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 Abstract 
 

Structure-based drug design (SBDD) is defined as the use of three-dimensional structural 

data to advance lead development and optimization studies. Many SBDD projects have used a 

rigid protein structure to represent the receptor target in order to gain greater throughput with 

minimal computational time. However, numerous studies have illustrated the significant influence 

protein flexibility exerts upon binding predictions. Inclusion of protein flexibility has become 

essential due to the need for ligands with novel scaffolds and unique modes of action that combat 

increasing rates of drug resistance and decreasing approval of clinical candidates. Additionally, 

accurate modeling of protein flexibility may reveal unknown allosteric sites and increase the 

number of viable lead compounds for a given target.  

Previously, Carlson et al. incorporated structural flexibility into pharmacophore modeling 

through the development of the multiple protein structure (MPS) method (2000). This technique 

was the first computational-mapping algorithm to identify experimentally-validated lead 

compounds. Probe mapping is a common computational technique for identifying potential 

binding pockets along a protein surface. However, the efficacy of most methods has been limited 

by neglecting desolvation penalties. To broaden the impact of our studies, we have developed an 

improved technique for probe mapping, Mixed Solvent Molecular Dynamics (MixMD), which 

extends our MPS approach by simultaneously incorporating flexibility and solvent competition. 

This technique has been validated on the canonical hen egg-white lysozyme system and has been 

generalized across a series of pharmaceutically-relevant targets. MixMD can be used to develop 

accurate pharmacophores of druggable hot spots through the incorporation of several different 

probe types. 

As a complement to our methodology development, we have specifically targeted protein 

flexibility in another canonical protein system. HIV-1 Protease (HIVp) is an exceptional test case 

due to the abundance of structural data available, its importance as a pharmaceutical target, and 
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its potential for allosteric regulation. Three allosteric sites have been hypothesized for HIVp: the 

elbow site, the eye site, and the dimer interface. We have used MD simulations to probe the 

allosteric control possible at the elbow and eye sites by small molecules. Our studies have 

identified important features for designing effective allosteric inhibitors of HIVp. 
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Chapter 1  

Introduction 

1.1  Specific Aims 

The specific aims of my study encompassed 1) the development of an improved method 

for mapping flexible targets, based upon our achievements with the Multiple Protein 

Structure (MPS) method and 2) the investigation of potential allosteric regulation of 

HIV-1 Protease (HIVp). 

My underlying hypothesis was that better techniques for structure-based drug design 

(SBDD) enable the discovery of ligands with new scaffolds and novel modes of action. 

We expected that through the incorporation of protein flexibility and new surface-

mapping methods, an improvement would be seen in terms of site-prediction accuracy as 

well as identification of potential allosteric sites.  

My long-term goal has been to advance the current state of SBDD through studies that 

improve our understanding of the impact of protein flexibility on binding. Through 

successful mapping studies of pharmaceutically-relevant targets using the MPS method, 

the Carlson group has demonstrated that receptor flexibility enables results to surpass the 

known limitations of rigid models; my research has built from that success. 
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1.2 Theory of Molecular Mechanics 

Computer technology has rapidly progressed, enabling the simultaneous advance of 

computational tools for basic and applied science. Medicinal chemistry has particularly 

benefitted from technological advances that allowed detailed analyses of binding 

characteristics in pharmaceutically-relevant target systems. Several computational 

methods have been developed for studying macromolecular systems, ranging from 

quantum mechanics (QM) to molecular mechanics (MM). Although QM provides 

information on energetic interactions at the atomic scale at the highest possible level of 

accuracy, their huge computational cost has rendered them infeasible for large systems 

(greater than 100 atoms). MM is based on statistical mechanics theory; therefore, it can 

be used to predict the energy of biomolecular systems with reasonable accuracy. In MM, 

the potential energy for all atoms in the system is calculated from the sum of the covalent 

(bond, angle, dihedral) and noncovalent (van der Waals, dipole, coloumbic) 

contributions, according to a user-specified force field.  

Force fields contain the applied energy function and the set of parameters used to 

describe all atoms within the system. These parameters are usually derived from high 

quality experimental and QM data that represent a typical biomolecular system (proteins, 

nucleic acids, lipids, small organic molecules). Numerous parameter sets exist for each 

MM program, but combining or transferring parameter sets across force fields and/or 

programs is inadvisable.   

The stochastic Monte Carlo (MC) method and the deterministic molecular dynamics 

(MD) method are two forms of MM simulation.1 MC is reliant on a distribution of 

probabilities to randomly sample the potential energy surface of a system, while MD 

integrates over Newton’s equations of motion to dynamically sample the energy 

landscape: 
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These terms define the bond-stretching, angle-bending, torsion-rotation, van der Waals 

(vdW), and electrostatic forces respectively. Bond stretching and angle bending are 

described by a harmonic oscillator function, torsions by a periodic function, vdW 

interactions by the Lennard-Jones potential, and electrostatics by Coulomb’s Law.1 

Usually, the positions of the atoms are given by a crystal or NMR structure placed within 

a computer-generated solvent box. Velocities are assigned to the starting xyz coordinates 

based on a Maxwell-Boltzmann distribution, where the magnitude is proportional to the 

user-defined temperature. The potential energy is calculated based on the atomic 

coordinates, and the individual atoms accelerate/decelerate according to the resultant 

force. Time is advanced by a user-specified timestep (usually 2 fs), and each step 

calculates new atomic positions, velocities, and forces according to the Verlet integrator3. 

The appropriate timestep is dependent on the fastest motions within the system; therefore, 

bonds to hydrogen are typically restrained4 to allow a larger timestep.  

Since MC simulations involve random-step searches of the energy landscape, they 

cannot provide a time-dependent view of the system at a given temperature. However, 

MD is capable of describing of the system’s energetics over a simulation time. True 

system dynamics are not observed in most MD because coupling to a temperature bath 

scales velocities at various intervals. Assuming the veracity of the ergodic hypothesis, 

which states that all available microstates of the system will be sampled given an 

“adequate” timescale,5 both MC and MD should give appropriate distributions of states if 

run long enough. To optimize sampling, it is frequently desirable to perform multiple 

shorter simulations instead of one long simulation.   

In the Carlson Lab, MD is applied to biomolecular systems through the program 

AMBER (Assisted Model Building with Energy Refinement).6 Under a nonpolarizable 

force field, individual atoms are represented as spheres with assigned vdW radii and a 

constant net charge. The basic force field used within AMBER is described by the 

potential energy function. Several force fields are available for use with MD simulations, 

and the choice of which to implement is dependent on efficacy, performance, and the 

system under study. When the original FF94 parameter set was shown to overstabilize α-

helices, continual evolution of the force field over time led to the development of 

FF99SB.7 Studies comparing computational results with experimental data strongly 
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support the accuracy of this parameter set for most proteins in AMBER, thus we have 

chosen to apply FF99SB in our protein-ligand systems. 

In simulations of a biomolecular complex in solution, the explicit inclusion of water 

molecules can greatly impact simulation time. In some cases, exploration of the motion 

of the biomolecule is more important than observing specific solute-solvent interactions; 

the solvent can be represented implicitly by a continuum model. A number of continuum 

solvent models have been developed, the most prevalent being the generalized Born (GB) 

model.8 Our calculations involving the generalized Born approach involved the use of a 

modified set of parameters published by Onufriev et al, GBOBC.
9  

The generalized Born/surface area model mimics the effect of solvent through the 

addition of two terms to the “vacuum” potential energy function previously noted as the 

basic force field for molecular mechanics: ΔGsol = (1− 1
εij

∑ )(qiqj / fGB (rij ))+ A σ i
i
∑ .10 

These terms define the polar component of the solvation free energy and the non-polar 

contribution, which is proportional to the surface area of molecule A. The term fgb is a 

smoothing function, which depends upon the atomic radii and interatomic distances rij. 

The advantage to implicit solvation is that it allows calculations to be performed at a 

reduced expense because solvent motion does not need to be explicitly calculated. 

Additionally, the lack of viscous drag from the solvent allows the molecule of interest to 

move more quickly through the potential energy space available. In order to more 

accurately account for explicit solvent-solute interactions, Langevin dynamics (LD) were 

employed to account for the random buffeting of the solute by the solvent. The Langevin 

equation is based on Newtonian physics and models continuum solvent interactions 

through the relationship; 

mi
d 2ri
dt2

= Fi{ri (t)}−ξ
dri (t)
dt

+ Ri (t)  

where R is defined as the random force and ξ as the frictional coefficient.1 

1.3 Structure-based Drug Design 

Structure-based drug design (SBDD) involves the use of three-dimensional structural 

data to advance lead identification and subsequent optimization for drug discovery. The 
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exponential growth of the PDB and improvement in homology modeling techniques 

makes SBDD applicable to an ever-growing number of pharmaceutically-relevant targets 

with a three-dimensional structure available. SBDD studies are generally centered upon 

at least one of the following three goals: prediction of binding modes, prediction of 

binding affinities, and prediction of novel binding partners. Depending on these goals and 

available data, SBDD can involve different approaches, which are often separated into 

docking techniques and de novo design. Docking is implemented to predict the binding 

mode and affinity of small molecules. When docking is applied to a large compound 

database, it is referred to as virtual screening (VS) and often centered on the prediction of 

new ligands with high affinity for a target molecule to enrich the compound set for 

experimental testing. De novo design is performed with the intent of predicting new 

compounds in novel chemical space. Fragment-mapping techniques that use functional 

groups to probe binding sites are often applied for this type of approach. Over the past 20 

years, these SBDD studies have produced viable leads, enabling the development of 

successful clinical drugs and leading to the extensive implementation of SBDD in 

medicinal chemistry research.11-13 

X-ray crystallography and NMR studies have clearly demonstrated conformational 

differences between many receptors’ holo (bound) and apo (unbound) states. Sampling 

ligand conformations is straightforward; most SBDD protocols now include ligand 

flexibility (with on-the-fly sampling being superior to a rigid set of pre-generated 

conformations), yet this is insufficient for the most accurate results. Despite data 

demonstrating the influence of protein flexibility on ligand binding, most SBDD efforts 

still rely upon a static receptor structure because of the resources required to account for 

its many degrees of freedom. Although a few proteins can have their binding potential 

represented with a single, fixed conformation, for most systems the information presented 

by a rigid structure is simply inadequate.  

In a comparative study of 10 docking programs and 37 scoring functions, no single 

method outperformed the others when performing rigid docking of diverse compounds to 

a set of eight proteins.14 The scoring functions were unable to accurately predict binding 

affinity or relatively rank the compounds. Ginalski and co-authors evaluated the binding 

predictions and scoring results for 1,300 protein-ligand complexes from PDBbind 2007 
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with Surflex, LigandFit, Glid, GOLD, FlexX, eHiTS, and AutoDock.15 The authors found 

that the programs achieved a mean RMSDTop-Sscore that ranged from 2.77 Å (GOLD) to 

4.37 Å (FlexX) for the docked poses, none of the scoring functions were able to achieve a 

reasonable correlation between the pose score and the experimental activity. Several 

recent reviews have been published that discuss the deficiencies of existing scoring 

functions for docking.14,16-20 Klebe and coworkers hypothesized that there is an intimate 

link between docking and scoring, postulating that correct prediction of accurate binding 

geometries will simultaneously solve the scoring problem.21-23 Therefore, while we 

acknowledge the limitations of current scoring functions, we focus on the variety of 

techniques for incorporating protein flexibility in SBDD.  

A number of reviews have included some consideration of the impact of protein 

flexibility on drug discovery.16,21,24-34 Many of these reviews concentrated on only a subset 

of protein flexibility methods or emphasized a particular technique. Here, we examine a 

variety of techniques that account for flexibility in protein-ligand binding, not only 

studies where the primary focus is on docking but also studies that concentrate on 

binding-site mapping.  

 

1.4 Protein Flexibility 

1.4.1. Conformational variability 

Our understanding of receptor-ligand binding has significantly advanced from the 

original lock-and-key model proposed by Fischer.35 Early experimental studies showed 

that the act of ligand binding influences the protein conformation, referred to as 

conformational induction or induced fit.36 Another model of ligand binding is 

conformational selection, wherein the ligand chooses a binding partner from among 

available states in the conformational ensemble, thereby shifting the population 

distribution.37-42 Recently, several papers have been published examining the evidence for 

whether receptor binding occurs because of induced fit or conformational selection. 

Sullivan and Holyoak studied the kinetics of phosphoenolpyruvate carboxykinase and 

concluded that induced fit and conformational selection were not mutually exclusive, 
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rather they were complementary avenues for binding.43 Weikl and von Deuster developed 

equations of binding kinetics using a four-state protein-ligand complex to distinguish 

between induced and selected fit.44 Hammes et al. examined the binding pathways for 

dihydrofolate reductase (DHFR) and flavodoxin and determined that a mixed binding 

mechanism was most likely.45 They noted that the relative importance of induced fit or 

conformational selection for a particular case could be analyzed by comparing the 

reaction path flux. Both mechanisms of binding will produce the same result; it is 

important only that some mechanism of receptor conformational change be incorporated 

in docking simulations. This is particularly useful in SBDD because it implies that 

computationally inexpensive methods that include protein flexibility should correctly 

predict binding modes. 

1.4.2. Allostery 

Protein-ligand flexibility upon binding is crucial for proper understanding of 

allosteric regulation. Nussinov and coauthors postulated that most proteins exist in an 

ensemble of states, and thus most proteins have the potential for allostery.46 Based on 

experimental literature, they demonstrated that the binding of an allosteric ligand shifted 

the population of conformational substates, thereby influencing the ability of other 

ligands to bind an alternate site.  

Drug resistance is a growing problem that calls for new approaches to drug therapy. 

By exploring allosteric control in protein targets, we can find new modes of action and 

hence, overcome emergent resistance, and develop cocktails of drugs to improve 

treatment.  

 

1.5 Protein-Ligand Binding 

1.5.1. The Cross Docking Problem 

Research into protein flexibility and allostery has lent support to the importance of 

representing multiple states in binding studies (Figure 1-1). Mobley and Dill noted that 

binding free energy (ΔGbind) and entropy are influenced by the shape and width of the 
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entire conformational landscape, rather than a single rigid pose.47 Murray et al. examined 

approaches for using rigid receptors in docking studies.48 When the authors attempted to 

dock a known ligand into a protein structure solved in the presence of a different ligand 

(referred to as cross-docking), they found that the active site was biased towards to the 

native ligand (Figure 1-2). A variety of differences in the surface of the binding site were 

identified for the same protein solved with different ligands or in the absence of a ligand. 

Movement was observed in the backbone, side chain (both dependent and independent of 

the backbone Cα), and active site metals. As a consequence, active sites were biased 

towards a particular ligand type, negatively impacting docking efforts. The resultant 

misdocking could not be overcome without accounting for critical conformational shifts. 

Najmanovich et al. examined the percentage of residues that actually undergo a change 

upon ligand binding, based on two non-redundant datasets containing paired holo and apo 

protein structures from the PDB.49 No significant correlation was found between 

backbone movement and side chain flexibility, but Lys, Arg, Gln, and Met were 

identified as the residues most likely to demonstrate side-chain rearrangement upon 

ligand binding. Najmanovich et al. showed that 60-70% of the binding site undergoes 

some change in side chain orientation. Taken together, these studies clearly illustrated 

that the lack of protein flexibility in typical SBDD efforts severely limits the 

identification of true ligands and accurate docked poses.  

 
Figure 1-1: The conformational variation in holo and apo BACE structures illustrates structural 
differences frequently seen across multiple crystal structures of the same protein. 
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Figure 1-2: The same protein crystallized with different ligands. This simple two ligand-one protein set 
demonstrates the influence of structure on the shape of the binding pocket. 

An underlying assumption in rigid docking efforts is that the complexed state is the 

lowest free energy state. However, the ligand-bound state is not always the lowest energy 

state for either the protein or the ligand. Smith et al. were first to examine conformational 

similarity, they compared the four available structures of interleukin-4, two from NMR 

and two from crystallography.50 They found that differences in the experimental methods 

clearly affected the structure, and that the two NMR structures were more similar to the 

crystal structures than to each other. Further, they noted that the exposed regions of the 

surface, particularly the highly flexible loops, showed the largest conformational 

difference among the structures. Eyal et al. evaluated a set of 659 structure pairs from the 

PDB and showed that experimental variation in protein structures certainly exists, as a 

result of refinement, crystal packing, and/or crystallization conditions.51 Chopra et al. 

employed MD on a set of 75 proteins to explore the role of solvent in structural 

determination and concluded that solvent effects have an enormous influence on the final 

refined protein structure.52 

1.5.2. Sources of Structural Information 

Use of a set of similar conformations only generates a finite amount of information on 

potential binding partners. Additional receptor space should be explored, especially in 

scenarios where alternate binding modes are of interest. X-ray crystallography, NMR 

structures, homology models, normal mode analysis (NMA), and molecular mechanics 

simulations are all potential sources of structural diversity. Advances in technology have 
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allowed for significant increases in available structural information for a vast number of 

receptor targets. The Protein Data Bank (PDB) now contains over 74,601 structures (as of 

7/19/11), up from 13,605 structures in 2000.53 Several research groups, as well as 

thousands of computer users, have dedicated their computer power to distributed 

structure prediction of proteins with Folding@HOME, POEM@HOME, and 

Rosetta@HOME. Martin-Renom et al. estimated that almost one-third of all known 

protein sequences can have their structure predicted via homology modeling efforts.54 

Schafferhans and Klebe found that accuracy increases when the results of several 

different homology modeling programs are combined.55 While predictive models are not 

as accurate as structures solved by x-ray crystallography or NMR, they enable the study 

of targets that are difficult to determine experimentally. No consensus has been reached 

on the best source of data for including structural flexibility in SBDD, and a number of 

studies clearly demonstrate the difficulty and variability in assessing appropriate 

conformations.56-60 

 

The following sections are organized based on different techniques for including 

protein flexibility in docking and de novo design (Table 1-1). Soft docking allows limited 

discovery of new conformation space while docking with flexible side chains (SC-Flex) 

samples observed conformational space. More recent techniques incorporate ensembles 

of structures to allow for a greater measure of native flexibility or to reveal new 

conformations. By relying on several protein conformations, new chemical space can be 

explored, allosteric sites can be discovered, and more accurate binding conformations can 

be generated. The accepted metric for a well-docked pose is ≤ 2.0 Å RMSD from the 

experimentally determined structure. Protein flexibility can be incorporated into a 

binding-site model before docking is initiated or it can be allowed post-docking through 

refinement of the bound complex. Docking can be performed against an average structure 

or ensemble, a series of rigid-receptor conformations (semi-flex), or with conformations 

generated “on the fly” (induced-fit docking, IFD).  
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Table 1-1: Techniques for incorporating full protein flexibility into docking approaches. 

Approach Method for incorporation Advantages Limitations 

Refinement 

Flexibility introduced after 
docking through reduced or 
all-atom modeling with 
molecular dynamics or Monte 
Carlo minimization. 

Fast docking to rigid 
receptor enables 
searching through 
vast compound 
libraries 

Unlikely to generate as 
much structural 
diversity as the other 
methods, hard to 
move beyond known 
binding space 

Average or 
unified 

structure 

Ensemble averaging through use 
of a unified structure or grid 
representation. Can also 
occur through the selection of 
conformational subsets from 
a rotameric library, May also 
involve generation of 
receptor conformations based 
on ligand poses. 

Can find novel binding 
mechanisms, orphan 
sites, and explore 
new receptor 
conformations 

Discovery of 
“paradoxical 
inhibitors” that bind 
only to averaged 
conformation but not 
a native structure 

Serial docking 

Docking performed iteratively 
to a rigid ensemble of 
structures, conformational 
variation of the receptor 
ensemble typically comes 
from the inclusion of several 
X-ray crystallography, NMR, 
homology model, PCA-
derived, NMA-derived or 
MD-derived structures. 

Can allow for discovery 
of novel binding 
modes 

Ensemble generation 
and parallel docking 
can be time-
consuming, not 
usually appropriate 
for screening large 
libraries 

Structural variation can 
increase false 
positives 

Conformations 
on the fly 

Receptor conformational 
changes are explicitly 
modeled during docking. 

Allows receptor 
conformation to 
change during 
interaction with 
ligand for optimal 
binding, can be quite 
accurate 

Can generate 
conformations that 
are not 
experimentally 
accessible 

Can be quite time-
intensive, not 
necessarily 
appropriate for virtual 
screening 

 

Experimental methods for SBDD inherently include protein-ligand flexibility. 

However, lead development and design that is based solely on experimental data for 

ligand binding can be time-consuming and prohibitively expensive since every lead 

optimization step must be tested. Fragment-based drug design (FBDD) has enabled the 

application of experimental methods to searching the interaction potential along the 

protein surface with small organic probes. The use of fragment-based studies to SBDD 

enables the identification of ligands with high affinity for targets that have been 

traditionally difficult to characterize. These insights have greatly influenced 
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computational approaches to protein flexibility, where fragment mapping can be applied 

to flexible receptors with functional group probes to find binding hot spots and identify 

specific interaction potentials. The use of molecular dynamics and/or probe 

minimizations to search for important binding sites with small probes has frequently 

applied in SBDD projects because the results enable the development of a 

pharmacophore model for use in virtual screening studies. 

 

1.5.3. Early Protein-Ligand Flexibility in Docking 

Soft Docking 

It was not until the mid-90s that researchers began to tackle the problem of receptor 

degrees of freedom in SBDD. The original technique involved soft docking, which 

accounted for minimal backbone movement, and side-chain flexibility through 

attenuation of the Lennard-Jones repulsion term between the rigid protein and ligand.61 

This allowed for some penetration between the ligand and protein, and was followed by a 

rigid-body minimization. Soft docking increased the number of high scoring hits 

compared to the use of a single structure for docking. A study of T4 lysozme and aldose 

reductase showed that soft docking was superior to docking to a static structure.62 

However, the authors also found that serial docking to rigid receptors in a structural 

ensemble identified six novel compounds that soft docking had ranked poorly. Of these 

six compounds, four were experimentally verified and one had a low micromolar IC50 

value. 

Soft docking is a fast and easy method for including some protein flexibility into 

docking studies, and as a result is it included as a step in many of the methods presented 

below. 

Relaxation Methods 

Refinement of the docked complex is another simple approach that adjusts for protein 

flexibility by modeling induced-fit effects. The incorporation of protein flexibility on the 

“back end” can only be done when the docking technique was based on an all-atom 
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structure; it cannot be performed on a grid, or in any other situation where the protein is 

not explicitly represented. MC or MD simulations are a popular choice for refinement 

because they enable the optimization of docked poses investigation of solvent effects, 

examination of kinetic stability, and prediction of ΔGbind from physics-based scoring 

functions. Refinement is frequently performed as a final step in many of the docking 

approaches discussed here; Table 1-2 lists protein-ligand docking methods that limit the 

inclusion of full flexibility to the refinement stage.63 

 
Table 1-2: Studies including full receptor flexibility after docking. 

Method Target Flexibility Results Caveats Author 

FDS 

15 cases 
from 

GOLD 
test set 

Rigid-pro directed 
by hydrogen 
bonding  

Results clustered 
(clique finding 
technique), ~5 
poses subjected 
to SC-Flex via 
MC with 
GB/SA, soft 
potential, & SA 

Rigid-pro reproduced exp. 
pose for 13 cases 

Refinement with SC-Flex 
reproduced exp. pose for 
11 cases  

Accounted for continuum 
solvation 

For full-flex, RMSD of pose 
closest to crystal 
conformation (majority 
ranked 1) was 0.78 to 3.81 
Å to the crystal structure 

No 
consideratio
n of the 
effects of 
bound water 

Minimal 
conformatio
n change  

Required 30-
40 hours for 
a single run 

Taylor et 
al, 2003 

ADAM/ 
BLUTO 

18 cases 
for native 
docking; 

22 for 
cross 

docking 

Docked to binding 
site as vdW-
offset grid 

Post-docking 
optimization of 
ligand and 
protein side 
chains (within 
7 Å) of the 
binding site 

Top-ranked poses for 
thymidine kinase from 
ADAM/BLUTO were 
more accurate (RMSD 
0.52-1.89 Å) than rigid 
docking results from 
GOLD (RMSD 0.49-3.11 
Å), DOCK (RMSD 0.82-
9.62 Å), Surflex (RMSD 
0.74-3.84 Å), Glide 
(RMSD 0.35-4.22 Å), 
FlexX (RMSD 0.78-13.30 
Å), and ADAM (RMSD 
0.49-3.11 Å) 

RMSD of top-ranked model 
for all cases from 
ADAM/BLUTO ranged 
from 0.43 to 2.66 Å for 
cross-docking 

RMSD of top-ranked model 
for all cases from ADAM 
alone ranged from 0.67 to 
6.31 Å for cross-docking 

Most relevant 
for studying 
local 
changes in 
binding site 
conformatio
n 

  

Mizutani 
et al., 
2006 
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AMMOS 

Estrogen 
Receptor, 

Neur-
amindase 

Five options to 
refine docked 
complex, from 
full to zero 
protein 
flexibility 

Minimized results 
and reranked 

Assessed impact 
of AMMOS 
force field 
minimization 
vs. MM94 and 
Tffs on results 
for four known 
ligands 

Initial docking in DOCK6 
RMSD of refined structure to 

the crystal conformation 
ranged from 1.03 to 2.12 
Å for AMMOS, 1.01 to 
2.39 Å for MMFF94s, 
1.17 to 1.57 Å for Tff 

Enrichment increased by 
AMMOS refinement from 
40% to 60% overall, with 
actives retrieved from the 
top 3-5% of the data set 

Extent of 
minimizatio
n was very 
limited 
(2x500 
cycles) 

Only identifies 
minor con-
formational 
shifts 

Pencheva 
et al., 
2008 

Enhanced 
molecu-

lar 
docking 

Human 
prion 

protein 

Used 
metadynamics 
to refine 
docked 
complexes 

Calculated dissociation ΔG 
was 7.8-8.6 kcal/mol while 
experimental dissociation 
ΔG was 7.5 kcal/mol 

Predicted multiple binding 
sites 

Affinities agreed with NMR 
experiment 

Computation-
ally 
intensive 

Kranjc et 
al., 2009 

 

1.5.4. Docking with Flexible Side Chains  

Early efforts at “on the-fly” docking focused on the side chains, with the use of a 

rotamer library based on backbone dihedral angles to describe protein flexibility. In 1993, 

rotamer libraries were first used to predict side-chain conformations while studying the 

protein folding problem.64 In 1994, the use of side-chain rotamer libraries was extended 

to protein-ligand docking with the examination of trypsin-benzamidine and antibody 

McPC 603-phosphocholine binding through a modified version of AMBER 4.0.65 The 

study restricted the protein backbone completely while the side chains within 10 Å of the 

ligand were allowed to sample a set of discrete rotameric states. Leach found that the 

presence of the ligand revealed additional accessible conformational states by modulating 

the protein’s potential energy surface.  

Similar side-chain only methods for modeling protein flexibility in docking are 

presented in Table 1-3, including AutoDock 4.066, Dynasite/GOLD67, FlexX68, 

ICM/MC69, Mining Minima70, Skelgen71,72, SLIDE73-75, and SOFTSPOTS/PLASTIC76. 
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Table 1-3: Studies based on SC-Flex. Caveats for each method are similar in that flexibility of the side 
chains alone has limited success in describing receptor motion for most binding events. 

Method Target Flexibility Results Author 

Rotamer 
Library 

Trypsin, 
McPC 603 

Rotameric states sampled 
for all side chains within 
10 Å of binding site  

Limited by the lack of a 
solvation term 

RMSD of closest structure to the 
bound pose from the crystal 
was 0.7 Å for trypsin, 0.8 Å 
for McPC 603 

Leach, 
1994 

ICM/MC 
Leucine 
zipper 
helices 

Applied internal 
coordinated modeling 
(ICM) and MC 
minimization to all side 
chains at 600K 

Lowest energy conformation of 
leucine zipper had RMSD of 
1.18 Å to crystal pose 

Abagyan et 
al., 1994 

FlexX 19 cases 

Greedy incremental 
construction of the 
ligand into the active 
site from base ligand 
fragment 

RMSD of pose closest to crystal 
conformation (majority 
ranked 1) ranged 0.48 to 1.20 
Å 

Rarey et 
al., 1996 

SOFT 
SPOTS/  

PLASTIC 

Thymidylate 
synthase 

Identified variation based 
on structural comparison 
(or binding site analysis) 

Disregarded polar residues 
Retained hydrophobic 

residues and loops for 
potential adaptation 

Subjected 3 residues to 
rotamer variation 

Minimized docked pose 

Minimized, remodeled complex 
achieved reasonable energy 
scores for two potent 
inhibitors  

Found -51.5 kcal /mol for ligand 
BW1843U89 and -49.7 kcal 
/mol for CB3717 for cross-
docking with SC-Flex 

Found -32.8 kcal/mol for 
CB3717 and -44.7 kcal/mol 
for BW1843U89 with rigid-
pro 

Scores from native docking were 
-56.5 kcal/mol for 
BW1843U89 and -52.9 
kcal/mol for CB3717 

Anderson 
et al., 2001 

Mining 
Minima 

Set of 18 
protein-
ligand 
crystal 

structures 

On-the-fly optimization of 
the 5 nearest side chains 
(to the x-ray ligand) or 
hydroxyl-only 
hydrogens on the fly 

Three docking runs per 
system 

Native docking 

RMSD from SC-Flex of lowest 
energy pose ranged from 0.34 
to 2.32 Å to the crystal 
orientation for 8 known cases 

SC-Flex improved accuracy 
relative to rigid-pro for 4 
cases while it diminished 
accuracy relative to rigid-pro 
for the other 4 

SC-Flex highlighted important 
SC movement in hypothetical 
protein case 

Kairys & 
Gilson, 
2002  

Skelgen 
MMP-1, 

Acetylcholin
-esterase 

Random transitions of side 
chain χ angles were 
found to be preferable to 
a rotamer library due to 
the variation in 
composition & 

SC-Flex RMSD of pose closest 
to crystal conformation 
(majority ranked 1) were 1.0-
1.3 Å (native), 1.3-1.4 Å 
(non-native), 1.4 Å (apo)  

Rigid-pro RMSD of pose closed 

Alberts et 
al., 2005a  
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construction of rotamer 
libraries   

to crystal conformation 
(majority ranked 1) was 0.7-
1.0 Å (native), 4.4-4.5 Å 
(non-native), 5.6 Å (apo)  

SLIDE 20 cases 

Ligand anchor fragment, 
induced fit ligand/side 
chain rotation based on 
mean field theory 

Binding site represented as 
interaction points 

Docked to the apo pose 
Included active site 

solvation 
Minimal rotation 

hypothesis: side chains 
will move as little as 
necessary to form 
complex 

RMSD was ≤ 2.5 Å to the 
crystal orientation for all 
known ligands  

Specifically intended for systems 
without large global 
rearrangements (required apo 
to holo RMSD of ≤ 0.5 Å) 

Zavodszky 
et al., 2005 

AutoDock 
4.0 

188 native 
cases, 87 

HIVp cross-
docking 

cases 

Selected side-chain 
flexibility, receptor 
represented as a grid  

SC-Flex docked small native 
molecules well 

SC-Flex successful for most 
large inhibitors of HIVp, 
failed relative to rigid-pro for 
small inhibitors >50% of the 
cases (3.5Å) 

Morris et 
al., 2009 

 

Allowing side-chain flexibility was less resource intensive than full flexibility 

methods and it enabled some conformational variability through the exploration of low 

energy orientations of side chains. However, incorporating side-chain flexibility has 

failed in cases of proteins with large-scale hinge or loop rearrangements or even 

backbone-dependent movement of side chains, neither of which can be taken into account 

by SC-Flex. 

 

1.5.5. Induced Fit Docking 

Conformational generation on the fly 

Significant progress has been made since the initial development of SC-Flex. 

Sampling motion of the side chains “on the fly” increases the potential energy space but 

can still overlook global conformational shifts. Allowing for conformational changes “on 

the fly” during docking can be a highly accurate technique for modeling bound poses of 

protein-ligand complexes. Induced fit docking (IFD) is important because it can allow the 
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docking simulation to search new conformational space, however this sampling of 

receptor and ligand degrees of freedom is also quite computationally intensive, which 

limits its application in large-scale virtual screening studies.  

The first “on the fly” method that expanded beyond conformational sampling of side 

chains was based on DOCK 4.0.77 The authors included the conformational ensemble as 

an adjustable variable in the IFD algorithm as opposed to performing serial docking 

across an entire ensemble. In addition to the usual six degrees of freedom for ligand 

flexibility, the authors added a protein conformation term, which allowed the protocol to 

simultaneously optimize the ligand conformation and choose the best protein structure for 

binding. Ten separate protein ensembles were used for development and were obtained 

from the set by Cavasotto and Abagyan78, the set by Claussen et al.79, and two HIV-1 

protease (HIVp) ensembles. They achieved a success rate of 93% when the five highest-

ranked poses were included using a threshold for success of 2.5 Å RMSD from the 

experimental pose. Their method ran for a similar amount of time as rigid-pro and was 

significantly faster than traditional techniques for serial docking to rigid receptors. Other 

IFD methods for including protein flexibility include 4D Docking80, FITTED81-83, 

GLIDE/PRIME84,85, PC-RELAX86,87, REMD/PLOP88, and SCaRE89, as presented below in 

Table 1-4. 

 
Table 1-4: Docking studies that utilized full receptor flexibility during the performance of IFD. 

Method Target Flexibility Results Caveats Author 

GLIDE/ 
PRIME 21 cases 

Soft-potential docking 
to RR  

Ala replacement ≤ 3 
residues 

Top 20 complexes 
refined & redocked 

Avg RMSD = 5.5 Å 
for rigid-pro, 1.4 
Å for IFD  

Very time 
intensive, 
limited to local 
motion  

Sherman 
et al, 2006 

Conform-
ational 

ensemble 
as 

docking 
variable 

10 cases 

Conformational 
ensemble included 
as a variable during 
docking with 
DOCK4.0 

Selected each 
representative side 
chain within the 
active site based on 
which had the 
greatest distance 
from the reference 

Ensemble docking 
was the same 
speed as rigid-pro 

Ensemble docking 
had 67-100% 
success based on 
pose and score 

Rigid-pro had 23-
87% success in 
cross-docking 
based on pose and 
score 

Use of a unified 
representation 
of the receptor 
can result in 
the 
identification 
of high-scoring 
false positives 

Huang 
and Zou, 

2007 
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sphere points from 
SPHGEN 

Bound complex was 
optimized with 
SIMPLEX 

Success defined as 
RMSD from crystal 
pose of ≤ 2.5 Å and 
an energy score > 
the native docking 

Sequential rigid-pro 
had 33-100% 
success based on 
pose and score 

SCaRE 
16 cross-
docking 

pairs 

Optimal results with 
Ala replacement of 
2 neighboring side-
chain pairs  

Ligand docked to 
gapped 
conformation 

Clustered, optimized, 
and refined 
complex with 
original side chains 

With pocket 
boundaries equal 
to all residues ≤ 5 
Å from the ligand, 
best RMSD for a 
docked pose to the 
crystal structure 
(with majority 
rank 1) was 0.7-
2.0 Å (90% 
success) 

Rigid-pro 50% 
success rate 

Limited view of 
active site 
flexibility 

Time consuming 

Bottegoni 
et al., 
2008 

PC-
RELAX 

set of 
CDK2 

structures 

PCA/ANM-derived 
soft mode docking 
with no flexibility, 
side chain 
flexibility, 
backbone 
flexibility, or full 
flexibility 

Starting with apo 
structure, found 
best RMSD to the 
crystal structure of 
0.8-1.8 Å (rank 
ranges 1-9) for 
fully flexible 
versus 0.5 to 5.2 Å 
(rank ranges 1-18) 
for rigid-pro 

Time intensive 
relative to 
rigid-pro, 
cannot capture 
highly flexible 
motion 

May & 
Zacharias 

2008 
 

REMD/ 
PLOP 6 cases 

REMD used to 
generate low 
energy loop 
conformations 

After clustering, loops 
refined with PLOP 

Lowest energy 
conformer used for 
docking with 
GLIDE 

RMSD of docked 
pose between holo 
and predicted 
structure was 1.4-
12.5 Å 

RMSD of docked 
pose between holo 
and crystal 
structure was 1.0-
2.5 Å 

RMSD of docked 
pose between holo 
and apo structure 
was 1.8-13.2 Å  

Limited by 
efficiency of 
REMD for 
generating 
loop 
conformations 

Wong & 
Jacobson, 

2008 

FITTED 
2.6 

5 protein-
ligand sets 

Modified GA for 
receptor 
chromosome  

Allowed switching 
between 
conformations, side 
chains in the 
binding site, and/or 

Success rate based on 
RMSD of docked 
pose to crystal 
structure was 79% 
for native rigid-
pro, 56% for 
cross-docking 
rigid-pro, 67% for 

Flexible docking 
was unable to 
select the exact 
experimental 
complex 
structure 

While 
computational 

Corbeil et 
al., 2009 
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water positions 
Can perform rigid-pro, 

semi-flex, or full-
flex  

 

SC-Flex, and 67% 
for flexible 
docking 

Notable speed 
increase over 
previous versions 

speed 
increased, 
accuracy 
decreased 
between 
FITTED 1.5 
and 2.6 

4D 
Docking 

267 
nonredun-

dant 
structures 

Ensemble assembled 
onto 4D grid based 
on binding 
potential and 
superposition 

During docking, could 
switch receptor 
conformation as 
well as ligand 
conformation 

4D docking 73% 
success rate  with 
3-8 conformers 
when cognate 
receptor wasn’t 
included 

For the same 
scenario, semi-
flex had 71.1% 
success rate 

4D docking was 4x 
faster than semi-
flex 

 

Performance 
decreased with 
> 8 conformers 

4D docking 
marginally less 
successful than 
semi-flex 

Bottegoni 
et al., 
2009 

 

1.5.6. Ensemble Docking 

Ensemble docking differs from IFD in that protein flexibility is accounted for prior to 

the actual docking. Although the studies by Huang and Zou90 as well as Bottegoni et al.80 

used a pre-existing ensemble of conformations, they sampled those conformations on the 

fly, and so they are included above in the IFD section. Two different types of methods 

exist for representing receptor flexibility during docking: grid-based ensembles and 

structure-based ensembles. Frequently, alternate protein conformations are represented on 

a two-body potential grid, enabling fast, inexpensive docking simulations. Flexibility can 

also be incorporated into binding predictions through the sequential docking to structures 

in a conformational ensemble or docking to an averaged/united receptor structure. Due to 

the time required for initial ensemble generation and repeated rigid-pro, sequential 

docking is typically the most computationally intensive approach. However, it avoids the 

discovery of receptor-ligand complexes that are physically impossible (paradoxical 

ligands), which are sometimes seen in the results from docking to an average structure. 

Grid-based ensembles 
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The first docking method to use a composite grid was performed through DOCK3.5 

in order to evaluate the impact of representing conformational variability as a structural 

ensemble on binding pose results.91 With HIVp, ras p21, retinol binding protein, and 

uteroglobin as their test cases, the authors compared the capacity of standard grids to 

energy- and geometry-weighted average grids to reproduce known binding poses and 

affinities. They found that docking scores were sensitive to the grid spacing and threshold 

parameters used to define the composite grid. The performance of the geometry-weighted 

grid was less dependent on the protein conformations that were available than the energy-

weighted, to the extent that the geometry-weighted grid placed known ligands for HIVp 

was within the top 21%, while the energy-weighted grid placed them in the top 33%. This 

occurred because the geometry-weighted grid ignored the repulsive potentials between 

flexible atoms, while the energy-weighted grid simply smoothed the repulsive potential, 

which can result in the retrieval of paradoxical inhibitors.  

The multiple copy simultaneous search (MCSS) methodology was the earliest 

computational approach for mapping binding sites with functional group probes.92 The 

authors simultaneously minimized or quenched the probes by MD to the binding site of 

the hemagglutinin protein to identify favorable minima and found some correspondence 

between the positions of the minima and the functional groups on the ligand, sialic acid. 

While the authors noted that their method could account for a limited amount of side 

chain flexibility by including multiple copies of the side chains, the published work was 

performed against a rigid structure.  

Stultz and Karplus explored the influence of protein flexibility on the results from 

grid-based MCSS where five different protocols for placing two functional group probes, 

methanol and methyl ammonium, were used to search the binding surface of HIVp.93 

MCSS calculations were performed for 1: a minimized crystal structure, 2: a 

conformation generated from quenched MD of the initial structure, 3: an unrestrained 

structure, 4: the output of 1 subjected to quenched MD with functional groups restrained 

and multiple side-chain copies, and 5: a different rigid crystal structure of HIVp. The 

authors found that their results with protocols 4 and 5 yielded more favorable interaction 

energies than the reference protocol 1. Protocol 4 gave valuable information for ligand 

design, while the different low-energy minima from protocol 5 supported the idea of 
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performing MCSS against an ensemble of structures and comparing the results, therefore 

the authors suggested a combination of 4 and 5. However, one of the limitations of 

MCSS and other grid-based methods is that they do not account for entropy or solvation 

during surface mapping, which hampers discrimination between druggable and irrelevant 

minima. Furthermore, as Schubert and Stultz point out in their review of MCSS, 

functionality maps are difficult to combine across different structures of a protein.94 

The incorporation of protein flexibility through docking to an interaction grid that 

represents the receptor ensemble is a common approach for SBDD, and additional 

methods are presented in Table 1-5, including those based on AutoDock 3.095, Flog96, 

GRID/CPCA97, IFREDA78, ISCD98, and sets of consensus structures99. 

 
Table 1-5: Studies including full receptor flexibility through grid-based ensemble docking. 

Method Target Flexibility Results Caveats Author 

DOCK3.5 
composite 

grids 
4 cases 

Geometry-averaged 
and energy-
weighted grids 

Geometry-averaged 
grids gave results 
that were less 
influenced by input 
conformation 

Geometry-weighted 
average grid yielded 
RMSD of 0.4-1.6 Å 

Energy-weighted 
average found 
RMSD of 0.4-4.0 Å 

Recovers local 
minima in 
addition to 
the binding 
site 

Can identify 
paradoxical 
inhibitors 

Knegtel et 
al., 1997 

Grid-
based 
MCSS 

HIVp 

Used quenched MD 
to generate new 
conformations or 
mapped a 
different 
conformation 
from the 
reference 

Local optimization of 
selected probes from 
MCSS improved 
interaction energy 

Protocols 2 and 3 
yielded functionality 
maps that were the 
most divergent from 
the reference  

Protocol 4 yielded the 
most low-energy 
minima 

Recovers local 
minima in 
addition to 
the binding 
site 

Very minor 
amount of 
protein 
flexibility 
included 

Stultz and 
Karplus, 

1999 

GRID/ 
CPCA 

3 serine 
proteases 

Docking performed 
to crystal 
structures with 
GRID 

Used a scaling 
weight to 
normalize the 
probes 

Consensus PCA 

Validated as a potential 
tool for enhancing 
ligand selectivity to a 
specific target 

Able to predict 
important cation-π 
and hydrophobic 
interactions 

Highlighted ways 

Contour plots 
Only gives 

probe 
position, not 
orientation 

Kastenholz 
et al, 2000 
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gave contour 
plots of MIF 

enzyme selectivity 
could be 
incorporated in 
ligand design 

Flog 

L. casei 
DHFR, 
murine 
COX2 

Used snapshots 
from short MD 
for averaged grid-
based docking 

Used SIMPLEX 
optimization of 
the ligand in the 
binding site 

Calculated binding 
energy with post-
docking MD free 
energy 
perturbation 

Weight-averaged grids 
performed better 
than the grid of the 
average or static 
crystal structure, 
selecting 8 leads 
within the top 1% of 
the database, 
compared to 6 leads 
(crystal) or 7 leads 
(average) out of the 
16 possible leads 

Average and weight-
averaged grids 
required less than 
half the CPU hours 
with optimization 
than using the crystal 
structure grid  

Automated 
process, 
likely to 
result in 
incorrect 
results for 
certain 
complexes 

Could identify 
paradoxical 
binders 

Broughton 
2000 

AutoDock 
3.0 

HIVp 
(21) 

Combined multiple 
receptor 
conformations 
onto interaction 
energy grid 

Compared mean, 
minimum, 
clamped, and 
energy-weighted 
grids 

Retained structural 
waters during 
docking 

RMSD in energies was 
1.34 kcal/mol for 
clamped, 1.43 
kcal/mol for energy 
weighted, 7.69 
kcal/mol for mean, 
6.07 kcal/mol for 
minimum grids 

Weight-averaged grids 
performed best, 
retrieving the correct 
conformation 87% of 
the cases 

Limited ability 
to map 
conformation
al shifts 

Could identify 
paradoxical 
binders 

Osterberg 
et al, 2002 

IFREDA 

PK (33), 
1000 

compoun
d virtual 
screen 

Multiple conformers 
generated by 
repeated flexible 
docking with 
known ligands 

Serial-dock used for 
screening  

Average accuracy of 
70% in cross-
docking with a 
threshold of 2.5 Å 

De novo structure 
generation for eight 
complexes found that 
most of the lowest 
energy ligands were 
within 2 Å of the 
native state 

Unable to map 
backbone 
shifts 

Inadequate 
solvation 
model 

 

Cavasotto 
& 

Abagyan, 
2004 

ISCD 

Aldose 
reduct-

ase, 
throm-

bin, 
trypsin 

Three single 
confomer grids 
were joined 

Repulsive layers 
between the 
individual grids 

Top 15 ranked ligands 
had an RMSD to the 
crystal structure < 
1.4 Å for aldose 
reductase 

Joined grids for 
thrombin and trypsin, 
docking found that 7 

Limited 
capacity for 
structural 
ensemble 

Could identify 
paradoxical 
inhibitors 

Zentgraf et 
al., 2006 
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of 9 ligands 
preferentially docked 
to thrombin (cluster 
rank 1) 

The other 2 ligands 
were selective for 
trypsin and bound 
trypsin (cluster rank 
1) 

Computationally 
inexpensive relative 
to typical ensemble 
docking 

Consensus 
structures 

HIV-RT 
(47) 

Normalized B-
factors, ligand-
induced 
displacement, and 
consensus grids 
represented 
binding cavity 

Identified 2 novel 
interaction sites  

Results supported by 
experimental work 
by Sweeney et al., 
2008 

Proposed combining 
theories of NNRTI 
activity 

Requires 
available 
experimental 
structural 
information 
for consensus 
calculation 

van Westen 
et al., 2010 

 

Structure-based ensembles 

The original technique for structure-based ensemble docking was introduced by 

Carlson et al. as the dynamic pharmacophore model100, later termed the multiple protein 

structure, MPS, method.101 Two pharmacophores for HIV integrase were generated, a 

static model based on a rigid crystal structure and a dynamic model based on MD 

snapshots initiated from the same crystal structure. The MPS method mapped the 

dynamic binding surface of the protein with common functional groups by running a 

series of multi-unit search for interacting conformers (MUSIC) simulations (Figure 1-3), 

wherein hundreds of probes were used to flood the protein surface and then minimized by 

Monte Carlo (MC) sampling. During MUSIC simulations, all of the probe-probe 

interactions were ignored, which allowed probes to interact with the rugged binding 

potential of the protein and cluster into hot spot positions along the protein surface. These 

cluster sites were used to develop a pharmacophore for virtual screening, and where the 

rigid model was unable to locate any of the test case inhibitors, the dynamic 

pharmacophore model not only identified known inhibitors, but it also predicted new 

inhibitors that were confirmed by experiment. The MPS method is one of the few 
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ensemble-based methods that has been successfully used to find novel leads with 

demonstrated activity.102,103 

 
Figure 1-3: MUSIC simulations of benzene probes (gray) to the surface of a HIVp monomer (purple). Five 
hundred probes were flooded onto the protein surface, minimized, and then clustered together. Parent 
probes were identified for each monomer conformation, the HIVp monomers were aligned through a 
weighted-RMSD function, then the parent probes were clustered together and retained when at least half of 
the protein conformations contained a probe at that site. This resulted in low-energy probe clusters 
(colored red through purple) of benzene that could be combined with ethane and methanol clusters to 
develop a pharmacophore model. 

McCammon and co-authors developed the relaxed complex scheme (RCS) as a 

technique for incorporating receptor flexibility prior to docking.104-106 Initially the method 

was developed to generate conformational ensembles of the apo state through MD, which 

were then used in AutoDock to screen compound mini-libraries and score the receptor-

ligand complexes. The 2003 study by Lin et al. examined FKBP-12 by RCS and 

implemented a final refinement step with MM/PBSA107 to yield final results. Further 

updates to this method have included extension to virtual screening and reduction of the 

conformational ensemble to a representative configurational set108. RCS was successfully 

used to identify cryptic binding pockets and/or lead inhibitors of HIVp109, avian influenza 

neuraminidase110, acetylcholine binding protein111, DNA polymerase β112, 

MDM2/MDMX113, and cruzain114.  

RosettaLigand was introduced as an extension of the protein-protein docking 

program, RosettaDock.115 In the 2006 paper, side chains were repacked during docking 

through the implementation of a rotamer library while the vdW repulsion term was 

softened and ligand conformations were perturbed with MC. Their benchmark set 

included 100 complexes for native and 10 for cross-docking. They found a success rate of 

80% for native docking and 70% for cross-docking. The initial reliance of RosettaLigand 
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on side-chain motion as the only representation of protein flexibility was altered by the 

inclusion of full receptor flexibility obtained from multiple crystal structures.116,117 

Although RosettaLigand has generated good results, with protein flexibility included it 

requires 40-80 processor hours to generate a bound pose for the receptor-ligand complex 

and therefore is too time-consuming for use with large compound libraries.  

To determine the best process for developing a structural ensemble, Rueda et al. used 

ICM to examine the same set of 1068 conformations from 99 pharmaceutically-relevant 

proteins that was used in the 4D docking study.118 The authors judged performance in 

virtual screening based on the “area under the ROC plot curve” (AUC) and found that 

holo conformations yielded improved AUC values compared to apo conformations. It 

was interesting that the authors found that ensembles of holo plus apo conformations did 

not significantly improve results compared to holo-only ensembles. In cases without a 

holo structure, the authors recommended the use of an apo structure with the largest 

pocket volume. The authors proposed the use of a ligand-guided approach to find the 

optimal protein conformation, but stated that docking to an ensemble would be an 

acceptable substitute in the absence of ligand activity data. Several groups have found 

that there tends to be a single receptor conformation that grants the best performance in 

docking studies.118,119 

Normal mode analysis (NMA) has been frequently used as a tool for examining 

protein flexibility relevant to ligand binding.74,86,87,120-125 It is important to note that low-

frequency modes identify large-scale motions, while high-frequency modes identify 

small-scale motion. Rueda et al. showed that they could use NMA on elastic network 

models for all heavy atoms of the receptor in order to derive an ensemble of protein 

conformations and improve results from rigid-pro cross-docking in ICM.126 Fourteen 

proteins, each with two structures and their cognate ligands, were used as the benchmark 

test set. Optimal results involved the generation of 100 different conformations from 

NMA on all heavy-atoms within 10Å of the ligand-binding site. Larger conformational 

ensembles, such as those with 200 members, negatively affected false positive rates. 

Another NMA-based method for conformational selection was based on cyclin dependent 

kinase-2 (CDK-2), because it had a sufficient amount of available experimental data on 

ligand binding for validation of the NMA protocol.127 Unlike most other NMA-based 
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methods, the authors included all of the protein atoms in the calculation in order to better 

represent conformational changes and found that too many protein conformations 

negatively impacted docking results through the recovery of false positives.   

Of the variety of techniques that have been developed to improve binding predictions 

for protein-ligand complexes, the use of a conformational ensemble is perhaps the most 

common approach. Representative cases and novel methods based on structure-based 

ensemble docking are listed in Table 1-6 and include modifications to DOCK128, docking 

to a large set of conformations119,129, NMA and MD-based approaches125,130-132, structure 

prediction133, the ensemble reduction method134, F-DycoBlock135, FIRST136, 

FIRST/ROCK/SLIDE137, Fleksy138, FlexX-Ensemble79,139, FlipDOCK140,141, Flo98142, 

MCSA-PCR143, MD+LigBuilder144,145, PhE/SVM146-148, QSiCR149,150, a reduced receptor 

ensemble151, Skelgen152, and Surflex153-155. 

 
Table 1-6: Studies including full receptor flexibility through a structural ensemble for docking.  

Method Target Flexibility Results Caveats Author 

FlexX-
Ensemble 105 cases 

Averaged highly 
conserved regions 

Retained 
orientations of 
flexible regions as 
a set 

FlexX-Ensemble 
yielded 66.7% 
success (40 hits) 
compared to 63.3% 
with FlexX within 
an RMSD of < 2 Å 
for the first 10 
solutions 

May find ligands 
that are not 
compatible 
with the “real” 
ensemble 

May not identify 
the lowest 
RMSD 
complex 

Claussen et 
al., 2001 

MCSA-
PCR 

Major 
histocomp

atibility 
complex 

Ligand grown into 
binding pocket 
with each SA 
cycle 

Generated pseudo-
crystallographic 
density map 

Identified optimal 
ligand position and 
important waters 
based on simulation 
density  

Side-chain RMSD of 
VSV8 peptides from 
explicit simulation 
was 2.15 Å for N/C 
termini-restraints, 
2.61 Å for Cα 
restraints, and 2.41 
Å for backbone 
restraints 

High 
computational 
effort, not 
suitable for VS 

Ota & 
Agard, 
2001 

F-Dyco 
Block 

HIVp, 
COX-2 

Split ligands into 
smaller building 
blocks 

Performed locally 
enhanced 
sampling and 

Recovered the ligand 
3/3 results for HIVp 
when full flexibility 
was allowed (except 
secondary-structure 
hydrogen bonds), 

Simple 
clustering 

Dependent on 
threshold 
value and 
cluster 

Zhu et al., 
2001 
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multiple-copy 
MD with a 
dynamic 
connecting 
algorithm 

Tested grid 
approximation & 
4 ways to manage 
receptor flexibility 

compared to only 
recovering the 
correct complex for 
1 ligand when 
backbone-flexibility 
was restrained 

Recovered the correct 
ligand in 7/76 
results for COX-2 

position 

MD+ 
Lig 

Builder 

Alanine 
Racemase 

Dynamic 
pharmacophore 
modeling similar 
to MPS, but can 
simultaneously 
search with 
multiple probes 

LigBuilder mapped 
surface properties 
of each 
conformation (11 
total) after MD  

Dynamic 
pharmacophore 
model identified 34 
hits out of the set of 
43 known binders, 
compared to the 27 
identified by the 
static model 

Very brief phase 
of MD for 
conformation 
generation 

Mustata & 
Briggs, 
2002 

RCS FKBP-12 

Conformations 
generated by MD 

Rapid docking in 
AutoDock 

Refinement of high 
scoring 
complexes with 
MM/PBSA 

Correctly ranked the 
crystallographic 
pose as the highest 
rank with 
MM/PBSA for all 
three cases 

Can be time-
consuming 

Short MD 
simulation 
(2ns) used for 
conformer 
generation 

Lin et al., 
2003 

Modified 
DOCK 

T4 
lysozyme 

mutant 

Calculated 
interaction energy 
between ligand 
and flexible 
regions 
independently 

Used results to 
create average 
receptor 
representation for 
VS 

Found 18 new hits 
Conformation’s 

internal energy 
important for final 
ranking 

Conformational 
ensemble retrieved 
approximately 79% 
of ligands in the top 
1.5% of the 
database, compared 
to the holo 
conformation 
retrieving 77% and 
the apo 
conformation 
retrieving 54% of 
the ligands 

Conformational 
changes 
caused by 
ligand binding 
not fully 
predicted by 
method 

Wei et al., 
2004 

FIRST/ 
ROCK/ 
SLIDE 

CypA, 
estrogen 
receptor 

Analyzed flexibility 
potential (FIRST) 
and sampled 
rotational bonds 
to generate 
receptor ensemble 
(ROCK) 

SLIDE accounted 

Representative 
ensemble similar to 
NMR structures 

Captured important 
hydrogen bonds 
present in the 
receptor-ligand 
complex 

Compared score 
distributions, 
no individual 
assessment of 
relative 
likelihood/ 
energy for 
generated 

Zavodszky 
et al., 2004 
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for side-chain 
flexibility and 
solvation 

 conformers 

Docking 
to a 

Structur-
al En-
semble 

Hsp90 
(57), 

CDK2 
(34) 

Compared full-flex 
to rigid-pro 

For Hsp90, the use of 
pharmacophoric 
restraints improved 
docking results, with 
multiple cavity 
docking having 86% 
average success 
compared to single 
cavity docking 
having 57% average 
success 

For CDK2, single best 
cavity gave 64% 
success, 6 best gave 
94%, entire 
ensemble gave 76% 

 

Incorrectly 
assumed 
negligible 
difference in 
conformational 
free energy 

Use of multiple 
cavities for 
virtual 
screening was 
limited by bad 
poses with 
good scores 

 

Barril & 
Morley, 

2005 

Low-
freq-

uency Cα 
NMA 

cAPK 
Kinase 

NMA generated 
alternative 
conformations 
based on 
relevance to loop 
plasticity 

Minimized side 
chains while 
bound to non-
native ligand 

Improved docking and 
enrichment scores 
relative to rigid-pro 

RMSD of the top 
ranked pose to the 
native pose was 0.6-
4.0 Å, with one 
outlier at 7.0 Å for 
docking to the NMA 
conformer and was 
0.4-10.2 Å for 
docking to the 
crystal structure 

Used known 
binders, 
potentially 
biasing 
available lead 
space 

Cavasotto 
et al., 2005 

Elastic 
Network 
Model 

6 protein-
ligand 
cases 

Low frequency 
NMA to optimize 
docked receptor-
ligand complexes 
and identify new 
conformational 
space 

Used eigenvectors 
of apo protein  

Improved the global 
coordinate RMSD 
by ≤ 3.2 Å to the 
predicted complex 
to the experimental 
pose 

Refinement with 
restraints on mode 
amplitude 
performed much 
better than MD or 
NM minimization, 
or unrestrained 
scanning 

Most successful 
for systems 
where 
flexibility can 
be represented 
well in only a 
few modes 

Lindahl & 
Delarue, 

2005 

Skelgen 
Estrogen 

receptor-α 
(7) 

De novo design 
through serial-
dock 

Ligands generated 
from fragment 
design 

Two different 
pharmacophoric 

Identified 4 novel lead 
compounds 

Best had IC50=340nm 

Dependent on 
pharmaco-
phoric 
constraints 

Time and 
material 
intensive 

Firth-Clark 
et al., 2006 
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constraints 
applied 

Selected top 25 
complexes for 
each constraint 
set, yielding 350 
compounds for 
testing 

Explicit 
solvent 

MD/ 
Auto 
Dock 

p38 
MAPK 

(5000 MD 
snapshots) 

Performed 3 
simulations of 60-
ns each with MD 

Used snapshots 
from MD 
simulation for 
docking with 
AutoDock 

Found 2 novel 
conformations of 
DFG motif 

Successfully docked 5 
known inhibitors 

Conformers from 
simulation identified 
cryptic binding sites 

Extensive MD 
simulation 
(390ns total) 
render this 
technique 
impractical for 
some SBDD 
applications 

Frembgen-
Kesner & 
Elcock, 

2006 

Flo98 

C. 
hominis 

DHFR, T. 
gondii 
DHFR 

SA of active site 
MC search for 

optimal bound 
pose 

Averaged energy of 
25 lowest energy 
protein-ligand 
complexes 

Developed 
homology model 
for TgDHFR 

Calculated binding 
affinity was 72.9% 
correlated to 
experiment 
(ChDHFR) 

Identified alternate 
binding site 

50.2% correlation 
between docking 
and activity 
(TgDHFR) 

Enabled limited 
flexibility of 
binding site 
residues only 
during global 
MC docking 

Popov et 
al., 2007 

PhE/ 
SVM 

Ether-à-
go-

go Related
 Gene 

Receptor flexibility 
through a 
pharmacophore 
ensemble from 26 
training set & 13 
test set 
compounds 

  

Potential to enable 
protein plasticity 
even when structural 
information is 
inadequate for other 
methods 

Can not identify 
large structural 
shifts 

 

Leong, 
2007 

Predict-
ive 

Model-
ing 

Androgen 
Receptor 

Predicted receptor 
conformation 
from backbone 
conformation 

Optimized side 
chains 

Repeated selection 
~15 times to 
discriminate 
agonist and 
antagonist bind 

Potentially identified 
drug repurposing 
candidates for 
antiandrogenic 
activity, based on 
cross-docking and 
competitive binding 
assays  

Time intensive 
Requires a priori 

knowledge & 
similar protein 
structures for 
initial 
predictive 
modeling 

Bisson et 
al. 2007 

Fleksy 35 cases 

Generated ensemble 
from soft potential 
backbone-
dependent rotamer 
exploration  

Used FlexX-
Ensemble with 
soft docking 

Flexible 

Successful flexible 
cross-docking for 
78% of the cases, 
compared to 44% 
success for FlexX  
(rigid-pro) 

Cannot handle 
large changes 
in backbone 
conformation 

No consideration 
of solvent 
effects 

Nabuurs et 
al, 2007 
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optimization of 
complex with 
Yasara 

Flip 
DOCK 

HIVp, 
Protein 

Kinase A 

Flexibility Tree data 
structure 
represented 
conformational 
subspace 

Enabled full-flex 
with AutoDock 

Divide-and-conquer 
GA yielded best 
results 

FlipDOCK 
outperformed rigid-
pro 93.5% to 72% in 
cross-docking 

Each degree of 
freedom must 
be selected by 
hand 

Zhao & 
Sanner, 
2007 & 

2008 

QSiCR 
CDK2, 

p38 
MAPK 

Used known binders 
to generate 
protein flexibility 

Built conformers 
from MACCS 
keys and 
topological details 

Average R2 = 0.73 for 
active site size and 
distances of CDK2  

Average cross-
validated R2 = 0.60 
for predicted 
backbone 
conformational 
changes of p38 
MAPK  

Does not fully 
represent 
available 
interaction 
space 

Highly 
dependent on 
ligand training 
set 

Subram-
anian et al. 

2006 & 
2008 

Reduced 
Receptor 
Ensemble 

Avian flu 
neuramind

-ase 

Similar to MPS 
Generated MD 

ensemble 
Flooded ensemble 

with probes (CS-
Map), created 
pharmacophore 

Predicted novel hot 
spots potentially 
relevant for de novo 
ligand design 

No experimental 
support of sites 
or energy 
ranking of 
fragment 
clusters 

Landon et 
al., 2008 

Ensemble 
Reductio
n Method 

DHFR 

Generated MD 
ensemble 

Used relative 
difference 
distance to define 
optimal 
conformations 

Conservation of 
essential distances 
between binding 
residues best for 
selecting 
representative 
ensemble 

Maintaining 
conserved core 
distances may 
limit 
exploration of 
important 
large-scale 
shifts 

Bolstad & 
Anderson, 

2009 

Rosetta 
Ligand 85 cases 

Included receptor 
flexibility through 
multiple 
conformations 

Average RMSD of 
pose closest to 
crystal conformation 
(majority ranked 1) 
ranged from 1.43-
2.44 Å for flexible 
backbone docking 
compared to 2.39-
2.49 Å for rigid 
docking to JNK3 
kinase and 
urokinase 

Not as easily 
applicable to 
virtual 
screening 

Davis et 
al., 2009 

EN-
NMA 14 cases 

Used NMA to 
generate 100 
distinct 
conformers for 
heavy atoms with 
10 Å of the 
binding site 

From NMA-based 
conformers, able to 
select 20 of 28 
cross-docking cases 
amount top 5 

The larger 
conformational 
ensemble of 
200 structures 
increased false 
positive rates 

Rueda et 
al., 2009 

Implicit 6 Protein Docked via 40 Best results: distance- One solvation Huang & 
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Solvent 
MD 

Kinases & 
Phosphat-

ases 

simulated 
annealing cycling 
simulations for 
each protein-
peptide complex 

Restrained protein 
Cα 

dependent dielectric 
solvation model 
docking & GB 
molecular volume 
scoring, based on 
total system energy  

model alone 
(GB molecular 
volume versus 
distance-
dependent 
dielectric) not 
always correct 

Wong, 
2009 

Surflex 

85 
cognate 
cases, 8 
cross-

docking 
cases 

Updated to allow 
structural 
ensembles and 
post-docking 
refinement 

Created idealized 
ligand to model 
active site 

Ligand built in 
through 
incremental 
construction/comb
ination 

61% success after 
docking, 67% after 
refinement and 
rescoring, 75% after 
using the best of 2 
pose families 

Moderate 
computational 
expense 

For some cases, 
ligand sub-
fragments 
guiding 
docking could 
have a 
negative 
impact  

Jain, 2009 

Docking 
to a 

Structural 
Ensemble 

BACE, 
cAbl 

Examined 
enrichment from 
ensemble docking 
compared to rigid-
pro for choosing 
the inhibitors over 
mimetic decoys 

Used five different 
strategies for 
combining 
receptor structures 
into an ensemble 

Docking performed 
in Glide 

Area-under-curve 
(AUC) for rigid 
BACE structures 
ranged from 0.688 
to 0.778 

Construction of an 
ensemble from 
receptors which 
demonstrated 
optimal rigid-pro 
success against 
different 
chemotypes yielded 
the best performing 
ensemble 

Technique was 
based on 
improving 
enrichment 
against known 
inhibitors 
rather than 
exploring 
conformational 
space 

Did not account 
for solvation 
or energy of 
the receptor 

Craig, et al. 
2010 

ICM 99 cases 

Studied the impact 
of using holo 
versus apo protein 
conformations for 
virtual screening 
based on AUC 
scores 

Found that there is one 
receptor 
conformation within 
the ensemble that 
gives the optimal 
performance 

Holo conformations 
outperformed apo 
conformations in 
most cases 

The authors 
noted that 
ensemble 
docking 
performed 
better than a 
single average 
structure, with 
0.88 ± 0.18 
mean AUC 
versus 0.78 ± 
0.22, but those 
ranges overlap 
significantly 

 

Rueda et 
al., 2010 

All atom 
NMA CDK2 

Used all of the 
protein atoms for 
conformational 
selection 

Pursued relevant 

Over all cases, 
successful docking 
occurred for 54.3% 
(holo crystal 
structure), 58.1% 

As seen in many 
of the 
ensemble-
based 
methods, care 

Sperandio 
et al., 2010 
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structures from 
the 20-25 lowest 
modes 

Required a deviation 
of at least 1 Å, but 
no more than 8 Å 
from the 
minimized crystal 
structure for new 
conformations 

(apo crystal struct-
ure) 42.8% 
(minimized apo 
crystal struct-ure) 
70.4% (best NMA 
structure) 55.7% 
(second-best NMA 
structure), and 
55.2% (third best 
NMA structure) 

was required 
in conformer 
selection to 
avoid 
discovery of 
too many false 
positives  

NMA is not 
applicable to 
small local 
motions or 
large domain 
shifts  

Explicit 
solvent 

MD/ 
Glide 

Reverse 
transcript-

ase 
(10,000), 
W191G 
(7,500) 

Generated 
conformational 
ensemble from 
MD of holo and 
apo crystal 
structures 

Docked 
ligand/decoy set 
to conformers in 
Glide 

Found that MD could 
be used to move a 
conformation into a 
predictive range for 
docking 

No correlation 
between MD run 
and AUC 

Identified a correlation 
between the average 
predictive power 
and the average 
flexibility of the 
binding site, such 
that highly flexible 
sites had less utility 
for docking 

A broadly-
applicable 
protocol for 
the application 
of multiple 
receptor 
structures for 
use in docking 
is still a distant 
goal  

No single feature 
can be used to 
pick out 
conformations 

May require 
extensive 
knowledge of 
the system 

Nichols et 
al., 2011 

 

1.6 De Novo Approaches through Fragment-Based Drug Design 

Several interesting experimental methods that naturally account for protein flexibility 

have greatly influenced computational SBDD. The burgeoning field of FBDD has 

allowed for the identification of low-molecular weight binders, which allow for the 

identification of difficult binding sites.156 First introduced by the multiple solvent crystal 

structure (MSCS)157 and SAR-by-NMR158 techniques, FBDD can be performed via NMR 

or x-ray crystallography, and provides a different set of hits from HTS experiments. 

Screening proteins with a fragment collection both verifies the druggability of a target 

system and identifies fragments that can be linked and optimized to develop a viable lead 

compound.159 Importantly, hits from FBDD have been experimentally validated and 

identified novel compounds shown to work in the clinic.160,161 
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The MSCS technique was originally introduced as a crystallography tool for the 

characterization of the binding potential of pancreatic elastase. Other groups have also 

used MSCS to probe ligand interactions in thermolysin162,163, subtilisin164-166, RNase 

A167,168, p53 core169, lysozyme170, and H-Ras171. During crystallization, the water and 

organic solvent acted as probes of binding affinity because the organic solvent, which 

was chosen to represent a common functional group, displaces bound waters only at 

locations with favorable affinity for the particular interaction type presented by the 

protein. MSCS can be performed with a variety of probes, thus enabling the results from 

the protein crystallography experiment to be superimposed in order to identify regions of 

consensus binding.  

When Joseph-McCarthy et al. compared their results from studies with the original 

MCSS (non-grid-based) to results from MSCS, they found that for traditional MCSS it 

was important to consider occupancy at a first site in order to accurately predict 

occupancy at a second binding site.172 English et al. compared the use of MSCS, GRID, 

and MCSS through the exploration of the binding surface of thermolysin with acetone, 

acetonitrile, isopropanol, and phenol acting as functional group probes. The authors 

found that in comparison with MSCS, MCSS and GRID overestimated electrostatic 

interactions, retrieved an overabundance of local energy minima, and could not provide 

detailed descriptions of the interactions between the protein and probes.163  

Although both SAR-by-NMR and MSCS allow for a larger amount of protein 

flexibility then current methods for docking do, they are also both material and time-

intensive. Furthermore, as discussed by English et al., MSCS can be quite slow and probe 

choice is limited by the fragility of protein crystals.163 Computational solvent mapping is 

an complementary approach to experimental fragment-binding studies, however most 

computational approaches do not account for either the impact of protein flexibility or 

proper solvation effects, which can lead of poor mapping results. Over the past two years, 

several groups have developed new methodology for including flexibility and solvent 

competition in computational fragment mapping. While the results of any fragment-based 

study can be translated into a consensus pharmacophore model and used in virtual 

screening applications, the primary objective of MSCS and computational solvent 

mapping has been the correct identification of potential binding sites. 
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Locus Pharmaceuticals developed a method based on a grand-canonical (GC) MC 

simulation for pharmacophore development.173-175 Both studies from Clark et al. were 

performed against a static structure. Their later study concentrated on deriving accurate 

ΔGbind, while their earlier study used 10 simulated annealing runs of GC-MC to explore 

the protein surface of thermolysin with 2 probes and of T4 lysozyme with 14 probes. 

Based on the simulated annealing runs, GB/SA was used to predict binding affinities and 

Clark et al. found that their results retrieved some of the hot spots observed in published 

MSCS data. Moore discussed the use of torsion-space dynamics to generate protein 

flexibility in combination and general outcomes from the use of a 500-member fragment 

library to search target surfaces with GC-MC, however no specific details were given. 

Vadja and co-workers developed a fast algorithm for searching protein surfaces with 

small organic probes that was based on a fast Fourier Transform correlation approach 

(FTMAP).176 In a manner akin to MPS, billions of solvent probes are minimized to the 

protein surface and then clustered based on a simple greedy algorithm. The probe clusters 

demonstrate the position and orientation of proposed hot spots along the target, where the 

largest cluster is defined as the maximal hot spot location; the second largest is the 

second most-important site, and etc. Although FTMAP is another method for 

computational solvent mapping that does not inherently include protein flexibility, 

receptor dynamics could be modeled through serial searches over multiple 

conformations.  

A novel method for probe mapping incorporated solvent competition and protein 

flexibility through MD.177 Based on MSCS, the authors used isopropyl alcohol (IPA) and 

water together to perform a single MD simulation over 16 nanoseconds (ns). The use of 

binary solvent MD inherently accounted for solvation effects and protein flexibility. This 

method was applied to three proteins with experimental MSCS results and five 

pharmaceutically relevant receptors that have not been studied by MSCS; simulation 

probe occupancy was used to differentiate binding sites and predict ΔGbind. This method 

was much more computationally demanding than other computational solvent-mapping 

techniques like FTMAP,176 but may be more competent at distinguishing between 

druggable and nondruggable sites because of the use of flexibility data. Yang and Wang 

used this same solvent-mapping technique to study hot spot mapping against thermolysin 
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together with a double-decoupling method which provided a more rigorously calculation 

of ΔGbind at potential hot spots.178 It is important to note that the analysis of probe 

occupancy to locate binding sites necessarily assumes that Boltzmann sampling occurred 

during simulation, therefore careful selection of the trajectory length required for 

convergence is exceedingly important but frequently neglected in method development.   

Guvench and MacKerell published a similar method, Site Identification by Ligand 

Competitive Saturation (SILCS), where small molecule probes were used to examine the 

binding surface.179 Their technique used all-atom MD simulations of protein in a box of 

propane, benzene, and water as the explicit solvent probes. Ten independent simulations 

over five nanoseconds were generated for analysis and the mapping results were 

represented on a 1Å x 1Å x 1Å grid of volume occupancy. SILCS was capable of 

reproducing known binding interactions for the test case, BCL-6 oncoprotein, and a 

follow-up study further validated the approach on seven proteins from five different 

protein families.180 In their follow up study, MacKerell and co-workers extended the 

simulation time to 10 runs of 20 ns each and scored their occupancy results based on a 

normalized calculation of the observed:expected occupancy, which they termed grid free 

energy (GFE). When compared to the positions of known ligands, their GFE was able to 

select for the crystallographic pose of the bound ligand in several protein families. 

However, in the only available figure of an entire protein surface, SILCS is clearly shown 

to preferentially map many irrelevant minima before identifying the binding site. 

We have developed a computational method that achieves hot-spot-mapping results 

that are similar to available experimental data; Mixed-solvent Molecular Dynamics 

(MixMD). Our multiple protein structure (MPS) method101 for pharmacophore 

development demonstrated success in mapping protein systems for drug design102,103 and 

MixMD complements MPS while simultaneously allowing protein flexibility and probe 

competition with water. MixMD was inspired by the MSCS technique, but incorporates 

more explicit conformational sampling. Since MSCS results identified specific electron 

density that can be attributed to the placement of organic solvent along the protein 

surface, we specifically compare grids of solvent occupancy from simulation to that of 

experimental electron density. Using many, short MD simulations of protein in 50% 

weight/weight (w/w) mixtures of acetonitrile and water, we successful validated MixMD 
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based on the available MSCS structures.181 Similar results were obtained with isopropanol 

(in preparation). 

 

1.7 Limitations of Structure-Based Drug Design 

Most published methods for flexible protein-ligand docking are based on limited sets 

for benchmarking results. The use of a large test set for methods development is crucial 

for demonstrating performance across a range of different targets. Furthermore, docking 

to a flexible protein is more resource and time-intensive than docking to a rigid receptor 

and in many cases ensemble docking is unrealistic for screening huge compound 

libraries. Through the careful development of methods for docking and scoring, the 

computational requirements for accurate simulation may be sufficiently lessened to allow 

for more widespread implementation of flexibility. 

The use of multiple conformations for docking is limited in that several protein 

conformations may decrease the selectivity of lead compounds by increasing the false 

positive rate. Using combinations of features from different conformations may also lead 

to the creation of a ligand with high affinity for an average receptor structure that is not 

experimentally accessible, a so-called “paradoxical inhibitor”. As a result, there is the 

potential for introduction of bias through user intervention in many of these methods for 

flexible docking.  

Due to the rugged landscape of most proteins, not every conformation that is included 

in a low-energy ensemble will adequately represent its true binding potential. This has led 

many recent studies to dedicate their focus to identifying the optimal method for selection 

of only the relevant protein conformations. For this process of conformer selection and 

weighting to succeed, it is crucial that the internal energy of the individual protein 

conformations be included in the scoring process (though this is more difficult to 

properly calculate). Furthermore, it is necessary that the scoring functions used in fully 

flexible procedures be as accurate as possible in order to determine the most physically-

realistic results.  

Experimental FBDD approaches like SAR-by-NMR and MSCS are time-consuming, 

costly, and dependent upon the receptor size and its potential for crystallization. On the 
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other hand, computational FBDD approaches can be just as time-consuming and are 

heavily dependent on proper parameterization and analysis. The trend towards estimating 

binding affinity from computational solvent grids has shown only partial success when 

compared with experimental affinities. Computational FBDD shows great promise as a 

tool for including flexibility and probe-water competition explicitly in a “docking” 

experiment; however, implementation of these methods requires careful consideration of 

the underlying chemistry to ensure reliable results.  

1.8 HIV-1 Protease as a Computational Model 

Since infection with Human Immunodeficiency Virus/Acquired Immunodeficiency 

Syndrome (HIV/AIDS) emerged as a global health threat in the early 1980s182, it has 

become one of the most devastating diseases worldwide.183 The most recent estimates 

(2009) from WHO/UNAIDS reported that 33.3 million people were living with 

HIV/AIDS, 2.6 million were newly infected, and 1.8 million had died due to AIDS.184 

Infection with HIV/AIDS results in immune system failure, eventually resulting in death 

caused by a secondary illness. Although there is no cure, HIV/AIDS is usually treated by 

a combination of highly active antiretroviral therapies (HAART). These drugs target 

various stages of the viral life cycle, including viral enzymes like HIV integrase, 

protease, and reverse transcriptase. While there are a number of therapeutics for people 

living with HIV, many of these therapies are becoming less effective because of drug-

resistant viral mutations. 

HIVp is widely recognized as an important pharmaceutical target for the treatment of 

HIV, the lentivirus that causes AIDS. HIVp is critical to the continued viral life-cycle; it 

cleaves the precursor proteins gag and gag-pol, yielding mature HIV proteins including 

integrase, reverse transcriptase, protease, and the viral matrix, capsid, and 

nucleoproteins.185,186 If HIVp is inactivated, the virus cannot undergo maturation and does 

not become infectious. Despite the existence of ten protease inhibitors (PIs) in clinical 

use187, there is little variety in their mechanism of action. Typical PIs are 

pseudosymmetric and compete with the substrate for binding at the base of the active site. 

Unfortunately, even the most recent PIs suffer from taxing side-effects and poor 

pharmacokinetic properties.188,189 In addition, HIVp is highly mutagenic, particularly in 
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the region surrounding the active site, resulting in the rapid development of drug 

resistance.190-192 Consequently, finding new PIs that can bypass or treat multi-drug 

resistance (MDR) is essential. 

 

1.5.1 HIVp structure 

HIVp is an attractive target for SBDD due to the wealth of structural information 

available from x-ray crystallography, NMR, and MD. HIVp is a C2 symmetric 

homodimer aspartyl protease with two catalytic aspartic acids, residues 25/25’, at the 

base of the binding site. The active site is loosely covered by two glycine-rich α-hairpins, 

or “flaps” (Figure 1-4).193-195 The conformational behavior of the flap region of HIVp has 

been extensively studied in the last few years, as reviewed by Hornak and Simmerling.196 

These flaps are highly mobile and can occupy a range of conformations. NMR and x-ray 

crystallography studies of HIVp demonstrate that the protease can occupy three different 

conformational states: open, semi-open, and closed.197-199 In the apo form, the 

thermodynamically-favored state is thought to be the semi-open conformation, in which 

the flaps are loosely positioned over the active site cavity restricting ligand entry.200-202 

Upon binding to a ligand, the flaps close down over the active site, shifting their position 

by 5-7 Å.203 Differences in flap mobility are a potential contribution to the mechanism of 

MDR for certain HIVp mutants.204  

 

Figure 1-4: The typical semi-open flap conformation for HIVp with each distinct region of the protein 
shown in a different color. The catalytic aspartic acids (Asp25/25’) are shown in stick form. The flaps are 
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shown in dark blue, residues 43-58; the flap tips in yellow, residues 49-52; the fulcrum in orange, residues 
11-22; the cantilever in lime green, residues 59-72; the active site in cyan, residues 23-30; the dimer 
interface in blue, residues 1-5 and 95-99; the elbow in hot pink, residues 35-42; the helix in light blue, 
residues 86-90; the 80s loop or wall turn in red, residues 79-84; and the nose in violet, residues 6-10. 

 

1.5.2 HIVp inhibition 

The flexibility of the flaps and their connection to protease conformation and activity 

has been examined at length.196 A coarse-grained (CG) MD study by Trylska et al. found 

that the substrate waits in proximity to the binding site for the flaps to open long enough 

so that the substrate can enter the active site.205 Another CG dynamics simulation 

demonstrated that when the flaps are semi-open or almost closed the small cyclic urea 

inhibitor XK263 can enter the active site from the side.206 However, the same study also 

showed that a peptide substrate must sample the surface of the protein until it encounters 

an opening event. It is generally held that most ligands, particularly the peptide substrate, 

can only access the active site through the open conformation.205-207 Therefore, it is 

possible that a new class of PIs could be developed to treat HIV through the restriction of 

flap mobility. Most of the mutations seen in HIVp occur around the binding site,208 so by 

targeting flexibility of the protease with an allosteric inhibitor, existing drug resistance 

could be avoided. There are three different allosteric sites with the potential to control 

HIVp allosterically: the elbow, the eye103, and the dimer interface. By controlling motion 

at these sites, the position of the protease flaps may be altered, thus affecting access of 

the peptide substrate to the binding site. Development of a new strategy to treat HIV 

infection by targeting HIVp would lead to the first new class of inhibitors since the 

introduction of dimerization inhibitors more than twenty years ago.209,210  

1.9 Summary 

The major areas addressed in this thesis include protein flexibility, allosteric control, 

and hot-spot prediction.  

Chapters 2 and 3 focus on computational probe mapping through MD simulations of 

proteins in binary solvent. Probe mapping is a commonly used computational technique 

for identifying potential binding pockets along a protein surface, but it typically relies on 

gas phase calculations against a rigid protein. Chapter 2 discusses the development and 
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validation of a new method, mixed-solvent molecular dynamics (MixMD), that 

simultaneously allows for the probe’s competition with water and protein flexibility. 

Chapter 3 highlights the generalization of the MixMD approach to a broad range of 

pharmaceutically relevant protein targets. Additionally, the correct implementation of 

solvent parameters as well as the impact of simulation time on convergence is examined.  

Chapters 4 and 5 consider the use of explicit-solvent molecular dynamics (MD) to 

examine the potential for allosteric regulation between small molecules and HIVp. 

Chapter 4 presents an in-depth study of the interactions between HIVp and symmetric 

pyrrolidine inhibitors that complement the semi-open conformation of HIVp. This work 

dove-tails with previous studies in the Carlson Lab suggesting the eye site as a possible 

alternative to traditional competitive inhibitors. Chapter 5 discusses my initial studies in 

the Carlson Lab into the impact of small molecules at the elbow region. The work 

detailed in Appendix A is an extension of these HIVp-elbow studies, where we employed 

positional restraints and small beads to examine the structural properties of a potential 

compound that could target HIVp as an allosteric regulator. While the studies presented 

in Chapters 2-5 represent work that has been published or is in preparation for 

publication, the study in Appendix A was not published.  

 



 

41 
 

Chapter 2  

Full Protein Flexibility is Essential for Proper Hot-Spot Mapping 

2.1  Introduction 

We have developed a new protocol for using Mixed Solvent MD (MixMD) to 

identify important hot spots. Our multiple protein structure (MPS) method211-213 for 

creating binding-site pharmacophore models based on conformational ensembles has 

demonstrated success in mapping protein systems for drug design.102,103 MixMD expands 

the MPS concept while combining ideas from MSCS to simultaneously allow protein 

flexibility and competition between probes and water. 

Several similar efforts have incorporated MSCS concepts into a computational 

method, but each has notable limitations. FTMap176 is modeled after MSCS, but while it 

can be used with ensembles like MPS151, neither ligand nor on-the-fly protein flexibility 

is used during probe mapping. A recent study from Seco et al. utilized MD with mixed 

water and isopropanol to detect binding sites and predict potential druggability.177 

However, the method was unable to reproduce many known binding sites. SILCS is a 

mapping method that incorporates a ternary solvent system (benzene, isopropanol, and 

water) with MD to map sites.179,180 Therefore, these methods are in their infancy and 

require significant development to provide a robust tool for SBDD. Here, we present 

initial findings based on our MixMD protocol that should have significant impact on 

solvent mapping approaches.  

Hen egg-white lysozyme (HEWL) is a canonical model system that allows for 

appropriate testing and validation of MixMD to identify hot spots. A MSCS of HEWL 

was produced using acetonitrile (CCN) as the organic solvent.170 The high quality 

electron density available for this structure allows for an accurate assessment of MixMD 

data. Below, we demonstrate how occupancy grids for both the probe and water can be 

directly compared to electron density. 
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2.2 Methods 

The starting structure of HEWL in CCN and water (2LYO)170 was obtained from the 

PDB214. We performed all-atom MD simulations of the HEWL protein in the presence of 

multiple solvents using standard procedures for sander in AMBER1010 at 300K. Pre-

equilibrated solvent boxes with an even distribution of 50% weight/weight (w/w) CCN 

and water were used. Simulation set-up was completed in tLeAP using the ff99SB force 

field7, TIP3P water215, neutralizing ions, a 10 Å vdw cutoff, and CCN parameters from 

Grabuleda et al216. A time step of 2 fs was implemented, temperature was controlled 

through an Anderson thermostat217,  and SHAKE was applied. Three different protocols 

for protein flexibility were evaluated for proper sampling and convergence: all-atom 

restrained, backbone restrained, and fully flexible HEWL. Five independent simulations 

with 10 ns of production time each were performed for every system, initiated from the 

same solvent configuration. Though it might enhance sampling to have alternate starting 

locations for solvent in each simulation, it would make it more difficult for us to properly 

evaluate convergence in the simulations. 

The stability of the protein core was verified on the basis of low backbone RMSD 

over the course of the trajectory, as measured with ptraj. The presence of mixed solvent 

did not destabilize the unrestrained protein on the timescale examined. 

Five independent trajectories of 10 ns each were performed, but for the analysis we 

combined the last 2 ns of each simulation to provide the most “equilibrated” 10 ns of the 

available 50 ns of simulation time. To calculate the solvent grids, the central C2 atom of 

acetonitrile and the oxygen atoms for water were binned into 0.5 Å × 0.5 Å × 0.5 Å 

volume elements, which spanned the entire box. The electron density from the initial 

crystal structure and the grids from MD simulation were compared in Chimera218 to 

examine the ability of MixMD to recover known hydration sites and binding sites of 

CCN.  

The CCP4i suite219 was used to produce electron density grids for the solvent probe 

density in the original crystallographic study. The ptraj function in AMBERTOOLS1.2 

was used to generate grids of solvent density from simulation data. Prior to grid output, 
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each trajectory was centered, imaged, and aligned to the protein core backbone from the 

2LYO crystal structure.  

Convergence in the simulations was examined with several measures. The first test 

compared the grids between the five independent simulations (the last 2 ns from each that 

were used to make the 10 ns of sampling noted above were calculated separately). 

Difference grids were calculated to determine differences in the density data. The second 

test compared the position of maximal occupancies for each of the five separate 

simulations. The 99% maximum occupancy calculation yields the grid points with the 

highest occupied solvent density. 
Third, the influence of the protein should be minimal at the box edges. Therefore, the 

ratio of probe to water on the distal points of the occupancy grids should simply approach 

the ratio of the total number of probes to water in the simulation. Occupancy grids within 

5 Å of each box boundary were examined. The ratio of probe occupancy to water 

occupancy was compared to the ratio of probes and water in the initial system set up. 

Occupancy within 5 Å from the box boundary for each plane was used to calculate this 

ratio. Correspondence between the two different ratios implies adequate sampling has 

occurred (values near 1.0). The calculation of this ratio was performed through a python 

script in Chimera. 

 

2.3 Results and Discussion  

The positions of the solvent from the sander trajectories were converted into 

occupancy grids using ptraj. In this way, we were able to directly compare our solvent 

“density” results to electron density data obtained in the crystallography study. This 

allowed for an equivalent comparison of solvent positions during simulation with solvent 

occupancy from crystal studies, which is a more even assessment than simply using the 

solvent coordinates given. (In the figures below, crystallographic coordinates for CCN 

and water are often used in place of electron density to avoid the confusion of overlaying 

many grids.) Technically, the equivalent data to crystallographic density would be an 

occupancy grid based on all atoms of the simulation (protein, water, CCN, and counter 

ions), but we have made the simplification of examining only solvent-occupancy grids.  
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Our initial simulation used mobile solvent and a fixed protein; we aimed to establish a 

minimum sampling time required for the solvent to reproduce the MSCS results. We 

assumed that the mapping would identify the position for CCN and that longer sampling 

times would be required as more flexibility was allowed for the protein. Instead, we were 

surprised to find that our simulation of the rigid protein converged to multiple, trivial 

minima (Figure 2-1). Though the CCN hot spot in the crystal structure was mapped with 

weak occupancy, it was equal to and less than many incorrect sites. When we added side-

chain flexibility (backbone still fixed), a variety of incorrect sites were again located, but 

the correct location was not. Only when full protein flexibility was allowed was the 

correct location for the CCN hot spot found and the trivial minima eliminated.  

 

Figure 2-1: Results from unrestrained vs. restrained protein simulations using CCN and water to solvate 
HEWL (white). The single hotspot identified by MSCS is shown in stick form; CCN (cyan). The probe 
density from the fully restrained simulation is shown in orange, from backbone-restrained in green, and 
from fully flexible in blue. Many incorrect local minima are seen in green and orange, but only the correct 
position dominates the simulation of the fully flexible protein in blue.  

It appears that the numerous local minima obtained when performing gas-phase 

minimizations of probe molecules are not an artifact of the vacuum; they are an artifact of 

using a rigid protein conformation. A rugged landscape is observed, even in the presence 

of mobile solvent and side chains. The abundant local minima cannot be distinguished 

from the binding site, and probe mapping cannot successfully differentiate between 

irrelevant and druggable hot spots. With full receptor flexibility included, MixMD 

appropriately reproduces the one hot-spot binding site seen in the crystallographic data 
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for CCN. The agreement between simulation data and experimental electron density 

validates MixMD as an accurate mapping tool (Figure 2-2). 

 

Figure 2-2: MixMD data for the fully flexible simulation agrees well with densities from MSCS experiments 
using CCN and water. All snapshots were superimposed on the crystal structure of HEWL (white surface). 
MixMD density for water is shown as a red mesh, and crystallographic waters are colored black for B-
factors below 33 Å and yellow above 33 Å. The MSCS coordinates for CCN are shown in stick form (cyan 
with its electron density as a mesh, 2FO-FC shown at 1.5σ); the highest occupancy for CCN in the fully 
flexible simulation matches perfectly and is shown in solid blue surface. Unsatisfied electron density in the 
crystal structure (positive FO-FC shown at 3σ) is shown in solid purple. (A) Water maps within the protein 
highlight interior waters conserved in the crystal structure and reproduced in our simulation. The large 
astrices (*) denote two highly occupied regions of the interior water map that correspond to unfulfilled 
density in the crystal structure. (B) Maps of the protein surface show good correspondence between 
crystallographic and MixMD densities for both CCN and well resolved waters. For the 16 crystallographic 
waters with B-factors below 33 Å (black spheres) five occur at symmetry-packing interfaces. MixMD 
misses four of the five, which is expected because the contacts are not present in our simulation. The other 
11 best-resolved waters are well reproduced. 

In addition to the CCN hot spot, MixMD reproduced the locations of low-B-factor 

water (<33 Å). The only locations that were not reproduced were on surfaces of the 

protein that were involved in crystallographic contacts (Figure 2-2B). A few locations 

were seen where significant water occupancy in the interior of the protein did not 

correlate with water coordinates in the crystal structure, but those locations were in 

excellent agreement with unfulfilled density in the crystal structure (Figure 2-2A). The 

location of positive density on the Fo-Fc map may in fact correspond to water positions. 
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While not all unfulfilled density will correspond to solvent molecules, the locations 

identified by MixMD water maps may indicate positions where water should have been 

placed. 

2.3.1.  Convergence of Sampling 

Though the 10-ns sampling time used in the simulations is relatively short by current 

standards, it is important to stress that long trajectories are inappropriate in mixed 

solvent. Modest timescales are needed: long enough to allow solvent equilibration and 

convergence, but short enough to avoid possible unfolding of the protein. Furthermore, 

an accurate MD technique built on short timescales makes this method more accessible 

for practical application in a pharmaceutical setting. 

We calculated the maximal occupancy location of each probe type during each 

individual simulation using the ptraj grid utility. These positions for CCN over the last 2 

ns of production were compared between independent simulations of the same initial 

system (Figure 2-3). Excellent convergence is seen across the five independent MixMD 

of the fully flexible HEWL. However, the individual simulations of the rigid and 

backbone-fixed simulations did not agree on a common location for the CCN hot spot, 

reflecting a propensity for solvent molecules to become trapped within local minima 

along the protein surface. For the fully flexible simulation, these points were all within <1 

Å, which is within the limits of accuracy when using a 0.5 Å grid. Not only did the 

locations agree with one another, they were in excellent agreement with the position for 

CCN in the crystal structure. In contrast, there was no agreement between the five 

independent MixMD simulations of the rigid and backbone-fixed HEWL. Those 

simulations also failed to identify the correct location for the CCN hot spot, except for 

one trajectory of the rigid HEWL. 
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Figure 2-3: The maximal occupancy positions over the last 2 ns for each independent simulation of HEWL 
in pre-equilibrated 50% w/w CCN and water. Only the fully flexible system shows convergence of the five 
simulations in agreement with experiment. Individual runs are indicated by color (red, orange, yellow, 
green, and blue). 

To further compare sampling, we calculated the ratio of the number of solvent probes to water molecules at 
the edges of the box. Far from the protein, there should be no bias between the solvents, and the ratio of 
their occupancies should approach Np/Nw (ratio of the number of CCN probes to the number of water in the 
simulation).220 All systems demonstrated good convergence according to this metric with the fully flexible 
system being the least biased (Table 2-1,  

 

 

Table 2-2). The fact that CCN and water exchange freely at the box edge indicates 

that the mixed solvent system inherently samples evenly, but the pronounced differences 

at the protein surface indicate that solvent molecules become trapped and poorly sample 

the rugged potential surface of a rigid or semi-rigid protein.   
Table 2-1: The extent of convergence for HEWL in MixMD, as determined by the ratio of co-solvent to 
water molecules at the box edges. Values of Obs/Exp near 1.0 indicate complete and unbiased sampling at 
the edges of the box. 

 Pre-equil 50% Fully  
Flexible 

Pre-equil 50% 
Backbone Restrained 

Pre-equil 50% All Atoms 
Fixed  

(Np/Nw)Obs 0.4501 0.4664 0.4709 
(Np/Nw)Exp 0.4490 0.4490 0.4490 
Obs/Exp 1.0024 1.0388 1.0488 
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CCN parameters3 

Atom Type NY CY CT HC 
q (e) -0.533 0.481 -0.479 0.177 

 

 

 

Convergence of Simulations of All-Atom Rigid, Backbone Fixed, and Fully Flexible HEWL in Pre-equilibrated Solvent 

 

Figure S1: The maximal occupancy positions over the last 2 ns for each independent simulation of HEWL in pre-equilibrated 50% w/w 
CCN and water. Only the fully flexible system shows convergence of the five simulations in agreement with experiment. Individual runs 
are indicated by color (red, orange, yellow, green, and blue). 

       

 

 

 

Table S1: The extent of convergence for HEWL in MixMD, as determined by the ratio of co-solvent to water molecules at the box edges. 
Values of Obs/Exp near 1.0 indicate complete and unbiased sampling at the edges of the box. 

 Pre-equil 50% 
Fully  
Flexible 

Pre-equil 50% 
Backbone 
Restrained 

Pre-equil 50% 
All Atoms 
Fixed  

(Np/Nw)Obs 0.4501 0.4664 0.4709 

(Np/Nw)Exp 0.4490 0.4490 0.4490 

Obs/Exp 1.0024 1.0388 1.0488 
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Table 2-2: The extent of convergence for fully flexible HEWL in MixMD, as determined by the ratio of CCN 
to water at the box edges. Simulations of 90% w/w CCN were problematic, and the behavior at the edges of 
the box show that they do not demonstrate even, unbiased sampling (the Obs/Exp value is much larger than 
1.0). 

 Pre-equil 
50% w/w 

Layered 
50% w/w 

Layered 
10% w/w  

Layered 
90% w/w  

(Np/Nw)Obs 0.4501 0.4619 0.0477 4.7453 
(Np/Nw)Exp 0.4490 0.4314* 0.0489 3.6563 
Obs/Exp 1.0024 1.0707 0.9755 1.2978 

* The layered 50% box contained a few more water molecules than the pre-mixed box, giving it a slightly different 
expected (Np/Nw). 

2.3.2.  Initial preparation of the mixed solvent environment 

The results above were obtained with a pre-equilibrated 50% w/w solution, but we 

have also examined other choices for the mixed solvent environment. Two protocols for 

initiating the mixed solvent box were compared. The first used the pre-equilibrated 50% 

w/w mixed solution, providing an even distribution of both solvents (data shown above). 

The second method aimed to reproduce the MSCS experiment where the CCN has to 

compete water off the surface of the protein. The waters were placed in a shell around the 

protein, and the CCN were placed outside the water shell, resulting in a layered solvent 

environment.  

 

Figure 2-4: Combined results from the last 2 ns of all 5 simulations (10 ns of sampling) with flexible HEWL 
(white surface), comparing the layered solvent to the pre-equilibrated protocol. The probe density is shown 
in blue mesh for 50% w/w pre-equilibrated solvent and in orange mesh for 50% w/w layered water and 
CCN. The highest sampled densities overlap exactly and agree well with the position of CCN in the 2LYO 
crystal structure. 

Densities of CCN were in good agreement between the two solvent protocols (Figure 

2-4). Maximal occupancy positions were used to compare coordinates of the 
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experimental probes to simulation probes. For simulations of fully flexible HEWL, we 

found that the layered solvent produced a maximally occupied location 0.8 Å from the 

crystallographic C2 atom of CCN. The pre-equilibrated, evenly mixed solvent produced a 

maximally occupied location 0.9 Å from the crystallographic C2 atom of CCN. These 

maximally occupied locations were 0.5 Å away from each other. Again, this is within the 

limits of error of our grids for calculating the occupancy maps. It appears that either 

protocol may be appropriate for 50% w/w CCN and water (Error! Reference source not 
ound.), but the layered solvent showed a slight disagreement in the convergence of the 

five independent simulations (Figure 2-5). 

 

 
Figure 2-5: The positions of maximal occupancy on the CCN grid were calculated over the last 2 ns for 
each independent simulation around a fully flexible HEWL (white). A) Results for the individual 
simulations based on pre-equilibrated solvent are shown. All five positions are in excellent agreement with 
one another and the CCN molecule in the 2LYO structure. The second (orange) and fourth (green) run 
results lie beneath the first (red) and fifth (blue) run results. B) Results for the individual simulations based 
on layered solvent are shown, with the orientation skewed slightly from A to show the green site (run 3) 
that does not agree. Four of the five positions are in agreement with one another and the crystallographic 
CCN. The first run result (red) lies beneath the fifth run result (blue). 

We have also examined 90% and 10% w/w mixed solutions of water and CCN to 

determine whether maps are more accurate when more or fewer probes are present. Both 

90% and 10% mixtures identified the correct hot spot for CCN (Figure 2-6). However, 

we found that the 50% mixtures gave better water maps and more complete sampling 

than either 90% or 10% mixtures of CCN and water (Figure 2-7). 

S3 
 

Convergence of Simulations of Fully Flexible HEWL in Pre-equilibrated and Layered Solvent Boxes 

 

Figure S2: Combined results from the last 2 ns of all 5 simulations (10 ns of sampling) with flexible HEWL (white surface), comparing 
the layered solvent to the pre-equilibrated protocol. The probe density is shown in blue mesh for 50% w/w pre-equilibrated solvent and in 
orange mesh for 50% w/w layered water and CCN. The highest sampled densities overlap exactly and agree well with the position of CCN 
in the 2LYO crystal structure. 

 
 

Figure S3: The positions of maximal occupancy on the CCN grid were calculated over the last 2 ns for each independent simulation 
around a fully flexible HEWL (white). A) Results for the individual simulations based on pre-equilibrated solvent are shown. All five 
positions are in excellent agreement with one another and the CCN molecule in the 2LYO structure. The second (orange) and fourth 
(green) run results lie beneath the first (red) and fifth (blue) run results. B) Results for the individual simulations based on layered solvent 
are shown, with the orientation skewed slightly from A to show the green site (run 3) that does not agree. Four of the five positions are in 
agreement with one another and the crystallographic CCN. The first run result (red) lies beneath the fifth run result (blue). 
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Figure 2-6: Results from the three different solvation protocols with fully flexible HEWL and CCN as the 
organic probe. The probe density calculated by combining the last 2 ns of the five independent simulations 
(to give 10 ns of sampling) is shown as a purple mesh for 90% w/w CCN, as a blue mesh for 50%, and as a 
green mesh for 10%. Results from all three simulations are nearly identical and reproduce the 
crystallographic position of CCN. 
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Figure 2-7: The water density calculated by combining the last 2 ns of the five independent simulations 
(giving 10 ns of sampling) is shown.  The water density is shown as a green mesh for 10% w/w CCN (A), as 
a blue mesh for 50% (B), and as a purple mesh for 90% (C). The separate solvent densities are overlaid in 
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(D). Crystallographic waters are colored black for B-factors below 33 Å and yellow above 33 Å. Although 
the 10% and 90% environments reproduce the CCN position, they do not give appropriate mapping for the 
water.  In A, too many equivalent positions for water are seen without identifying the water with higher B-
factor (yellow).  In C, there are too few water locations. 

2.4 Conclusion 

Our results demonstrate the need to include protein flexibility to achieve valid hot-

spot mapping. MixMD simulations have been successfully performed to determine the 

correct mapping procedure for locating truly relevant binding minima. MixMD was 

capable of locating hot spots for the CCN solvent probe, and it identified crystallographic 

waters with the lowest B-factors, crystal contact waters, and locations where water could 

have been modeled into the structure (unsatisfied density in the FO-FC map). The 

information contained within individual MixMD trajectories can be combined into a 

consensus model retaining only the consistently important mapped sites. We have shown 

that only through the incorporation of protein flexibility and appropriate solvent 

competition can viable mapping results be obtained.  

 

This work was published as: Lexa KW and Carlson HA. Full Protein Flexibility is 
Essential for Proper Hot Spot Mapping. J Am Chem Soc 2011, 133, 200-202.  
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Chapter 3  

How to Compare Computational Probe Mapping to Crystal Structures 

3.1 Introduction 

The development of FBDD as a compliment to traditional SBDD has allowed 

discovery efforts to probe binding potential across a broad range of protein structures, 

including many traditionally difficult cases. FBDD was first introduced as a viable tool 

for drug discovery in 1996 with the SAR-by-NMR and multiple solvent crystal structure 

(MSCS) methods.157,158,221 In the first SAR-by-NMR study of protein-ligand binding, 

small organic molecules with low molecular weight were screened for binding affinity to 

FKBP and their bound positions were determined from 15N-HSQC spectra.158 The authors 

identified low-affinity binding sites along the protein surface, optimized the resultant hits, 

and then linked the fragments together, thereby achieving ligands with nanomolar affinity 

for FKBP. In the original MSCS study, cross-linked crystals of elastase were soaked in a 

solution of CCN, allowing CCN to compete off water and form favorable interactions 

along the protein surface. Then, the crystals were washed to remove unbound CCN, 

enabling the crystallographers to identify optimal binding sites for amphiphilic nitrogen-

containing fragments. The authors concluded that the MSCS results from several organic 

probe types could be superimposed and translated into a template, or pharmacophore, for 

drug design. Both x-ray crystallography and NMR techniques allow for the identification 

of hot spots, defined as sites where a small number of protein residues confer most of the 
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free energy of binding.222,223 These hot spots signify regions where important protein-

ligand interactions may be formed and thus represent a tool for the design of novel 

therapeutics. 

FBDD has been effectively implemented in the development of clinical 

candidates.224,225 However, many combinations of linked fragments may be required 

before identification of a viable lead compound. Computational techniques can be used to 

complement the existing experimental methods for FBDD by offering a less costly 

approach to the examination of potential binding interactions in the target system. Several 

groups have recently developed computational techniques that incorporate concepts from 

MSCS into MD simulations. The first of these computational approaches to probe 

mapping used a single 16 ns MD simulation of protein solvated by a box of 20% 

volume/volume (v/v) IPA and water to identify hot spots based on grid occupancies and 

calculated binding free energies.177 The second MD-based approach, SILCS, relied upon 

a ternary solvent box of 1M benzene, 1M propane, and water to calculate probe 

occupancies and map the potential energy surface.179,180 However, each of these methods 

has been limited by the identification of irrelevant local minima with equal weight as the 

true binding site(s). With this problem, extrapolation to cases where the answer is 

unknown becomes very difficult. An improved sampling protocol that reduces spurious 

minima is essential for robust application. Spurious local minima are also a common 

problem among the traditional computational probe-mapping techniques like GRID91 and 

MCSS92.  

The FTMAP algorithm176 deserves mention because it was also based on 

experimental methods for fragment mapping. It applies a fast, Fourier-Transform 
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approach to correlate the docking of billions of probe conformations to a rigid protein. 

While it does not dynamically sample protein flexibility like the MD-based methods, it 

does not identify as many spurious minima as other probe-mapping methods.  

In our development of MixMD, we focused on providing a computational tool 

complementary to the MSCS approach that would preferentially locate the most relevant 

hot spots along a protein surface.181 MSCS studies can be difficult to perform with fragile 

crystals or at a high concentration of organic solvent, and results can be influenced by the 

crystallization conditions. Computational studies avoid these limitations and enable the 

detailed study of protein-probe interactions. Our original MixMD study was the first 

computational technique to definitively show the need to include full protein flexibility to 

reduce extraneous minima and correctly map a protein surface. Our initial studies of 

HEWL in CCN and water demonstrated the utility of MixMD for hot-spot mapping, and 

we would like to incorporate additional functional groups, to permit consensus 

pharmacophore modeling of putative binding sites. We were particularly focused on the 

impact of length and number of simulations on solvent behavior and protein structure. To 

determine the appropriate MixMD approach that would be applicable to systems where 

the binding site(s) are unknown, we have performed MixMD for a range of protein cases 

with the most common MSCS probes: IPA and CCN.  

Hot-spot data are available for IPA and CCN with the following proteins: elastase, 

HEWL, p53 core, RNase A, subtillisin, and thermolysin. These probes were originally 

selected for MSCS based on their miscibility with water, their interaction type, and the 

ease of distinguishing their crystallographic density from that of water.221,226 Due to the 

subjective nature of assigning experimental density to specific atoms, the most valid 
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comparison between simulation and MSCS is between occupancy grids and experimental 

density data. As a result, we focused primarily on cases with electron density data 

available: elastase+IPA, HEWL+CCN, HEWL+IPA, p53 core+IPA, RNase A+IPA, and 

thermolysin+IPA. Structure factor files were not available for elastase+CCN (coordinates 

obtained from author221), subtillisin+CCN (1SCB166), or thermolysin+CCN (1FJU163) but 

our simulations of these systems showed that our results agreed with the known binding 

sites of these proteins. These proteins vary in size and active-site composition, thus 

providing a variety of interaction types to explore through MixMD to develop the most 

robust protocol with the greatest potential for application to new proteins. 

 

3.2 Methods 

HEWL+CCN was the focus of our previous study.181 So we extended CCN+water to 

new systems and added IPA as a probe. We concentrated on the systems with 

experimental density data available for this study. The starting structures for 

elastase+IPA (2FOF227), HEWL+IPA (1LY0228), p53 core+IPA (2IOM229), RNase A+IPA 

(3EV2167), and thermolysin+IPA (7TLI226) were obtained from the PDB214. 

Crystallographic waters and structural ions were retained to maintain their stabilization of 

the protein conformation, but all probe molecules and crystallographic ions were 

removed. We emphasize that no simulations were initiated with the probe in the 

experimental conformation. Molprobity230 was used to check the side-chain orientations 

of ASN, GLN, and HIS, and these results were confirmed by a visual examination. 

The crystallographic structure of RNase A contained two copies of the protein within 

the asymmetric unit. Chain B was selected for use in our simulations because chain A 
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was missing several residues. Furthermore, chain B contained two IPA molecules located 

in the active site, while chain A contained two IPA molecules that were located along a 

packing interface. 

Parameters for IPA were based on the OPLS-AA parameters for pure alcohols from 

Jorgensen et al.231 This choice was based on an in-depth exploration of available solvent 

parameters, discussed in a forthcoming publication. Parameters for CCN were obtained 

from Kollman and co-authors and implemented as described in our established MixMD 

protocol.181 

The atomic coordinates from the MSCS studies were used for each system. Using the 

AMBER10/AMBERTOOLS 1.2 package10 and FF99SB parameter set7, hydrogens were 

added to the protein by tLeAP and minimized in sander. The protein was solvated in an 

18-Å pre-equilibrated box of 50% w/w probe and TIP3P water215, and then ions were 

added to neutralize the system charge. Simulations used a 2-fs timestep, SHAKE4 to 

restrain bonds to hydrogen, and a 10-Å cutoff for Particle Mesh Ewald232 approximations 

of long-range vdW interactions. The initial velocities of each independent simulation 

were generated from a different random number seed. Temperature was regulated 

through an Anderson thermostat.217 Each system underwent 250 cycles of steepest-

descent minimization followed by 4750 cycles of conjugate-gradient minimization with 

the protein fixed. Then, each system was gradually heated from 10K to 300K over 80 ps 

while the protein was gently restrained by a harmonic force constant of 10 kcal/mol*Å. 

These restraints were gradually removed over 500 ps of equilibration until the protein 

was fully flexible. Five independent 50-ns simulations were performed simultaneously 
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for each MixMD system; for elastase and thermolysin, a total of 10 independent 50-ns 

simulations were generated.  

Since our binary-solvent simulations commenced from the crystal coordinates of the 

MSCS structure, we could use a common frame of reference to accurately compare our 

simulation data with the crystallographic density data when available. The results of our 

MD simulations were analyzed using ptraj, a module within the AMBERTOOLS 

package. The final 5 ns of each individual run were read into ptraj and combined to 

represent the converged system density data. The simulation data was first imaged and fit 

to the crystal conformation by Cα-RMS; then the solvent occupancies of water and probe 

were calculated using the grid command with a 0.5 Å x 0.5 Å x 0.5 Å spacing over the 

entire box. To correlate with experimental data, occupancies were examined for each 

solvent heavy atom, each solvent residue, both solvent types together, and all atoms. The 

occupancy grid for all atoms is the equivalent of the electron density in the crystal 

structure, but it removes the identity of which atoms are populating the grid points. 

Contour levels for probe density were chosen such that the first 5 maximally-occupied 

regions were visible (i.e. the 5 hottest spots) in order to extrapolate from our results to the 

best approach for analysis of systems where the answer is unknown. 

 

3.3 Results and Discussion 

3.3.1. Electron density 

The most accurate comparison between experiment and computation involves a joint 

examination of the MSCS electron density and the occupancy grids from the MixMD 
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simulation. Although the MSCS probes were specifically chosen to aid in identification 

of crystallographic density, placement of probes is necessarily subjective. Electron 

density cannot be unambiguously assigned in many cases, so occupancy grids for solvent 

should not be directly compared to atomic coordinates. It is often unclear whether density 

represents the position of a probe or a water molecule, and the placement of one of these 

versus the other can affect the final density map. 

Electron density maps are typically presented as 2FO-FC and FO-FC maps, where FO 

refers to the observed phasing information and FC refers to the calculated phasing 

information. The 2FO-FC map illustrates true structure features, while the FO-FC map is a 

difference map of areas where FO does not match FC. When examined at a sufficiently 

high level (≥ 2.5σ), noise in the FO-FC map is minimized, and it shows positive peaks that 

indicate structure features which may be missing in the model as well as negative peaks 

that represent features in the model which are in error. The atomic coordinates for all 

probes must be compared to the refined FO-FC map to ensure that each is supported by 

appropriate electron density (Table 3-1).  

Table 3-1: Analysis of the refined cycles in Buster of electron density for each MSCS probe site in the noted 
crystal structure. The real-space correlation coefficient from the EDS is shown in parentheses. 

Protein-Probe System Unsupported Probe 
Density 

Supported Probe 
Density 

Supported at an 
Interface 

HEWL (1YL0)  2836 (0.934) 2837 (0.741) 
p53 core (2IOM)  3001 (0.889)  
RNase A (3EV2) 905A (0.934)*, 917A 

(0.881), 903B (0.485)* 
902B (0.723)  

Elastase (2FOF)  1001 (0.823), 1003 
(0.871) 

1002 (0.898), 1002x 

Thermolysin (7TLI) 2004 (0.838), 2005 
(0.742), 2007 (0.703), 

2008 (0.693)* 

2001 (0.837), 2002 
(0.872) 

2003 (0.494), 2006 
(0.921) 

 *Density does not support a probe site, but is instead a potential water site 
 



 

60 
 

There are several caveats inherent to this comparison. Crystallographic density may 

include artificial features influenced by experimental conditions and crystal contacts. As 

Allen et al. acknowledged in their MSCS study of elastase+CCN221, several of the CCN 

probes were involved in crystal-packing interactions and were not believed to indicate 

true hot spots for binding. Therefore, probes near crystal-packing interfaces required 

additional scrutiny (Figure 3-1). Depending upon the protein system, it may not be 

possible to reproduce the probe location at an interface because it is not favorable in the 

solution phase simulated in MixMD.  

 

 

 

Figure 3-1: The MSCS of elastase+IPA228 is shown in violet (right) with a neighboring symmetry partner in 
cyan (left). The symmetry-related equivalent IPA in both structures are circled in red. One of the bound 
IPA probes in the symmetry partner is located within 4 Å of the protein in the initial unit cell. When the 
probe site is support by the refined electron density, it is necessary that it receive special consideration 
during evaluation of the simulation data. Probes at the contact interfaces may be irreproducible, but when 
they are observed, the probe may map to either or both of the circled sites on the protein. 
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3.3.2. Identifying probes with appropriate density 

 It must be stressed that crystallographic structures can be subject to phase bias/ 

experimental uncertainty, and accurate comparisons between theory and experiment can 

only be made when the limitations of both are understood. To properly confirm that a 

probe site is supported with appropriate density, the FO-FC map must be regenerated with 

that particular probe excluded from the set of atomic coordinates. This removes the bias 

of the probe on the determination of the density. This procedure was important for 

confirming hot spots in the crystal structure, and it was just as important for our analysis 

of any “spurious” sites observed in the occupancy grids from MixMD. In some cases, 

“spurious” sites actually reflected the position of a valid probe site in the neighboring unit 

cell. Thus, it was important to examine the surrounding symmetry partners present in the 

crystalline environment for probe sites in contact with the central protein. When refined 

density maps were generated, several outcomes were possible. The probe and/or probes 

along the crystalline interface could be well-placed in the positive FO-FC density, the FO-

FC density at the probe site appeared to support placement of a water molecule, the probe 

was placed in negative FO-FC density, or there was not sufficient density to justify 

placement of any molecule (Figure 3-2).  
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Figure 3-2: Refined density maps calculated for several of the MSCS structures. The refined maps were 
based on the coordinate file for the MSCS structure, with probes and close-contact waters/ions removed. 
The positive FO-FC density is contoured in green; the negative FO-FC density is contoured in red at 3.0 σ. 
This illustrates regions where crystallographic probes are justified or not justified, respectively. In A, the 
positive FO-FC density from the MSCS of elastase+IPA (2FOF) clearly agrees with the probe placement, 
where IPA.1001 and IPA.1003 are located in the active site with good agreement between coordinates and 
density (IPA.1002 is located near the crystal interface). The positive FO-FC density in B indicates that the 
site for IPA.905A in RNase A+IPA (3EV2) may best correspond with a water molecule. In C, the FO-FC 
density along the active site of thermolysin+IPA (7TLI) indicates that the site for IPA.2001 is justified 
while the sites for IPA.2005 and IPA.2008 might best support a water molecule as opposed to a probe. In 
D, the FO-FC density in p53 core (2IOM) illustrates that this probe is justified in the crystal structure. 
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CCP4i233 was used to derive crystallographic density for each MSCS probe and to 

rotate maps of the simulation density into the crystal structure orientation. In CCP4i, the 

pdb and structure factor files were used to derive the mtz file, which was then refined 

through one complete round of Buster234 (five cycles). To verify the probe locations in 

MSCS, each probe was removed from the structure individually. The density in these 

figures has been generated through a refinement cycle and is therefore not equivalent to 

the ready-made mtz file that is electronically-available through the Uppsala Electron 

Density Server235. Chimera218, COOT236, and PyMol237 were used for visualization of 

results. Instead of displaying an additional density layer in the figures, presentation was 

simplified by showing the MSCS probes whose positions were confirmed by the FO-FC 

density from Buster234 in cyan and probes without adequate density in gray as ball-and-

stick coordinates.  

 

3.3.3. Appropriate Simulation Length: Adequate Sampling and Convergence 

We were interested in establishing the appropriate simulation length for MixMD to 

allow widespread application of hot-spot mapping, including cases where the active site 

might be unknown. In order to determine the appropriate methodology to be used with a 

protic probe, which should diffuse more slowly than an aprotic probe, we first had to 

define appropriate system behavior. All of the mixed-solvent simulations were stable 

over the ns timescales examined here. Long timescales should reveal unfolding of the 

protein and are less desirable. To assess whether adequate mixing of the two solvents had 

occurred, we examined the number ratio of probe to water (Np/Nw) at the edges of the 

box. In a properly mixed system, Np/Nw at the edges of the box will correspond with 
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Np/Nw of the whole system, since the presence of the protein should not impact the 

distribution of solvent at the box edges. We found that this was indeed the case within 5 

Å of the box edges; therefore, our binary solvents were mixed appropriately (Table 3-2). 

Table 3-2: Probe-to-water ratio at the box edges over the last 5 ns of simulation time, using 5 runs. The 
expected ratios differ slightly due to system setup. Upon introduction of the protein into a 50% w/w pre-
equilibrated solvent box, a random number of water and probes are removed from the system to avoid 
clashes with the protein. This can shift the probe:water ratio, thus slightly altering the composition of 
solvent in the system.  

 Elastase+ 
IPA 

Thermolysin 
+ IPA 

HEWL+ IPA RNaseA + 
IPA 

p53 core + 
IPA 

(Np/Nw)Obs 0.2114 0.2104 0.2276 0.2181 0.2489 
(Np/Nw)Exp 0.2212 0.2222 0.2219 0.2379 0.2208 
Obs/Exp 0.9557 0.9480 1.0255 0.9168 1.1271 
Np (simulation) 1949 2301 1459 1455 1847 
Nw (simulation) 8810 10355 6576 6116 8365 

 

HEWL was chosen as our initial validation protein because it is a simple canonical 

system with a wealth of available structural and binding data. IPA is a protic solvent with 

a slower diffusion rate than CCN and we were interested in comparing our results from 

HEWL+CCN to the HEWL+IPA system. The MSCS of HEWL contained only a single 

CCN bound at the active site, but two bound probes were identified in the MSCS of 

HEWL+IPA: IPA.2836 was bound in the active site and IPA.2837 was located on the 

opposite surface at the crystal interface.  

Although our previous MixMD study used the final 2 ns from a set of 10-ns 

simulations to identify hot spots, we have found that a wider window and longer 

simulation time was needed for obtaining converged data with a protic solvent. To 

calculate the optimal window size, we examined the data that resulted from combining 

the final 2-ns, 5-ns, 10-ns, 20-ns, 30-ns, and 40-ns segments of a 50-ns simulation. For 

example, the last 5 ns from five independent 50-ns trajectories of HEWL+IPA were read 

into ptraj and combined by the grid function to yield solvent occupancies for 25 ns of 
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total simulation time. For both HEWL and p53 core, we found that the final 5 ns of 

trajectory data best represented the probe sites from the converged simulation. Therefore, 

all of the data presented in this study has used a final-5-ns timeframe for the calculation 

of simulation occupancy grids.  

Length of the simulation was also examined. We analyzed the solvent occupancy 

from the first 10 ns (2-ns window), 20 ns (5-ns window for the following), 30 ns, 40 ns, 

and 50 ns. We found that by 50 ns the local minima had been sufficiently reduced such 

that only the relevant hot spots were located. Based on the proximity of the second IPA to 

the crystal packing interface and the small spherical density at that site (Table 3-1), we 

had hypothesized that IPA.2837 could be a water site, and our data supported this. We 

found that the maximal probe density converged to the location of the probe at the active 

site (Figure 3-3). Sizable water density was located the second IPA site and most of the 

low B-factor crystallographic waters from the MSCS (Figure 3-4). In cases where the 

refined density map indicates that the organic probe might actually be a water molecule, 

simulation density can aid in the proper assignment. Mapping water density and 

examining lifetimes of water at sub-sites have been established techniques for some time; 

our ability to map low B-factor waters demonstrates that MixMD does retain this 

functionality. This was shown in our previous paper on HEWL+CCN.182 Therefore, we 

focus our discussion of water occupancy to only the probe sites where the experimental 

density appears to support a water molecule. 
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Figure 3-3: MixMD data combined for the last 5 ns of 5 individual 50-ns runs of fully flexible HEWL in 
50% w/w IPA and water. All snapshots were superimposed on the starting crystal structure (PDB ID 1YL0, 
white surface). The MSCS coordinate positions for IPA.2836 and IPA.2837 are shown in cyan as ball-and-
stick. A) Simulation IPA density does map the IPA.2836 site using a 2-ns window after 10 ns of simulation, 
however many other spurious minima are mapped as well. B-F) Using a 5-ns window, we find that the 
local minima are eliminated over time as the simulation converges to the maximally occupied hot spot. 
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Figure 3-4: MixMD data combined for the last 5 ns of 5 individual 50-ns runs of fully flexible HEWL in 
50% w/w IPA and water. All snapshots were superimposed on the starting crystal structure (PDB ID 1YL0, 
white surface). Low B-factor (<33 Å) water sites are shown in black and the other water sites are shown in 
yellow. The MSCS coordinate positions for IPA.2836 and IPA.2837 are shown in cyan as ball-and-stick. 
Simulation water density overlays well with both A) the crystallographic water sites and B) the secondary 
IPA probe, IPA.2837. 

To determine the general applicability of 5 x 50-ns simulations as the optimal 

trajectory length for sampling with a protic solvent, we also applied MixMD to the 

MSCS of p53 core domain (PDB ID 2IOM). Although the crystal structure was missing 

residues 92-96 and 285-294, these residues are part of the disordered domain linkers and 

were not expected to impact mapping results. Experimentally, a single IPA molecule was 

bound to p53 core at the active site, and this was validated by the refined FO-FC density 

from Buster. As we found for HEWL+IPA, examination of 5-ns windows over the course 

of the trajectory showed that 50-ns of simulation time was sufficient for mapping hot 

spots with IPA while minimizing local minima along the p53 core surface (Figure 3-5). 

The crystallographic site matched our maximally occupied location from the simulation 

IPA density, demonstrating the capacity of MixMD to capture important binding sites in 

DNA-binding proteins.  
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Figure 3-5: MixMD data combined for the last 5 ns for 5 individual 50 ns runs of fully flexible p53 core in 
50% w/w IPA and WAT. All snapshots were superimposed on the original crystal structure (PDB ID 2IOM, 
white surface). MixMD density is shown in blue for the IPA probe. The MSCS coordinate position for 
IPA.3001 is shown in cyan as ball-and-stick. The maximally occupied site for simulation IPA density 
clearly agrees with the crystallographic probe position. A) Simulation IPA density does map the IPA.3001 
site using a 2-ns window after 10 ns of simulation, however a few other spurious minima are mapped as 
well. B-E) Using a 5-ns window, we find that the local minima are eliminated over time as the simulation 
quickly converges to the maximally occupied hot spot. 
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Through MixMD simulations of HEWL+IPA and p53 core+IPA, we showed that we 

could map the protein hot spots correctly without simultaneous identification of 

numerous irrelevant minima. We could show other minima by decreasing the contour 

value, but that does not change the fact that the correct location is clearly identified by 

the highest-occupancy grid points. Our studies based on these two proteins indicated an 

optimal simulation time of 5 independent simulations of 50 ns and an analysis window of 

5 ns when running MixMD with a protic solvent.  

 

3.3.4. Determining the Appropriate Number of Simulations  

To study the consequence of the number of independent simulations, we compared 

the results from 5 runs of 50 ns each to 10 runs of 50 ns each for the larger protein 

systems, elastase and thermolysin. The success of MD simulations is firmly based on the 

assumption of the ergodic hypothesis: given adequate sampling, all relevant states will be 

reached. We prefer many shorter simulations run in parallel to increase sampling instead 

of one long simulation because they increase the potential space that may be explored. 

This is particularly true for computational studies of solvent mapping, where effective 

mapping must be balanced with an efficient use of computational cycles. Furthermore, 

long simulations should eventually unravel the protein. Many short simulations focus the 

maps on the more biologically relevant conformation of the protein. However, we need to 

determine if it is better for probe mapping.  

MSCS of elastase were solved in the presence of acetone, CCN, benzene with IPA, 

cyclohexane with IPA, dimethylformamide, ethanol, IPA, and trifluoroethanol. The large 
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amount of available crystallographic data enabled us to compare the results from MixMD 

of elastase+IPA/CCN in water to the experimental data for both IPA/CCN as well as 

other functional group probes. The MSCS structure of elastase+IPA contained three 

probe molecules; two were bound in the active site (IPA.1001 and IPA.1003), and the 

third was located near the crystal-packing interface (IPA.1002). Inspection of the 

symmetry partners revealed that IPA.1002 could also be located on an opposite face of 

elastase (referred to as IPA.1002x). Results from density refinement in CCP4i showed 

that all four locations were supported by the FO-FC density (Table 3-1).  

Our MixMD results for elastase+IPA were highly similar to the MSCS data for its 

corresponding crystal structure as well as the consensus MSCS data of many probe types 

in many crystal structures. Overlaying all of the MSCS structures and examining their 

electron densities of the probes indicated that IPA.1001 was the most populated 

consensus site, which confirmed our identification of IPA.1001 as the maximally 

occupied hot spot. The other IPA positions in the binding site were also identified within 

the top 8 hot spots. We found that solvent occupancies calculated from the middle of 10 

independent trajectories (15-20 ns) resulted in the better mapping when compared to the 

occupancies from the final 5 ns (45-50 ns) of 5 runs (Figure 3-6). Although 5 simulations 

performed over 50 ns were sufficient to show convergence, doubling the number of 

simulations decreased the amount of simulation required: 250 ns were required for 5 runs 

compared to 200 ns for 10 runs. After the first 20 ns for each of the 10 runs, the hot spot 

at IPA.1001 had been identified as the highest populated site and continued to be the 

primary hot spot for the duration of simulation time. Examination of the top eight hot 

spots showed that IPA.1001, IPA.1002, and IPA.1003 were each mapped, in addition to a 
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pocket close to IPA.1002x and several hot spots from other MSCS results, including sites 

with justified electron density for ethanol, dimethylformamide, and IPA. The other 

binding sites that were identified by probe or water density included crystallographic 

water positions and pockets near hydrogen-bonding residues Arg36 and Arg54. Although 

structure factor files were not available for elastase+CCN, our MixMD simulations of 

this system preferentially located the active site as well as several MSCS probe locations. 



 

72 
 

 

Figure 3-6: MixMD data combined for the last 5 ns of 5 individual 50-ns runs of fully flexible elastase in 
50% w/w IPA and WAT. All snapshots were superimposed on the original crystal structure (PDB ID 2FOF, 
white surface). The MSCS coordinate positions for IPA.1001, IPA.1002, and IPA.1003 are shown in cyan 
as ball-and-stick. The crystal interface probe site IPA.1002x is shown in gray. Alternate probes from other 
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MSCS by the same authors are shown in blue. Density contour levels were chosen such that the top eight 
hot spots were represented at a “hide dust” level of two. A) Results from performing FTMAP against 
PDBID 2FOF, with functional group clusters shown in pink. B) All probe sites from MSCS with elastase. 
C) Simulation IPA density from the last 5ns of 50 total ns from independent runs 1-5  (purple) and D) the 
last 5ns of 50 total ns from independent runs 6-10 (green) do not perform as well as the results from all 10 
runs. E) The maximally occupied site for simulation IPA density from the last 5 ns of 50 total ns from 10 
independent runs (blue) corresponds with all three the crystallographic probe positions as well as two 
other MSCS sites. F) Simulation IPA density from the last 5 ns of 20 ns total simulation time over 10 
individual runs performs better than the IPA density after 50 ns over 5 runs.  

 

Like elastase, thermolysin has also been used extensively for MSCS studies163,226 and 

well as other computational FBDD studies177,238,239, allowing us to compare our MixMD 

results to a wealth of experimental and computational data. The results from our 

simulations of thermolysin lent strong support to our emphasis on comparing simulation 

occupancy grids to the experimental density instead of to the crystallographic 

coordinates. Although several of the MSCS systems we have discussed had more than 

one solvent probe along the protein surface, the refined electron density has not always 

given a clear indication that the coordination position of the probe was justified. This was 

particularly true for thermolysin+IPA; although eight IPA molecules were specified in 

the PDB file, comprehensive analysis of the pre-generated density map from the Uppsala 

Electron Density Server235, the refined structure factor file, and the crystal contact region 

showed that none of the IPA molecules were placed in justified locations (Table 1). In 

fact, the FO-FC density map from the refined crystallography data did not indicate the 

existence of any probe sites at 2.5 σ . A number of the solvent-mapping procedures that 

have been published have used the probe positions in thermolysin to validate their 

technique, which further emphasizes the necessity of understanding the limitations of 

crystallographic data prior to performing validation analyses. 
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Although the refined FO-FC density did not support the placement of probes along the 

binding surface of thermolysin in this particular crystal structure, which was solved at 

90% IPA, this structure had been solved in concentrations ranging from 2 to 100% IPA 

by the same authors. Refinement of the electron density map for the 100% IPA crystal 

structure (PDB ID 8TLI) illustrates that some probe positions are justified based on 

structure factors in the MSCS at the highest probe concentration. The RMSD between 

7TLI and 8TLI is equal to 0.25 Å, allowing reasonable comparison between the MSCS 

density results for the two structures. Thus, the thermolysin was not the same as the 

RNase A case, and further exploration of simulation occupancy results was appropriate. 

Also, the strong emphasis on thermolysin as a test system for fragment binding made it 

an interesting case for developing our simulation protocol. On the basis of comparisons to 

the electron density data from 8TLI, we continued our investigation of the optimal 

trajectory length for MixMD of proteins with large binding surfaces. Refined FO-FC 

density revealed that the only potentially justified probe sites were IPA.2001, IPA.2006, 

and IPA.2008. The maximally occupied sites for IPA molecules correctly agreed with the 

position of the greatest probe density in the active site, the position of IPA.2001. We 

identified several other hot spots in the thermolysin active site, supported by the density 

for IPA.2008 and alternate TYR157 position A. As we saw for elastase, the use of 10 

runs of 50 ns each improved mapping results compared to 5 runs of 50 ns each (Figure 

3-7).  
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Figure 3-7: MixMD data combined for the last 5 ns of 5 individual 50-ns runs of fully flexible thermolysin 
in 50% w/w IPA and WAT. All snapshots were superimposed on the original crystal structure (PDB ID 
7TLI, white surface). The MSCS coordinate positions for IPA.2001, IPA.2006, and IPA.2008 are shown in 
cyan as ball-and-stick while the unjustified probe sites are shown in gray. The crystal interface probe sites 
are shown in green. Density contour levels were chosen such that the top eight hot spots were represented, 
and a “hide dust” level of three was used. A) Results from performing FTMAP against PDBID 7TLI, with 
functional group clusters shown in pink. B) Simulation IPA density from the last 5ns of 50 total ns from 
independent runs 1-5  (purple) and C) the last 5ns of 50 total ns from independent runs 6-10 (green) do not 
perform as well as the results from all 10 runs. D) The maximally occupied site for simulation IPA density 
from the last 5 ns of 50 total ns from 10 independent runs (blue) corresponds with all three the 
crystallographic probe positions as well as two other MSCS sites. E) Simulation IPA density from the last 5 
ns of 20 ns total simulation time over 10 individual runs performs better than the IPA density after 50 ns 
over 5 runs.  
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Our results for the appropriate number of simulation runs to perform for MixMD 

were particularly relevant to a common assumption in studies of hot-spot mapping, which 

holds that individual simulation densities should converge to the correct hot spot. We 

found this assumption to be invalid. Individual simulations all showed some occupancies 

at the principal sites of probe interaction, but they diverged in their identification of the 

global minimum. They also diverged in their positions for spurious sites. Combining the 

simulation data best represented the true binding potential of the protein and eliminated 

irrelevant minima. We found that for both elastase and thermolysin, solvent occupancy 

grids from the 10 runs outperformed simulation occupancy from only 5 runs, where 

performance was defined as the number of crystallographic probe sites found within the 

top-ranked hot spots. We focused our examination of hot spots on the top eight probe 

sites that were well-occupied by simulation density and required that they correspond 

with most of the crystallographic hot spots to demonstrate success.  

  

3.3.5. Allowing for Conformational Change 

There are occasions when a MixMD map may not reproduce the MSCS probe 

coordinates. In cases where conformational rearrangement of the protein alters the 

solvent accessible surface area in the binding site, the available interactions may change 

relative to the original crystal structure. The crystal structure of RNase A was solved such 

that a salt bridge was formed between Asp121 and a neighboring residue in a symmetry 

partner. When MD simulations were performed in the absence of the crystalline 

environment, this salt bridge no longer existed and Asp121 shifted towards the active 

site. This caused the binding cavity to narrow, with a new distance of 10.2 Å from Val43-
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Asp121 compared to an original distance of 11.6 Å. However, the interactions available 

at these sites was altered over the course of simulation due to a median RMSD shift of 

4.54 Å from the crystal structure, according to the final 5 ns from 5 independent 

simulations of 50-ns each for RNase A+IPA.  

RNase A binds and cleaves RNA substrate in a deep cleft flanked by the two catalytic 

residues, His12 and His119, through a transition state complex that is stabilized by the 

presence of three basic residues: Lys9, Lys41, and Lys66. The MSCS of RNAse A (chain 

B) had coordinates for two IPA probe molecules at the active site, each with B-factors 

over 60 Å. IPA.902 was principally associated with His12 and Thr45, while IPA.903 

interacted with His12 through a bridging water (Wat921). The refined map of 3EV2 from 

Buster, obtained using the original PDB structure with the IPA molecules removed 

individually, showed that the density for IPA.902 was more compelling as a probe site 

than the density for IPA.903. We found that the FO-FC density of the active site indicated 

a justified probe site at IPA.902B and the expected density for a water molecule at 

IPA.903B. 

The maximally occupied site for probe occupancy from simulation IPA density was 

located in a deep pocket next to Asp121 (Figure 3-7), where the probe was able to form a 

stable hydrogen-bonding interaction due to the conformation shift that occurred in 4 of 

the 5 simulations. The second site identified by probe density overlapped with the 

position of a cytosolic RNase inhibitor bound across the active site (PDB ID 3MWQ240). 

Without experimental confirmation of the structural changes observed in our simulation, 

it is not possible to judge the validity of these findings. 
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Figure 3-8: MixMD data combined for the last 5 ns of 5 individual 50 ns runs of fully flexible RNase A in 
50% w/w IPA (blue) and water (water). All snapshots were superimposed on the crystal structure (PDB ID 
3EV2, white surface). Crystallographic waters are colored black for B-factors < 33 Å and in yellow for B-
factors > 33 Å. Water molecules that were identified along the crystallographic boundary are not shown. 
The MSCS coordinate positions for IPA.905A, IPA.917A, IPA.902B, and IPA.903B are shown in cyan as 
ball-and-stick. MSCS with other functional groups obtained by the same authors are shown in blue, FTMap 
sites are shown in pink. A) The MSCS probe sites from 3EV2 chain B. B) The consensus MSCS probe sites 
with a variety of different solvent probes. C) The cluster sites from performing FTMAP against chain B of 
3EV2. D) The simulation density for the probe occupancy over the final 5 ns of the combined runs.  E) The 
simulation density for the water occupancy of the final 5 ns of the combined runs. 
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We found that our occupancy grid for water mapped the binding site, including the 

position of IPA.902 and a secondary binding site between IPA.902B and IPA.903B, 

which was well-positioned to take advantage of contacts to His12 and Lys41. Over the 

course of our MD simulation, the conformational shift caused by movement of Asp121 

caused the β-sheet that contained His119 to move downward, which oriented His119 into 

the position occupied by Wat921 in the crystal structure. This affected mapping of the 

binding site, and the secondary site is likely the equivalent of the density assigned to 

IPA.903B in the crystal structure. Our combined solvent occupancy (IPA+water) mapped 

the bound position of IPA.917A of 3EV2, which lies along the protein surface in a 

shallow binding pocket near Thr60. Only sixteen of the crystallographic water positions 

were within 5 Å of the protein and had B-factors of < 33 Å; all but one of these positions 

was strongly mapped by our water occupancy grids. 

These results for RNase A + IPA indicated that a lower concentration of probe may 

be required for mapping in order to correctly identify the active site. It is unclear based 

on the available data whether or not the conformation observed in our simulation is valid 

for this protein system, or whether the solvent concentration has influenced the 

conformational ensemble towards an unfolded state. As a result, it would be interesting to 

determine the impact of a lower concentration of solvent on conformational sampling and 

probe mapping in our simulations. 

 

3.4 Conclusions 
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Our results demonstrated the utility of MixMD for identifying the hot spots present in 

a broad range of pharmaceutically-relevant receptor targets. We have shown that both 

protic and aprotic solvent types can be used in MixMD to specifically model the 

consensus sites for binding as a complementary technique to experimental FBDD. 

Evaluation of the FO-FC omit density generated based on the refined structure with 

probe(s) removed showed the importance of thoroughly examining the experimental data 

in a test set to ensure fair and accurate comparison. In all cases, true hot spots in the 

crystal structure were located by the simulation density. The additional hot spots that 

were identified by solvent occupancies from MixMD were judged to be reasonable based 

on other crystal structures, the surrounding binding surface, and analysis of the crystalline 

interface. Our study has determined the optimal simulation length and run number for 

mapping probe sites within overabundant local minima. Probe concentration should be 

explored in order to determine its influence on true conformational change or partial 

unfolding. 

We have stressed the importance of performing careful validation studies when 

developing an approach to solvent mapping like MixMD. We have examined both the 

optimal simulation length and number needed for broadly applying MixMD studies to 

diverse protein cases. Our study found that an analysis of computational solvent mapping 

that is based on simulation density can result in identification of binding sites that are not 

overshadowed by overabundant local minima. 

 

This work is in preparation for submission: Lexa KW and Carlson HA. 2011.  
 


