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ABSTRACT 

 
 

Identification and Characterization of Oxalate Oxidoreductase, a Novel Thiamine 
Pyrophosphate-dependent Enzyme that Enables Anaerobic Growth on Oxalate 

 
 

by 
 
 

Elizabeth A. Pierce 
 

 
 
Chair: Stephen W. Ragsdale 
 
 
 Moorella thermoacetica is an anaerobic bacterium that uses the Wood-Ljungdahl 

or reductive acetyl-CoA pathway as a terminal electron accepting pathway for 

heterotrophic and autotrophic growth on many substrates. One electron donor to M. 

thermoacetica is oxalate. Oxalate is an important substrate for various microbes and is 

produced in soil, where M. thermoacetica lives. We identified a novel enzyme, oxalate 

oxidoreductase (OOR) that enables growth on oxalate. This is the first known enzyme 

that directly oxidizes oxalate in an anaerobic organism, reducing an electron carrier by 

two electrons, and producing carbon dioxide or bicarbonate. In conjunction with the 

Wood-Ljungdahl pathway, OOR constitutes a novel path for oxalate 

metabolism. Exposure to oxalate induces expression of the three subunits of OOR. Like 

other members of the 2-oxoacid:ferredoxin oxidoreductase family, OOR contains 

thiamine pyrophosphate and three 4Fe-4S clusters. However, unlike previously 
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characterized members of this family, OOR does not use coenzyme A as a substrate. 

Oxalate is oxidized with kcat of 0.09 per second and Km of 60 micromolar at pH 8.0. The 

enzyme transfers its reducing equivalents to a broad range of electron acceptors, 

including ferredoxin and carbon monoxide dehydrogenase. OOR can oxidize pyruvate, 

also without any requirement for CoA. Pyruvate oxidation leads to inhibition of OOR, 

probably through formation of stable TPP-bound intermediates. One of these 

intermediates is a hydroxyethyl-TPP radical like the one formed as part of the 

pyruvate:ferredoxin oxidoreductase catalytic cycle. The formation of this radical on OOR 

indicates a common mechanism with other 2-oxoacid:ferredoxin oxidoreductases. 

 A second line of research explores the importance for catalysis of a sodium 

binding site on the key Wood-Ljungdahl pathway enzyme acetyl-CoA synthase. Mutation 

of a residue in the sodium binding site decreases the CO/acetyl-CoA exchange activity by 

approximately 25-fold. The activity of wild-type ACS is dependent on the sodium 

concentration with an approximately four- fold increase in the activity between 40 

micromolar and 5 millimolar. The sodium concentration where the effect is seen is lower 

than the expected concentration in the cell. 
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CHAPTER I 

 

Introduction 

 

 

The main work described in this thesis is on the enzymology of oxalate 

metabolism by Moorella thermoacetica. This bacterium has been the model organism 

for the elucidation of the acetate synthesis pathway called the Wood-Ljungdahl 

pathway. This chapter will describe the metabolism of M. thermoacetica, production 

and degradation of oxalate by other organisms and prior research on oxalate metabolism 

in M. thermoacetica. The enzyme that degrades oxalate in M. thermoacetica is closely 

related to pyruvate:ferredoxin oxidoreductase (PFOR). The reactions catalyzed by 

PFOR and its catalytic mechanism are described here. 

 M. thermoacetica (originally named Clostridium thermoaceticum) is a Gram-

positive Clostridium from the Thermoanaerobacteriaceae family (1). It is a strictly 

anaerobic, soil-dwelling thermophile that grows optimally at 55-60 oC.  It was first 

isolated from horse manure in experiments separating cellulose fermenting organisms 

from the organisms that ferment the simple sugars that are products of cellulose 

metabolism (2). When it was isolated, M. thermoacetica was remarkable for its ability to 

form more than two moles of acetate from one mole of glucose, which indicated either an 

unusual metabolism of glucose to three two-carbon units, or an acetate synthesis pathway 
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Figure 1.1. Stoichiometric acetyl-CoA formation from glucose. 

  

(2). Some of the earliest isotope tracer studies showed that M. thermoacetica could make 

acetate directly from CO2, specifically CO2 from carbons 3 and 4 of glucose (Figure 1.1). 

The specific activity of 14CO2 incorporation into acetate suggested its total synthesis from  

CO2 (3); it was shown conclusively by mass spectrometry that 13CH3
13COO- was formed 

from 13CO2 (4). The steps of the acetate synthesis pathway were described by Harland 

Wood and Lars Ljungdahl, and by researchers working in their labs, so the pathway is 

named after these two scientists. Besides being interesting from a metabolic standpoint, 

the Wood-Ljungdahl pathway has provided a wealth of fascinating metal-dependent 

enzymes and reactions for study, including two of nine currently known nickel-dependent 

enzymes, a unique cobalt to nickel methyl transfer reaction, and the first known tungsten-

dependent enzyme. 

 

1.1 Description of the Wood-Ljungdahl pathway 

 In the Wood-Ljungdahl pathway, one CO2 is reduced to the methyl level, a 

second CO2 is reduced to CO, and these are joined with CoA by the key enzyme of the 
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pathway, acetyl-CoA synthase (ACS) (Figure 1.2). In the methyl branch of the pathway, 

CO2 is first reduced to formate by an NADPH-dependent formate dehydrogenase that 

contains a tungstopterin co-factor and selenocysteine. This was the first enzyme found to 

be tungsten-dependent (5). Formate is ligated to tetrahydrofolate (H4folate) in an ATP-

dependent reaction (6, 7). Three steps are needed to convert formyl-H4folate to methyl-

H4folate. 5,10-Methenyl-H4folate cyclohydrolase and methylene-H4folate dehydrogenase 

activities are catalyzed by one enzyme in M. thermoacetica, (8-10), but by separate 

enzymes in other closely related acetogens (11). The final reduction step in the methyl 

branch is catalyzed by a 5,10-methylene-H4folate reductase that contains iron-sulfur  

 

 

Figure 1.2. The Wood-Ljungdahl pathway of carbon fixation. 
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clusters and FAD (12). The methyl group is transferred from CH3-H4folate to the Co+1 

center of a corrinoid iron-sulfur protein (CFeSP) by a methyltransferase (13, 14).  

 In the carbonyl branch of the pathway, carbon monoxide dehydrogenase (CODH) 

reduces CO2 to CO, which becomes the carbonyl group of acetyl-CoA (15, 16). In M. 

thermoacetica, the Wood-Ljungdahl pathway enzyme, CODH, forms a bifunctional 

complex with ACS. The CO molecule that becomes the carbonyl group of acetyl-CoA is 

not released into solution, but instead is channeled 70 Å from the CODH active site to the 

ACS active site (17, 18), where ACS catalyzes formation of acetyl-CoA from the methyl 

group donated by CH3-Co3+ CFeSP, CO and CoA (16, 19).  

 CODH and ACS are both nickel-dependent enzymes with unique active site metal 

clusters. The C-cluster, the site of CODH activity, is a distorted NiFe3S4 cubane linked by 

one sulfur atom to a fourth iron atom (18, 20-22). Substrate binding and catalysis take 

place on Ni and the Fe that is not part of the cubane (23). The ACS active site, the A-

cluster, consists of a Fe4S4 cluster bridged by cysteine to a Ni-Ni site (18, 22). EPR, 

ENDOR, Mössbauer, infrared spectroscopic and 14C-labeling studies indicate that the 

nickel proximal to the Fe4S4 cluster binds the methyl and carbonyl groups during 

catalysis (24-27). It is bridged by two additional cysteine residues to the second nickel, 

which has square planar coordination and is in the Ni2+ state, probably through the whole 

catalytic cycle. The overall reaction is not a redox reaction, but ACS requires reductive 

activation to enter the catalytic cycle, and the proximal Ni atom undergoes redox changes 

during catalysis (28), although there has been much disagreement about the necessary 

oxidation states of different components of the A-cluster (29, 30). 
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1.2 Distribution of the Wood-Ljungdahl pathway, and its metabolic roles 

 The Wood-Ljungdahl pathway plays several roles in the metabolism of M. 

thermoacetica. When M. thermoacetica was isolated it was grown only heterotrophically, 

and it wasn’t discovered until forty years later that the Wood-Ljungdahl pathway enables 

its autotrophic growth by fixing CO2 into acetyl-CoA, which enters biosynthetic 

pathways in the cell (31). The pathway also allows energy conservation when CO2 is 

used as a terminal electron acceptor, by coupling CO2 reduction to generation of a 

chemiosmotic gradient across the cell membrane (32). As well as conserving energy from 

autotrophic substrates, the Wood-Ljungdahl pathway can act as a sink for reducing 

equivalents from energy-rich substrates like glucose. Whether growth on sugars with CO2 

engages the same energy conservation pathway that is used during autotrophic growth 

has not been clearly shown, but the mass of cells produced per mole of substrate for M. 

thermoacetica growing on simple sugars was higher than would be expected from 

substrate level phosphorylation alone, as shown by calculations of YATP values (grams of 

cells formed per mole of ATP produced from substrate catabolism) (33).  

 The Wood-Ljungdahl pathway is found in taxonomically diverse groups of 

organisms. It is present in some spirochaetes, deltaproteobacteria, chloroflexi and other 

clostridia among bacteria, and in methanogenic archaea. All phyla that contain organisms 

with the Wood-Ljungdahl pathway contain many species that do not and there is no 

apparent taxonomic conservation of the pathway (34). Not all organisms with the Wood-

Ljungdahl pathway produce acetate as the main reduced product. In methanogenic 

archaea, energy conservation is coupled to methane production, and the Wood-Ljungdahl 

pathway is used for carbon assimilation, and, in acetoclastic methanogenesis as well, for 
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converting acetate to methane (35). Some bacteria also apparently use the Wood-

Ljungdahl pathway only for carbon assimilation. An example of this is 

Carboxydothermus hydrogenoformans, also a member of the Thermoanaerobacteriaceae 

family which grows autotrophically on CO with H2 as the main reduced product (36). 

 

1.3 Growth of M. thermoacetica on various electron donors and acceptors 

 Experiments described in this thesis focus on the enzyme that allows M. 

thermoacetica to use oxalate as an electron donor and carbon source. When M. 

thermoacetica is grown on oxalate as an electron donor, the flow of reductant to 

respiratory pathways is regulated differently than reductant flow from other substrates. 

This section will describe the variety of electron donors and acceptors that can be used 

for growth by M. thermoacetica and detail what is known about how reductant flow to 

two terminal electron acceptors, CO2 and nitrate, is regulated during growth on most 

substrates.  

 While it is now known to use diverse electron donors and acceptors, M. 

thermoacetica was isolated and for many years was grown only in medium containing 

glucose or other simple sugars (2, 33). It wasn’t until forty years after the first isolation 

that it was shown to be capable of autotrophic growth on H2/CO2 or CO (31, 37), and that 

it expresses hydrogenase (38), which allows autotrophic growth by providing reducing 

equivalents for the Wood-Ljungdahl pathway. A diverse set of substrates has since been 

shown to support acetogenic growth, or growth with acetate as the main reduced product. 

These include glucose, fructose, xylose (33), H2, CO (31), methanol (37), one-, two- and 

three-carbon acids formate (39), oxalate, glyoxylate (40), glycolate (41), pyruvate (39) 
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and lactate (42), short-chain alcohols such as ethanol, n-propanol and n-butanol (43), and 

methyl groups of many methoxylated aromatic compounds (44, 45). M. thermoacetica 

can also use electron acceptors other than CO2, including nitrate, which is reduced to 

nitrite and ammonia (46), nitrite (47), dimethylsulfoxide and thiosulfate (48).  

 

1.3.1 Effect of nitrate on growth by the Wood-Ljungdahl pathway 

Nitrate is a strong regulator of the Wood-Ljungdahl pathway, and in some 

conditions, it blocks autotrophic growth of M. thermoacetica. Diverting electrons from 

the Wood-Ljungdahl pathway in the presence of nitrate would theoretically allow the 

bacterium to gain more energy for growth, because the redox potential of the CO2/acetate 

couple is more negative (E0’ = -0.29 V vs. standard hydrogen electrode) than that of the 

NO3
-/NO2

- couple (E0’ = +0.43 V vs. standard hydrogen electrode) so the stoichiometry 

of ATP production should be higher with nitrate as the terminal electron acceptor (49). 

Oxalate is the only substrate known so far that causes M. thermoacetica to preferentially 

reduce CO2 rather than nitrate.   

When CO2 is the electron acceptor, methanol and methyl groups of vanillate and 

vanillin, and glucose are converted to acetate with yields close to the stoichiometries 

predicted by equations 1.1 and 1.2. The predicted stoichiometry for growth on CO is 

given in eq. 1.3 (2, 46, 50).  

4 aromatic-OCH3 + 2CO2 + 2H2O � 4 aromatic-OH + 3CH3COOH (1.1) 

glucose + 2H2O � 3CH3COOH + 4H+     (1.2) 

4CO + 2H2O � 2CO2 + CH3COOH      (1.3) 
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 The ability of M. thermoacetica to use the Wood-Ljungdahl pathway is impaired 

by nitrate (39, 51). When the same substrates are used for growth in the presence of 

nitrate, the acetate yield from glucose is approximately two-thirds as much as when 

nitrate is absent, which is consistent with the expected oxidation of glucose to two acetate 

and two CO2 molecules by the Embden-Meyerhof-Parnas pathway. Acetate is not 

detected in cultures oxidizing CO or methyl groups to reduce nitrate; nitrite and ammonia 

are produced instead. Oxidation of CO and methyl groups can only be coupled to nitrate 

reduction when M. thermoacetica is grown on undefined medium with yeast extract, so 

that apparently the Wood-Ljungdahl pathway is not needed for carbon assimilation (46). 

As described above, M. thermoacetica can grow on H2 as an electron donor. In undefined 

medium, either NO3
- or CO2 can be used as the terminal electron acceptor. Although ATP 

production from cultures growing with nitrate or carbon dioxide as the electron acceptor 

has not been measured directly, growth is more efficient (eight-fold more biomass is 

produced per mole of H2 consumed) during nitrate-dependent growth than during CO2-

dependent growth (39), consistent with the preferential use of a higher potential acceptor 

to conserve more energy.  

 Because nitrate blocks use of the Wood-Ljungdahl pathway, it affects autotrophic 

growth by M. thermoacetica. Formate, methanol and CO do not individually support 

growth in the presence of nitrate when cells are grown in a minimal, defined medium. 

Growth on vanillate and syringate, of which M. thermoacetica uses only the methyl 

groups, is also blocked in the presence of nitrate. However, when both CO and vanillate 

or syringate are present along with nitrate, M. thermoacetica can use at least the final 

steps of the Wood-Ljungdahl pathway to synthesize enough acetyl-CoA for autotrophic 
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growth, although no extra acetate is made (39). The mechanism of the block on the 

Wood-Ljungdahl pathway is at least partly known: levels of a cytochrome that is thought 

to be important for anaerobic respiration during growth on the pathway are lower in 

nitrate-grown cells (39) and, under some growth conditions, expression of Wood-

Ljungdahl pathway genes is decreased at the transcriptional level (51).  

 

1.4 Growth of M. thermoacetica on oxalate 

1.4.1 Pathways for oxalate production and degradation in other organisms 

 The growth of M. thermoacetica in the soil has not been carefully studied, but the 

competitiveness of the organism in this environment is likely to come, at least in large 

part, from its ability to make use of so many different substrates (48). In pure culture, 

oxalate is a poor substrate for supporting growth, but in soils, where it is produced by 

many organisms, the ability to use oxalate in mixed growth on many substrates may 

confer an advantage on M. thermoacetica.  

 Oxalate is produced by some plants, fungi and bacteria. It comes from 

degradation of oxaloacetate in fungi and bacteria (52) and a few plants (53), and is a 

product of ascorbic acid and galactose metabolism in plants (54, 55). In many 

environments, oxalate is released into the soil, where it can reach high micromolar 

concentrations (56). This has been proposed to benefit the oxalate-producing organisms 

by increasing the availability of other ions, including phosphate (by chelating metals 

from calcium and Fe3+ phosphates) and aluminium (by forming a soluble complex with 

Al+3), and by forming insoluble precipitates with toxic metals (57). Fungal release of 

oxalate has also been implicated in pathogenesis in some plant tissues (58).  
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 Metabolism of oxalate in organisms other than M. thermoacetica occurs by three 

known mechanisms. The best known oxalate-degrading bacterium is Oxalobacter 

formigenes, which does not oxidize oxalate. Instead, it conserves energy by a 

formate:oxalate antiporter that generates an electrochemical gradient across the 

membrane when oxalate is taken up and metabolized to formate, which is excreted by the 

cell. After transport into the cell, oxalate is first activated to oxalyl-CoA and then is 

decarboxylated, giving formyl-CoA and CO2. The oxalyl-CoA ligation step does not 

require energy, because it is catalyzed by a formyl-CoA transferase that exchanges a 

formyl group for an oxalyl-group on CoA, thus producing formate and regenerating 

oxalyl-CoA (59, 60). Other bacteria that use oxalyl-CoA decarboxylase and formyl-CoA 

transferase include Lactobacillus species (61). 

 Other pathways for oxalate degradation include oxidative and non-oxidative 

decarboxylation of oxalate. Non-oxidative decarboxylation of oxalate (to formate and 

CO2) has been seen in the fungi Aspergillus niger and Flammulina velupties, and in 

bacteria including Bacillus subtilis (62-64). In fungi, oxalate decarboxylase is induced by 

oxalate. The B. subtilis enzyme is induced by acid, and was proposed to be part of a 

pathway, along with glyoxylate dehydrogenase and formate dehydrogenase that would 

produce ATP by substrate level phosphorylation and help maintain the pH of the 

cytoplasm in acidic environments (64). The X-ray crystal structure of oxalate 

decarboxylase from B. subtilis has been solved. It is a cupin-family enzyme that like 

other oxalate decarboxylases, requires manganese. Although the reaction catalyzed by 

oxalate decarboxylase is not a redox reaction, this enzyme requires O2 for catalysis (62, 

65).  
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 Oxalate undergoes oxidative decarboxylation by germin, another manganese 

dependent cupin-family enzyme. Germin is an O2-dependent enzyme that generates H2O2 

using the reducing equivalents from oxalate oxidation. Germin also has superoxide 

dismutase activity. Germin is part of a family of desiccation-tolerant seed-storage 

proteins that are extremely resistant to environmental extremes including H2O2. Its 

activity is thought to be linked to controlling levels of calcium in cell walls (oxalate 

forms a very tight complex with calcium), and to be part of plants’ response to pathogens 

through the production of H2O2 which leads to hydroxyl radical production (58).  

 

1.4.2 Prior research on oxalate metabolism in M. thermoacetica 

 M. thermoacetica converts oxalate to acetate with oxidation of oxalate by two 

electrons (41). The expected stoichiometry of acetate production from oxalate is given in 

Equation 1.4. The experimentally observed stoichiometry matches this well (41): 

 4 COO--COO- + 3 H+  �  CH3COO- + 6 CO2    (1.4) 

 Oxalate was hypothesized to be metabolized by a different pathway than that used 

for oxidation of glycolate and glyoxylate, related two-carbon substrates that M. 

thermoacetica also uses for growth, because the protein expression profile of cells grown 

on oxalate showed high levels of two proteins that were not induced in cells grown on 

other substrates, including glyoxylate (40). Furthermore, growth on glyoxylate in the 

presence of both CO2 and nitrate was coupled to nitrate reduction, and CO2 was only 

reduced to acetate during the stationary phase, so nitrate is clearly the preferred electron 

sink for growth on glyoxylate. However, when cells are grown on oxalate, CO2 was 

reduced to acetate during exponential growth, and nitrate was only reduced during the 
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stationary phase, so CO2, not nitrate, is the preferred electron acceptor for oxalate-

dependent growth. Interestingly, in both oxalate- and glyoxylate-grown cells, the 

membranous cytochrome b whose expression has been shown to be repressed by nitrate, 

was absent in cells grown with nitrate. Therefore during oxalate-dependent growth in the 

presence of nitrate, electron flow must be changed in some way to accommodate this lack 

of expression (66). Oxalate is the only substrate known so far for which CO2 is the 

preferred electron acceptor. 

 Among other enzymes known to metabolize oxalate, oxalate decarboxylase and 

oxalate oxidase could both be ruled out as possibilities for M. thermoacetica, since both 

are O2 dependent. M. thermoacetica has a sequence with low homology to oxalyl-CoA 

decarboxylase, but no homolog of formyl-CoA transferase, so a different enzyme would 

be needed if oxalate were activated to oxalyl-CoA (34).  

 Oxalate-dependent methyl and benzyl viologen reduction activity were measured 

in extracts and whole cells of oxalate-grown M. thermoacetica (67). An electron acceptor 

was necessary for oxalate consumption. Oxalate was oxidized in the presence of CO2, 

nitrate or thiosulfate in whole cells, and in the presence of benzyl viologen in cell 

extracts. In assays of cell extracts, both NADP+ and benzyl viologen could act as electron 

acceptors for formate dehydrogenase activity, but NADP+ was not reduced in oxalate-

dependent assays, which strongly suggested that formate was not an intermediate in 

oxalate oxidation. It was also shown that addition of CoA did not change the rate of 

methyl viologen reduction, indicating that activation of oxalate by ligation to form 

oxalyl-CoA was not a step in oxalate metabolism (67), although it was possible that in 

cell extracts, a CoA regenerating system would render addition of CoA to assays 
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unnecessary. As shown in this thesis, both conclusions, i.e. that CoA is not needed for 

oxalate oxidation and that formate is not an intermediate in the oxalate degradation 

pathway, were correct. We found that oxalate is metabolized by a novel enzyme, which is 

CoA independent, and does not produce formate as an intermediate in oxalate oxidation. 

 

1.5 Reactions catalyzed by pruvate:ferredoxin oxidoreductase, a homolog of oxalate 

oxidoreductase 

 The central enzyme of pyruvate metabolism in M. thermoacetica is 

pyruvate:ferredoxin oxidoreductase (PFOR). The reaction catalyzed by PFOR is shown 

in Equation 1.5. Decarboxylation and oxidation of pyruvate and ligation of the resulting 

acetyl intermediate to CoA take place in the active site of PFOR, on thiamine 

pyrophosphate. The electrons from oxidation of pyruvate are passed from the active site 

through a series of three [Fe4S4]2+/1+ clusters to the surface of the enzyme, where 

ferredoxin and CODH can act as electron acceptors1. 

 CH3COCOO- + CoAS- + Fdox � CH3COSCoA + CO2 + Fdred          (1.5) 

As shown in Eq. 1.5, the PFOR reaction is reversible, and PFOR can also act as a 

pyruvate synthase (68). The CO2/pyruvate couple has a low redox potential (-0.54 V vs. 

SHE). Because the CO2/CO couple has a similar reduction potential (-0.52 V vs. SHE 

(69)), CO oxidation can drive the formation of pyruvate. At in vivo concentrations of CO2 

and acetyl-CoA, the pyruvate synthase reaction occurs about 8-fold slower than the 

PFOR reaction at physiological concentrations of pyruvate and CoA. The kcat and kcat/Km 

values for the reverse reaction are also only about 8-10-fold slower than for the pyruvate 

                                                 
1The reaction shown in Eq. 1.5 produces two moles of electrons per mole of substrate. PFOR from M. 

thermoacetica uses a ferredoxin with two [Fe4S4]2+/1+ clusters as an electron acceptor in in vitro assays. 
 



 14  

oxidation reaction, which indicates that PFOR is fairly efficient in catalyzing the reaction 

in either direction (68). 

 CoA is absolutely required for the PFOR reaction as well as the reactions of other 

members of this family, which includes 2-oxobutyrate, 2-oxoglutarate, 2-oxoisovalerate 

and indolepyruvate oxidases. The sole known exception to production of acetyl-CoA 

from pyruvate is Pyrococcus furiosus PFOR, which also produces acetaldehyde as a side 

product in the PFOR reaction (up to 0.4 moles of acetaldehyde per mole of acetyl-CoA 

produced) (70). This pyruvate decarboxylase reaction is independent of an electron 

acceptor (ferredoxin) but is dependent on CoA. This is most likely because of a specific 

conformation of the protein stabilized by CoA binding, since in the normal PFOR 

reaction, the sulfur of CoA is important in the catalytic mechanism (as described in 

section 1.5.1) (71), whereas in the reaction that produces acetaldehyde, desulfo-CoA can 

replace CoA. It is not known how the P. furiosus active site is altered to make 

acetaldehyde release favourable enough to compete with oxidation (70). 

 

1.5.1 Mechanism of pyruvate:ferredoxin oxidoreductase and other 2-oxoacid:ferredoxin 

oxidoreductases 

 The mechanism of M. thermoacetica PFOR (shown in Figure 1.3) has been 

thoroughly studied (71-73). The first steps are common to all TPP-dependent enzymes 

that metabolize pyruvate. The first step is deprotonation of C2 of the thiazole ring of 

TPP, which forms an ylide that can perform a nucleophilic attack on C2 of pyruvate (step 

2), to form a lactyl-TPP intermediate. This is followed by decarboxylation of lactyl-TPP 

(step 3), leaving an enamine or hydroxyethyl-TPP (HE-TPP) anion intermediate (the 
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Figure 1.3. Mechanism of pyruvate:ferredoxin oxidoreductase. 

 

protonated form, the enamine, is shown in Figure 1.3). Figure 1.4 shows several fates for 

this intermediate when pyruvate is metabolized by different enzymes. Acetaldehyde can 

be released from TPP, in pyruvate decarboxylase and in the side reaction of P. furiosus 

PFOR discussed in section 1.5. The enamine can be oxidized, followed by hydrolysis of 

the acetyl-TPP product in pyruvate oxidase, or concomitant with reduction of a disulfide 

from lipoic acid in the pyruvate dehydrogenase complex. In PFOR, and in Lactobacillus  
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Figure 1.4. Fates of the hydroxyethyl-TPP intermediate in different enzymes that 
metabolize pyruvate. 
 

plantarum pyruvate oxidase, the HE-TPP is oxidized by one electron to form a 

hydroxyethyl-TPP radical (step 4).  In PFOR,  the  electron  that  leaves  the  HE-TPP 

intermediate is passed to the first of three [Fe4S4]2+/1+ clusters,  which has  a  redox 

potential of  -0.54 V.  The second and third clusters have potentials of -0.515 V and -0.39 

V, so electrons should flow from the active site through a series of iron-sulfur clusters to 

the surface of the protein (73). In L. plantarum pyruvate oxidase, the immediate acceptor 

is FAD instead of an FeS cluster. 
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 The HE-TPP radical has been proposed to be intermediate in all PFOR reactions, 

and in all other reactions of the 2-oxoacid:ferredoxin oxidoreductase (2-OFOR) enzyme 

family of which PFOR is part (72). It was first seen by EPR of pyruvate and 2-

oxobutyrate:ferredoxin oxidoreductases2 purified from Halobacterium halobium that 

were treated with substrates in the absence of CoA; the spectra of the radicals were lost 

upon addition of CoA (74). Since then, the HE-TPP radical has been extensively 

characterized. From X-ray crystallography studies, it was proposed to be a sigma radical, 

primarily localized on C2 of TPP and C2α of the hydroxyethyl group. In this 

hypothesized intermediate, the bond between C2 and C2α was lengthened, the thiazole 

ring  was  in a  bent  conformation,  and  its  aromaticity   was  lost  (75).   EPR  and  

computational studies directly contradict this result. In these studies, replacement of 

carbon and nitrogen at different positions within the substrate and the thiazole ring of 

TPP results in somewhat altered EPR spectra with most substitutions. Comparison of 

parameters from simulations of these spectra with those obtained from electronic 

structure calculations give, as the most consistent result, a pi radical delocalized over the 

aromatic thiazole ring and C2α and the hydroxyl of the hydroxyethyl group (76). 

 In the absence of CoA, the HE-TPP radical is stable with a half life of several 

minutes (k = 0.001 s-1). When CoA is present, the rate constant of decay of the radical is 

equal to the rate constant of the first electron transfer (k = 140 s-1), and the radical does 

not appreciably accumulate (71, 72). This means that CoA enhances the rate of electron 

transfer by about 105-fold. Experiments in which the sulfur of CoA was removed 

                                                 
2 Although the radical is referred to throughout this discussion as the hydroxyethyl-TPP radical, other 2-
OFOR enzymes, which use pyruvate, 2-oxobutyrate, 2-oxog lutarate, 2-oxoisovalerate and indolepyruvate 
form the corresponding radicals by one-electron oxidation of the substrate moiety that is left on TPP after 
the decarboxylation step. 
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indicate that while most of the binding energy of CoA comes from the bulk of the CoA 

molecule, this binding energy does not account for the enhancement of the rate of 

electron transfer by CoA, and addition of desulfo-CoA does not stimulate the rate of 

electron transfer (71). One explanation of these results is that the potential of the 

hydroxyethyl-TPP radical is not sufficiently low to readily drive reduction of the 

proximal iron-sulfur cluster, but that addition of the negatively charged CoA molecule 

to the HE-TPP radical forms an anion radical adduct with a significantly more negative 

redox potential (71). Oxidation of this more reducing radical adduct would result in a 

larger driving force for electron transfer to the proximal cluster. Results from L. 

plantarum pyruvate oxidase are consistent with this hypothesis. For that enzyme, it was 

calculated, based on the assumption that the intrinsic driving force for the reaction 

totally accounts for the change in the rate of electron transfer when phosphate is added 

to the radical, that the relative potentials of the enamine and hydroxyethyl-TPP radical 

are -0.757 and -0.487 V, while the potential of the anion radical adduct that would form 

when phosphate adds to the HE-TPP radical was calculated as -0.817 V (77). The 

increase in electron transfer rate upon phosphate addition to the HE-TPP radical of L. 

plantarum pyruvate oxidase is about 100-fold, so a greater decrease in potential would 

be needed to account for the increase in the electron transfer rate when CoA is added to 

PFOR. 

 The subsequent steps in the PFOR mechanism consists of formation (step 6) and 

release (step 7) of acetyl-CoA and electron transfers between the iron-sulfur clusters 

and an external electron acceptor (step 8), which regenerate the active ylide and the 

oxidized forms of the [Fe4S4]2+/1+ clusters. 
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CHAPTER II 

 

Identification and Characterization of Oxalate Oxidoreductase, a �ovel 

Thiamine Pyrophosphate-dependent 2-Oxoacid Oxidoreductase that Enables 

Anaerobic Growth on Oxalate3 
 

 

2.1 Introduction 

Moorella thermoacetica is a strictly anaerobic gram-positive acetogenic bacterium. 

Acetogens are commonly found in the soil, animal GI tract and the rumen that grows 

heterotrophically or autotrophically on many different electron donors. Electrons from 

these substrates are used to reduce CO2 to acetate by the Wood-Ljungdahl pathway. 

During growth by this pathway, acetate and cell mass are the only growth products and 

electron-rich growth substrates like glucose are converted stoichiometrically to acetate; 

therefore M. thermoacetica is called a homoacetogen. M. thermoacetica can use other 

electron acceptors (e.g. nitrate, nitrite, thiosulfate, dimethyl sulfoxide). Under most 

conditions, nitrate reduction occurs preferentially to CO2 reduction and nitrate has been 

shown to repress autotrophic growth (1, 2). However, oxalate is unique in its properties 

as an electron donor by M. thermoacetica for acetogenic growth. When both nitrate and 

                                                 
3The contents of this chapter were previously published: Pierce, E. A., Becker, D. F. and Ragsdale, S. W. 
(2010) Identification and Characterization of Oxalate Oxidoreductase, a Novel Th iamine Pyrophosphate-
Dependent 2-Oxoacid Oxidoreductase that Enables Anaerobic Growth on Oxalate. Journal of Biological 

Chemistry 285, 40515-40524. The sedimentation equilibrium experiments were performed by Dr. Don 
Becker at the University of Nebraska - Lincoln. 
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CO2 are provided to cells growing on oxalate, CO2 is reduced to acetate during the 

exponential growth phase and nitrate is only used as the electron acceptor during 

stationary phase (3). Oxalate is the only substrate with which M. thermoacetica has been 

shown to reduce CO2 instead of nitrate when both are present. 

 Oxalate (C2O4
2-) is the most oxidized two-carbon compound. It is made in high 

concentrations by some plants and fungi and can reach high micromolar concentrations in 

soil (4). Oxalate is toxic to mammals, but is metabolized by many bacteria and plants by 

various pathways. In Oxalobacter formigenes, oxalate is first activated to oxalyl-CoA, 

then decarboxylated, giving formyl-CoA and CO2. Formyl-CoA transferase then 

exchanges the formyl group for an oxalyl-group on CoA, thus producing formate and 

regenerating oxalyl-CoA. Energy for growth on oxalate in O. formigenes results from a 

formate:oxalate antiporter, which generates an electrochemical transmembrane gradient 

for ATP synthesis (5, 6), so most formate produced is excreted rather than oxidized (7). 

Other organisms, such as Cupriavidus oxalaticus, also use oxalyl-CoA decarboxylase to 

metabolize oxalate, but use formate dehydrogenase to generate NADH with the electrons 

derived from oxalate (8, 9). Oxalyl-CoA decarboxylase is a TPP-dependent enzyme with 

distant homology to yeast pyruvate decarboxylases (10). The M. thermoacetica genome 

has sequences with low homology to oxalyl-CoA decarboxylase, but no homolog of 

formyl-CoA transferase. In fungi and in some bacteria, including Bacillus subtilis, 

oxalate can also be metabolized by oxalate decarboxylase, a manganese-containing cupin 

family protein, to generate formate and CO2 (11). This reaction requires O2. Another 

Mn2+-cupin called germin that is found in plants catalyzes the oxidative decarboxylation 
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of oxalate in the reaction C2O4
2- + 2H+ + O2 � 2CO2 + H2O2 (12). No enzyme that 

catalyzes anaerobic oxalate oxidation has been previously reported. 

 During growth on oxalate, M. thermoacetica consumes four moles of oxalate to 

produce one mole of acetate and six moles of CO2 (Eq. 1) (13). Two proteins (33 kDa 

and 42 kDa) were identified to be induced when M. thermoacetica was exposed to 

oxalate (14). Similarly, Daniel et al. found that oxalate-grown cells metabolize oxalate 

much more quickly than cells that had been grown on glucose, which is consistent with 

an oxalate induction mechanism (15). They also showed that cell extracts from oxalate-

grown cells could catalyze oxalate-dependent benzyl viologen reduction, that this activity 

was only slightly stimulated by coenzyme A and that the electron acceptor specificity of 

oxalate oxidation was different than that of formate oxidation. They concluded that M. 

thermoacetica catabolizes oxalate by a CoA-independent mechanism that does not use 

formate as an intermediate.  

4 C2O4
-2 + 5 H2O � CH3COO- + 6 HCO3

- + OH- (∆G = -41.4 kJ/mol oxalate) (Eq 1) 

 In this paper, we show that the enzyme induced by oxalate, which we have named 

oxalate oxidoreductase (OOR), is a novel member of the family of thiamine 

pyrophosphate (TPP)-dependent 2-oxoacid:ferredoxin oxidoreductases that typically 

catalyze oxidative decarboxylation of α-ketoacids to produce CO2 and acyl-coenzyme A 

products. Unlike all previously characterized members of this family, OOR does not use 

coenzyme A as a substrate. The protein responsible for oxalate oxidation in M. 

thermoacetica was purified to homogeneity and shown to be the only enzyme required to 

catalyze the conversion of oxalate to CO2 (or bicarbonate) and two electrons. Thus, 
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coupling OOR to the Wood-Ljungdahl pathway allows anaerobic bacteria to generate 

energy by oxidizing oxalate, producing reducing equivalents to drive acetate formation. 

 

2.2 Experimental Procedures 

 

2.2.1 Culture media and growth conditions 

 M. thermoacetica ATCC 39073 was grown at 55 oC in stoppered, crimp-sealed 

120 mL serum bottles pressurized with pure CO2 and containing 100 mL medium, or in a 

10 L fermentor that was continually bubbled with CO2 during growth. The medium was 

modified from the “undefined medium” of Lundie and Drake (16) and contained 5 g L-1 

yeast extract, 5 g L-1 tryptone, 0.1 mM Fe(NH4)2(SO4)2, 4.4 mM sodium thioglycolate, 

7.6 mM (NH4)2SO4, 1.0 mM MgSO4, 0.2 mM CaCl2, 0.1 mM CoCl2, 20 µM NiCl2, 6.8 

mM NaCl, 0.1 mM nitrilotriacetic acid, 5 µM ZnCl2, 7 µM Na2SeO3, 3 µM Na2WO4, 25 

µM Na2MoO4, 25 µM MnCl2, 2.4 µM H3BO2 and 0.3 µM KAl(SO4)2 (solution A), 20 

mM K2HPO4, 100 mM NaHCO3 and 20 mM KH2PO4 (solution B). Solutions A and B 

were autoclaved separately, combined after cooling and sparged with CO2. Before 

inoculation, the medium was supplemented with glucose (100 mM in 100 mL cultures, 

20 mM in the fermentor) and/or oxalate (27 mM), a vitamin solution (16) and 10 mL L-1 

of reducing solution (36 g L-1 each of Na2S·9H2O and cysteine-HCl). Cells were 

harvested during exponential growth by centrifugation under CO2 or N2 and were stored 

at -80oC until use. 
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2.2.2 Two-dimensional gel electrophoresis 

 For two-dimensional gel electrophoresis, proteins were extracted with phenol as 

described (17), except that instead of tissue grinding, sonication was used to break the 

cells and, after precipitation of proteins in methanol, the protein pellet was washed twice 

with ice cold acetone (80% in water) and once with ice cold ethanol (70% in water). 

After washing, the protein pellets were suspended in 8 M urea, 2 M thiourea, 2% (w/v) 

CHAPS, 2% (w/v) triton X-100 and 50 mM dithiothreitol (DTT) to ~ 1 µg protein µL-1. 

Samples (150 µL) were supplemented with Bio-Lyte ampholytes (BioRad) and loaded on 

7 cm BioRad isoelectric focusing (IEF) gel strips (gradient from pH 5-8). The gels were 

subjected to 12 hours rehydration at 50 V, followed by focusing at 250 volts for 15 

minutes and then at 4000 V for 35,000 volt-hours. After isoelectric focusing, the IEF gel 

strips were soaked in 6 M urea, 2% (w/v) SDS, 0.375 M Tris-HCl, pH 8.8, 20 % (w/v) 

glycerol and 20 mg/mL DTT for fifteen minutes, followed by incubation for fifteen 

minutes in the same buffer, but with 25 mg/mL iodoacetamide instead of DTT. Strips 

were rinsed in running buffer before loading them at the top of 12.5% acrylamide gels for 

SDS-PAGE. After SDS-PAGE, proteins were stained with Coomassie blue. Spots were 

cut from the gels and proteins were identified by mass spectrometry at the University of 

Michigan Protein Structure Facility. A blank spot of each gel was also taken and 

processed. The samples were subjected to in-gel Trypsin digestion. As a control, BSA 

was run on a separate gel and subjected to the same digestion and Mass Spectrometry 

procedure. LC-MS/MS was performed on a Q-TOF Premier Mass Spectrometer. Protein 

Lynx Global Server and Mascot search engines were used to search the SwissProt and 

NCBI databases. 
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2.2.3 Purification of OOR 

 Protein was purified from M. thermoacetica cells grown in the fermentor on 

glucose and oxalate. All purification steps and subsequent enzymatic manipulations were 

done in a Vacuum Atmospheres (Hawthorne, CA) anaerobic chamber maintained at < 4 

ppm O2. Cells were suspended in Buffer A (50 mM Tris-HCl, 2 mM MgCl2, 2 mM DTT, 

1 mM TPP, pH 7.9) with 0.25 mg/mL lysozyme and 0.2 mM phenylmethanesulfonyl 

fluoride, sonicated and centrifuged at 4 oC at 100,000 x g for 1 hour. The supernatant was 

loaded on a 5 x 25 cm DEAE cellulose column and proteins were eluted with a gradient 

from 0.1 M to 0.5 M in Buffer A. The 0.3 M fraction was diluted to 0.075 M NaCl with 

Buffer A and loaded on a 2.5 x 25 cm red agarose (Sigma Aldrich) column. OOR did not 

bind to this column, so 0.85 M ammonium sulfate was added to the flow-through and 

wash fractions and these were loaded on a 2.5 x 25 cm fast-flow high substitution phenyl 

sepharose (G.E. Healthcare) column and eluted with a reverse linear gradient from 0.85 

M to 0 M ammonium sulfate and 10 percent glycerol in Buffer A. Oxalate oxidation 

activity eluted at around 0.45 M ammonium sulfate. Fractions containing OOR activity 

were pooled, concentrated and exchanged into Buffer A using 30 kDa molecular weight 

cut-off centrifuge concentrators. The protein was loaded on a 2.5 x 25 cm high 

performance Q sepharose column (Sigma-Aldrich) and eluted with a linear gradient from 

0-0.7 M NaCl in Buffer A. OOR activity eluted at 0.47 M NaCl. Fractions containing 

OOR activity were pooled and exchanged into 50 mM Tris-HCl, pH 7.9, and 2 mM DTT. 

OOR was stored in 50 mM Tris-HCl, pH 7.9, and 2 mM DTT at a concentration of 210 

µM and dilutions of this protein stock were used for all subsequent experiments, unless 

described otherwise. 
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2.2.4 Enzyme assays 

 OOR activity was measured in 50 mM Tris-HCl, 2 mM DTT, pH 7.9. Assays at 

25 oC were done in a Vacuum Atmospheres anaerobic chamber maintained at < 4 ppm 

O2, using a UV-visible spectrophotometer from Ocean Optics (Dunedin, FL). Assays at 

40 or 55 oC were performed in stoppered cuvettes flushed with N2 gas, in an OLIS 

(Bogart, GA)-modified Cary-14 spectrophotometer. For steady-state assays performed 

with saturating substrate concentrations, 1 mM sodium oxalate and 10 mM methyl 

viologen were used and the reduction of methyl viologen was followed at 578 nm (ε578 = 

9.7 mM-1 cm-1). In assays using ferredoxin (∆ε420 = 7.5 mM-1 cm-1), horse heart 

cytochrome c (∆ε553 = 19.4 mM-1 cm-1), NAD+ or NADP+ (ε340 = 6.22 mM-1 cm-1), FMN 

(ε450 = 12.2 mM-1 cm-1), FAD (ε450 = 11.3 mM-1 cm-1), or CODH, methyl viologen was 

omitted. The extinction coefficients for FMN and FAD are for two-electron reductions. 

∆ε320 for metronidazole was determined by titrating 100 µM metronidazole with 20 µM 

aliquots of oxalate, in the presence of 1.8 µM OOR (∆ε320 = 3.2 (mM reducing 

equivalent)-1 cm-1) at 320 nm was determined. In all assays, calculations were based on 

the assumption that oxidation of one mole of oxalate produces two moles of electrons. 

CODH as an electron acceptor for OOR was assayed in 50 mM sodium phosphate, pH 

7.0, with 1 mM oxalate, 20 µM CODH/ACS from M. thermoacetica and 50 µM 

myoglobin in stoppered cuvettes that were flushed with 20% CO2/80% N2 (6.8 mM CO2 

in solution). The stock solution of myoglobin was pre-reduced by adding a stoichiometric 

amount of sodium dithionite. Formation of CO from CO2 was measured as myoglobin-

bound CO. At pH 7, the specific activity of CO2 reduction by CODH using dithionite 

(instead of OOR) as a reductant was 4.7 µmoles min-1 µmole CODH-1. Formation of Mb-
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CO was monitored at 423 nm. The extinction coefficient, ∆ε423 = 129 mM-1 cm-1, was 

determined from the difference between the spectra of myoglobin-CO and dithionite-

reduced myoglobin. The concentration of myoglobin used for these spectra was 

determined from extinction coefficients of 121 mM-1 cm-1 at 435 nm for ferrous 

myoglobin and 207 mM -1 cm-1 at 423 nm for myoglobin-CO (18). 

 For whole cell assays, cells were harvested from growing cultures, washed twice 

with 15 mM NaCl in 50 mM potassium phosphate, pH 7.0, and re-suspended in stoppered 

serum bottles in fresh growth medium with 10 mM oxalate and 1 atmosphere of CO2. 

Aliquots were removed with a syringe, quenched in 1 M HCl and oxalate concentrations 

were measured by HPLC on a 300 x 7.8 mm BioRad Aminex HPX-87H column with a 

mobile phase of 0.008 N H2SO4 in a Beckman Coulter (Brea, CA) System Gold HPLC 

with diode array UV-visible detector. Oxalate was detected by its absorbance at 210 nm. 

Concentrations were determined by comparison to oxalate standards prepared in the 

medium used for the assays. Oxalate concentrations between 0.25 and 10 mM could be 

reliably determined by this assay. HPLC-based assays with purified protein or cell 

extracts were performed in the same way, except that 50 mM Tris-HCl, pH 8.0, with 10 

mM oxalate and 10 mM methyl viologen (under an N2 atmosphere) was used instead of 

growth medium and oxalate standards were prepared in the assay buffer. 

 The pH dependence of OOR activity was determined by measuring activity with 1 

mM oxalate and 10 mM methyl viologen in 50 mM buffer containing 2 mM DTT. 

Buffers were made by mixing 50 mM solutions of conjugate acid and base in different 

proportions and the pH of each buffer and DTT solution was measured before starting 

each assay. The buffers used were MES (pKa = 6.02, used from pH 5.0-7.1), sodium 



 34  

phosphate (pKa = 6.82, used from pH 5.9-7.8), borate (pKa = 8.94, used from pH 8.1-

9.1) and CAPSO (pKa = 9.42, used from pH 8.4-10.2). 

 

2.2.5 UV-visible spectroscopy 

 OOR was diluted to 4.1 µM in 50 mM Tris-HCl, pH 7.9, and 2 mM DTT to 

measure the UV-visible spectrum of the as- isolated protein. The enzyme was reduced at 

25 oC by adding 100 µM sodium oxalate. To measure the spectrum of the oxidized 

protein, 4.1 µM OOR was mixed with 50 nM M. thermoacetica CODH/ACS in 50 mM 

potassium phosphate, pH 7.0. The cuvette containing this mixture was stoppered and the 

headspace was flushed with 20% CO2/80% N2. After five minutes of CO2 exposure, the 

spectrum was recorded. In this reaction, electrons from OOR are transferred to CODH, 

which reduces the CO2 to CO. Once OOR was fully oxidized, the spectrum did not 

change during another hour of CO2 exposure.  

 

2.2.6 EPR spectroscopy 

 OOR was concentrated and diluted in 50 mM Tris-HCl, pH 8.0 (without DTT), to 

a concentration of 49 µM. Comparison of the UV-visible spectrum of this protein with 

dithionite-reduced OOR showed that the protein was two-thirds reduced. Sodium oxalate 

(50 µM, final) was added to completely reduce the protein. After reduction, different 

amounts of horse heart cytochrome c and 50 mM Tris-HCl, pH 8.0, were added to 

generate samples that were 39 µM OOR and between 20 and 160 µM cytochrome c. EPR 

spectra were collected at 9 K and the parameters were as follows: receiver gain, 2 x 102; 

modulation frequency, 100 kHz; modulation amplitude, 10 G; center field, 3450 or 3500 
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G; sweep width, 700 or 2000 G; and microwave power, 0.129 mW. The double integrals 

of the EPR signals were compared to that of a 1 mM copper(II) perchlorate standard to 

determine the number of spins per monomeric unit.  

 

2.2.7 Size exclusion chromatography 

 A 90 x 1.6 cm column of Superdex 200 resin (G. E. Healthcare) was equilibrated 

with an anaerobically prepared solution of 50 mM Tris-HCl, pH 8.1 with 2 mM DTT, 0.2 

mM Na2S2O4 and 0.5 mM sodium oxalate. The buffer was added to the column through a 

continuous closed  system of tubing, and the bottle containing the buffer was closed by a 

rubber stopper and pressurized with N2 gas during use, to keep O2 from entering the 

buffer and column. Proteins were dissolved in the same buffer anaerobically, removed 

from the anaerobic chamber in stoppered serum vials, and added to the column sample 

loop with a Hamilton gas-tight syringe. Blue dextran, a standard protein mixture 

consisting of carbonic anhydrase (29 kDa), bovine serum albumin (66 kDa), alcohol 

dehydrogenase (150 kDa), β-amylase (200 kDa), apoferritin (443 kDa) and thyroglobulin 

(669 kDa), OOR and M. thermoacetica pyruvate ferredoxin oxidoreductase were run 

separately over the column. Blue dextran and standard proteins were purchased from 

Sigma Aldrich.  

 

2.2.8 Sedimentation equilibrium  

 The oligomeric state of OOR was determined at 20 oC by sedimentation 

equilibrium under anaerobic conditions using an Optima XL-I analytical ultracentrifuge 

(Beckman Coulter, Inc.) equipped with an eight-hole An50 Ti rotor. OOR was dialyzed 
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against 50 mM Tris-sulfate buffer (pH 8.0) containing 2 mM DTT and 100 mM NaCl 

before centrifugation. Sample and reference cells were incubated overnight in an 

anaerobic glove box (nitrogen atmosphere, Belle Technology) prior to loading with 

reference buffer and OOR samples. Three concentrations (8.3, 21, and 32 µM) of OOR 

were loaded (110 µl) in the sample cells and the reference cells were filled with the 

dialyzate buffer (125 µl). Radial scans were collected at 430, 460, and 470 nm after 22 h 

and 24 h using a rotor speed of 6,000 rpm. The scans are an average of 10 measurements 

at each radial position with a spacing of 0.001 cm. Data were fit by global analysis to an 

equation describing a single-species model using Origin 6.0. The partial specific volume 

of OOR used for best- fit analysis was 0.7396, which is the average of the three OOR 

polypeptides calculated by SedTerp. The solvent density of the buffer was calculated to 

be 1.0038 g/ml. 

 

2.2.9 Miscellaneous methods  

 The stoichiometry of the three OOR peptides was estimated from a Coomassie-

stained SDS polyacrylamide gel of the purified protein. To find the relative amounts of 

the three bands, the gel was scanned and digitized using UN-SCAN-IT gel Version 6.1 

software from Silk Scientific (Orem, UT). Blue native polyacrylamide gel electrophoresis 

was done with the Invitrogen NativePAGE Novex Bis-Tris Gel System, using 4-16% 

acrylamide gradient gels, and NativeMark protein standards. OOR and PFOR proteins 

were mixed with 0.5% Coomassie G-250 before loading gels. Protein concentrations 

were determined by the Rose Bengal method (19), using a lysozyme standard. The 

concentration of TPP bound to OOR was determined by a fluorescent thiochrome assay 
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(20). Pure TPP was used as a standard. Metal concentrations were determined by ICP-

OES at the Chemical Analysis Laboratory at the University of Georgia. For metal 

analysis, 1.1 mL of 20 µM OOR was dialyzed against two changes of 500 mL of 100 mM 

Tris-HCl, 2 mM DTT, pH 7.9. Metal concentrations in the protein sample were 

calculated after subtracting the concentrations in a sample of the dialysis buffer treated 

exactly as was the protein.  

 

 

2.3 Results 

2.3.1 Identification of proteins induced during growth of M. thermoacetica on oxalate   

 Daniel and Drake showed by SDS-PAGE that 33 kDa and 42 kDa proteins are 

induced during growth of M. thermoacetica on oxalate (14). Cell extracts from cells 

grown with different substrates, SDS-PAGE (Figure 2.1, lanes 2-3) and two-dimensional 

electrophoresis (Figure 2.2) experiments reveal three proteins (with molecular masses of 

42, 39 and 35 kDa) that are more strongly expressed in cells grown in stoppered culture 

flasks on oxalate or on oxalate and glucose than those grown on glucose (in the absence 

of oxalate). These three proteins were identified by mass spectrometry as the subunits of 

an annotated 2-oxoacid:ferredoxin oxidoreductase, with NCBI accession numbers of 

YP_430440, YP_430441 and YP_430442 and Joint Genome Institute locus tag 

classifications  Moth_1593,  Moth_1592  and  Moth_1591, respectively (21)  (Table 2.1). 

Directly upstream from Moth_1593 are two genes that are transcribed in the same 

direction, which encode a transcriptional regulator (Moth_1595) and an AAA family 

ATPase in the CDC48 subfamily (Moth_1594). The N-terminal domain of the predicted 
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transcriptional regulator is annotated as a GntR family helix-turn-helix pfam domain and 

the C-terminal domain is annotated as an FCD ligand-binding domain. Moth_1590, 

downstream from Moth_1591, encodes a major facilitator superfamily protein with 

thirty-five percent sequence identity to the oxalate:formate antiporter of Oxalobacter 

formigenes (22) (Figure 2.3). 

 

 

 

 

 

 

Figure 2.1. Native PAGE of purified OOR and SDS PAGE of M. thermoacetica cell extracts. 
Lanes 1-3, SDS-PAGE. Lane 1: molecular mass marker; Lane 2: total cell protein from M. 
thermoacetica grown on 28 mM oxalate and 50 mM glucose; Lane 3: total cell protein from M. 
thermoacetica grown on 50 mM glucose. Lanes 4-6, native PAGE. Lane 4: molecular mass 
marker; Lane 5: 10 µg M. thermoacetica PFOR; Lane 6: 10 µg oxalate oxidoreductase. 
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Table 2.1. Mass spectrometric identification of oxalate oxidoreductase 

Spot 
NCBI accession 
number JGI locus tag 

Percent sequence 
coverage 

Number of peptides 
identified by LC-MS/MS 

1 YP_430442 Moth_1593 58 26 
2 YP_430441 Moth_1592 80 40 
3 YP_429140 Moth_0262 29 10 
4 YP_430440 Moth_1591 48 18 
5 YP_429140 Moth_0262 50 17 

 

 

 

 

 

 

Figure 2.2. Two dimensional electrophoresis used to identify oxalate oxidoreductase in cell 
extracts. Molecular mass markers are visible at the left side of each gel. Cells were grown on CO2 
and A, oxalate; B, glucose and oxalate; C, glucose. Arrows point to the spots identified by mass 
spectrometry. The best match from the most predominant protein in each sample is listed in Table 
2.1. Spots 1 and 2 were identified as the fusion of gamma and delta subunits and the alpha subunit 
of oxalate oxidoreductase. Two spots in A and B that are not well resolved (marked as 3 and 4) 
are in the same position as a protein spot in C (marked as 5). Spots 3 and 5 were identified as 
glyceraldehyde-3-phosphate dehydrogenase. Spot 4 was identified as the beta subunit of OOR. 
No peptides from this protein were identified in spot 5 from the gel from glucose-grown cells. 
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Figure 2.3. Gene cluster containing genes encoding OOR. Only the products of genes shown in 
dark grey were identified by 2-D electrophoresis and mass spectrometry as being highly 
expressed during growth on oxalate. 
 

 

2.3.2 Purification of oxalate degrading activity from M. thermoacetica  

 As shown earlier (15), we found that cell extracts containing soluble protein from 

M. thermoacetica grown on oxalate and glucose catalyzed oxalate-dependent reduction of 

methyl viologen. Based on an HPLC-based assay that measures the decrease in oxalate 

concentration, the OOR specific activity was 0.4 µmoles min-1 mg protein-1 at 55 oC, 

while that of extracts from cells grown on glucose without oxalate was less than 0.03 

µmoles min-1 mg protein-1 at 55 oC. We also used the HPLC-based assay to measure 

oxalate degradation by whole cells of M. thermoacetica grown on oxalate and glucose or 

on glucose alone. In these assays, which were followed for several hours, oxalate was 

degraded thirty times more quickly by cells that had been previously exposed to oxalate 

than by cells grown on glucose without oxalate.  

 To determine if the 2-oxoacid:ferredoxin oxidoreductase homolog that is 

overexpressed during growth on oxalate is the only protein needed for the oxalate-

dependent methyl viologen reducing activity seen in cell extracts, we purified OOR from 

M. thermoacetica cells to greater than 95% purity, as shown by SDS-PAGE (Figure 2.4, 

Table 2.2). After 22-fold purification, the active protein consisted of three peptides in 

1:0.8:1 stoichiometry, with estimated sizes of 36, 43 and 32 kDa, which corresponds well 

to the predicted masses of 34.2, 43.7 and 33.9 kDa for YP_430440, YP_430441 and 

YP_430442.  
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Figure 2.4. SDS-PAGE of purified OOR. Left lane, molecular mass marker 
(sizes shown in kDa); right lane, 6 µg of purified OOR. 
 

 
 
Table 2.2. Purification of OOR 

Purification step U/mga mg protein Total units Purification (fold) 

Cell-free extract 0.009 3780 34 1 

DEAE cellulose 0.044 1590 70 5 

Phenyl sepharose 0.169 349 54 18 

Q sepharose 0.200 108 22 22 
aMeasured at 40oC 

 

 

 The purified OOR preparation retained 0.015 U/mg of CO dehydrogenase 

(CODH) activity, indicating that there is a 0.03% contamination of OOR with 

CODH/acetyl-CoA synthase (ACS), which apparently was not completely separated from 

OOR during the purification procedure. 

 When run on Blue native polyacrylamide gel electrophoresis, most of the OOR 

was found in a major band with an estimated molecular mass of 243 kDa and another 

species with a mass of 445 kDa (Figure 2.1). Molecular exclusion chromatographic 

analysis of OOR reveals predominantly a 236 kDa species and a 117 kDa species, which 

accounts for 10-20% of the total protein (Figure 2.5). In a parallel gel filtration  
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Figure 2.5. Size exclusion chromatography of purified OOR and PFOR. A, elution of OOR (solid 
line) and pyruvate:ferredoxin oxidoreductase (dashed line) from the column. Elution was 
monitored by absorbance at 280 nm. B, standard curve used to calculate approximate molecular 
weights of OOR and PFOR. Ve/Vo is the ratio of the elution volume of each protein standard to 
the void volume of the column, determined using blue dextran. 

 
 
Figure 2.6. Sedimentation equilibrium analysis of OOR. The top panel shows a global fit of 
analytical ultracentrifugation data for three different concentrations of OOR collected at 6000 
rpm. Absorbance data were recorded at 430, 460, and 470 nm for 8.3 µM (triangles), 20.7 µM 
(squares), and 32.3 µM (circles) OOR concentrations, respectively. The solid line through the 
points is the weighted best least squares fit to an ideal single-species model. Residuals for each fit 
are shown in the bottom panel. A vertical offset was applied to the residuals from the 8.3 µM 
(triangles) and 32.3 µM (circles) concentrations for clarity. 
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experiment, the M. thermoacetica PFOR was shown to elute with a similar profile. The 

quaternary structure of OOR was also characterized by analytical ultracentrifugation.  

(Figure 2.6) shows the results from sedimentation equilibrium analysis of OOR at three 

different concentrations. A best-fit value of 226,890 Da was estimated for the molecular 

weight of OOR which is within 1.5% of the molecular weight predicted for a dimeric 

species (223,700 Da). These combined results indicate that, like PFOR and other OFORs, 

OOR forms a dimeric structure consisting of two heterotrimeric units. 

 

2.3.3 Sequence analysis of OOR  

 2-Oxoacid:ferredoxin oxidoreductases are made up of a minimum of three 

conserved domains, alpha, beta and gamma, with an additional delta domain in most 

OFORs. The genomic arrangement and fusion of these domains varies. The residues 

involved in binding TPP and one [Fe4S4]2+/1+ cluster are in the beta subunit (23).  

 

 

Figure 2.7. Schematic of OOR peptides. Top, arrangement of the three peptide sequences as they 
align with pyruvate:ferredoxin oxidoreductases from D. africanus and M. thermoacetica. Each 
rectangle represents a separate gene product. Locations of conserved residues that may be 
involved in iron-sulfur cluster, TPP, Mg2+, and substrate binding are shown (Mg2+ binding 
residues include the GDGX32N motif in the β subunit). All residues proposed to ligate the Fe4S4 
clusters are cysteines. Bottom, expanded view of the β subunit of OOR showing both conserved 
and non-conserved residues that align with the Fe4S4 cluster and TPP-binding residues of D. 
africanus PFOR. 
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Moth_oor   22 VDVICSYPIRPYTGIMSELAR 42     90  SGERLPVQMAIADRTLD-PPGDFGEEHT 131 
Mt_por     21 PKVIPVYPITPQTSISEYLAK 41     89  AGLRNPIVMANANRALS-APLSIWNDQQ 130 
Pf_por     22 PKVIAAFPITPSTLIPEKISE 42     90  AGMRLPIVMAIGNRALS-APINIWNDWQ 131 
Pf_vor     25 VQVVAAYPITPQTSIIEKIAE 45     90  AGARLPIVMVDVNRAMA-PPWSVWDDQT 131 
Moth_0378  22 VQVISAYPITPQSPIAEKLAE 42     90  SGCRVPIVMAVINRSLV-SPWSLWCDHQ 131 
Moth_1922  20 AEVVAAYPITPQSTIVEKIAE 40     88  SGCRVPLVMAVANRGLA-APWTIWADHQ 129 
Hp_por     28 IDVIAAYPITPSTPIVQNYGS 48     96  SGMRLPIVLNLVNRALA-APLNIHGDHS 137 
Eh_por     18 SDVSFIFPITPSSPMAENADV 38     91  AGEHLPCVFHVTARALAGQALSIFGDHS 132 
Moth_por   20 SEVATIYPITPSSPMAEIADE 40     93  AGELLPCVFHVAARALSTHALSIFGDHA 134 
Da_por     22 SEVAAIYPITPSSTMGEEADD 42     95  SGELLPGVFHVTARAIAAHALSIFGDHQ 136 
Tt_por     22 TEVAAIYPITPSSPMAELVDA 42     95  AGELLPGVFHVSARAVATHALSIFGDHS 136 
Am_por     22 TDVAAIYPITPSSNMAENVDE 42     95  AGELLPGVFHVSARALAGHALSIFGDHS 136 
Ht_por     48 VDASVSYPITPQSEAAHLIGE 68    115  AGTRIPVQLVLMARGVN-APLSIQPDNL 156 
Ht_kor1    38 VDIAIAYPITPQSEVMHLVGD 58    105  PGHRIPAVLGVLTRVVN-APLSIQPDNV 146 
Moth_0033  28 ADIMYGYPITPQNEIMHYWTR 48     94  EMMRLPTVVVVTQRGGPST-ATVIYSQQ 136 
Mt_vor     16 CDCYFGYPITPASEILHEASR 36     92  AGAELPAVIVDVMRAGP-GLGNIGPEQG 135 
Moth_1984  20 CRVFAGYPITPATEIAENMAR 40     87  ISSEIPLVIVNSQRVGPVVSGITGPGQG 129 
Hp_kor     20 CRFFGGYPITPSSDIMHAMSV 40     97  FMAEIPLVIADVMRSGPSTGMPTRVAQG 138 
Mt_kor     23 CRFFAGYPITPSTEIAEEMAL 43     90  AMTETPLVIVNVQRGSPSSTGQPTASQS 131 
Hs_u      237 CRFISGYPMTPWTDAFTIMTQ 257   304  EMTETPLVLLEAQRAGPSTGMPTKPEQA 345 
Ht_kor2   215 CKFYAAYPITPATTVGNYIVE 235   282  GMTELPIVIVDVQRVGPATGMPTKHEQG 323 
Ta_kor    218 VRFVAAYPITPGTEVLEWLAP 238   285  VASETPITIVNVMRGGPSTGIPVKSEQS 326 
Hs_kor    216 CRFYAGYPITPATDVMEYLTG 236   283  ATSETPLVIANVMRSGPSTGMPTKQEQG 324 
Ap_u1     260 VRYQAYYPITPASDESVLLEE 280   333  GKNDVPMVITYYQRGGPSTGLPTRGSQS 374 
St_u      247 VRFQSYYPITPASDESVYIEA 267   325  GMNEVPVVITYYIRGGPSTGLPTRTAQS 366 
Ap_u2     257 LGVITYYPITPSSDEALYVEK 277   337  VEAEIPVVVTLWMRAGPSTGMPTRTGQQ 378 
Mt_ior     32 VGVASTYPGTPSSEIGNVLSG 52     93  AYTGVRAGMVVLTADDP-SMFSSQNEQD 134 
Pf_ior     34 IAVFAAYPGTPSSEVTDTMAA 54     95  SYMGVNGGFIVMVADDP-SMWSSQNEQD 136 

 

Figure 2.8. Alignments of 2-oxoacid:ferredoxin oxidoreductase sequences. Alpha subunit 
sequences of pyruvate (por), 2-oxoisovalerate (vor), 2-oxoglutarate (kor) and indolepyruvate (ior) 
ferredoxin oxidoreductases, broad specificity 2-oxoacid:ferredoxin oxidoreductases (u) and four 
putative 2-oxoacid oxidoreductases from M. thermoacetica were aligned with the oxalate 
oxidoreductase alpha subunit (oor) using clustal W. The conserved YPITP substrate binding 
motif and arginine residue that bind pyruvate in the D. africanus PFOR crystal structure are 
highlighted. Species and NCBI sequence accession numbers are Moth: M. thermoacetica 
YP_430441 (oor), YP_428946 (por), YP_429255 (Moth_0378), YP_430765 (Moth_1922), 
YP_428916 (Moth_0033) and YP_430825 (Moth_1984); Mt: Methanobacterium 
thermoautotrophicum delta H (24) NP_276849 (por), O26800 (vor), NP_276168 (kor), and 
NP_276958 (ior); Pf: Pyrococcus furiosus (25, 26) NP_578695 (por), NP_578698 (vor) and 
NP_578262 (ior); Hp: Helicobacter pylori (27) NP_207901 (por) and NP_207384 (kor); Eh: 
Entamoeba histolytica (28) AAB49653; Da: Desulfovibrio africanus (29) CAA70873; Ta: 
Thermoanaerobacter tengcongensis NP_622125; Am: Alkaliphilus metalliredigens 
YP_001322386; Ht: Hydrogenobacter thermophilus (30) BAA95605 (por), BAI69553 (kor1) and 
BAI69551 (kor2); Hs: Halobacterium salinarum (31) YP_001689139 (u) and NP_279533 (kor); 
Ta: Thauera aromatica (32) CAD27440; Ap: Aeropyrum pernix (33) NP_148403 (u1) and 
NP_147967 (u2); St: Sulfolobus tokodaii (34) NP_378302. 
 
Enzymes that include the delta subunit have two additional [Fe4S4]2+/1+ clusters that are 

involved in electron transfer from the TPP active site to ferredoxin (24). The OOR 

protein is made up of separate α and β subunits and a third subunit that is a fusion of γ 

and δ domains (Figure 2.7). We performed separate clustalW alignments of the sequences 
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of the three OOR subunits with those of corresponding subunits of biochemically 

characterized pyruvate, 2-oxoisovalerate, 2-oxoglutarate, indolepyruvate and broad 

specificity oxidoreductases (see caption to Figure 2.8). The chosen sequences included 

the D. africanus PFOR, which has been crystallized in complex with pyruvate (29), 

allowing us to determine whether or not oxoacid binding residues are conserved in OOR. 

In the beta subunit, residues that coordinate TPP, the adjacent Mg2+ ion, and the [Fe4S4] 

cluster that is nearest TPP are conserved. The eight cysteine residues that bind the other 

two [Fe4S4] clusters are conserved in the OOR delta subunit.  

In the alpha and beta subunits, two of five substrate-binding residues from D. 

africanus PFOR are conserved in OOR. Arg109 corresponds to Arg114 in D. africanus 

PFOR, which binds the carboxyl group of pyruvate. Three other residues, I123, I843 and 

N996 are less strongly conserved among the other OFORS. In the D. africanus PFOR 

structure, Asn996 forms a hydrogen bond to the carbonyl group and Ile843 and Ile123 

interact with the methyl group of pyruvate. The corresponding residues are Asn143, and 

Val55 in the beta subunit and Phe117 in the alpha subunit of OOR. The fifth residue, 

Thr31 in PFOR, is part of a strongly conserved YPITP motif that is present in OFORs 

using many different substrates (35) and is within hydrogen bonding distance of the 

alpha-keto oxygen of pyruvate in the D. africanus PFOR crystal structure. This Thr is 

replaced by Arg in the OOR sequence (Figure 2.8), thus forming a YPIRP motif. A 

BLAST search of the non-redundant protein database at NCBI shows that this 

substitution is rare - eight of the eleven sequences most closely related to OOR have T31 

replaced with arginine, but no other sequence in the first five hundred BLAST hits have 

arginine in this position. 
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2.3.4 Cofactor binding  

 OOR was purified in buffer containing 1 mM TPP and 2 mM MgCl2 and, during 

the purification, the protein was assayed in the same buffer. After purification, the protein 

was exchanged into 50 mM Tris-HCl with 2 mM DTT, but without TPP or MgCl2. The 

activity of the protein did not change after buffer exchange and we found that it was not 

necessary to add TPP to assays to see full activity. Using a fluorescent assay to quantify 

thiochrome bound to OOR, 1.0 mole of TPP was found per mole of protein.  

 As- isolated OOR is brown; metal analysis by ICP showed 14 moles of iron and 

0.8 moles of Mg2+ per OOR monomer (calculated from the predicted value of 113.5 kDa 

per monomer, with concentrations of OOR estimated by Rose Bengal assays). After 

preparing the protein for metal analysis by dialysis into metal- free buffer, the protein 

retained activity with 0.7 mole TPP per mole of protein. Mg2+ is likely to help with TPP 

binding as it does in other TPP-dependent enzymes. Calcium, sodium and potassium 

were also present in the sample in greater than stoichiometric amounts, but their 

concentrations varied widely between two metal analysis samples, so it is possible that 

they bind non-specifically to the protein (Table 2.3). 

 

 

Table 2.3. Cofactor content of OOR 

 Mole/mol protein 
Metal or  
co-factor 

As-isolated OOR 
Dialyzed 
OOR 

TPP 1.03 0.71 
iron 14.0 14.3 
magnesium 1.9 0.8 
sodium 24.3 6.1 
potassium  1.0 8.3 
calcium 0.6 1.8 
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2.3.5 Catalytic properties of OOR  

 The purified heterotrimeric protein catalyzed the oxidation of oxalate using 

methyl viologen as an electron acceptor with a specific activity of 0.05 µmoles min-1 mg-1 

(kcat = 0.095 s-1, at pH 7.9) and a Km for oxalate of 58 ± 6 µM (Figure 2.9). Addition of 

CoA from 1 µM to 1 mM had no effect on the OOR reaction rate (Figure 2.9). 

Furthermore, the addition of 1 mM ATP and 1 mM CoA together to the assay mixture did 

not affect the rate of the reaction. The pH dependence of OOR activity was measured at 

pH values between 5.0 and 10.2 using saturating concentrations of oxalate (1 mM). The 

maximum activity (0.11 U/mg, 0.21 s-1) was observed at pH 8.7 (Figure 2.9). Other 

reported optimal pH values for activity of 2-oxoacid:Fd oxidoreductases are between pH 

7.5 and 9.0 (31, 33, 36-40). Since the pKa values for oxalate are 1.23 and 4.19 (41), the 

fully deprotonated form would be the substrate at the optimal pH for OOR.  

 OOR showed slow activity with all 2-oxoacids tested (Table 2.4). The OOR 

preparation had no formate dehydrogenase activity, which indicates that the 

decarboxylase activity of OOR, like other OFORs, is strictly coupled to electron carrier 

reduction, unlike the decarboxylases where the electron pair is retained in the other 

product (e.g., pyruvate decarboxylase generates CO2 and acetaldehyde). These results are 

consistent with earlier assays of cell lysates (15), in which it was shown that the oxalate-

catabolizing system in M. thermoacetica had different electron acceptor specificity than 

formate dehydrogenase. OOR was active with a broad range of electron acceptors (Table 

2.5). OOR used CODH as an electron acceptor, catalyzing the oxalate-dependent 

reduction of CO2 to CO.  
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Figure 2.9. Oxalate and pH dependence of OOR activity. A, activity was measured at 25 °C in 50 
mM Tris-HCl, pH 7.9, with 10 mM methyl viologen and with varying oxalate concentrations 
(closed circles) or 1 mM oxalate and varying coenzyme A concentrations (open circles). B, 
activity was measured at 25 °C in MES (open circles), sodium phosphate (closed circles), borate 
(open squares), and N-cyclohexyl-3-amino-propanesulfonic acid (closed squares). 

 

2.3.6 Spectral characterization of OOR  

 The UV-visible spectrum of as- isolated OOR had a broad absorbance shoulder 

between 300 and 500 nm (Figure 2.10). The absorbance in this region increased when the 

protein was exposed to air or treated with ferricyanide. Treating the protein with sodium 

dithionite decreased the absorbance of the band between 300 and 500 nm, which is 

consistent with the bleaching seen upon reduction of [Fe4S4]2+/1+ clusters in other  
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Table 2.4. Substrate specificity of OOR 

Substrate µmoles min-1 mg-1 

Oxalate 0.049 + 0.004 

Glyoxylate 0.024 + 0.006 

Glyoxylate + 100 µM CoA 0.029 + 0.007 

Pyruvate 0.005 + 0.001 

Pyruvate + 100 µM CoA 0.005 + 0.001 

2-oxobutyrate 0.014 + 0.001 

oxaloacetate 0.007 + 0.003 

2-oxovalerate 0.003 + 0.001 

2-oxoglutarate 0.004 + 0.002 

Formate N.D.a 
aN.D.: not detected. Slow enzyme-dependent methyl 
viologen reduction of about 0.002 U/mg was seen in 
assays with no substrate, so we could not measure 
any slower activity. 

 

 

Table 2.5. Electron acceptor specificity of OOR 

Electron acceptor µmoles min-1 mg-1 

Methyl viologen (20 µM) 0.047 + 0.008 
Metronidazole (20 µM) 0.014 + 0.002 
Ferredoxin (20 µM) 0.029 + 0.001 
Cytochrome c (20 µM) 0.182 + 0.004 
NAD+ (20 µM or 1 mM) N.D.a  
NADP+ (20 µM or 1 mM) N.D. 
FAD (20 µM) 0.049 + 0.008 
FMN (20 µM) 0.057 + 0.004 
CODH (20 µM) 0.006 + 0.001b 
a N.D.: not detected with 230 µg enzyme in 1 mL 
assay 
b Measured at pH 7.0, where CO2 reduction by 
CODH with dithionite as a reductant was 4.7 
µmoles min-1 µmole CODH-1. OOR activity is 
approximately three-fold less at pH 7 than at pH 8 
with methyl viologen as electron acceptor and 
OOR is inhibited by CO2, with approximately half 
as much activity under 6.8 mM CO2 as with no 
CO2.  
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Figure 2.10. UV-visible spectra of OOR. Solid line, as-isolated protein; dashes and dots, oxidized 
protein; short dashes, oxalate-reduced protein; dots, dithionite-reduced protein. Spectra were 
measured anaerobically. 4.1 µM protein was prepared in 50 mM sodium phosphate, pH 7.0. 
Reduced protein was prepared by adding 10 µM sodium oxalate or 15 µM sodium dithionite to 
the as-isolated protein sample, and the spectra shown were recorded after 20 min. Oxidized 
protein was prepared by incubation in 6.8 mM CO2 with 80 nM CODH/ACS from M. 
thermoacetica. 
 

proteins, for example, PFOR (42). OOR is expected to bind three [Fe4S4] clusters, based 

on the sequence alignments with PFOR and on the metal analyses described above. The 

maximum difference in absorbance between the oxidized and reduced protein was at 420 

nm with a difference extinction coefficient (∆ε) of 24.9 mM-1 cm-1, or 8.3 per mM 

[Fe4S4], which is similar to the extinction coefficients of 7 - 7.5 per mM cluster that have 

been reported for PFOR (42, 43). When OOR was incubated with oxalate, an identical 

difference spectrum was observed, and after oxalate reduction, OOR was oxidized by 

addition of a catalytic amount of CODH/ACS and excess CO2. 

 Because [Fe4S4] clusters are diamagnetic in the oxidized (2+) state and 

paramagnetic in the reduced (1+) state, OOR was studied by EPR to follow reduction of 

the protein by oxalate. The UV-visible spectrum of the protein used in this experiment 

was used to calculate that the as- isolated protein had 1.7 clusters reduced. As- isolated 
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OOR exhibited an EPR spectrum (Figure 2.11) with g-values of 2.039, 1.955, 1.927 

1.887 and 1.865 (1.2 spins/mol). When a stoichiometric amount of oxalate was added to 

the protein, the signal intensity increased to 3.4 spins/mol. The 1.955 and 1.865 features 

became broader and an additional feature at g = 2.007 was seen in samples of fully 

reduced OOR prepared with oxalate or dithionite (3.2 spins/mol). This EPR spectrum was 

saturated above 0.129 mW at 9K. The relative intensities of the 2.039 and 1.927 features 

decreased as the power was increased, although they were still present at 129 mW. When 

oxalate-reduced OOR was oxidized by additions of oxidized cytochrome c, there was no 

change in the overall shape of the EPR spectrum, even in the almost completely oxidized 

protein (0.07 spins/mol, (Figure 2.11)), indicating that the potentials of the iron-sulfur 

clusters are similar. The g-values of the OOR spectra are typical of [Fe4S4]2+/1+ clusters 

such as those in eight iron (2-[Fe4S4]) ferredoxins (44, 45) and other OFOR enzymes (31, 

43). As eight iron ferredoxins go from partially to fully reduced, an increase in 

complexity of the EPR spectrum is seen, which results from spin-spin interactions 

between two reduced [Fe4S4] clusters. Similar coupling of clusters has been seen in 

PFOR (43), as well as spin-spin interaction between an [Fe4S4] cluster and a substrate- 

derived radical in the active site (31). We did not see an increase in complexity with 

increasing reduction of OOR, nor did we see a substrate-derived radical when OOR was 

frozen ~30s after mixing with oxalate.  

 

2.4 Discussion 

 Oxalate is an important metabolite that is produced in the soil and in the animal 

GI tract, with elevated levels causing kidney stones. Many bacteria that use oxalate as an 
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energy source also use oxalate as a carbon source by reduction to glyoxylate, which is 

incorporated into the central metabolite 3-phosphoglycerate (46, 47), but enzymes 

involved in glyoxylate incorporation have not been detected in oxalate-grown cultures of 

M. thermoacetica (3, 48). We have shown that M. thermoacetica metabolizes oxalate  

 

 

 

Figure 2.11. EPR spectra of OOR. 39 µM OOR was reduced with oxalate and then titrated with 
oxidized cytochrome c. A, as-isolated OOR (1.2 spins/monomer); B, oxalate-reduced OOR (3.4 
spins/monomer); C, dithionite-reduced OOR (3.2 spins/monomer); D–F, oxalate reduced OOR, 
reoxidized by the addition of oxidized cytochrome c (D, 1.3 spins/monomer, E, 0.7 
spins/monomer, F, 0.07 spins/monomer). The parameters were as follows: receiver gain, 2 x 102; 
modulation frequency, 100 kHz; modulation amplitude, 10 G; center field, 3450 G; sweep width, 
700 G; microwave power, 0.129 milliwatt at 9 K. 
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very simply by a novel CoA-independent OFOR that catalyzes the oxidative 

decarboxylation of oxalate to two mol of CO2, coupled to the reduction of ferredoxin (or 

other electron acceptors). The apparent reaction is C2O4
2- + Fdox ↔ 2 CO2 + Fdred,

4 

although we have not yet shown whether CO2 or bicarbonate is the product that is 

released from OOR. Our results are consistent with previous studies, which indicate that 

incorporation of oxalate into cell material requires conversion to CO2 (3, 14). For 

example, M. thermoacetica can grow on oxalate even in CO2-free medium; however, 

when cells are grown on oxalate and CO2, very little radioactivity from 14C-oxalate is 

incorporated into biomass (14). Thus, OOR enables growth on oxalate by linking the 

production of CO2 and reducing equivalents to the Wood-Ljungdahl pathway of 

autotrophic anaerobic acetyl-CoA formation (3, 14).  

 Oxalate induces the expression of three proteins (36, 43 and 32 kDa) in M. 

thermoacetica that can be resolved by two-dimensional PAGE electrophoresis. Earlier 

studies described the induction of two protein bands (one of the bands apparently was not 

resolved by one-dimensional SDS-PAGE) when M. thermoacetica was grown on oxalate, 

relative to growth on CO, formate or glyoxylate (14). Mass spectrometric results reveal 

that the oxalate- induced proteins belong to the OFOR family and are encoded within an 

operon that includes a homolog of O. formigenes oxalate:formate antiporter, a permease 

and a gene encoding a transcriptional regulatory protein, for which we propose the name 

OorR. OorR contains an N-terminal helix- turn-helix DNA binding domain and a C-

terminal ligand-binding domain and is likely to coordinately regulate expression of OOR 

with expression of the enzymes of the Wood-Ljungdahl pathway. Oxalate is a unique 

                                                 
4 The ferredoxin that we have used with OOR is an 8-Fe ferredoxin that contains two [Fe4S4] clusters and 
accepts two electrons.  
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substrate for M. thermoacetica, which uses nitrate instead of CO2 as electron acceptor 

when grown on other multiple-carbon growth substrates in the presence of nitrate and 

CO2. However, CO2 is used preferentially over nitrate when it is growing on oxalate (3). 

Nitrate appears to inhibit autotrophic growth by repressing the Wood-Ljungdahl pathway 

at the transcriptional level (1, 2). We suggest that interactions between oxalate, OorR and 

the promoters of the oor and acs operons are able to induce the oor operon and prevent 

the nitrate-dependent repression of the Wood-Ljungdahl pathway.  M. thermoacetica 

does not produce formate from oxalate, but acetate, the end-product of the Wood-

Ljungdahl pathway, could be exchanged with oxalate by the antiporter. 

 OOR is the first protein shown to catalyze anaerobic oxalate oxidation, unlike 

previously described anaerobic enzymes that produce CO2 and formyl-CoA (6, 9). 

Although several features (e.g., Fe4S4 clusters and TPP content) of OOR are similar to 

other members of the OFOR family, OOR is unique among family members in its lack of 

requirement for CoA. Figure 2.12 describes a proposed mechanism of OOR, based on the 

results described here and on analogy with conserved features of other OFORs, such as 

PFOR whose mechanism has been extensively studied (42, 43, 49) and whose crystal 

structure is known (29).  

 

2.4.1 Steps 1 &2: Binding of TPP, Mg2+ and oxalate 

 The early steps of the reaction would resemble those of all TPP-dependent 

enzymes, reviewed recently (50). After binding oxalate (Step 1), Step 2 of the proposed 

OOR mechanism involves nucleophilic attack of the anionic ylide of OOR-bound TPP on 

oxalate to generate an oxalyl-TPP adduct. The purified OOR contains Mg2+ and TPP, 

which were added during purification because in some OFORs, like PFOR from M. 
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thermoacetica, TPP dissociates rather easily resulting in loss of activity in buffer lacking 

TPP. However, TPP remains tightly bound to OOR even after extensive buffer exchange 

and over several months’ storage.  Based on sequence homology  between  OOR and  the 

Desulfovibrio africanus PFOR, whose structure is known (29), we find that most of the 

key residues in PFOR that are involved in binding and activating TPP to generate the 

deprotonated ylide are conserved in OOR. These include beta subunit residues Cys130, 

and Asn143 (Cys840 and Asn996 in D. africanus PFOR), which interact with the 

pyrophosphate moiety of TPP. Conserved residues that interact with the Mg2+ ion include 

  

Figure 2.12. Proposed OOR mechanism. Oxalate binds to OOR (step 1) and undergoes 
nucleophilic attack by the TPP ylide (step 2), generating oxalyl-TPP, which could be stabilized by 
protonation from a general base (step 3). Decarboxylation (step 4) leaves an anionic intermediate 
that would release two electrons to the Fe4S4 clusters (step 5). The carboxyl-TPP that remains 
could be decarboxylated to release a second CO2 molecule (step 6) or hydrolyzed to release 
bicarbonate (not shown), regenerating the starting form of the enzyme. 
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a G109DGX32N motif (G962DGX32N in PFOR). Another key conserved residue is Asp59 

(Asp64 in PFOR), which interacts with the N1′ pyrimidine group of TPP and plays a key 

role in deprotonation of the C-2 of the thiazole ring to generate the active ylide. The 

conserved residue Asn996 in PFOR (Asn143) forms a hydrogen bonding interaction with 

the thiazolium sulfur of TPP and a large hydrophobic residue, Phe869 of PFOR (Ile159 in 

the beta subunit of OOR), interacts with TPP to promote formation of a V-conformation 

between the pyrimidine and thiazolium ring, which is conserved in all TPP-dependent 

enzymes so far studied. Different residues can stabilize the V-conformation in TPP-

dependent enzymes: Ile is also found in this position in pyruvate decarboxylase (51), Met 

and Leu are found in pyruvate oxidase and transketolase, and other OFOR enzymes have 

His and Tyr.  

 Of the 2-oxoacid substrates we tested, oxalate was oxidized most quickly. 

Furthermore, the low Km for oxalate (~60 µM) and the fact that the enzyme is induced in 

the presence of oxalate are consistent with oxalate being the physiological substrate for 

the enzyme. Although OOR can oxidize glyoxylate, the enzyme is not induced in cells 

grown on glyoxylate (14). Thus, we think it unlikely that OOR would be involved in 

glyoxylate metabolism in M. thermoacetica. OOR contains conserved residues that 

interact with the carboxyl and carbonyl groups of pyruvate in PFOR, but contains 

substitutions that we propose are important for binding the carboxyl group of oxalate that 

replaces the acetyl group of pyruvate.  

 Several residues involved in pyruvate binding in PFOR are conserved in OOR, 

including Arg109 (Arg114 in PFOR, which binds the carboxyl group of pyruvate) and 

Asn143 (Asn996 in PFOR forms hydrogen bonds to the carbonyl group of pyruvate). 
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Substitution of the Arg in Sulfolobus tokodaii that corresponds to Arg114 abolished 

activity (34). As expected, Ile123 and Ile843, which interact with the methyl group of 

PFOR are not conserved in OOR. Thr31 in PFOR is a highly conserved residue among 

the OFORs and is part of a YPITP motif that is important for catalysis. Substitutions of 

the end residues of this motif in an Aeropyrum pernix OFOR destroy activity and separate 

mutations of the three middle residues have varying effects that are in general larger for 

kcat than for Km, which suggests that the motif is important during reaction turnover (35). 

However, Thr31 is replaced with Arg31 in the OOR. Inclusion of a second Arg in the 

active site may help to stabilize the additional negative charge on oxalate. Since Arg in 

this position is found in only those few sequences in the NCBI protein database that have 

high identity to that of OOR, we propose that a YPIRP motif replaces the usual conserved 

YPITP motif, to promote interactions with may be characteristic of OORs. 

 

2.4.2 Decarboxylation and electron transfer 

 In analogy to the mechanism of PFOR (42), a general base would be expected to 

stabilize the negative charge on the oxalyl-TPP intermediate in Step 3, followed by 

decarboxylation of the oxalyl-TPP adduct in step 4 to yield a reactive anionic carboxyl-

TPP intermediate that, in Step 5, would release two electrons into the internal electron 

transfer pathway consisting of three [Fe4S4]2+/1+ clusters. OOR contains sufficient iron to 

accommodate these three clusters. In addition, all 12 Cys residues that bind the three 

clusters of PFOR are conserved in the sequence of OOR. Furthermore, EPR and UV-

visible experiments clearly showed that OOR contains three [Fe4S4]2+/1+ and that oxalate 
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can reduce all of these clusters. Because oxalate is a two-electron donor, full reduction of 

all of the clusters would require two mol of oxalate.  

 Because [Fe4S4] clusters accept one-electron at a time, there is likely to be a 

transient intermediate in which one of the clusters is reduced by the anionic carboxy-TPP 

anion to generate a carboxy-TPP radical (not shown); transient kinetic experiments are 

underway to test this hypothesis.  

 In the PFOR reaction, binding of CoA accelerates the electron transfer reaction 

from the HE-TPP radical to the iron-sulfur clusters by 105-fold. However, OOR is a 

unique member of this family in having no requirement for CoA; therefore, Step 6 would 

involve a second decarboxylation to regenerate the active ylide for the next round of 

catalysis. Though it seems less likely, it is possible that this carboxy-TPP adduct 

undergoes hydrolysis to release bicarbonate instead of CO2. One of the proposed roles of 

CoA in PFOR and other OFORs is to generate a highly reducing anionic intermediate that 

could transfer electrons to the clusters (42, 52), and the same role has been proposed for 

phosphate in Lactobacillus plantarum pyruvate oxidase (POX), which forms acetyl-

phosphate and CO2 from pyruvate (53). Perhaps the negative charge on the OOR 

carboxy-TPP adduct is sufficiently reducing to make CoA unnecessary.  

 In the final steps of the reaction, the two-electron-reduced state of OOR transfers 

its reducing equivalents from the internal electron transfer wire of [Fe4S4] clusters to an 

external electron acceptor. Like PFOR, OOR can use a wide range of acceptors and is 

unable to transfer electrons to pyridine nucleotides. Ferredoxin is one of these and is a 

likely physiological electron acceptor that could carry electrons to enzymes of the Wood-

Ljungdahl pathway. The rates were similar among all electron acceptors that were found 
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to work. This suggests that the rate of catalysis is limited by some step other than electron 

transfer from the enzyme to the acceptor. Interestingly, like PFOR, OOR can transfer 

electrons directly to CODH to generate CO. This could be a physiologically relevant 

reaction in vivo, since electrons from oxalate are used in the synthesis of acetyl-CoA (3) 

and since M. thermoacetica can be cultured on oxalate even in CO2-free medium (14). 

We propose that under CO2-limiting conditions, CO2 as well as electrons could be 

channeled directly from OOR to CODH. This would be an extremely interesting three-

component channeling machine, because it is clear that CO is channeled from CODH to 

ACS (54, 55). 
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Appendix to Chapter II, Additional Sequence Analysis 

2-Oxoacid:ferredoxin oxidoreductases are made up of a minimum of three conserved 

domains, alpha, beta and gamma, with an additional delta domain in most OFORs. The 

genomic arrangement and fusion of these domains varies, with some proteins consisting 

of two subunits (αγ-fusion and β, called αβ type), some having separate α, β, γ and δ 

subunits and some (like many bacterial PFORs, including the M. thermoacetica PFOR) 

containing all four domains fused. The residues involved in binding TPP and one 

[Fe4S4]2+/1+ cluster are in the beta subunit (23). Enzymes that include the delta subunit 

have two additional [Fe4S4]2+/1+ clusters that are involved in electron transfer from the 

TPP active site to ferredoxin (42). αβ type OFORs that lack delta subunits have only one 

[Fe4S4]2+/1+ cluster per αβ. The OOR protein is made up of separate α and β subunits and 

a third subunit that is a fusion of γ and δ domains (Figure 2.3).  

We performed separate clustalW alignments of the sequences of the three OOR 

subunits with those of corresponding subunits of biochemically characterized pyruvate, 

2-oxoisovalerate, 2-oxoglutarate, indolepyruvate and broad specificity oxidoreductases 

(see caption to Figure 2.8). The chosen sequences included the D. africanus PFOR, 

which has been crystallized in complex with pyruvate (29), allowing us to determine 

whether or not oxoacid binding residues are conserved in OOR. In the beta subunit, 

residues Gly109, Asp110, Gly111 and Cys130 (Gly962, Asp963, Gly964 and Cys840 are 
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the corresponding residues in the D. africanus PFOR), which coordinate TPP and the 

adjacent Mg2+ ion, are present in OOR, along with the four cysteines (Cys residues 24, 

27, 52 and 225 in the beta subunit) that ligate the [Fe4S4] cluster that is nearest TPP. The 

eight cysteine residues that bind the other two [Fe4S4] clusters are conserved in the OOR 

delta subunit (Cys residues 261, 264, 267 and 300 ligate one cluster and 271, 290, 293 

and 296 coordinate the other cluster).  
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CHAPTER III 

 

Involvement of a TPP-based Radical in the Mechanism of Oxalate Oxidoreductase 

 

 

3.1 Introduction 

Moorella thermoacetica is a strictly anaerobic bacterium that grows on many 

different electron donors and acceptors. Among its electron accepting pathways is 

reduction of CO2 to acetate by the Wood-Ljungdahl pathway. M. thermoacetica 

metabolically couples oxidation of sugars, acids like pyruvate and lactate, and two-

carbon acids such as oxalate, glyoxylate and glycolate to the Wood-Ljungdahl pathway 

(1). During growth using this pathway, acetate and cell mass are the only growth products 

and electron-rich growth substrates like glucose are converted almost stoichiometrically 

to acetate; therefore M. thermoacetica is called a homoacetogen. The Wood-Ljungdahl 

pathway can also be used for autotrophic growth, enabling M. thermoacetica to grow on 

CO, H2/CO2, formate, and methyl-group donors such as methanol and methoxylated 

aromatic compounds (2, 3). M. thermoacetica metabolizes oxalate by a very simple 

pathway: one mole of oxalate is oxidized to produce two moles of CO2 and two moles of 

a reduced electron acceptor (or one mole of a reduced 2e- acceptor). Eight electrons are 

used by the Wood-Ljungdahl pathway to reduce two CO2 to acetate, and the 
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stoichiometry of growth on oxalate is, as expected, four moles oxidized to produce six 

moles of CO2 and one mole of acetate (4). 

In the work described in Chapter II, we showed that M. thermoacetica growing on 

oxalate makes a single enzyme that catalyzes the oxidation of oxalate and reduction of 

several different electron acceptors (5). This oxalate oxidoreductase (OOR) is a member 

of the family of 2-oxoacid:ferredoxin oxidoreductases (OFORs) that catalyze Eq. 15. 

Unlike all other known members of this family, OOR does not use CoA. It oxidizes 

oxalate directly to 2CO2 or to CO2 and bicarbonate. 

RCOCOO- + Fdox + CoAS- � RCOSCoA + Fdred + CO2   (Eq. 3.1) 

  The overall sequence similarity between OOR and other well-characterized 

members of the OFOR family is between 35 and 60%, and in general, OOR is most 

closely related to archaeal and bacterial PFORs, among known OFORs. The crystal 

structure of pyruvate:Fd oxidoreductase (PFOR) from Desulfovibrio africanus has been 

solved (6). OOR shares sequence similarity of around 40% with D. africanus PFOR, so 

we have used this PFOR as a model for thinking about the structure of OOR. This PFOR 

is a dimer of two large (135 kDa) subunits. Each subunit contains a TPP active site, with 

three Fe4S4 clusters arranged in a line from the active site to the surface of the protein. 

The quaternary structure and stoichiometry of TPP and Fe4S4 cluster binding in the D. 

africanus PFOR are representative of the OFOR family. In D. africanus PFOR, the entire 

sequence is contained in one large peptide, which dimerizes. OOR (along with many 

other enzymes in this family) has the same overall sequence composition, but is made up 

                                                 
5 The reaction shown in Eq. 1 produces two electrons per mole of substrate. Both OOR and 
pyruvate:ferredoxin oxidoreductase from M. thermoacetica use a ferredoxin with two [Fe4S4]2+/1+ clusters 
as an electron acceptor in in vitro assays. 
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of three separate peptides. The native size of OOR is consistent with an α2β2γ2 

arrangement of subunits. 

 The catalytic mechanism of OFOR enzymes, particularly of PFOR from M. 

thermoacetica, has been studied in detail. In common with pyruvate dehydrogenase and 

pyruvate decarboxylase, C2 of the thiazole ring of TPP is deprotonated to form a 

carbanion that performs a nucleophilic attack on the alpha carbon of pyruvate. CO2 is 

released, leaving an anionic hydroxyethyl-TPP (HE-TPP) intermediate which is 

converted to a HE-TPP radical by transfer of one electron to a [Fe4S4]2+ cluster. This 

radical decays slowly (with a half- life of ~4 minutes) in the absence of CoA. This state of 

the enzyme might be stabilized by transfer of the electron from the cluster proximal to the 

active site (the A cluster) to the middle cluster (the B cluster), which has a higher redox 

potential than the A cluster. In the presence of CoA, the radical decays 105-fold more 

quickly (7), and acetyl-CoA is formed and dissociates from the enzyme. Internal electron 

transfers between the three Fe4S4 clusters pass electrons to the surface of the enzyme, 

where they are transferred to ferredoxin or to an artificial electron acceptor, such as 

methyl viologen. Both PFOR and OOR are able to bind and oxidize a substrate molecule 

in the absence of an external electron acceptor when the iron-sulfur clusters are already 

partly reduced. 

 The substrate-derived radical was first seen in PFOR and 2-oxoglutarate:Fd 

oxidoreductases from Halobacterium halobium (8), and has been found in other OFORs 

(9-12). It has been proposed to be a catalytic intermediate in all OFOR reactions (13). A 

substrate-derived HE-TPP radical is also an intermediate in the catalytic cycle of 

Lactobacillus plantarum pyruvate oxidase (LpPOX), which catalyzes the oxidation of 



 69  

pyruvate, producing CO2 and acetyl-phosphate. In LpPOX, the electrons released are 

transferred from the TPP active site to a flavin adenine dinucleotide cofactor, which is 

oxidized by molecular oxygen to form H2O2 (14). The structure of the HE-TPP radical 

has been studied in detail by EPR spectroscopy of PFOR from M. thermoacetica and by 

X-ray crystallography of pyruvate-soaked crystals of PFOR from D. africanus. Based on 

the bent conformation of the thiazole ring of TPP and the unusually long bond (1.70 - 

1.95 Å) between the substrate alpha carbon and C2 of the thiazole ring in the crystal 

structure proposed to be of the radical intermediate, it was suggested that the substrate-

derived radical is a σ/n-type acetyl radical with most spin density on the substrate alpha 

carbon (15, 16). However, computational studies and EPR spectroscopy using 

isotopically labeled pyruvate and TPP support a π-type radical which is delocalized over 

the hydroxyethyl moiety and the thiazole ring of TPP (17). One proposed role for CoA in 

PFOR and other OFORs is to generate a highly reducing anionic intermediate that could 

transfer electrons to the clusters (18), and the same role has been proposed for phosphate 

in LpPOX (14). 

 From a cellular viewpoint, the purpose of CoA in most OFORs is likely to take 

advantage of activation of the alpha carbon of the substrate to preserve the free energy of 

the substrate transformation in the formation of an energy-rich CoA ester for further 

reactions in the cell. LpPOX uses phosphate for the same purpose (acetyl-phosphate is 

produced). From a catalytic standpoint, it has been proposed that anionic CoA (phosphate 

in the case of LpPOX) provides the driving force necessary for transferring the second 

electron (the radical electron) out of the active site to the iron-sulfur clusters (7). This is 
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an uphill reaction in the absence of CoA, and CoA binding is proposed to lower the redox 

potential of the radical species.  

 Although the catalytic cycle described above is straightforward with respect to 

pyruvate binding, some TPP-dependent enzymes display different reactivities toward the 

substrate in the two active sites of their dimers. One explanation for this is stabilization of 

different tautomers of the pyrimidine ring of TPP in the two active sites. Formation of the 

1,4-iminopyrimidine tautomer of the pyrimidine ring of TPP is required for deprotonation 

of C2 of the thiazole ring to form the active ylide, and some TPP-dependent enzymes, 

including LpPOX, contain a mixture of pyrimidine ring tautomers in the absence of 

substrate and after binding of a substrate analogue (19). In the E1 component of human 

pyruvate dehydrogenase, it has been shown that one of the two TPP molecules bound to 

an enzyme monomer is able to be ionized quickly at C2 of the thiazole ring, while the 

other is ionized three orders of magnitude more slowly, and that the two TPP sites exhibit 

different substrate binding and turnover kinetics (20). A proton wire between the two 

active sites has been proposed to coordinate the states of the pyrimidine rings, with one 

site receiving a proton as the other site is deprotonated (21). 

 Although OOR does not use CoA, we hypothesize that its catalytic mechanism is 

similar to the mechanisms of other OFOR enzymes, based on its sequence similarity and 

likely structural similarity to other OFORs. The sequence of OOR is most similar to 

sequences of OFOR enzymes, particularly to pyruvate and 2-oxoisovalerate:Fd 

oxidoreductases from Pyrococcus furiosus and has conserved residues that are involved 

in cofactor and substrate binding. As was expected from sequence analysis, purified OOR 

contains almost one mole of TPP, 1-2 moles of Mg2+, and three Fe4S4 clusters per mole of 
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enzyme like other members of the OFOR family, and like other OFORs, it forms a dimer 

containing two active sites.  

In Chapter II, we described a proposed catalytic mechanism similar to that of 

PFOR, in which oxalate binds and reacts with TPP to form oxalyl-TPP, followed by 

decarboxylation, producing an anionic formyl-TPP intermediate. We proposed that 

negatively charged oxalyl- and formyl-TPP intermediates may be stabilized by 

protonation by a general base on the enzyme. We hypothesized that the anionic formyl-

TPP adduct and its one-electron oxidized radical form would be less stable than their 

counterparts in the PFOR mechanism, and would quickly be oxidized as electrons are 

passed to the Fe4S4 clusters. Since these clusters are arranged in a line leading from the 

active site to the surface of the protein in the homologous D. africanus PFOR, based on 

the sequence homology between the two proteins, a similar arrangement is likely to be 

found in OOR. Although the electrons should leave the active site one at a time, since 

they are presumably going through a series of one electron acceptors (the clusters), 

electron transfer may be fast enough that there would be no appreciable accumulation of 

a substrate-derived radical species. Oxidation of the formyl-TPP would give carboxyl-

TPP, which may be hydrolyzed to form bicarbonate or may be released as CO2.  

 In this chapter, we describe work to test the hypothesis that OOR forms stable 

substrate-derived radicals on TPP. We provide further evidence that OOR does not 

catalyze the reaction of 2-oxoacid substrates with CoA, and hypothesize that the nature of 

the substrate controls the stability of the radical. According to our hypothesis, a radical 

derived from oxalate would be less stable than those derived from pyruvate or other 

singly negatively charged 2-oxoacids, since the oxalate-derived radical is expected to be 
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an anionic formyl-radical, which may be more similar in its redox potential to the anionic 

radicals proposed to be formed when CoA and phosphate react with the hydroxyethyl-

TPP radicals on PFOR and LpPOX than to the un-reacted hydroxyethyl-TPP radical 

itself. 

 In the work described below, we show that OOR forms a substrate-derived radical 

on TPP like the radicals formed on other 2-OFOR enzymes, as shown below by 

experiments with pyruvate. Unlike in other 2-OFOR enzymes, this radical does not decay 

quickly in the presence of CoA. To characterize the role of this radical in oxalate turnover 

by OOR, we have used stopped-flow experiments to look at the reaction of oxalate with 

OOR. We are not able to predict the rate constant for decay of the radical from these 

experiments. However, these experiments show that the mechanism of oxalate oxidation 

is complex, with significant concentrations of two different forms of the enzyme reacting 

with oxalate. We propose two models to explain this behavior. In the first model, OOR 

reacts with oxalate with half-of-sites reactivity, in which one active site in each dimer 

reacts quickly while the other reacts slowly. In the second model, a second oxalate 

molecule binds during the catalytic cycle. Further experiments will be required to 

distinguish between these models and to find the best conditions for detecting the 

oxalate-derived radical on OOR, in order to test the hypothesis that the oxalate-derived 

radical is inherently less stable than radicals derived from singly negatively charged 2-

oxoacids, such as pyruvate. 
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3.2 Experimental procedures 

3.2.1 Growth of M. thermoacetica and protein purification  

 M. thermoacetica ATCC 39073 was grown at 55 oC in a 10 L fermentor that was 

continually bubbled with CO2 during growth. The medium was described before (5). All 

cells used for OOR purification were grown on 20 mM glucose and 28 mM sodium 

oxalate. Cells were harvested during exponential growth by centrifugation under CO2 or 

N2 and were stored at -80oC until use.  

 All protein purification steps and subsequent enzymatic manipulations were done 

in a Vacuum Atmospheres (Hawthorne, CA) anaerobic chamber maintained at less than 4 

ppm O2. OOR was purified as described (5), except that the red agarose step was omitted. 

At the end of the prep, fractions containing OOR were pooled, buffer exchanged into 50 

mM Tris-HCl, pH 8.1 with 2 mM DTT, and concentrated to 316 µM for storage. The 

specific activity of purified OOR, measured at 25 oC was 0.04 U/mg.  

 

3.2.2 Preparation of thionin-oxidized OOR  

 Oxidized OOR was prepared by adding small aliquots of an approximately 20 

mM thionin solution to a sample of 316 µM OOR, with mixing after each addition. 

Thionin reduction by OOR took place within a few seconds after mixing. Thionin was 

added until no change in its color was seen upon further addition (i.e. the protein/thionin 

solution remained dark purple after mixing). Alternatively, aliquots of approximately 80 

µM OOR were mixed with small amounts of thionin in a 0.2 cm path length cuvette, to 

achieve the desired oxidation state. Oxidized OOR was dialyzed against three changes of 

a 300-fold excess of 50 mM Tris-HCl, pH 8.0, with equilibration for at least 8 hours in 
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each change of buffer. After this dialysis, the UV-visible spectrum of OOR showed no 

evidence of thionin contamination. The final dialysis buffer was saved for diluting 

enzyme and substrate in subsequent experiments. 

 

3.2.3 Enzyme assays  

 OOR activity was measured in 50 mM Tris-HCl, 2 mM DTT, pH 8.0. Assays at 

25 oC were done in the anaerobic chamber, using a UV-visible spectrophotometer from 

Ocean Optics (Dunedin, FL). For steady-state assays, 1 mM sodium oxalate and 10 mM 

methyl viologen were used and the reduction of methyl viologen was followed at 578 nm 

(ε578 = 9.7 mM-1 cm-1). In all assays, calculations were based on the assumption that 

oxidation of one mole of oxalate produces two moles of electrons. 

 To measure the effect of pyruvate on OOR activity, 10.9 µM OORox was mixed 

with 1 mM pyruvate in 50 mM Tris-HCl, pH 8.0. The UV-visible absorbance of OOR 

was monitored to during the reaction of OOR with pyruvate. Based on the reduction of 

the Fe4S4 clusters, the reaction of OOR with pyruvate reached equilibrium within 120 

minutes. Before assaying the enzyme, excess pyruvate was removed by concentrating and 

diluting OOR in 50 mM Tris-HCl, pH 8.0, using 10 kDa MWCO microcentrifuge 

concentrators (Millipore, Billerica, MA), using six cycles of nine-fold concentration and 

dilution in fresh buffer. The activity of pyruvate-incubated OOR was measured as 

described above, and was compared to the activities of a sample of OOR incubated at the 

same time in 1 mM oxalate and a sample of OORox, both buffer exchanged in the same 

way. 
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3.2.4 UV-visible spectroscopy  

 OOR was diluted to approximately 4 µM in 50 mM Tris-HCl, pH 8.0, with or 

without 2 mM DTT. The enzyme was reduced at 25 oC by adding 100 µM sodium 

oxalate or 5-10 µM sodium dithionite. To measure the spectrum of the oxidized protein, 

OOR was oxidized with thionin and dialyzed, as described above.  

 

3.2.5 EPR spectroscopy  

 The EPR spectrum of as- isolated OOR was measured to determine the number of 

reactive iron-sulfur clusters on OOR, to attempt to determine whether these clusters have 

the same or different potentials, and to see if an oxalate-derived radical could be detected 

after hand-mixing oxalate and OOR, and to study the reaction of pyruvate with OOR. 

Comparison of the UV-visible spectrum of this protein with dithionite-reduced OOR 

showed that the protein had approximately 1.8 iron-sulfur clusters per monomer already 

reduced. Sodium oxalate (100 µM, final) was added to completely reduce the protein. 

EPR spectra were collected at 9 K and the parameters were as follows: receiver gain, 2 x 

102; modulation frequency, 100 kHz; modulation amplitude, 10 G; center field, 3450 or 

3500 G; sweep width, 700 or 2000 G; and microwave power, 0.129 mW. The double 

integrals of the EPR signals were compared to that of a 1 mM copper(II) perchlorate 

standard to determine the number of spins per monomeric unit.  

 The pyruvate-derived radical on OOR was seen by EPR spectroscopy. 205 µM 

OOR was mixed with 1 mM CH3- or CD3-labeled pyruvate and incubated at 25 oC for 90 

minutes. Each sample was split in half, and 1 mM CoA was added to one part from each 

sample. Samples were frozen after ten minutes additional incubation. EPR parameters 
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were receiver gain, 2 x 105; modulation frequency, 100 kHz; modulation amplitude, 0.4 

G; center field, 3350 G; sweep width, 100 G; microwave power, 0.515 milliwatts; 

temperature, 70 K. 

 

3.2.6 UV-visible stopped-flow data collection and analysis 

 The OOR used for stopped-flow experiments was first oxidized by thionin, then 

dialyzed, as described above. To make an oxalate stock solution, sodium oxalate and 

oxalic acid were dissolved in dialysis buffer to make separate 100 mM solutions. The pH 

of a separate aliquot of the buffer was measured as 8.02. The oxalic acid solution was 

used to adjust the pH of the sodium oxalate solution downward to 8.02. Stopped-flow 

experiments were done using a UV-visible stopped-flow (Applied Photophysics, 

Leatherhead, UK) set up in an anaerobic chamber (Vacuum Atmospheres, Hawthorne, 

CA) maintained at less than 1 ppm O2. The temperature was maintained by a circulating 

water bath within the chamber that was connected to the stopped-flow instrument. The 

UV-visible spectrometer was equipped with a monochromator, which was used with 

entrance and exit slits set to 0.5 mm to collect data at 420 nm. The stopped-flow was also 

used with a photodiode array detector to monitor the overall spectral changes above 325 

nm. The path length was 1 cm. Dilutions of OOR and oxalate stock solutions were made 

in the dialysis buffer.  

 Individual stopped-flow traces at 420 nm were fit by a triple exponential equation. 

The dependences of observed rate constants kobs1 and kobs3 on the oxalate concentration 

were shown to be hyperbolic, as described below, and were fit by Equation 3.1, where a, 
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b, and c are combinations of microscopic rate constants for steps in the reaction of OOR 

with oxalate. 

 
[ ]

[ ] coxalate

boxalatea
kobs

+

+
=

*
       (3.1) 

 

3.2.7 Miscellaneous methods  

 Protein concentrations were determined by the Rose Bengal method (22), using a 

lysozyme standard. For the prep of OOR used in these experiments, the concentration of 

TPP bound to OOR was determined by a fluorescent thiochrome assay (23). Pure TPP 

was used as a standard. Metal concentrations were determined by ICP-OES at the 

Chemical Analysis Laboratory at the University of Georgia. For metal and TPP analysis, 

1.1 mL of 316 µM OOR was dialyzed against two changes of 850 mL of 50 mM Tris-

HCl, 2 mM DTT, pH 8.0. Metal and TPP concentrations in the protein sample were 

calculated after subtracting the concentrations in a sample of the dialysis buffer treated 

exactly as was the protein. TPP and metal concentrations were similar to those reported 

in Chapter II. 

 

3.3 Results 

3.3.1 Equilibrium of partial OOR reactions in the presence and absence of CO2 

 The difference spectrum of oxidized minus oxalate-reduced OOR has maxima at 

316 and 428 nm, and the largest changes in the spectrum are seen between 300 and 500 

nm (Figure 3.1). The same changes are seen when OOR is reduced by dithionite, and  we  
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Figure 3.1. UV-visible spectra of oxidized and reduced OOR. Solid line: 3.4 µM OOR oxidized 
by thionin, and dashed line: thirty minutes after adding 50 µM oxalate. Inset: oxidized spectrum 
minus reduced spectrum. 
 

showed in our previous work that both reductants produce EPR signals on OOR 

corresponding to about three [Fe4S4]1+ clusters per OOR monomer. Since OOR has three 

[Fe4S4]2+/1+ clusters, complete reduction of OOR by oxalate requires oxidation of more 

than one mole of oxalate per mole of OOR. The extent of reduction of OOR is less in the 

stopped-flow experiments described below than in an open cuvette, even when the same 

solutions are used for both experiments. A maximum of only 2.2 [Fe4S4]2+/1+ clusters 

underwent reduction in the stopped-flow experiments, corresponding to oxidation of a 

little more than one mole of oxalate per mole of OOR. This could be explained if the 

equilibrium of the first half reaction of OOR, including oxalate binding, decarboxylation, 

reduction of the iron-sulfur clusters, and CO2 release, is affected by the concentration of 

CO2, the product, in solution. In the anaerobic chamber under an atmosphere of pure N2, 

the equilibrium of this reaction should strongly favor CO2 release from solution. This 
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hypothesis is supported by the observation that when 5 µM OOR was reduced by addition 

of 700 µM oxalate (concentrations similar to those used in stopped-flow experiments) in 

a stoppered cuvette that had been sparged with CO2, only 2.3 [Fe4S4] clusters per OOR 

were reduced. However, this hypothesis should be tested further by measuring the overall 

equilibrium of the OOR reaction. 

  

3.3.2 Reaction of pyruvate with OOR and formation of a pyruvate-derived radical on 

OOR 

 We previously showed that OOR can oxidize several 2-oxoacids besides oxalate 

(5). When OOR was mixed with 1 mM pyruvate and 10 mM methyl viologen, the 

amount of methyl viologen reduced approximated two moles per mole of OOR, although 

precise measurement of the stoichiometry is complicated by the facile photoreduction of 

methyl viologen. This suggested that OOR may not be able to complete its catalytic cycle 

with pyruvate as a substrate. Since the OOR catalytic cycle is hypothesized to contain 

intermediates covalently bound to TPP, we hypothesized that pyruvate may be a covalent 

inhibitor of OOR.  

 Pyruvate did not completely reduce the iron-sulfur clusters of either oxidized or 

partly reduced OOR, judging by the decrease in absorbance at 420 nm when pyruvate 

was mixed with OOR (Figure 3.2). Using an extinction coefficient of 0.0081 µM-1cm-1, 

the decrease in absorbance at 420 nm was equivalent to reduction of eight and sixteen 

percent of the iron-sulfur clusters in two samples of thionin-oxidized OOR prepared at 

different times, and to reduction of twenty-six percent of all of the iron-sulfur clusters in 

a sample of as- isolated OOR. The amount of reduction of the Fe4S4 clusters increased by 
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0.36 to 0.59 reduced clusters per OOR when as- isolated OOR was mixed with pyruvate, 

as monitored by EPR spectroscopy at 10K, where the spectrum of the reduced Fe4S4 

clusters is seen (Figures 3.3 and 3.4).  The spectra of OOR mixed with 1 mM pyruvate 

differed from those of oxalate-reduced and dithionite-reduced OOR. The UV-visible 

spectra of oxalate- and dithionite-reduced OOR show a decrease in absorbance between 

300 and 600 nm, while the absorbance between 300 and 400 nm increased when OOR 

was incubated with pyruvate (Figure 3.2). The EPR spectrum of pyruvate- incubated OOR 

measured at 10K (Figure 3.4) is more complicated than those of as-isolated and oxalate- 

and dithionite-reduced OOR, which share similar EPR spectra (5), although it is not clear 

what changes give rise to the alterations in the spectra. 

 

 

 
 

 
Figure 3.2. UV-visible spectra of pyruvate- and oxalate-reduced OOR. 8 µM OORox (solid line) 
was incubated with 1 mM pyruvate (dashed line) or oxalate (dotted line) until no further change 
in either spectrum was seen. 
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Figure 3.3. Quantitation of EPR signals produced when as-isolated (partly reduced) OOR was 
incubated with 1 mM pyruvate. 38 µM OOR was mixed with 1 mM pyruvate in 50 mM tris-HCl, 
pH 8.1. EPR samples were frozen after 1.5, 6, 17, 33 and 148 minutes. EPR spectra were 
integrated, and concentrations were calculated by comparison to a 1 mM copper perchlorate 
standard. A. Amount of the previously identified [Fe4S4]

1+, spectra were measured at 10K. Other 
EPR parameters were: receiver gain, 2 x 103; modulation frequency, 100 kHz; modulation 
amplitude, 10 G; center field, 3500 G; sweep width, 2000 G; microwave power, 0.103 milliwatts. 
B. Amount of the pyruvate-derived radical, spectra were measured at 70K. Other EPR parameters 
were: receiver gain, 2 x 104; modulation frequency, 100 kHz; modulation amplitude, 10 G; center 
field, 3500 G; sweep width, 2000 G; microwave power, 0.515 milliwatts. 
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Figure 3.4. EPR spectra of as-isolated, partly reduced OOR, and of OOR incubated with 
pyruvate, measured at 10K. A. 38 µM OOR was mixed with 1 mM pyruvate in 50 mM tris-HCl, 
pH 8.1. The sample was frozen 17 minutes after mixing. B. 38 µM OOR in its as-isolated 
oxidation state, diluted in 50 mM tris-HCl, pH 8.1. EPR parameters are the same as in Figure 
3.3A. 
 
 

 After incubation with 1 mM pyruvate for 20 hours and buffer-exchange to remove 

excess pyruvate, the activity of pyruvate-treated OOR was reduced eight-fold relative to 

that of untreated, buffer exchanged OOR (from 0.017 + 0.001 U mg-1 to 0.002 + 0.0006 

U mg-1). The almost complete disappearance of OOR activity in the pyruvate-treated 

sample indicates that almost all of the OOR  was inhibited by pyruvate,  even though the 

incomplete reduction of OOR might seem to suggest that only a fraction of the OOR 

reacted with pyruvate. An average of 0.58 clusters/OOR were reduced by pyruvate. 0.08 

clusters/OOR can be attributed to the electron released when the radical is formed (as 

measured by EPR at 70K, see below), so approximately 0.5 clusters/OOR should be from 

the two-electron reduced form, which means 25 percent of the OOR would be in this 

state. This could be explained if the equilibrium of the reaction with pyruvate does not 

favor reduction of the iron-sulfur clusters.  
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 In our previous work, we showed that addition of CoA to assays of pyruvate 

oxidation coupled to methyl viologen reduction by OOR had no effect on the rate of the 

reaction (5). To test whether phosphorolysis of pyruvate-derived intermediates could 

restore OOR activity, 50 mM KPi, pH 7.4 was added to assays of pyruvate-treated OOR, 

but no increase in the rate of oxalate-dependent methyl viologen reduction was seen over 

one hour.  

  

 

 
Figure 3.5. EPR spectrum of the pyruvate-derived radical on OOR. 205 µM OOR was mixed 
with 1 mM CH3- (A) or CD3-labeled pyruvate (C) and incubated at 25 oC for 90 minutes. Each 
sample was split in half, and 1 mM CoA was added to one part from each sample (B: CH3-labeled 
pyruvate plus CoA, D: CD3-labeled pyruvate plus CoA). Samples were frozen after ten minutes 
additional incubation. EPR parameters were receiver gain, 2 x 105; modulation frequency, 100 
kHz; modulation amplitude, 0.4 G; center field, 3350 G; sweep width, 100 G; microwave power, 
0.515 milliwatts; temperature, 70 K. All four spectra have the same intensity scale. The sharp 
feature at g = 2.00 is seen in spectra of the EPR cavity. This radical has different saturation 
behavior than the HE-TPP radical. 
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 A fraction of OOR incubated with pyruvate contains a pyruvate-derived radical, 

which can be seen in EPR spectra at 70K. Figure 3.3 shows the increase in the 

concentration of   this radical over  time  as  OOR is incubated with 1 mM  pyruvate.  The 

pyruvate-derived radical is very similar to the hydroxyethyl-TPP radical that is seen when 

PFOR is mixed with pyruvate in the absence of CoA (17). When OOR is incubated with 

CD3-labeled pyruvate, hyperfine splittings in the radical spectrum are lost (Figure 3.5). A 

similar spectrum is seen when PFOR is treated with deuterated pyruvate. Unlike in 

PFOR, where CoA addition increases the rate of decay of the radical by 105-fold, addition 

of CoA to OOR and pyruvate mixtures ten minutes before freezing EPR samples had no 

effect on the spectra of the radical (Figure 3.5).  

 

3.3.3 UV-visible stopped-flow of the first half-reaction 

 Because experiments with pyruvate showed that OOR is able to form a radical 

like those formed on other 2-OFOR enzymes during catalysis, we wanted to study the 

kinetics of the reaction with oxalate to see whether the formyl-TPP radical hypothesized 

as an intermediate would accumulate appreciably at any time during the reaction. 

Stopped-flow experiments were used to follow the reduction of oxidized OOR by oxalate 

at 420 nm. There is some evidence of subtle spectral changes between 300 and 450 nm as 

covalent adducts form in other TPP-dependent enzymes. These changes are from the 

conjugated enamine intermediate and from changes in the tautomerization state of the 

pyrimidine ring of TPP (24) but the main spectral change observed during the reaction of 

OOR with oxalate is the decrease in the absorbance of the iron-sulfur clusters.  
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 Stopped-flow data were collected at several oxalate concentrations, using either a 

photodiode array detector or a monochromator. When the photodiode array detector was 

used, there were significant changes in the baseline over 200 s, seen both when OOR was 

rapidly mixed with buffer, and when buffer was mixed with buffer. These changes in 

absorbance were on the same order of magnitude as the amplitudes of the first two phases 

in the reaction of enzyme with oxalate, so these data could not be cleanly analyzed. 

However, it is clear from the photodiode array experiments that the overall reaction of 

OOR with oxalate in the stopped-flow instrument gives spectral changes like those seen 

when the enzyme and substrate are manually mixed (i.e. like the changes shown in Figure 

3.1).  

 

 

 
 
Figure 3.6 Representative stopped-flow traces of the reaction of oxidized OOR with oxalate. The 
concentration of OOR after mixing was 8 µM. Concentrations of oxalate after mixing vary from 
25 to 700 µM. The nearly flat trace is 8 µM OOR (after mixing) shot against buffer without 
oxalate. 
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 When stopped-flow experiments were performed using the monochromator, there 

was only a slight linear decrease in absorbance over time when OOR was mixed with 

buffer. Representative stopped-flow traces are shown in Figure 3.6. In our previous work, 

the Km for oxalate was found to be 60 µM at pH 8.0 (5). 8 µM OOR was reacted with 

oxalate over the range from 10 µM to 700 µM. Kinetic traces of fully oxidized OOR 

reacted with oxalate were fit by a triple exponential equation (Figure 3.7), with a fast 

decrease in absorbance followed by a lag and a slower decrease. The reactions reached 

equilibrium after a total change in amplitude consistent with reduction of 2.2 iron-sulfur 

clusters per OOR monomer. At 700 µM oxalate, the relative amplitudes of the first and 

third phases were approximately 0.06 and 0.11, which correspond to 0.92 and 1.7 iron-

sulfur clusters reduced per OOR However, the exponentials overlap, so these are not the 

actual amounts of cluster reduced in each phase. The overall reduction was of 2.2 clusters 

per OOR. All reactions reached equilibrium by 200 s, and no further reduction was seen 

over an additional 840 s (not shown). 

 As demonstrated in Figure 3.7 for one stopped-flow trace, single exponential fits 

were unsatisfactory. Both double and triple exponential equations fit the data much 

better, although there were still deviations of the fits from the data that were consistent 

over all stopped-flow traces. The size of these deviations of the fits from the data is small 

relative to the overall absorbance changes in the reaction. The additional complexity in 

the data could come from a small population of the enzyme that reacts differently with 

oxalate (e. g., enzyme molecules that are damaged in some way and are less active than 

the bulk of the molecules in solution), or from subtle changes in the absorbance spectrum  
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Figure 3.7. Fits of exponential equations to data from reaction of OOR with oxalate. The average 
of three stopped-flow traces of 8 µM OOR reacting with 700 µM oxalate was fit with a single 
(left), double (center) or triple (right) exponential equation. Data is shown in black, fits are shown 
in grey. The residuals from each fit are shown in the lower panels. 
 
 
during the reaction that are masked by the larger changes in absorbance from the iron-

sulfur clusters. 

 Although the best fit to the stopped-flow traces at 420 nm was with a triple 

exponential equation, the initial fast reduction and lag were more difficult to fit than the 

slow reduction, particularly as the oxalate concentration was lowered, and from the initial 

fits, it was unclear whether either or both of these observed rate constants were dependent 

on oxalate concentration. The oxalate concentration dependence of each of these 

observed rate constants was tested by holding kobs1, kobs2 or both rate constants to a 

constant value (the average of each observed rate constant from the initial fits of three 

different traces at 700 µM oxalate was used), and allowing the fitting software to find the  
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Figure 3.8. Residuals from triple exponential fits of a stopped flow trace at 420 nm. Oxalate was 
120 µM, and OOR was 8 µM. In each panel, the grey trace shows the residuals of the triple 
exponential fit to seven parameters. The black trace shows the residuals of a fit of five or six 
parameters with one or more k obs set at a certain value. The y-axis scale is the same in all three 
panels. The scale of the x-axis is shown by the half-bracket at the bottom of the figure. A. k obs1 set 
at 0.908 s-1. B. kobs2 set at 0.118 s-1. C. k obs1 set at 0.908 s-1 and k obs2 set at 0.118 s-1. 
 

best fit for the other six variables in the triple exponential equation. The effect on one 

stopped-flow trace (8 µM OOR vs. 120 µM oxalate) of holding kobs1 at 0.908 s-1, holding 

kobs2 at 0.118 s-1, and of constraining both values is shown in Figure 3.8. Refitting these 

data with kobs2 held constant at 0.118 s-1 (it was 0.078 s-1 in the initial fit) made no 

noticeable difference in the residuals from the fit, while refitting the same trace with kobs1 

held constant at 0.908 s-1 (0.418 s-1 in the original fit), or with both kobs1 and kobs2 held 
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constant at the values given gave worse fits. From the above analysis, it appeared that 

kobs2 does not necessarily vary with the oxalate concentration6, since holding it to a 

constant value had a relatively small effect on the quality of the fit, so all data were fit 

again with triple exponential equations, with kobs2 held constant at 0.118 s-1. In these fits, 

kobs1 and kobs3 were both dependent on the oxalate concentration.   

 The dependences of kobs1 and kobs3 on oxalate are shown in Figure 3.9. Each 

apparent rate constant increased hyperbolically as the oxalate concentration was 

increased. The oxalate dependence of each apparent rate constant was fit with equation 

3.1. Parameters from the fits are given in Table 3.1. 

 As is shown in Table 3.1 and Figure 3.9, the dependences of kobs1 and kobs3 on 

oxalate are very different, so the microscopic rate constants that give rise to the 

dependence of kobs1 on oxalate must be different than those that give rise to the 

dependence of kobs3 on oxalate. This is best explained by a kinetic model in which 

significant amounts of two different forms of the enzyme bind oxalate. Two such kinetic 

schemes are shown below. In Scheme 1, two forms of the enzyme, denoted by Eox and 

Eox’, are in equilibrium. Each form can bind and react with oxalate, giving rise to two 

separate oxalate-dependent steps (denoted by rate constants k1/k2 and k3/k4). As Scheme 1  

 

Table 3.1. Parameters from hyperbolic fits of kobs1 and k obs3. 
 kobs1 kobs3 
a  1.4 + 0.1 s-1 0.070 + 0.001 s-1 
b 27 + 8 µM s-1 0.32 + 0.12 µM s-1 
c 420 + 56 µM 46 + 5 µM 
amplitude 0.06 (~0.8 clusters/OOR) 0.12-0.16 (~2 clusters/OOR) 

                                                 
6 It was suggested that the phase defined by kobs2 may also be attributed to a small fraction of a less-active 
form of the enzyme, and that a kinetic scheme that takes into account this lag phase may be unjustifiab ly 
more complicated than is necessary. Fits of all of the stopped-flow traces with double, rather than triple 
exponential equations gave the same dependence of the remaining two apparent rate constants on oxalate. 
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Figure 3.9. Dependence of kobs3 and k obs1 on oxalate concentration when k obs2 is set at 0.118 s-1. 8 
µM OOR and 25-700 µM oxalate were mixed in the stopped-flow instrument at 25 oC, and the 
absorbance at 420 nm was measured over 200 s. Stopped-flow traces were fit with triple 
exponential equations, with k obs2 set at 0.118 s-1. The open circles are parameters from these fits to 
individual stopped-flow traces. Top panel, k obs1, bottom panel, k obs3 vs. oxalate concentration. The 
lines show the best fits of Eq. 3.1. 
 
 
is drawn here, each pair of intermediates,  Eox and Eox’, E-oxalate and E’-oxalate, and Ered 

and Ered’ is in equilibrium. Eox and Eox’ should be in equilibrium, to produce the two 

forms of OOR that would react with oxalate, but equilibration between the other enzyme 

forms may not be necessary.  
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 In Scheme 2, the dependence of two different parts of the reaction on oxalate is 

explained by oxalate binding at two separate steps in the catalytic cycle. This could be 

understood as binding of a first oxalate molecule and partial reduction of the iron-sulfur 

clusters, followed by binding of a second oxalate to drive the rest of the reduction of 

OOR. This scheme also predicts two different oxalate-dependent steps (denoted by rate 

constants k1/k2 and k5/k6). 

 

 

 

3.4 Discussion 

 OOR is unique among the known 2-oxoacid:Fd oxidoreductases because its 

catalytic function is entirely CoA-independent. In other 2-oxoacid:Fd oxidoreductases, 

CoA plays an important mechanistic role in driving oxidation of stable substrate-derived 

radicals on TPP. Formation of a substrate-derived radical has been hypothesized to be 

intermediate in the mechanisms of all enzymes of this family. We hypothesize that a 
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formyl-TPP radical intermediate is formed in the OOR mechanism analogous to the 

intermediate radical adduct formed on other 2-OFOR enzymes when CoA reacts with the 

substrate-derived radicals (e.g., HE-TPP radical on PFOR). By analogy to the well-

studied PFOR structure, a more or less stable radical can be hypothesized to be an 

obligatory intermediate in all members of the family, since the pair of electrons produced 

when the substrate is oxidized is passed out of the active site to the surface of the enzyme 

by one or more [Fe4S4]2+/1+ clusters, which have been shown to be single-electron 

acceptors.  

 The specific role hypothesized for CoA in 2-OFOR enzymes is to provide the 

driving force necessary for transferring the second electron (the radical electron) out of 

the active site to the proximal iron-sulfur cluster, which has the most negative redox 

potential among the three clusters. The hydroxyethyl-TPP intermediate formed upon 

decarboxylation of lactyl-TPP quickly transfers an electron to the iron-sulfur cluster 

proximal to the active site (in PFOR, this cluster has a potential of -530 mV) and that 

electron ends up in the medial cluster approximately 33 Å from the site of spin density on 

the HE-TPP radical (18). However, the radical left by this electron transfer is proposed to 

be fairly stable, with a midpoint potential that is too high to drive the reduction of the 

proximal iron-sulfur cluster. Reaction of CoA with the radical would generate a radical 

anion with a midpoint potential that is significantly lower than -530 mV, thus providing a 

sufficient driving force to reduce the proximal cluster. A similar role has been 

hypothesized for phosphate in LpPOX, as described above. 

 Since OOR does not need CoA for oxalate turnover, and we have observed 

reduction at kinetically competent rates of all three clusters of OOR upon reaction with 
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oxalate, it is likely that OOR uses a mechanism similar to that which has been shown for 

PFOR; thus, we propose that the radical intermediate on OOR is higher in energy than 

that of HE-TPP radical. We hypothesize that the structure of the radical intermediate 

resembles the radical anion adduct formed on PFOR when the HE-TPP radical reacts 

with CoA.  

 Consistent with this hypothesis, OOR forms the HE-TPP radical upon reaction 

with pyruvate, however only a single turnover can occur with the reaction halting at the 

stage of radical formation in about ten percent of the OOR molecules. EPR experiments 

provide unambiguous evidence for the pyruvate-derived HE-TPP radical on OOR 

because the EPR signal is nearly identical to that of the hydroxyethyl-TPP radical formed 

on PFOR and because substitution of deuterated pyruvate decreased the hyperfine 

splittings in a manner similar to that observed with PFOR. Under steady-state conditions, 

CoA does not increase the rate of pyruvate oxidation or lead to multiple turnovers, 

presumably because OOR does not bind CoA. Furthermore, the radical intermediate is 

not affected by the presence of CoA in the reaction mixture.  

 OOR is inhibited by pyruvate, even after excess pyruvate is removed from the 

enzyme, consistent with the formation of a covalently attached intermediate(s) that would 

block the active site. We propose that this inhibition results from the formation of the 

stable TPP-bound radical and acetyl-TPP intermediates. The UV-visible spectrum of 

pyruvate- incubated OOR shows an increase in absorbance between 300 and 400 nm. 

Circular dichroism studies with other TPP-dependent enzymes have shown that 

covalently bound intermediates on TPP give rise to spectral changes in this region (for 
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example, see (25)). This increase in absorbance when OOR is reacted with pyruvate may 

be from some stable pyruvate-derived TPP intermediate. 

 The experiments with pyruvate support the hypothesis that OOR acts through a 

mechanism similar to the PFOR mechanism, including at least transient formation of a 

substrate-derived radical. When oxalate is the substrate, a formyl-TPP radical is proposed 

as an intermediate in the OOR mechanism, by analogy to the HE-TPP radical formed 

after decarboxylation and one-electron oxidation of pyruvate.  

 We undertook stopped-flow kinetic experiments to try to resolve steps in the first 

half- reaction of oxalate with OOR, with the goal of assessing whether the one-electron 

oxidation product of oxalate (the proposed formyl-TPP radical) is relatively stable, as is 

the HE-TPP radical, or whether it decays quickly as the HE-TPP radical does in the 

presence of CoA. The kinetics of reaction of oxalate with OOR are more complicated 

than we expected. The only large changes in the absorbance spectrum of OOR are from 

the reduction of the iron-sulfur clusters, and since reduction of these clusters is likely to 

come at the end of the first half-reaction, we could not monitor initial steps in the 

reaction, making it difficult to derive microscopic rate constants from the stopped-flow 

data.  

 Although we are so far unable to derive microscopic rate constants from the 

stopped-flow data, some conclusions about the mechanism can be drawn from the data. 

From the stopped-flow experiments, we can see that OOR is reduced by approximately 

two electrons per active site, in two separate phases. Each reductive phase is oxalate-

dependent. Since the dependences of kobs1 and kobs3 are clearly fit by different parameters, 

the two phases should represent different steps in the reaction of oxalate with OOR.  
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 Based on the hypothesis that the OOR mechanism is similar to the PFOR 

mechanism, we can make predictions about steps that should occur in the absence of an 

external electron acceptor. These include (i) binding of oxalate, (ii) nucleophilic attack of 

the ylide form of TPP on oxalate to form an oxalyl-TPP intermediate, (iii) 

decarboxylation of oxalyl-TPP to make formyl-TPP, (iv) one-electron oxidation of 

formyl-TPP by an iron-sulfur cluster, (v) a second electron transfer from the formyl-TPP 

radical to an iron-sulfur cluster, and (vi) release of the second CO2 molecule to regenerate 

the starting form of TPP. Of these steps, changes in the intermediates covalently bound to 

TPP may lead to subtle spectral changes, but the large changes in absorbance at 420 nm 

most likely come from the first and second reductions of the iron-sulfur clusters. The 

observed rate constant for the slowest phase is approximately the same as kcat, so some 

step in the first half-reaction should be at least partly rate- limiting.  

 The mechanisms shown in Scheme 1 and Scheme 2 both explain the observed 

variations of kobs1 and kobs3 with oxalate concentration. Scheme 1 proposes that oxalate 

can bind to different forms of the enzyme, both of which carry out the reaction, but at 

different rates. One chemical rationale for this scheme could be that oxalate binds to 

OOR molecules that have different tautomerization states of TPP with different rates for 

deprotonation of C2 of the thiazole ring, as is described for other TPP-dependent 

enzymes in the introduction to this Chapter. In this model, one active site in the OOR 

dimer would be easily deprotonated and react quickly with oxalate, while the other would 

react much more slowly. 

 Scheme 2 proposes that a second oxalate molecule during binds during the first 

half- reaction. The form of the enzyme that the second oxalate binds to is denoted as Ered1, 
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which represents some partly reduced form of OOR. With Scheme 2, the second oxalate 

molecule must bind to a partly reduced form of OOR, since each oxalate-dependent phase 

shows a large decrease in absorbance. Binding of a second oxalate molecule would then 

drive the rest of the reduction of OOR.  

 In terms of the chemical mechanism, two hypotheses could explain the two 

separate reduction steps. In the first hypothesis, the first phase of the reaction includes 

oxalate binding and reaction with TPP, followed by decarboxylation and oxidation of 

formyl-TPP to form the radical and reduce one iron-sulfur cluster. This radical would be 

stable until binding of a second oxalate molecule would somehow drive further oxidation 

of the radical to reduce the second iron-sulfur cluster. This is contrary to our earlier 

hypothesis that the formyl-TPP radical would be strongly reducing and therefore 

unstable. In the second hypothesis, the first phase of the reaction includes steps up to the 

two-electron oxidation of the substrate, reducing two iron-sulfur clusters per OOR. The 

second oxalate molecule would then bind and react, and its oxidation would reduce the 

rest of the iron-sulfur clusters. This is consistent with the ability of both OOR and PFOR 

to be completely reduced (three clusters per monomer) by their substrates, but contrary to 

the total change in amplitude corresponding to only ~2.2 iron-sulfur clusters reduced per 

OOR observed in the stopped-flow experiments. However, it is possible that not all of the 

OOR molecules in the stopped-flow sample were active. 
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CHAPTER IV 

 

Characterization of a Sodium Binding Site in Acetyl-CoA Synthase7 

 

 

4.1 Introduction 

 Acetyl-CoA synthase (ACS) catalyzes the formation of acetyl-CoA from CO, a 

methyl group donated by a methylated corrinoid iron-sulfur protein, and CoA. X-ray 

crystal structures of bifunctional CO dehydrogenase/acetyl-CoA synthase from Moorella 

thermoacetica (1, 2) and monomeric acetyl-CoA synthase from Carboxydothermus 

hydrogenoformans (3) have been solved (Figure 4.1). The active site of ACS (the A-

cluster) consists of a Ni-Ni site, with one Ni bridged by cysteine to a Fe4S4 cluster. This 

central Ni atom is referred to as the proximal Ni or Nip. It is thought to be the site for 

substrate binding and catalysis. In both the CODH/ACS and ACS only structures, ACS is 

made of three domains arranged in a triangle. The N-terminal domain contains α-helical 

and Rossmann folds. This domain binds CODH in the bifunctional enzyme, and contains 

part of a 70 Å channel that allows CO to pass from the CODH active site to the ACS 

active site without leaving the enzyme (4, 5). The other domains  of  ACS  are  mixed 

alpha  helices and  beta  strands.  The  C-terminal domain contains the ligands to the Ni  

                                                 
7 The previously undetected metal binding site in ACS was found by Yan Kung, during his work in Cathy 
Drennan’s lab at the Massachusetts Institute of Technology. 
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Figure 4.1. Crystal structure of M. thermoacetica CODH/ACS from pdb 1MJG. The CODH 
dimer is shown in grey, ACS domains are shown in orange (N-terminal domain), yellow (central 
domain) and blue (C-terminal domain). The C-cluster and A-cluster are the sites of CO2 reduction 
to CO and acetyl-CoA synthesis, respectively. 
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and Fe atoms in the A-cluster. In M. thermoacetica ACS, the three domains consist of 

residues 1–312, 313–493 and 494–729.  

 ACS has been observed in open and closed conformations in X-ray crystal 

structures (2). In the closed conformation, the C-terminal domain is close to the N-

terminal domain, the active site is buried in the protein, and the end of the CO channel is 

open to the ACS active site. In the open conformation, the N-terminal domain is farther 

away from the C-terminal domain, and the end of the CO channel in the N-terminal 

domain is closed. The middle domain moves with the C-terminal domain in this 

conformational change. It has been proposed that these two conformers are relevant to the 

catalytic mechanism, because delivery of CO to the A-cluster would require the enzyme 

to be in the closed state and interaction between the methylated CFeSP and ACS would 

require the open state. Therefore, large conformational changes between the closed and 

open states are expected to occur during the catalytic cycle.  

 During catalysis, CO and the methyl group are thought to bind directly to the 

proximal Ni. The central domain of ACS has been implicated in CoA binding, and X-ray 

absorption studies indicate that the sulfur of CoA ligates Nip (6), although the structural 

motif responsible for binding CoA is not known. Chemical modification studies have 

provided evidence for involvement of specific tryptophan and arginine residues in CoA 

binding. The arginine-modifying chemicals phenylglyoxal, methylglyoxal, and 

butanedione inhibit the CO/acetyl-CoA exchange activity, which involves the exchange 

of unlabeled CO with the labeled carbonyl group of acetyl-CoA. This is a convenient 

assay because it requires both CoA and CO binding, but not binding of the  methylated 

corrinoid iron-sulfur protein. Inhibition was seen both in the presence and absence of CO, 
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which suggests that modification of an Arg residue blocks the CoA binding site (7). N-

bromosuccinimide (NBS) was used to modify tryptophan residues in CODH/ACS. CoA 

binding protects against this modification and against inhibition of both CO/acetyl-CoA 

exchange and acetyl-CoA synthesis activity by NBS (8). A specific residue (Trp418 in M. 

thermoacetica ACS) that underwent modification by a different chemical, 2,4-

dinitrophenylsulfenyl-Cl, was identified by purification and sequencing of a peptide 

protected from modification by CoA (9). Trp418 faces into a cleft in the center of the 

protein. Its sidechain is 24 Å from Nip. During acetyl-CoA synthesis, the acetyl group 

undergoes nucleophilic attack by the sulfhydryl of CoA, so the ATP moiety of CoA may 

bind to the central domain of ACS, with the pantetheine part of the molecule stretching 

across the cleft in ACS to position sulfur near the active site. 

 During refinement of the structure of the M. thermoacetica bifunctional 

CODH/ACS, Yan Kung discovered a previously unknown metal binding site in the ACS 

subunits of the α2β2 (Figure 4.2). The site had been modeled as a water molecule in 

previous structures, but the coordination of the atom in this site was octahedral, with four 

backbone carbonyls, one water, and one glutamate side chain as ligands. This number of 

coordinating ligands is inconsistent with that expected for water. Modeling Na+ into the 

site gave the most reasonable ligand distances, electron density and B- factors. Sodium 

was present in high concentrations during the ion exchange chromatographic steps in the 

purification of CODH/ACS and at 2 mM concentration throughout the purification, but 

was excluded from the crystallization buffer. The metal site was found in all four ACS 

molecules in the asymmetric unit.  Although water was originally modeled in  this site  in  

all  other M. thermoacetica CODH/ACS structures, inspection of these structures showed  
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Figure 4.2. The Na+ site in ACS. The ACS active site is on the left, with the iron-sulfur cluster 
shown as brown and yellow sticks, the proximal metal shown as a brown sphere (this atom was 
Cu in the enzyme used for crystallization, but has been shown to be Ni in the active enzyme), and 
the distal Ni as a green sphere. Sodium is shown as a purple sphere, the small red sphere is the 
coordinating water molecule. The coordination of sodium at the top is not to Trp418, but to the 
backbone carbonyl of Asn412 on the helix shown behind Trp418. Ribbon colors are the same as 
in Figure 4.1. 
 

the octahedral coordination site in all previously published structures, in both closed and 

open forms of ACS. In the C. hydrogenoformans ACS crystal structure, the backbone 

carbonyls are arranged to give the same site, with only a slight rotation of the carboxylate 

of Glu334 (Glu331 in M. thermoacetica ACS). 

 The Na+ site is in the middle domain of ACS, close to Trp418. The ligands to Na+ 

are from backbone carbonyls of Phe328, Asn412, Gly414, and Leu417, the sidechain of 

Glu331, and a water molecule. Alignment of ACS sequences from several organisms 

(Figure 4.3) shows that Glu331 and Asn412 are most strongly conserved. The position of 

Phe328 has a conserved aromatic residue (F, Y or H), Gly414 is replaced by alanine, 

valine, isoleucine, cysteine and threonine in other ACS sequences, and the position of 

Leu417 has a conserved hydrophobic residue. Trp418 is replaced by methionine in 

several of the other aligned sequences.  
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637120264      IADKSVLPILP-GVDTVDSVLAGIPYDRIVSKAMDVRGIKVNITKVPVPVAYGPAYEGER 337 

639703331      IADTDIPEILPTGVCTYEHVVSSVPYDKMTARSIEVRGLKLTVAEIPVPVAYGPAFEGER 290 
640782894      ITD----QIVT---EVPTLLLTQKDFDKIPATSLEARNIKIKVTEIDIPVGFAAAFEGER 309 

648091487      LTD----QVVP---EVPTLLLTQKDYDKMVKTSLEARNIKIKITEIPIPVSFAAAFEGER 309 
637753967      ITD----QPLPEDKQIKDWFISEPDYDKIVQTALEVRGIKITSIDIDLPINFGPAFEGES 335 
M.t. ACS       ITD----QPLPEDKQIPDWFFSVEDYDKIVQIAMETRGIKLTKIKLDLPINFGPAFEGES 332 
643562715      LTD----QELGEDMQIPDWYLSEPDYEKIVPLALEVRGIKLTNIEIPIPVNFGPAFEGET 329 
638175769      --------------------------------------------MVEFPFEISPMFEGER 16 
638178731      --------------------------------------------MAEFPFEISPMFEGER 16 
638156889      VER--------KRIEIPEGVKVKESVG----------------EEAEFPFDISPMYEGER 37 
638201439      ITN--------NEVPVIKGALESSDIDNIVENALKMKGVKVKVVEFDIPVSVGPMNEGER 310 
                                                                      *  * 
 
637120264      GHKMNEDYEPILERQIHHLLNYAQGVMHIGQRDIAWLRVSKGAAAK-GFSLKHIGSILHA 455 
639703331      GRKMQEDYEPILERQIHHLVNYAQGLMHIGQRDIAWYRISKQAVDK-GFTLEHIGKILHA 408 
640782894      GKNMQLDFEPVLERRIHYFMNYTEGVMHVGQRDTTWIRISKDTYAS-GFRLEHIGEVLYA 428 
648091487      GTNMQKDFEPVLERRLHYFLNYIEGVMHVGQRNLTWVRIGKEAFEK-GFRLKHFGEVIYA 428 
637753967      GRKMQEDFEPVLERRIHYFTNYGEGFWHTAQRDLTWVRISKEAFAK-GARLKHLGQLLYA 453 
M.t. ACS       GRKMQADFEGVLERRIHDFINYGEGLWHTGQRNINWLRVSKDAVAK-GFRFKNYGEILVA 450 
643562715      GRKMQEDFEGVLERRIHYFTNYGEGVWHVAQRDLCWVRISKDARAK-GFLMKHIGELLLA 447 
638175769      GELVEPDLESVVERRVHDFINYCQGIMHLNQRYDVWMRVSKDTAAK-MDSFEPFGQAVMM 134 
638178731      GELVEPDLESVVERRVHDFINYCQGIMHLNQRYDVWMRVSKDTAAK-MDSFEPFGQAVMM 134 
638156889      GEMVETDLEPVIERRNHDFQNYIEGYMHLNQRYDIWIRIGKNAIKKGLKSLIQIAKATMM 156 
638201439      GSNLEEDLEGVLERRIHEFLNYIEGVMHLNQRDQVWIRINKNSFNK-GLRLKHIGEVVKQ 425 
                                   * *  ** 

 

Figure 4.3. Alignment of ACS sequences. The glutamate in the Na+ binding site is 
highlighted in grey, other residues discussed in the text are marked with asterisks. 
Integrated Microbial Genomics identification numbers and species are 637120264: 
Dehalococcoides ethenogenes 195; 637753967: C. hydrogenoformans Z-2901; 
637829135: M. thermoacetica ATCC 39073; 638156889: Archaeoglobus fulgidus DSM 
4304; 638175769: Methanosarcina acetivorans str. C2A; 638178731: Methanosarcina 

acetivorans str. C2A; 638201439: Methanocaldococcus jannaschii DSM 2661; 
639703331: Syntrophobacter fumaroxidans MPOB; 640782894: Alkaliphilus 

metalliredigens QYMF; 643562715: Desulfitobacterium hafniense DCB-2; 648091487: 
Clostridium ljungdahlii DSM 13528. 
 
 
4.2 Experimental procedures 

4.2.1 Mutagenesis 

 Mutations were made in the acsB gene from M. thermoacetica that was 

previously cloned into the pET29a vector (10). Glu331 was mutated to alanine, 

glutamine, and aspartate by the method given in the Stratagene QuikChange Site directed 

mutagenesis kit. The primers used for mutagenesis were 5’-CTGCCTTTGAGGGCGAT 

AGTATCCGTAAG-3’ and 5’-CTTACGGATACTATCGCCCTCAAAGGCAG-3’ for 

the E331D mutation, and 5’-CTGCCTTTGAGGGCGCGAGTATCCGTAAG-3’ and 5’-
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CTTACGGATACTCGCGCCCTCAAAGGCAG-3’ for the E331A mutation. Mutations 

were confirmed by DNA sequencing at the University of Michigan DNA Core Facility. 

 

4.2.2 Protein expression and purification 

Wild-type and mutant ACS were expressed in BL21star E. coli cells from plasmid 

pET29a, as described (10). The cells were co-transformed with plasmid pDB1282 (kindly 

provided by Drs. Dennis Dean and Patricia DosSantos, Virginia Tech, Blacksburg, VA), 

which contains the genes iscS-iscU-iscA-hscB-hscA-fdx from the isc operon of 

Azotobacter vinelandii. Expression of these genes is controlled by an arabinose promoter. 

Cells were grown in terrific broth with 0.1 mg/mL ampicillin and 0.05 mg/mL 

kanamycin. Cultures were first grown aerobically, in stoppered 2 L bottles or a 10 L 

fermentor sparged with air, to an OD600 of around 0.5; then 0.5 g/L arabinose was added 

to induce expression of the isc genes. At OD600 = 0.7, the cultures were made anaerobic 

by bubbling with N2 gas for 30 minutes, then by addition of an anaerobic solution of 1.5 

mM sodium sulfide and 2 mM cysteine HCl (final concentrations). The medium was then 

supplemented with 0.1 mM ferrous ammonium sulfate and 0.2 mM NiCl2, and ACS 

expression was induced by addition of 0.1 mM IPTG. Cells were harvested under N2 four 

hours after induction and stored at -80 oC until use.  

Frozen cells were suspended in a three-fold excess (weight/vol) of buffer 

containing 50 mM KPi, 10 mM imidazole, 10 mM beta-mercaptoethanol, 0.3 M NaCl, 

with 0.25 mg/mL lysozyme, 3 U/mL DNAse I and 0.2 mM PMSF. The cell suspension 

was sonicated for 10 minutes and centrifuged at 4 oC at 30,000 rpm for 45 minutes. The 

supernatant containing soluble protein was loaded on a Ni-NTA column from Qiagen 
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(Valencia, CA), and ACS was eluted by stepwise increases in the imidazole 

concentration. Purified ACS was buffer-exchanged into 50 mM tris-HCl, pH 7.6, by 

several cycles of concentrating the enzyme in 30 kDa molecular weight cutoff centrifuge 

concentrators from Millipore (Billerica, MA) and diluting in fresh buffer. ACS was 

reconstituted by incubation at 25 oC in 2 mM NiCl2 for at least three days. Excess Ni was 

removed by buffer exchange as before.  

 

4.2.3 CO/acetyl-CoA exchange assays 

CO/acetyl-CoA exchange activity of ACS was measured at 55 oC in 0.5 mL 

solution in 1.5 mL v-shaped glass vials. 0.3 M MES-tetramethylammonium hydroxide, 

pH 5.8, and 2 mM CH3-12CO-ScoA were mixed in the vials. The vials were then removed 

from the anaerobic chamber, sparged with CO for 5 minutes, moved back into the 

anaerobic chamber, and then 2 mM freshly prepared Ti3+ citrate and 2 µL of CH3-14CO-

SCoA (8 µM) was added via Hamilton gas-tight syringes. A 40 µL aliquot was removed 

to check the initial radioactivity, and 20-50 µg ACS was added via Hamilton syringe to 

start each assay. 0.1 mM methyl viologen was added to some assays shown in Table 4.3 

for mutant and wild-type ACS, but was omitted from assays shown in Figure 4.7, since 

its omission seemed to give less variation in the assay results. Additional 40 µL aliquots 

were removed at several time points and immediately quenched in 0.1 M HCl. Samples 

were analyzed by liquid scintillation counting after adding scintillation cocktail. 

For assays of wild-type ACS with controlled Na+ and K+ concentrations, the 

actual concentrations of these ions in each assay were measured by ICP-MS. The total 

volume of each assay was increased to 0.7 mL. After addition of Ti3+ citrate, but before 
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addition of radioactive acetyl-CoA, a 0.2 mL aliquot was removed from each vial for 

ICP-MS. A volume of ACS stock solution equal to that added to each assay was added to 

each metal analysis sample. Na+ concentrations shown in Figure 4.7 are corrected for 40 

µM sodium acetate buffer that was added with the radioactive acetyl-CoA stock solution.  

 

4.2.4 Electron paramagnetic resonance (EPR) spectroscopy 

EPR samples were prepared by reducing ACS with 5 equivalents of Na2S2O4 from 

a 0.2 M stock solution in 0.1 M NaOH, sparging the headspace in each stoppered EPR 

tube with CO for 5 minutes, mixing each sample, and freezing samples in liquid N2. EPR 

spectra were measured at 70 K from 2300-4300 G, under the following conditions: 

power: 0.237 or 0.948 mW, receiver gain: 2 x 104, modulation frequency: 100 kHz, 

modulation amplitude: 10 G. Concentrations of spectral features were determined by 

comparison to a 1 mM copper perchlorate standard. 

 

4.2.5 Miscellaneous methods 

Metal concentrations were determined by ICP-OES or ICP-MS at the Chemical 

Analysis Laboratory (University of Georgia), and by ICP-MS by Dr. Ted Huston in the 

University of Michigan Geological Sciences Department, after subtracting concentrations 

of each metal in a corresponding buffer sample.  

Circular dichroism was performed in 5 mM Tris-sulfate, pH 7.6, with 0.12 mg/mL 

E331A ACS (1.5 µM) and 0.36 mg/mL wild-type ACS (4.4 µM). Spectra were measured 

in a 0.1 cm path- length cuvette. Instrumental parameters were: bandwidth of 5.0 nm, 

instrument response time of 4 s, scan rate of 50 nm min-1, at 30 oC. Melting was 



 109  

measured by increasing the temperature from 30 oC to 95 oC at a rate of 1 oC min-1, and 

monitoring ellipticity at 220 nm (θ220). For melting experiments, the bandwidth was 

decreased to 1.0 nm and the response time to 2 s. Wild-type ACS precipitated by the end 

of each experiment, while the E331A ACS samples remained clear. 

All containers used for experiments with controlled Na+ and K+ concentrations, 

including containers for preparation of reagents and storage of stock solutions were 

cleaned by soaking in 4 M HCl made from trace metal grade concentrated HCl and 

distilled, deionized water (Milli Q system, Millipore, Billerica, MA), followed by 

extensive rinsing in fresh distilled, deionized water. Buffers were prepared and ACS was 

dialyzed and stored in plastic containers. Anaerobic water with low sodium and 

potassium concentrations was prepared in plastic containers by sparging water with N2 

gas, through acid-washed tygon tubing, before moving it into the anaerobic chamber.  

 

 

4.3 Results 

Mutations of ACS were made to explore the function of the Na+ site. Since only 

one side chain is involved in the site, Glu331 was mutated to aspartate and alanine. Over-

expression of ACS in E. coli allowed purification of ACS alone (without CODH). E331A 

and E331D mutants of ACS were expressed at levels similar to wild-type ACS, and were 

stable upon purification. E331D ACS was found to have similar CO/acetyl-CoA 

exchange activity, iron and nickel contents and NiFeC EPR spectra to wild-type ACS, so 

some of the experiments described below were focused on comparing E331A and wild-

type ACS. 
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4.3.1 Metal analysis results 

E331A and E331A ACS had approximately the same iron and nickel content as 

wild-type ACS (Table 4.1). Attempts were made to remove excess sodium and potassium 

from ACS. It was found that high concentrations of these metals, up to 0.7 mM sodium 

and 0.1 mM potassium, were present in water boiled in glass flasks and cooled under N2, 

which is the usual method used in our laboratory to prepare anaerobic water, and in 

distilled, deionized water sent for metal analysis in glass serum bottles. The lowest Na+ 

and K+ concentrations were found in distilled, deionized water (MilliQ, Millipore) 

dispensed directly into plastic containers that had previously been soaked in 4M HCl 

(trace metal grade, Fisher Scientific) rinsed with copious amounts of distilled, deionized 

water, and stored in sealed plastic bags to keep out dust. Tris-HCl and MES-TMAOH 

buffers made from water treated in this way were analyzed by ICP-MS, and were found 

to have between 3 and 25 µM K+ and between 6 and 27 µM Na+.  

  

4.3.2 Spectral characterization of wild-type and E331A ACS 

  Fully active ACS should have four irons and two nickel atoms per monomer, but 

ACS as purified contains significant amounts of Cu and Zn in the central Ni site, which 

are not active metals in ACS (11-13). When ACS is first reduced, then incubated with 

CO, a characteristic EPR spectrum, called the NiFeC spectrum develops. There is strong 

evidence that this is the spectrum of an intermediate state in the catalytic cycle (1), and it 

can be used as a measure of how much active enzyme, containing both Ni atoms, is 

present. Quantification of the NiFeC signals from three preparations of wild-type and 

E331A ACS and two preparations of E331D ACS is shown in Table 4.2. Two 
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preparations of E331A ACS had considerably lower intensities of the NiFeC spectrum. 

These enzymes were not deficient in iron and nickel. As shown in Table 4.1, both 

preparations 1 and 2 of E331A ACS contained levels of Ni and Fe comparable to wild-

type ACS. The third E331A ACS preparation had NiFeC signal intensity similar to that 

observed with wild-type ACS. 

 

Table 4.1. Metal analysis of ACS preparations. Results in moles/mol ACS 

 Wild-type E331A E331D Enzyme preparation 

Fea 2.37 2.90 3.26 1 

Nia 1.36  2.16 2.56 1 

Cua 0d 0.01 0 1 

Zna 1.18 0.74 0.70 1 

Fea 3.24 3.02 3.50 2 

Nia 2.64 2.94 2.91 2 

Cua 0.02 0.01 0  2 

Zna 1.30 0.98 1.35 2 
Feb 2.37, 3.20 2.57, 4.20 N.D.c

 3 

Nib 1.80, 1.60 1.56, 1.74 N.D. 3 

Cub 0.005, 0.005 0.005, 0.005 N.D. 3 

Znb 0.43, 0.38 0.37, 0.31 N.D. 3 

Kb 0, 0d 0, 0 N.D. 3 

Nab 0, 0 0.24, 0 N.D. 3 
 
Average Fe 2.8 + 0.5 3.2 + 0.7 3.4 + 0.2  

Average Ni 1.9 + 0.6  2.1 + 0.6 2.7 + 0.3  

Average Cu 0.01 + 0.01 0.01 + 0.003 None detected  

Average Zn 0.8 + 0.5 0.6 + 0.3 1.0 + 0.5  
a Determined by ICP-OES after buffer exchange into 50 mM tris-HCl, the two values shown are 
from two purifications of each enzyme. 
b
 Determined by ICP-MS after dialysis against 100 mM Tris-HCl, 2 mM DTT with low Na+, K+. 

The two values shown are for enzyme pre-incubated in buffer containing 0.3 M K+ or Na+ buffer 
before dialysis. 
c Not determined. 
d The concentration of each element in a dialysis buffer blank was subtracted from the 
concentration in each protein sample. Zero indicates that the protein sample had less of the ion 
than the buffer had. Actual Na+ concentrations were between 6 and 27 µM, and K+ 
concentrations were  between 3 and 25 µM. The copper concentration in buffers was around 1 
µM. 
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Figure 4.4. NiFeC EPR spectra of 161 µM wild-type (dashed line) and 151 µM E331A  
(solid line) ACS (both from preparation 1) were measured as described in the text. The 
intensity of the E331A spectrum has been multiplied by four for easier comparison with 
the wild-type spectrum.  

 

Table 4.2 Quantification of NiFeC EPR signals, results in spins/ACS 

Enzyme preparation Wild-type E331A E331D 

a 0.22 0.05 0.11 
b 0.15 0.01 0.37 
c 0.74 0.34 N.D.a 
a Not determined. 

 

  In preparation 1, the E331A spectrum had features in addition to the NiFeC 

signal, at g = 2.047 and g = 2.003 (Figure 4.4). Spectra similar to the spectrum seen with 

E331A ACS preparation 1 were seen with wild-type and E331D enzymes from 

preparation 2. In preparation 2 of the E331A mutant, very low EPR signal intensity was 

seen after reduction of the enzyme and treatment with CO. This was probably not the 
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result of a difference in the amount of E331A ACS in the sample or the presence of a 

contaminant that was absent in other ACS samples, because the level of expression and 

purity of ACS were similar in all preparations of all of the ACS variants. In the small 

amount of EPR active protein, the intensity of the spectral features at g = 2.00 and g = 

2.04 was greater than the intensity of the NiFeC spectrum (the concentration given in 

Table 4.2 represents both sets of spectral features). It is not known what state of the 

enzyme gives rise to the additional features in the EPR spectra of E331A preparation 1 

and in preparation 2 of all three enzymes.  

 To test whether the additional EPR signals were the result of stabilization of a 

different conformation of ACS, circular dichroism spectra (Figure 4.5) and melting 

temperatures (Figure 4.6) of wild-type and E331A ACS from preparation 1 were 

measured. The melting curves shown are irreversible for wild-type ACS, which 

precipitated by the end of each experiment. The concentrations of Na+ and K+ in these 

samples were around 750 µM (Na+) and 100 µM (K+). This was approximately 500-fold 

or 170-fold excess of Na+ over E331A or wild-type ACS, respectively, and around 70-

fold or 20-fold excess of K+ over E331A or wild-type ACS, respectively. Wild-type ACS 

samples with 5 mM and 50 mM K+ were prepared to see if addition of a metal cation 

would affect the circular dichroism spectrum or stability of the enzymes. The circular 

dichroism spectra of wild-type and E331A ACS preparation 1 were similar, although 

there were subtle differences between the wild-type and E331A ACS spectra below 200 

nm. Addition of 50 mM K+ to wild-type ACS had little effect on the circular dichroism 

spectrum. The melting temperatures of wild-type and E331A ACS were also similar. The 

irreversible  melting  of the  wild-type,  particularly with added  K+, is monitored by  the  
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Figure 4.5. Circular dichroism spectra of wild-type and E331A ACS. Solid line: wild-
type ACS, dashed line: wild-type ACS with 50 mM K+, dotted line: E331A ACS. The 
E331A ACS spectrum has been multiplied by three for easier comparison with the wild-
type spectra. Wild-type ACS was 4.4 µM and E331A ACS was 1.5 µM in these 
experiments. 
 
 
 

 
 

Figure 4.6. ACS melting measured by circular dichroism spectroscopy. Grey circles: 
wild-type ACS, triangles: wild-type ACS with 5 mM K+, black circles: wild-type ACS 
with 50 mM K+, red circles: E331A ACS. Wild-type ACS was 4.4 µM and E331A ACS 
was 1.5 µM in these experiments. 
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sharp increase in molar ellipticity above 80 oC, which could be caused by denaturation or 

aggregation of  the  protein. The  melting  temperature  was  taken  as the inflection point 

on each curve (the point around 70 oC with the steepest slope). E331 A had a melting 

temperature of 71 oC. Wild-type ACS had a melting temperature of 69 oC with 100 µM 

K+, 66 oC with 5 mM K+, and 68 oC with 50 mM K+. 

 

4.3.3 Comparison of CO/acetyl-CoA exchange activities 

  The exchange of 12CO with 14CO from the carbonyl position of acetyl-CoA was 

measured to see if the enzymatic activity of ACS was affected by mutating E331. The 

results of several assays are shown in Table 4.3. The E331A ACS variant has 

approximately 25-fold lower specific activity than wild-type and E331D ACS. There is 

some variation in the activities measured with different preparations of enzyme and at 

different times, which is likely to be due to differences in the redox potentials in the  

 

Table 4.3 CO exchange activities, U/mg 

Enzyme preparation Wild-type E331A (%)a E331D (%) 

1 0.82 0.031 (3.8) 0.72 (88) 

1 1.5 0.022 (1.5) 0.53 (35) 

2 N.D.b 0.042 0.13 

2 2.0 0.094 (4.7) 0.37 (19) 

2 0.57c 0.033c (5.8) 0.73c (130) 

1, 2 (wt), 2 (E331A) 0.49, 0.36c 0.034c (6.9) N.D. 

3 0.19c 0.007c (3.7) N.D. 

Average activity 0.85 + 0.61 0.037 + 0.025 0.50 + 0.23 

Each row shows a set of assays performed in parallel. 
a The number in parenthesis shows a comparison of the activity of each variant to 
the wild-type ACS activity determined in the same set of assays. 
b Not determined. 
c No methyl viologen was added to these assays. 
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assays. In later experiments, marked with (c) in Table 4.3, more consistent results were 

seen by removing methyl viologen from assays, by very careful preparation of Ti3+ citrate 

solutions just before the assays were performed, and by addition of Ti3+ citrate after 

adding CO to the assay vials, and exactly three minutes before starting each assay. 

 The assays reported in Table 4.3 contained approximately 1 mM Na+ from the 

Ti3+ citrate solution and from the glassware used in reagent preparation. More CO 

exchange assays were done with wild-type ACS, after careful dialysis to remove as much 

Na+ and K+ as possible. Different concentrations of Na+ were added to these assays, and 

aliquots were taken for metal analysis before addition of radioactive acetyl-CoA and  

 

 

 
 

Figure 4.7. Dependence of the CO exchange activity of ACS on Na+ concentration. 
Assays were performed as described in the methods section, without methyl viologen. 
Solutions were prepared in plastic containers, and the assays were done in acid-washed 
glass v-vials at 25 oC. Na+ and K+ concentrations were confirmed by removing an aliquot 
of each assay mix for ICP-MS, before addition of CH3-14CO-SCoA, which was prepared 
in sodium acetate buffer. Na+ concentrations shown are corrected for the amount of Na+ 
in the 14C-acetyl-CoA solution (8 µM). K+ was less than 30 µM in each assay.  
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enzyme. A small dependence of the activity on Na+ concentration was seen (Figure 4.7). 

Comparing the activity at no added Na+ to that at saturating concentrations, Na+ appears 

to cause  a 2.5-fold  stimulation in CO/acetyl-CoA exchange  activity.  Additional  assays  

with 2-50 mM Na+ would be needed to clearly define the effect of Na+ on the activity. 

However, these preliminary data show that Na+ increases the CO/acetyl-CoA exchange 

activity at least four- fold below 5 mM, and inhibits it at least two-fold above this 

concentration. 

  

4.4 Discussion 

  The sodium site in ACS may be important for activity. Mutation of E331 to 

aspartate had little effect on the properties of ACS. Given sufficient conformational 

flexibility, it is likely that the smaller acidic sidechain can substitute effectively and 

coordinate Na+ in the same way as glutamate. Mutation of E331 to alanine led to a ~25-

fold decrease in ACS activity. This effect was not clearly correlated with the ability ACS 

to bind Ni and Fe. The mutations did not alter the iron and nickel content of ACS, as 

expected given that the Na+ site is about 23 Å from the A-cluster. Furthermore, the 

substitutions did not affect the overall secondary structure or stability of the enzyme, on 

the basis of the similar circular dichroism spectra and melting curves for wild-type and 

E331A ACS.  

 Despite these similarities to the wild-type enzyme, two of three preparations of 

the E331A variant had altered EPR spectra with additional features at g = 2.047 and g = 

2.003 after reduction and CO binding, suggesting that the active site of the enzyme is 

perturbed in some way. However, since this altered spectrum was also seen in one 
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preparation each of wild-type and E331D ACS, in can not be a specific feature of the 

E331A mutant, and can not be attributed to disruption of the Na+ site. 

 It was difficult to control Na+ concentrations in the sub mM range, where the 

greatest effect on activity was observed. We attempted to completely remove Na+ and K+ 

from ACS so that the effect of addition of these ions could be precisely determined. In 

wild-type enzyme that was dialyzed against carefully prepared buffers containing low 

concentrations of Na+ and K+, the concentrations of these metals were similar in ACS and 

buffer samples. However, these concentrations, in the range of 3-30 µM, are similar to 

the ACS concentrations used in the metal analysis experiments, so it is hard to be sure 

that the metals are really removed from ACS. CO exchange assays of wild-type ACS at 

sodium concentrations from ~30 µM to 100 mM show a small dependence of activity on 

Na+ concentration, with the largest changes below 5 mM. High concentrations of Na+ 

have a moderate inhibitory effect on the activity. Further experiments are needed to show 

whether this effect is on the sodium site at residue E331 or is a more general effect of salt 

concentration on ACS activity. 

 The low concentration of Na+ that affected the activity of ACS suggests that Na+ 

plays a structural role and does not modulate the activity of the enzyme in vivo. Although 

internal Na+ concentrations in M. thermoacetica have not been measured, in other 

bacteria, internal concentrations depend on external Na+ concentrations, and vary 

between approximately 8 and 400 mM in E. coli, and between 30 and 300 mM in a 

halotolerant Gram-positive Brevibacter species (14-16). Based on these concentrations, 

Na+ is likely to be constantly bound to ACS in vivo.  
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 Future work should include further measurements of the NiFeC EPR spectrum in 

the variants to determine if the lower activity of E331A ACS is related to changes in the 

active site structure. The activity of E331A ACS should be assayed over a range of Na+ 

concentrations, as was done for wild-type ACS, to see if this mutation abolishes the Na+ 

dependence of the activity. Our hypothesis is that the Na+ site is involved in binding 

CoA/acetyl-CoA. Thus, the E331A variant should have a markedly higher Kd for CoA. 

In addition, the CoA/acetyl-CoA exchange activity, which is orders of magnitude faster 

than the CO/acetyl-CoA exchange, is expected to be markedly altered by replacement of 

E331. The activity of E331A ACS was consistently lower than that of E331D or wild-

type ACS. Whether this is because of some effect of the mutation on the active site is not 

clear. 
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CHAPTER V 

 

Interconversions of carbon monoxide and carbon dioxide by carbon monoxide 

dehydrogenase on conducting graphite platelets and titanium oxide nanoparticles8 
 

 

5.1. Introduction 

 Carbon dioxide is attractive as a feedstock for clean and efficient systems to 

produce industrially useful chemicals because it is non-toxic and abundant. Because it is 

a greenhouse gas that contributes to global warming and is produced in high amounts as 

the end product of the oxidation of carbon-based fuels, it is becoming increasingly 

important to find processes that use CO2 (1). Strategies for converting CO2 to useful 

products include chemical reactions that produce organic compounds, heterogeneous 

catalysts and electrochemical catalytic reductions, production of synthesis gas (i. e., 

syngas, a mixture of CO and H2). These strategies can be accomplished by cell- and 

enzyme-based reactions.  

 Catalytic systems that include enzymes have several advantages. Enzymes usually 

catalyze specific reactions with high efficiency, including very low levels of unwanted 

side products. They work efficiently at low temperatures and pressures (relative to most 

                                                 
8 The work described in this chapter is from collaboration between Dr. Stephen Ragsdale’s lab and Dr. 
Frasier Armstrong’s lab. Dr. Ragsdale’s lab takes a strong interest in the study of the mechanism of CODH, 
while Dr. Armstrong’s lab focuses on development of stable catalysts in which enzymes are mixed with 
other materials. The CODH enzyme used in this work was provided by our lab, while the development of 
the electrochemical systems took place in Dr. Armstrong’s lab.  
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inorganic catalysts) and in aqueous solutions. A specific advantage that enzymes have 

in the reduction of CO2 is that they use reduction mechanisms that avoid the extremely 

unfavourable one-electron reduction of CO2 to an anion radical, which has a reduction 

potential of -1.9 V vs. standard hydrogen electrode. Thus, the enzyme reaction can be 

performed at the potential of the CO2/CO couple (-0.53 V vs. SHE). Similarly, formate 

dehydrogenase reduces CO2 to formate at a midpoint potential of -0.61 V vs. SHE (2).  

 CO and formate dehydrogenases catalyze the direct reduction of CO2. Both are 

found in the Wood-Ljungdahl pathway, where they catalyze the first steps in the 

carbonyl and methyl branches of the pathway. Both enzymes are also widely distributed 

in organisms that do not use the Wood-Ljungdahl pathway, and are involved in bacterial 

energy metabolism. For example, in E. coli, formate dehydrogenase couples formate 

oxidation to H2 reduction in the formate hydrogen lyase coupled to nitrate reduction 

during nitrate respiration (3). Different, evolutionarily unrelated forms of CO 

dehydrogenase allow anaerobic and aerobic bacteria to couple CO oxidation to H2 or O2 

reduction (4-7). CODH also performs other functions, which are best exemplified in 

Carboxydothermus hydrogenoformans, a CO-oxidizing, H2 evolving bacterium that 

encodes five CODHs in its genome (8). CODH I is expressed with hydrogenase in the 

complex used for CO-dependent energy conservation (4). CODH II reduces electron 

carriers such as NADP+ (9). CODH III is part of the Wood-Ljungdahl pathway (9). 

CODH IV and V have not been purified, but based on adjacent genes, CODH IV is 

proposed to be involved in the oxidative stress response, while the function of CODH V 

is unknown (8).  
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 Anaerobic CODHs contain iron and nickel. The active sites of CODH I, II, and III 

isolated from different organisms all consist of cluster C, which is an Fe3S4 sub-site 

ligated by cysteines and bridged to a NiFe sub-site. Ni ligation is planar. It roughly 

occupies one corner of the cubane made by the Fe3S4 sub-site, and is additionally 

ligated by cysteine. The iron of the NiFe sub-site, usually referred to as ferrous 

component II (FCII), is ligated by cysteine and histidine (9-13). As shown in Figure 5.1, 

CO and H2O binding are required for CO oxidation (Step 1). X-ray crystal structures 

have been reported of CODH with CO2 (14), or with water and CN-, which is a 

competitive inhibitor with respect to CO, bound to the active site (15). In these two 

separate structures, CO2 and CN- were bound to Ni, and water or hydroxide to FCII. 

Evidence for CO binding to Ni is provided by an X-ray crystal structure of CO-bound 

CODH from a methanogen, (11) and by studies of binding of the competitive inhibitor 

CN- by Fourier transform infrared (FTIR) (16) and X-ray absorption spectroscopies 

(17). Water is proposed to bind to FCII, based on the crystal structure of CODH with 

water and CN- bound at the active site (15), and to be deprotonated with the assistance 

of Lys and His residues near the C-cluster (step 2) (9, 10). This would set up the active 

site for Fe-hydroxide attack on Ni–CO to form a carboxylate that bridges the Ni and Fe 

atoms (step 3), as seen in the crystal structure with CO2 bound (14). Then, step 4 is 

release of CO2, coupled to two electron reduction of the active site metal cluster before 

electrons are transferred from the active site through two more Fe4S4 clusters to the 

surface of the protein, where they can be passed to an external electron acceptor like 

ferredoxin (step 5) (18).  
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Figure 5.1. Mechanism of CODH. This figure is based on (19). 

 

CO2 is the most oxidized carbon compound. It is very stable, and most reactions 

to convert CO2 into other usable compounds are kinetically and thermodynamically 

unfavorable. Development of efficient, environmentally friendly catalysts is an even 

greater challenge, since it means that a clean, cheap source of energy is needed. One 

possibility is to couple CO2 reduction to solar energy by developing systems that 

catalyze photoreduction of CO2 using sunlight. Below, two papers are summarized that 

describe the development of a system that catalyzes photoreduction of CO2 to CO by 

CODH attached to titanium oxide nanoparticles. A third paper describes a 

heterogeneous catalyst made of CODH and hydrogenase electrically coupled on 
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pyrolytic graphite particles. This system mimics the energy conserving system used by 

C. hydrogenoformans and other CO-oxidizing, H2-evolving bacteria. 

 

5.2. CO2 photoreduction on titanium oxide nanoparticles9 

 Photoreduction of CO2 to CO by sunlight could provide a clean way to convert 

CO2 into a useful feedstock for current industrial processes that produce hydrocarbons, 

acetic acid and methanol from CO, or for the water-gas shift reaction discussed below. 

CO2 photoreduction to mixtures of formate, formaldehyde and methanol by Ti-, Zn-, Cd-, 

W-, Si- and Ga-oxide semiconductors using light that could be directly absorbed by each 

catalyst was first reported over three decades ago (20). High energy UV light is required 

for band gap excitation of these semiconductors and improvements on these catalysts 

came with the development of systems that could absorb visible light for CO2 reduction 

by combining a dye that could be excited by visible light with a semiconductor whose 

conducting band could accept electrons from the excited dye (21). One drawback to these 

systems is that a mixture of products is formed. 

 CODH I from C. hydrogenoformans is a very efficient enzyme with kcat/Km = 

1.3 · 109 M 1 CO s 1 at 70 oC, the maximal growth temperature of the organism (9). 

CODH was previously shown to be active in both directions when coupled to a pyrolytic 

graphite edge electrode (22). A photosensitive catalyst for CO2 reduction was made by 

adsorbing CODH I and a ruthenium bipyridyl dye onto TiO2 particles. At pH 6, where the 

experiments were performed, the conduction band edge of TiO2 is at about -0.52 V vs. 

SHE, corrected to pH 6, which is very close to the potential of the CO2/CO couple (-0.42 

                                                 
9 This work was published as Woolerton et al. (2010) Efficient and Clean Photoreduction of CO2 to CO by 
Enzyme-Modified TiO2 Nanoparticles Using Visib le Light, JACS 132, 2132-3 and Woolerton et al. (2011) 
CO2 Photoreduction at Enzyme-modified Metal Oxide Nanoparticles, Energy Environ. Sci 4, 2393-9. 
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V vs. SHE at pH 6). The nanoparticles were prepared in MES buffer, and were sealed 

into a glass vial that was purged with 98% CO2/2% CH4 (added as an internal standard). 

The vial was irradiated with visible light from a tungsten-halogen lamp with a filter to 

block light below 420 nm, and the amount of CO produced was quantified by gas 

chromatography. CO was the only product detected. When the nanoparticles, the 

ruthenium dye, CODH or light were excluded, CO was produced in negligible amounts. 

However, in the absence of the dye, CO was produced upon irradiation of the 

nanoparticles at the band gap energy of TiO2. In the presence of the dye, the turnover rate 

(with reference to the amount of CODH present on the nanoparticles) was about 0.15 s-1. 

This should be compared to CO2 reduction in solution, performed in the same buffer but 

using reduced methyl viologen as the reductant (E0’ = -0.44 V), which CODH catalyzed 

with a turnover number of 95 s-1. The TiO2/ruthenium dye/CODH system was unstable, 

with CO production leveling off after about six hours. The same lower rate was seen 

when the nanoparticles were stored in the dark for four hours after the addition of CO2. 

Activity was also not restored to initial levels if CO was flushed out of solution after four 

hours, and was not inhibited initially by starting the experiments with mixtures of up to 

30% CO in CO2. These controls ruled out photo-degradation and CO sensitivity of some 

component as causes of the loss of activity. 

 Further experiments to try to improve the turnover rate and stability of the system 

were mostly unsuccessful. Effective attachment of CODH and the ruthenium dye to the 

TiO2 nanoparticles was found to be limited to about 1 nmol CODH and 40 nmol 

ruthenium dye per 5 mg nanoparticles. Above these limits, although more CODH and dye 

could be adsorbed, the CO production activity did not increase. This could be explained if 



 127  

the limiting concentrations were those required to form a monolayer over the surface of 

the particles. This hypothesis was supported by the observation that the activity increased 

when more TiO2 was added to the suspensions.  

 Substitution of different materials into the system also mostly gave no 

improvement. The TiO2 particles used in the initial experiments were mixture of two 

polymorphs of TiO2, anatase and rutile. Substitution of pure nanoparticles of either 

material gave lower CO production, although removing anatase had a much larger effect, 

probably because the rutile conduction band is around -0.32 V at pH 6, which should be 

too high to drive CO2 reduction. Replacement of TiO2 with ZnO or SrTiO3 gave less 

efficient CO2 reduction. Replacement of MES (the sacrificial electron donor that re-

reduces the ruthenium dye) with EDTA or triethanolamine did not increase the stability 

of the system, although EDTA addition increased the activity by about 40 %. Substitution 

of CODH II from C. hydrogenoformans for CODH I gave similar activity.  Using 

CODH/ACS from M. thermoacetica or aerobic CODH from Oligotropha 

carboxidovorans gave no CO2 reduction activity.   

 

5.3. CO oxidation and H2 formation on conducting graphite platelets10 

 The water-gas shift reaction is CO oxidation coupled to H2 formation as shown by 

equation 5.1. This overall reaction is used as an energy conserving process in some 

bacteria, and is also used industrially in petroleum refining, chemical production, and in 

production of H2 for fuel cells. The non-enzymatic reaction can be carried out by d-metal 

catalysts, including Cu, Fe-Cr, Au and Pt, often attached to oxide particles (for example, 

                                                 
10 This work was published as Lazarus et al. (2009) Water-Gas Shift Reaction Catalyzed by Redox 
Enzymes on Conducting Graphite Platelets, JACS 131, 14154-5. 
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Au on CeO2) at temperatures around 200 oC (23). The enzymatic reaction is carried out 

by a combination of CO dehydrogenase and hydrogenase. In C. hydrogenoformans, these 

two enzymes form a membrane-bound complex that also includes an electron transfer 

protein (4). The potentials of the CO2/CO couple and the H+/H2 couple differ by about 

0.1 V at pH 7, such that conversion of CO to H2 is thermodynamically favorable. 

 CO + H2O � CO2 + H2       (5.1) 

 CODH I and [NiFe]-dependent hydrogenase 2 (Hyd-2) from E. coli were used in 

experiments to electrochemically couple CO oxidation to H2 production. Hydrogenases 

are sensitive to CO but when Hyd-2 was adsorbed on a pyrolytic graphite edge electrode 

(without CODH) it produced H2 in the presence of up to 15 % CO. To test their combined 

activity, CODH and H2 were adsorbed onto graphite platelets, which were placed in a 

thermostated glass cell in an anaerobic chamber. The cell was sealed and flushed with 

98% N2/2% CH4, aliquots of CO were added, and changes in the concentrations of CO 

and H2 over time were monitored by gas chromatography (CH4 was added as an internal 

standard). H2 was produced simultaneously with CO consumption until CO was almost 

completely depleted. Addition of additional CO at that time allowed additional H2 

formation. In the absence of CODH, hydrogenase, CO, or the graphite platelets, less than 

0.01 % H2 was produced over 24 hours. This trace of H2 may have come from CODH, 

since another CODH has been shown to have slow hydrogen-evolving activity in the 

absence of any other electron acceptor (24). That H2 is not produced in the absence of the 

platelets supports the hypothesis that the platelets are necessary for electron transfer from 

CODH to hydrogenase. The turnover frequency was calculated from the amount of 

hydrogenase loaded on the platelets as at least 2.5 s-1 at 30 oC. This compared favorably 
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with reports of a Ru3(CO)12 catalyst with a turnover rate of 0.01 mol H2 s-1 per mole of 

catalyst at 160 oC, and an Au-CeO2 catalyst with a turnover rate of 3.9 s-1 at 240 oC. 

 

5.4. Discussion 

 Although these experiments demonstrate catalysis of useful reactions, these 

techniques are not ready for large scale commercial use. Problems include the fragility of 

enzymes, and the difficulty of producing them in large quantities. In addition, the CO2 

photoreduction system is inactivated over time. Furthermore, the activity of CO oxidation 

when CODH is adsorbed on an electrode is much lower than that of CODH in solution. 

Possible areas for improvement are in optimization of the system used to regenerate the 

dye and in more efficient attachment of the enzyme to the nanoparticles. While it is 

hypothesized that CODH is attached in a monolayer on the nanoparticle surface, it is not 

clear whether the enzyme molecules are preferentially oriented in one position and 

whether the most common orientations for attachment are those that would place the 

iron-sulfur cluster that is closest to the surface of the enzyme in close contact with the 

TiO2 surface. Specific mutations to introduce an anchoring site on the enzyme may 

increase CODH binding in a productive orientation. However, such experiments will 

have to await the development of a good system for heterologous expression of CODH, 

which is made difficult by the complexity of the active site metal cluster and insufficient 

knowledge of the metallochaperones required to assemble the C cluster. 
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CHAPTER VI 

 

Conclusions and Future Directions 

 

 

 The work described in this thesis was focused on two enzymes: acetyl-CoA 

synthase and oxalate oxidoreductase. ACS has been studied for many years, and there is a 

wealth of information about the metals in its complex active site, the Ni-, Fe- and S-

containing A-cluster. Our work on ACS involves a different metal in a newly-discovered 

Na+ binding site. By contrast to ACS, OOR is a novel enzyme both in the sense that we 

present the first enzyme in the 2-oxoacid:ferredoxin oxidoreductase family to use oxalate 

as a substrate and to function independently of CoA, and in the sense that growth of M. 

thermoacetica on oxalate using OOR is the first known example of a strictly anaerobic 

bacterium metabolizing oxalate by directly oxidizing it to produce CO2 and reducing 

equivalents. 

 

6.1. Oxalate oxidoreductase 

 Chapter II describes the discovery of a novel TPP-dependent oxalate 

oxidoreductase. We showed that this enzyme is induced during growth on oxalate, and 

that it is the only enzyme necessary for oxalate oxidation in M. thermoacetica. OOR is a 

member of the 2-oxoacid:ferredoxin oxidoreductase family. It shares high sequence 



 134  

similarity with other enzymes in this family, including with PFOR. The largest difference 

between OOR and other members of the 2-OFOR family is that OOR does not require 

CoA as a second substrate.  

 The experiments described in Chapters II and III show that although OOR does 

not use CoA, its catalytic mechanism is similar to the well-studied PFOR mechanism. In 

both enzymes, substrates react with TPP and are oxidized via a radical intermediate. In 

PFOR, the hydroxyethyl-TPP radical is stable, and reaction with CoA drives the catalytic 

cycle after HE-TPP radical formation. This has been hypothesized to occur through a 

large decrease in the redox potential of the radical as it combines with CoA to form an 

anion radical TPP adduct.  

 A very stable HE-TPP radical is also formed when OOR reacts with pyruvate. 

The formyl-TPP radical proposed as an intermediate in the OOR reaction with oxalate is 

apparently much less stable, and we have not been able to detect this radical by hand-

mixing of samples, followed by freezing and EPR spectroscopy. We hypothesize that the 

stability of the radical depends on the nature of the substrate. Since oxalate is doubly 

negatively charged, we expect the radical intermediate in oxalate oxidation to be an 

anionic formyl radical. By analogy to the highly reducing anion radical that is formed 

when CoA reacts with the HE-TPP radical on PFOR, we propose that the anionic formyl-

TPP radical is also a strong reductant that will quickly reduce the second iron-sulfur 

cluster on OOR. 

 The UV-visible stopped-flow experiments described in Chapter III showed that 

the mechanism of oxalate oxidation is complex, with at least two different forms of the 

enzyme reacting with oxalate.  
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6.1.1. Proposed experiments 

 The stopped-flow experiments described in Chapter III did not provide conclusive 

evidence as to whether a radical is stabilized during the reaction of OOR with oxalate. 

One limitation to the stopped-flow experiments is that probably the only visible change 

that is being monitored is the reduction of the iron-sulfur clusters. Two techniques have 

been developed in other laboratories to measure changes in the active sites of TPP-

dependent enzymes. First, the subtle changes in the spectrum of TPP associated with 

tautomerization state changes and formation of intermediates might be seen more clearly 

by circular dichroism spectroscopy, where different forms of TPP give rise to large 

positive and negative bands in the visible region (1, 2), which might allow changes in the 

spectrum of TPP to be seen more clearly against the background of the reduction-

associated bleaching of the iron-sulfur clusters. Second, acid-quenching followed by 

NMR has allowed quantification of different covalent TPP-bound intermediates on 

pyruvate decarboxylase (3). Mass spectrometry is another possible method for detection 

of TPP-bound intermediates. These techniques could be used to monitor steps before 

iron-sulfur cluster reduction. Knowing steady state concentrations of intermediates could 

provide evidence in favor of or against the kinetic schemes proposed in Chapter III, and 

could allow assignment of rate constants to individual reaction steps, with the goal of 

finding rate constants for the steps involved in oxidation of the proposed formyl-TPP and 

formyl-TPP radical intermediates. 

 A second area for exploration is the overall equilibrium of the OOR reaction. As 

mentioned in Section 3.3.1, the presence of CO2 in solution affects the equilibrium of the 
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first half-reaction of OOR. Our attempts to measure the rate of the overall reverse 

reaction, reduction of CO2 to oxalate, have so far been unsuccessful, but a systematic 

exploration of how the reaction of oxalate with OOR is affected by the concentration of 

CO2 in solution could give more information about the rates of individual steps in the 

reaction, since CO2 would be expected to specifically affect the rates of steps involving 

CO2 release, allowing identification of those steps. 

 The original reason for our stopped-flow experiments was to try to answer the 

question whether a formyl-TPP radical is formed at appreciable concentrations during the  

oxidation of oxalate by OOR, and if so, to find a good reaction time to use for rapid 

freeze-quench EPR experiments. A complementary approach, of freeze-quenching 

mixtures of OOR and oxalate at many different times and looking at these samples by 

EPR, has the obvious advantage that this method could unambiguously detect a radical, if 

formed at sufficiently high concentrations, whereas UV-visible spectroscopy does not 

allow distinction between the one-electron and two-electron reduced forms of OOR. 

 

6.2. Characterization of a sodium binding site in acetyl-CoA synthase  

 The work described in Chapter IV began with the discovery of a sodium site on 

ACS by Dr. Yan Kung, in Dr. Cathy Drennan’s lab at MIT. We hypothesized that this 

site is important for CoA binding because of its proximity to Trp418, which is protected 

from reaction with tryptophan-modifying chemicals by CoA (4, 5). The experiments 

described in Chapter IV provide preliminary support for this hypothesis. We found that 

the CO/acetyl-CoA exchange activity of ACS increases approximately four- fold when the 

Na+ concentration is increased from 40µM and 5 mM. We also found that mutation of the 
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only residue whose side-chain coordinates the Na+ atom, E331, to alanine decreases the 

CO/acetyl-CoA exchange activity by about 20-fold, relative to wild-type ACS. This 

mutation has no apparent effect on the ability of ACS to bind Ni and Fe, as is expected, 

since the Na+ site is about 23 Å from the active site. The mutation also has no apparent 

effect on the stability of ACS, as evidenced by the fact that expression levels of E331A 

ACS are similar to those of wild-type ACS, and by the similar melting temperatures of 

E331A and wild-type ACS. A more conservative mutation, E331D also had no great 

effect on expression and Ni and Fe binding, and had no consistent effect on the 

CO/acetyl-CoA exchange activity. Given the probability that ACS is somewhat flexible, 

mutation of glutamate to aspartate was expected to still allow for full coordination of 

Na+.  

 

6.2.2. Proposed experiments  

 The results described in Chapter IV show a consistent effect of Na+ on the 

CO/acetyl-CoA exchange activity of ACS, both through the Na+ concentration effect on 

activity, and through disruption of Na+ binding by mutagenesis. However, the 

conclusions drawn from these experiments should be further tested by two lines of 

experimentation.  

 First, the experiments in Chapter IV should be repeated and expanded upon to 

allow drawing firmer conclusions. Although the magnitude of the effect of mutation of 

E331A on the CO/acetyl-CoA exchange activity is fairly consistent, the actual activity of 

wild-type, E331A and E331D ACS has not been clearly shown, due to large variations 

between assays done on different days. Efforts to make the assay more consistent are 
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described in Chapter IV. The inconsistency in the results could also be addressed by 

doing more assays to more clearly define the range of activity for each ACS variant. The 

EPR spectra of all three ACS variants varied between different preparations of enzyme. 

Additional preparations of each enzyme should be done to test whether mutation of E331 

to alanine consistently gives enzyme with smaller amounts of NiFeC EPR signal than are 

seen with wild-type ACS. This is an important experiment to test the hypothesis that the 

Na+ site is not needed for proper incorporation of the A-cluster into ACS. The Na+ 

dependence of the CO/acetyl-CoA exchange activity could also be measured in more 

assays to try to more clearly define the effects between 40 µM and 5 mM Na+, where the 

activity increases with Na+, and above 5 mM Na+, where the activity seems to be 

somewhat inhibited by higher Na+ concentrations. 

 Second, experiments should be done to directly test the hypothesis that the Na+ 

site is important for CoA binding, by measuring CoA binding to ACS under different Na+ 

concentrations, and by comparing the CoA binding affinities of wild-type and E331A 

ACS. The best method to measure the Na+ dependence of CoA binding will be one that 

allows the precautions described in Chapter IV for excluding Na+. Equilibrium dialysis 

experiments could be done in the anaerobic chamber in plastic containers. Equilibrium 

dialysis has been successfully used by other researchers to measure CoA binding to ACS 

(6). The CoA binding affinity should be determined at Na+ concentrations from the 

lowest achievable (around 30 µM) to 100 mM, to see if there is an effect on the CoA 

binding affinity that mirrors the effect on the CO/acetyl-CoA exchange activity. 

 The effect of Na+ on CoA binding could also be studied by measuring the effect 

of different concentrations of CoA on assays of ACS over a range of Na+ concentrations. 
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The CO/acetyl-CoA exchange assay is inhibited by CoA (7). A second assay, the CoA 

exchange assay, measures the transfer of the acetyl-group on acetyl-CoA to dephospho-

CoA, or of the acetyl-group on acetyl-dephospho-CoA to CoA. Measuring the Ki for CoA 

in the CO/acetyl-CoA exchange assay or the effect of CoA and dephospho-CoA 

concentrations on activity in the CoA exchange assay at different Na+ concentrations 

would allow us to assess whether Na+ affects CoA binding.  
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