β) =

∑
j Yj(t)Zjθj1∑
j Yj(t)θj1

, Z̄(t; γ) =

∑
j Yj(t)Zjθj2∑
j Yj(t)θj2

.

Note that the regression effect for type 2 cause, γ, is not affected by misattribution

as long as it does not depend on covariates. Given regression coefficients β̂ and γ̂, we

have the following Breslow-type estimator for cause-specific baseline hazards from

the first two equations in (4.3)

λ̂1(t; β̂, γ̂)dt =
1∑

j Yj(t)θ̂j1

{
dN1(t)− r(t)

1− r(t)
dN2(t)

}
,

λ̂2(t; γ̂)dt =
1

1− r(t)
dN2(t)∑
j Yj(t)θ̂j2

,

where θ̂i1 = exp(β̂TZi) and θ̂i2 = exp(γ̂TZi). Then, the estimator for the survival

function for type 1 cause (prostate cancer) is

Ĝ1(t|Z) = exp

{
−
∫ t

0

λ̂1(s; β̂, γ̂) exp(β̂TZ)ds

}
= exp{−Λ̂1(t; β̂, γ̂) exp(β̂TZ)}.
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Note that the above estimates can be increasing even though they are consistent.

This is because the Breslow-type estimator for type 1 hazards admits negative jumps.

This problem also occurs in the case of no covariates. I proved that constrained

estimator obtained via EM algorithm is not consistent although monotonicity is

guaranteed in Chapter II. Therefore, an estimator Λ̂P
1 based on the pooled-adjacent

violated (PAV) algorithm is advocated to achieve both consistency and monotonicity.

For K distinct observation time points t1, t2, · · · , tK , Λ̂P
1 ’s are derived as a set of

Λ1 = (Λ1(t1),Λ1(t2), · · · ,Λ1(tK)) minimizing a sum of squared deviations of the

isotonic estimates from the unrestricted ones (Λ̂1)

Λ̂P
1 = min

Λ1∈Ψ

K∑
k=1

[Λ1(tk)− Λ̂1(tk)]
2,

where Ψ is the class of non-decreasing functions, Λ1(t1) ≤ Λ1(t2) ≤ · ≤ Λ1(tK). The

consistency and asymptotic normality of PAV estimator are proved in Chapter II.

4.4 Analysis of SEER data

Here we apply the proposed methods to estimate the mortality rates of prostate

cancer for men aged between 50 and 84. Prostate cancer incidence data is avail-

able from the Surveillance, Epidemiology, and End Results (SEER) 9 database. In

this data set, more than 300,000 cases diagnosed from 1973 through 1999 are avail-

able for 9 registries: Atlanta, Connecticut, Detroit, Hawaii, Iowa, New Mexico, San

Francisco-Oakland, Seattle-Puget Sound, and Utah. Age distribution in the U.S.

population in year 2000 is used to age-adjust observed or predicted rates presented

in this article.

Empirical estimates were used for disease presentation at diagnosis (fI(aI , φ|x))

and treatment distribution (fτ (τ |aI , φ, x)).

• Let us denote by R(aI , tI) the number of men at risk of prostate cancer and
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by PC(aI , φ, tI) the number of men newly diagnosed with the stage/grade φ

tumor at age aI in year tI = x+aI . Then, the disease presentation at diagnosis

distribution fI(aI , φ|x) is estimated as

f̂I(aI , φ|x) =
PC(aI , φ, tI)

R(aI , tI)
,

• Similarly, the treatment probability is estimated as

f̂τ (τ |aI , φ, x) =
PC(aI , φ, τ, tI)

PC(aI , φ, tI)
,

where PC(aI , φ, τ, tI) is the number of men diagnosed with φ-stage/grade of

prostate cancer at age aI in year tI and received τ treatment.

• Also, PC(aI , tI) denotes the number of men newly diagnosed with prostate

cancer at age aI in year tI = x + aI . Using the Kaplan-Meier method, the

incidence survival probability is estimated as

ĜI(aM |x) =
∏

aI≤aM

(
1− PC(aI , tI)

R(aI , tI)

)
.

• We adopt Cox proportional hazard model for survival model with covariates

Z = {aI , φ, τ}. If tI < 1988 in the pre-PSA era, the effect of tI is modeled non-

parametrically. On the other hand, last observation carried forward approach

is used to specify baseline survival in the PSA era. If tI ≥ 1988 in the PSA era,

the baseline disease-specific survival is frozen in calendar time at tI = 1987, just

prior to the advent of PSA screening.

G[tI ](t|Z = {aI , φ, τ}) =
exp

{
−
∫ t

0
λ1[tI ](s) exp(βT[tI ]Z)ds

}
for tI < 1988,

GLT (t|aI , φ, tI)

+
∫ t

0
fLT (s|aI , φ, tI) exp

{
−
∫ t

0
λ1[1987](s) exp(βT[1987]Z)ds

}
for tI ≥ 1988.
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Figure 4.2: Age-adjusted observed mortality rates of SEER 9 registries (dotted line) and model-
based estimates assuming no misattribution (solid line).

Because the data is available from SEER beginning in 1973, the predictions before

1973 use tI = 1973; i.e. the earliest observed year effect is carried backwards. For a

small fraction of missing values in stage/grade and treatment variables, we assume

a ’missing-at-random’ mechanism. Figure 4.2 shows the observed SEER 9 and pre-

dicted prostate cancer mortality without misattribution using our model (4.1) for

men between 50 and 84 from 1983 to 1999.
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4.4.1 Analysis with misattribution

Applying estimating approaches discussed in the previous section, we have the

following adjusted survival probability

Ĝ(aM − aI |tI , Z = (aI , φ, τ))

= exp

{
−
∫ aM−aI

0

λ̂1[tI ](s; β̂[tI ], γ̂[tI ]) exp(β̂T[tI ]Z)ds

}
= exp

{
−
∫ aM−aI

0

λ̂1[tI ](s|Z)

}
.

Also, we denote the unadjusted estimators derived under no misattribution r = 0 by

λ̇ and Ġ. Then, observed hazards can be estimated as

λ̂1[tI ](t|Z) + r[tI ](t)λ̂2[tI ](t|Z) for tI < 1988,

λ̂1[1987](t|Z) + r[tI ](t)λ̂2[1987](t|Z) for tI ≥ 1988 and r[1987](t) > 0,(4.4)

λ̇1[1987](t|Z) + r[tI ](t)λ̇2[1987](t|Z) for tI ≥ 1988 and r[1987](t) = 0.

Note that the proportional hazard (PH) assumption for observed failures is valid

only when β[tI ] = γ[tI ] or r[tI ] = 0.

The model for misattribution is informed by external death certificate review

studies such as Hoffman et al. (2003) that specify the misattribution rate r. However,

since such studies are limited to small populations, they may not generalize to the

U.S. population. Furthermore, the exact mechanism or degree to which attribution

bias occurs is unknown. Motivated by these limitations, we assess a variation in

mortality rates over the plausible range of misattribution models motivated by the

external studies.

Many papers have discussed plausible explanations for attribution bias. Hoffman

et al. (2003) found that the number of prostate cancer deaths was significantly in-

flated from 125 to 146 (16.8%) in 1995 year of death. Furthermore, a time-dependent
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model is generally accepted; misattribution is higher for newly diagnosed cases and

fades with time (Feuer et al. (1999); Fall et al. (2008)).

Based on these arguments, we chose 12 hypothetical models which depend on year

of diagnosis and survival time (in years) as follows.

r[tI ](t) = {logit−1(ψ0 + ψ1t)}I(ψ3 ≤ tI ≤ ψ4),

(ψ0, ψ1, ψ2, ψ3) =



(logit0.02, 0, 0, 1999), (logit0.05, 0, 0, 1999)

(logit0.02, 0, 1986, 1995), (logit0.05, 0, 1986, 1995),

(logit0.02, 0, 1988, 1995), (logit0.05, 0, 1988, 1995),

(−3.5,−0.3, 0, 1999), (−2.5,−0.5, 0, 1999),

(−3.5,−0.3, 1986, 1995), (−2.5,−0.5, 1986, 1995),

(−3.5,−0.3, 1988, 1995), (−2.5,−0.5, 1988, 1995),

(4.5)

where logit−1 is an inverse logit function and I(A) is an indicator function which

takes 1 if A is true. These models represent a constant misattribution or a decreasing

one over survival time. We also model a smooth secular trend in mortality.

Figure 4.3 and 4.4 show adjusted estimates for observed and true mortality rates

by various misattribution models defined above. Comparing with our model-based

estimates for observed mortality rates (blue lines), adjusted true rates are all under-

predicted due to the assumption of inflated prostate cancer deaths although they

differ somewhat by the magnitude of bias. Constant and time-dependent models

show similar patterns for the same period (tI).

The peak of mortality rates becomes less pronounced under misattribution in the

PSA-era, 1986 ≤ tI ≤ 1995 or 1988 ≤ tI ≤ 1995. Especially dramatic changes are

observed in time-decreasing models in the PSA-era; {logit−1(−2.5− 0.5t)}I(1986 ≤

tI ≤ 1995) and {logit−1(−2.5 − 0.5t)}I(1988 ≤ tI ≤ 1995). However, when mis-

attribution occurs steadily in all years, the adjusted observed and true mortality
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rates are quite parallel to each other; r[tI ](t) = 0.02, 0.05, logit−1(−3.5 − 0.3t) and

logit−1(−2.5− 0.5t). Thus, the shape of mortality is not altered if misattribution is

time-homogeneous.

It should be noted that adjusted estimates for observed mortality rates are quite

different across misattribution models. In fact, the marginal effect of observed mor-

tality rates are not affected by misattribution since it is based on observed number

of prostate cancer deaths. However, proportional hazard assumption is violated un-

der misattribution (4.4). Thus, naive approach (ignoring misattribution) leads to

biased estimates of observed rates (Figure 4.2) by misspecified model due to at-

tribution bias. Among misattribution models defined in (4.5), 0.02I(1986 ≤ tI ≤

1995), 0.02I(1988 ≤ tI ≤ 1995), {logit−1(−2.5 − 0.5t)}I(1988 ≤ tI ≤ 1995) and

{logit−1(−3.5−0.3t)}I(1986 ≤ tI ≤ 1995) yield adjusted estimates close to observed

SEER 9 mortality rates. Furthermore, these misattribution assumptions eliminate

the ’hump’ in mortality rates during 1988-1994, and yield 8.11%, 6.87%, 9.73% and

5.32% inflated mortality rates in 1995, respectively.

We can calibrate the misattribution model to observed rates. This results in

less misattribution in the beginning and higher misattribution in the middle of the

PSA-era. For example, using the models in (4.5), we define

r[tI ](t) = 0.02I(1986 ≤ tI ≤ 1990) + 0.05I(1991 ≤ tI ≤ 1994)

{logit−1(−3.5− 0.3t)}I(1986 ≤ tI ≤ 1990) + {logit−1(−2.5− 0.5t)}I(1991 ≤ tI ≤ 1995)

.

Adjusted estimates for observed and true rates based on the above model are pre-

sented in Figure 4.5. This scenario explains 16.05% and 10.69% age-adjusted increase

in mortality rates in 1995, respectively.
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4.5 Discussion

Our modeling approach for mortality predictions is based on a cause-specific sur-

vival model using a convolution of baseline survival in the absence of screening and

the lead time. Mortality rates are adjusted for attribution bias which is explicitly

introduced into the survival model. A key contribution of this project is that it

provides a formal method for adjusting mortality rates for misattributed causes of

deaths. Unfortunately, misattribution cannot be estimated with SEER data only.

External studies such as Hoffman et al. (2003) and Fall et al. (2008) are needed,

that use verified information on the true underlying causes of death, to quantify the

magnitude of misattribution. To address generalizability of such external data, we

performed a sensitive analysis over plausible range of misattribution models in this

study.

We derived adjusted mortality rates with 14 different misattribution models that

are constant or decreasing in survival time. To see if the peak in mortality is induced

by misattributed deaths in the PSA-era, we assumed that misattribution varies by

year of diagnosis. Our sensitivity analysis showed that constant misattribution can-

not explain the mortality trend. Remarkable changes were observed under misat-

tribution changing with calendar time. Under this scenario, attribution bias can

explain the increase and subsequent fall in prostate cancer mortality rates in the late

1980s and early 1990s.

In this article, we assess constant and time-decreasing misattribution which can

differ by year of diagnosis. However, there are other possible explanations for the

mechanism. It may depend on age at diagnosis since prostate cancer is rarer among

younger patients and thus more likely to be considered as a cause of death. Con-
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versely, deaths among the elder may not be investigated as thoroughly as those among

the younger (Fall et al. (2008)). Moreover, over-reported prostate cancer deaths are

probably higher for men with slowly progressing tumor or under conservative man-

agement (Fall et al. (2008); Newschaffer et al. (2000)). Men with localized/regional

cancer are less likely to die of the disease. If men do not get aggressive treatments

such as radiation therapy or radical prostatectomy, physicians may be more likely

to attribute the death to prostate cancer because they perceived ineffectiveness of

the non-curative approach. Moreover, increased media attention given to prostate

cancer may contribute to increased over-attribution. Any misattribution model can

be explicitly incorporated in the survival model. We introduced a general misattri-

bution model that can incorporate covariates into the misattribution mechanism and

model the survival time in Chapter III.
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Figure 4.3: Adjusted estimates for observed (blue) and true (red) mortality rates by misattribution:
(a) 0.02, (b) 0.05, (c) 0.02I(1986 ≤ tI ≤ 1995), (d) 0.05I(1986 ≤ tI ≤ 1995), (e)
0.02I(1988 ≤ tI ≤ 1995) and (f) 0.05I(1988 ≤ tI ≤ 1995) where tI is year of diagnosis.
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Figure 4.4: Adjusted estimates for observed (blue) and true (red) mortality rates by misattribution:
(a) q(−0.3t − 3.5), (b) q(−0.5t − 2.5), (c) q(−0.3t − 3.5)I(1986 ≤ tI ≤ 1995), (d)
q(−0.5t − 2.5)I(1986 ≤ tI ≤ 1995), (e) q(−0.3t − 3.5)I(1988 ≤ tI ≤ 1995) and (f)
q(−0.5t − 2.5)I(1988 ≤ tI ≤ 1995) where tI is year of diagnosis, t is survival time (in
year) and q is an inverse logit function (logit q(x) = x)
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Figure 4.5: Adjusted estimates for observed (blue) and true (red) mortality rates by misattribution:
(a) 0.02I(1986 ≤ tI ≤ 1990) + 0.05I(1991 ≤ tI ≤ 1994) and (b) q(−0.3t− 3.5)I(1986 ≤
tI ≤ 1990)+q(−0.5t−2.5)I(1991 ≤ tI ≤ 1995) where tI is year of diagnosis, t is survival
time (in year) and q is an inverse logit function (logit q(x) = x)



CHAPTER V

Discussion

Our study is motivated by the recent trend in US prostate cancer mortality rates

which follows the incidence rates. Many studies have brought forward this phe-

nomenon to understand the role of PSA screening in the observed rise and fall of US

prostate cancer mortality rates. One possibility is that the peak in mortality and its

decline phase observed currently is an artefact of the cause of death misattribution.

The overdiagnosis and the sharp peak in cancer incidence resulting from screen-

ing would lead to similar behavior of mortality in the presence of misattribution of

some of those excess incident cases at death as (falsely) related to prostate cancer.

However due to the complexity of the phenomenon, it did not appear possible to

provide an answer without modeling. To assess this hypothesis, we first developed

the methodology to address the problem of estimating mortality rates where other

cause of death can be misattributed to prostate cancer.

We first studied a competing risks survival (prostate cancer v.s other causes) under

misattribution using univariate and multivariate non- and semi-parametric setting,

including the Cox proportional hazards (PH) model. We showed that available stan-

dard approaches depend on the ratio between the two hazards φ(t) = λ2(t)/λ1(t).

The profile likelihood for the Cox PH model is a function of the ratio φ(t). Under

62
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a univariate model, the conditional expectation of true failure indicator in E step is

updated with the conditional probability (2.14) which depends on φ(t).

The main theoretical challenge emerging in the univariate nonparametric setting

is that with the continuous survival times, the asymptotically unbiased estimator for

φ(t) is not feasible without restrictions on the φ(t). It is easy to see that a na”ive

nonparametric estimate of φ(t) is either 0 or ∞ assuming all failures are correctly

specified.

Another challenge that due to over-attribution expected to be operating with

prostate cancer data, the missing-at-random (MAR) assumption that was extensively

utilized in the previous literature is wrong in our case.

Many conventional analytic tools break down in this situation. If a paramet-

ric model for φ(t) is assumed, leaving the hazards otherwise unspecified, both the

EM algorithm and partial likelihood approach will work. However, without addi-

tional restrictions, the Nonparametric Maximum Likelihood Estimator for the sur-

vival function satisfying monotonicity constraints exhibits bias, and so does the EM

algorithms, a primary tool to deal with estimation in the presence of missing data.

We developed a number of estimation approaches to yield monotonic and consis-

tent cause-specific survival estimates avoiding any assumptions restricting the ratio

of hazards between the causes of death.

Having tackled the theoretical development and implementation of the newly de-

veloped methodology in statistical software we turned our attention to the real life

problem that motivated this research in the first place.

Our modeling approach for mortality predictions is based on a cause-specific sur-

vival model using a convolution of baseline survival in the absence of screening and

the lead time. Mortality rates are adjusted for attribution bias which is explicitly in-
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troduced into the survival model. The survival estimates adjusted for misattribution

are used to correct the survival component of the mortality model trying to explain

the inflated morality rates in the 90-ies. We explicitly modeled a smooth effect of

year of diagnosis in survival model to allow for a slow secular trend in mortality

rates.

Throughout the dissertation, we assumed that misattribution is a known function.

Knowledge of misattribution probabilities is essential to obtain valid estimates of

mortality rates in the nonparametric context. Unfortunately, these probabilities are

not identifiable with the SEER data, even if they are constant. Although there

are special cases in which they are estimable with the observed data (e.g., Dinse

(1986); Craiu and Duchesne (2004)), missing-at-random assumption is in general

necessary to avoid nonidentifiability problems. Therefore we relied on published

studies reviewing cause of death decisions on a the random subsample of patients

and re-classifying t he cause of death by an expert panel. An example of such

death certificate review studies is (Hoffman et al. (2003)). However, concerns of

small sample size and potential representativeness of the certificate study population

lead us to sensitivity analysis with respect to the missing data mechanism. We

derived adjusted mortality rates with 14 different misattribution models that are

constant or decreasing in survival time. To see if the peak in mortality is induced by

misattributed deaths in the PSA-era, we assumed that misattribution varies by year

of diagnosis. Our sensitivity analysis showed that constant misattribution cannot

explain the mortality trend. Remarkable changes were observed under misattribution

changing with calendar time. Under this scenario, attribution bias can explain the

increase and subsequent fall in prostate cancer mortality rates in the late 1980s and

early 1990s.
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Several assumptions can explain the observed dynamics of mortality. We assessed

constant and time-decreasing misattribution that can differ by year of diagnosis.

Other possible explanations for the mechanism include dependence on age at diag-

nosis since prostate cancer is rare in younger patients and thus may be more likely

considered as a cause of death. Also, deaths among the elderly may not be investi-

gated as thoroughly as those in the younger patient population (Fall et al. (2008).

Over-reported prostate cancer deaths are probably higher for men with slowly

progressing tumors or under conservative management (Fall et al. (2008); Newschaf-

fer et al. (2000)). Men with localized/regional cancer are less likely to die of the

disease. If men do not get curative aggressive treatment such as radiation therapy

or radical prostatectomy, physicians may be more likely to attribute the death to

prostate cancer because of perceived ineffectiveness of the non-curative approach.

Increased media attention given to prostate cancer may contribute to increased over-

attribution. Any misattribution model can be explicitly incorporated in the survival

model. We introduced a general misattribution model that can incorporate covari-

ates into the misattribution mechanism and model the survival time. We only con-

sider over-misattribution. Several authors have raised the possibility of both over-

and under-misattribution in cancer death certificates (Percy et al. (1981); Fall et al.

(2008); Hoffman et al. (2003)), particularly with data before PSA. Our modeling

approach can be extended to cover this case. It would be interesting to study under

what condition observed mortality rates would stay intact despite misattribution as

a result of over- and under- misattribution balancing each other out.

The fundamental character of cancer is that it is a latent chronic disease with

substantial unobserved heterogeneity. The progress towards reduced cancer mortality

and cancer burden has centered on a combined use of more efficacious treatments
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as determined by randomized clinical trials (RCT) and the early detection of cancer

as evaluated in screening trials. This strategy has lead to an increase in the cost of

treatment resulting from a surge in the incidence of early stage low grade cancers

that are treated on a just in case basis without sufficient evidence for efficiency of a

variety of treatment options. As modern biomarker research translated into ever more

sensitive cancer screening tests presents unprecedented early detection opportunities,

we are seeing cancers that were never accessible before. Confronted with changes in

the heterogeneity of the incident disease much of which is now indolent cancers, we

are using scientific tools that were perfected when most cancers were relevant and

treatment success was reached under the strategy the earlier and the more aggressive,

the better.

Because an early detected cancer can be very different from the symptomatic

one, treatments may show substantial variability in the outcomes and side effects.

The majority of early stage cancers may be over-diagnosed and over-treated result-

ing in a substantial burden to the health system, inefficient use of resources, and

potentially avoidable harm to a large fraction of patients due to the side effects of

over-treatment. Dependent on the disease progression mechanism, early treatment

may also be harmful overall. For example, early hormonal therapy may provoke a

transformation of indolent prostate cancer cells into androgen independent ones in

response to the androgen deprivation stress.

Until a precise biological reason for this variability can be found, and individu-

alized treatments developed to target them, patients, physicians and policy makers

must make decisions under uncertainty based on available data.

The controversy of prostate cancer resulting from the latent heterogeneity and

high prevalence of the disease needs to be addressed by development of efficient
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management of the disease. The arsenal of actions ranges from aggressive treatment

of all early stage cancers and struggling to identify which treatments work in a

dynamically heterogeneous pool of incident diseases, active surveillance and deferred

treatment strategies informed by patient’s monitoring, to canceling early detection

efforts altogether. The question of what is an optimal investment of resources is an

enormous challenge. This challenge cannot be addressed without an integrative data

analysis and modeling approach. Traditionally, treatment efficacy is measured in

Randomized Clinical Trials (RCT), while the effectiveness of cancer early detection

modalities is evaluated in screening trials such as PLCO and ERSPC trials in prostate

cancer, currently showing conflicting results. Both approaches taken in isolation are

likely to be underpowered, inefficient, and perhaps biased.

This dissertation work has provided a step toward better understanding of the

mortality phenomenon by supplying rigorous methods that peal off yet another ele-

ment of complexity in the study of chronic diseases and their management strategies.

The novel more precise statistical methodology will contribute to the development of

optimal cancer management strategies informed by integrative statistical modeling of

disease onset, progression, diagnosis, treatment and survival, and assessment of the

interaction between treatment and diagnostic interventions and the heterogeneity of

the disease.

While the problem of prostate cancer will not be solved any time soon, we have

provided a step forward to the solution in a structured and rigorous way.



APPENDICES

.1 Convergence of EM algorithm

The likelihood is maximized only when dΛ̂(t) = dΛ̂obs(t). Therefore, it is sufficient

to show the convergence of estimator for dΛ1.

Case 1. r̄(t)dN1(t) ≥ r(t)dN2(t)

Without loss of generality, we assume that dΛ(0) ≥ 0. We prove first that

dΛ1(t)m < dΛ1(t)m+1 ≤ d̃Λ1(t) if 0 < dΛ1(t)m < d̃Λ1(t) for any dΛ2(t)m. First in-

equality can be easily proved by using the following equation: dΛ1(t)m + dΛ2(t)m =

dN1(t)+dN2(t)
Y (t)

. The proof of second inequality is based on the observation that dΛm+1
1 [.]

is a strictly increasing function of dΛ1(t)m. Thus, dΛm+1
1 [d̃Λ1(t)] ≥ dΛm+1

1 [x] for

x ≤ d̃Λ1(t) where the equality holds only if x = d̃Λ1(t). Similarly dΛ1(t)m >

dΛ1(t)m+1 ≥ d̃Λ1(t) if dΛ1(t)m > d̃Λ1(t) for any dΛ2(t)m. However, dΛ1(t)m+1 turns

out to be zero whenever dΛ1(t)m is.

Case 2. dN1(t)−Odds[r(t)]dN2(t) < 0

Similar arguments for case 1 can be used to prove that 0 ≤ dΛ1(t)m+1 < dΛ1(t)m if

dΛ1(t)m > 0 where the equality holds only if dΛ1(t)m+1 = 0 (*). Similarly, if d̃Λ1(t) <

dΛ1(t)m < 0, then dΛ1(t)m < dΛ1(t)m+1 ≤ 0. However, if dΛ1(t)m < d̃Λ1(t), then

dΛ1(t)m > dΛ1(t)m+1. When dΛ1(t)m+1 < −Odds[r(t)]d̂Λ
obs

(t), dΛ1(t)m+1 becomes

greater than zero, so it goes back to the first case (*).
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.2 Bias for constrained NPMLE in a continuous time case

We first fix a continuous time interval T = [0, τ ] for a given terminal time 0 <

τ <∞. Let {Ft; t ∈ T } be a filtration of the probability space. We have

E[Λ̂1(t)]

=

∫ t

0

E

[
I(Y (s) > 0)

Y (s)
×

E

[{
dN1(s)− r(s)

1− r(s)
dN2(s)

}
I

(
n∑
i=1

dNi1(s)− r(s)

1− r(s)
dNi2(s) > 0

)∣∣∣∣∣Fs−
]]

=
n∑
i=1

∫ t

0

E

[
I(Y (s) > 0)

Y (s)
×

E

[{
dNi1(s)− r(s)

1− r(s)
dNi2(s)

}
I

(
dNi1(s)− r(s)

1− r(s)
dNi2(s) > 0

)∣∣∣∣Fs−]]
=

n∑
i=1

∫ t

0

E

[
I(Y (s) > 0)

Y (s)
E [dNi1(s)| Fs−]

]

Therefore, E[Λ̂1(t)− Λ1(t)] turns out to be

n∑
i=1

∫ t

0

−Pr(Y (s) = 0)dΛ1(s) + Pr(Y (s) > 0)r(s)dΛ2(s).

Similarly, E[Λ̂2(t)− Λ2(t)] is reduced to

n∑
i=1

∫ t

0

E

[
I(Y (s) > 0)

Y (s)
×

E

[
{dNi1(s) + dNi2(s)} I

(
dNi1(s)− r(s)

1− r(s)
dNi2(s) < 0

)∣∣∣∣Fs−]]− dΛ2(s)

=
n∑
i=1

∫ t

0

E

[
I(Y (s) > 0)

Y (s)
E [dNi2(s)| Fs−]

]
− dΛ2(s)

=
n∑
i=1

∫ t

0

−Pr(Y (s) = 0)dΛ2(s)− Pr(Y (s) > 0)r(s)dΛ2(s).
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.3 Asymptotic distribution of estimator using the pool-adjacent-violators
algorithm

For any a > 0, Λ̂S
1 (t) − a√

n
and Λ̂S

1 (t) + a√
n

are isotonic functions for t ∈ T , and

Λ̂P
1 is an isotonic regression of Λ̃1. By Theorem 1.6 (Barlow et al. 1972),

if Λ̂S
1 (t)− a√

n
≤ Λ̃1(t) ≤ Λ̂S

1 (t) +
a√
n
,

then Λ̂S
1 (t)− a√

n
≤ Λ̂P

1 (t) ≤ Λ̂S
1 (t) +

a√
n
.

Since
√
n(Λ̂S

1 (t) − Λ̃1(t)) converges to zero in probability,
√
n(Λ̂S

1 (t) − Λ̂P
1 (t)) also

converges to zero in probability. Therefore,
√
n(Λ̂P

1 (t) − Λ1(t)) weakly converges to

the same distribution as
√
n(Λ̃1(t)−Λ1(t)) by Slutsky’s theorem. Consistency of the

estimator Λ̂P
1 can be easily proved using similar arguments.

.4 Semiparametric Efficiency

Notation is similar to those used in Lu & Tsiatis (2005) and Tsiatis (2006). The

model is characterized by the 1 + p + q parameter of interest ξ and the infinite

dimensional nuisance parameters {λ1(t), λ0|W (t|w), pW (w)}, where λ0|W denotes a

hazard function for censoring and pW (w) denotes the marginal density of W . The

density of a single data item is given by

p(T = t, ω,W = (z, x, a)) =

pW (w){(θ1(t; β) + r(t, w)θ2(t; γ) exp(α))λ1(t)}I(ω=1){r̄(t, w)θ2(t; γ) exp(α)λ1(t)}I(ω=2)

× exp

{
−
∫ t

0

(θ1(t; β) + θ2(t; γ) exp(α))λ1(s)

}
λ0|W (t|w)I(ω=0) exp{−Λ0|W (t|w)}

The nuisance tangent space can be written as a direct sum of three orthogonal linear

spaces, namely

Λ = Λ1s ⊕ Λ2s ⊕ Λ3s,
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where Λ1s is associated λ1(t), Λ2s associated with λ0|W (t|w), Λ3s associated with

pW (w). Specifically, the space Λ1s is

Λ1s = {
∫
a(t)dM(t) for all (1 + p+ q)-dimensional functions a(t)}.

where dM = dM1 +dM2. The score vector for β evaluated at the true model is given

by

Uβ =

∫
Z(t)

θ1(t; β)

θ1(t; β) + r(t,W )θ2(t; γ) exp(α)
dM1(t)

=

∫
Z(t)ρ(t; ξ)dM1(t).

This is orthogonal to Λ2s and Λ3s. Therefore, the efficient score, derived as the

residual after projecting Uβ onto Λ (or in this case Λ1s), is given by

Ueff =

∫
{Z(t)ρ(t; ξ)− a∗(t)}dM1(t)− a∗(t)dM2(t)

where

a∗(t) =
E[Y (t)Z(t)θ1(t; β)]

E[Y (t){θ1(t; β) + θ2(t; γ) exp(α)}]
.

.5 Covariance Terms of KL Estimator

IKLββ =

∫
E

[
Y (t)θ1(t; β)

(
Z(t)− sZ(t; β)

s(t; β)

)⊗2
]
λ1(t)dt

∣∣∣∣∣
η=η0

,

IKLβγ =

∫
− E

[
Y (t)r(t)θ2(t; γ)

(
Z(t)− sZ(t; β)

s(t; β)

)(
X(t)− sXr̄(t; γ)

sr̄(t; γ)

)T]
λ2(t)dt

∣∣∣∣∣
η=η0

,

IKLγγ =

∫
E

[
Y (t)(1− r(t))θ(t; γ)

(
X(t)− sXr̄(t; γ)

sr̄(t; γ)

)⊗2
]
λ2(t)dt

∣∣∣∣∣
η=η0

,

V KL
ββ = IKLββ +

∫
E

[
Y (t)r(t)θ(t; γ)

(
Z(t)− sZ(t; β)

s(t; β)

)⊗2
]
λ2(t)dt

+

∫
E

[
Y (t)(1− r(t))θ(t; γ)

(
sZr(t; γ)

sr̄(t; γ)
− sZ(t; β)

s(t; β)

sr(t; γ)

sr̄(t; γ)

)⊗2
]
λ2(t)dt

∣∣∣∣∣
η=η0

,
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where

a = E[n−1A] for A ∈ {S(t; β), SZ(t; β), Sr(t; γ), Sr̄(t; γ), SXr̄(t; γ)}.

The estimates are obtained by substituting η̂KLn = (λ̂KL1 (t), λ̂KL2 (t), β̂KLn , γ̂KLn ) for η

and replacing the expectation by its empirical counterpart.
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