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ABSTRACT

Machine Learning for Flow Cytometry Data Analysis

by

Gyemin Lee

Chair: Clayton D. Scott

This thesis concerns the problem of automatic flow cytometry data analysis. Flow cy-

tometry is a technique for rapid cell analysis and widely used in many biomedical and

clinical laboratories. Quantitative measurements from a flow cytometer provide rich infor-

mation about various physical and chemical characteristics of a large number of cells. In

clinical applications, flow cytometry data is visualized on a sequence of two-dimensional

scatter plots and analyzed through a manual process called “gating”. This conventional

analysis process requires a large amount of time and labor and is highly subjective and

inefficient. In this thesis, we present novel machine learning methods for flow cytometry

data analysis to address these issues.

We first begin by a method for generating a high dimensional flow cytometry dataset

from multiple low dimensional datasets. We present an imputation algorithm based on

clustering and show that it improves upon a simple nearest neighbor based approach that

often induces spurious clusters in the imputed data. This technique enables the analysis

xv



of multi-dimensional flow cytometry data beyond the fundamental measurement limits of

instruments.

We then present two machine learning methods for automatic gating problems. Gat-

ing is a process of identifying interesting subsets of cell populations. Pathologists make

clinical decisions by inspecting the results from gating. Unfortunately, this process is per-

formed manually in most clinical settings and poses many challenges in high-throughput

analysis.

The first approach is an unsupervised learning technique based on multivariate mixture

models. Since measurements from a flow cytometer are often censored and truncated,

standard model-fitting algorithms can cause biases and lead to poor gating results. We

propose novel algorithms for fitting multivariate Gaussian mixture models to data that is

truncated, censored, or truncated and censored.

Our second approach is a transfer learning technique combined with the low-density

separation principle. Unlike conventional unsupervised learning approaches, this method

can leverage existing datasets previously gated by domain experts to automatically gate a

new flow cytometry data. Moreover, the proposed algorithm can adaptively account for

biological variations in multiple datasets.

We demonstrate these techniques on clinical flow cytometry data and evaluate their

effectiveness.
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CHAPTER 1

Introduction

Flow cytometry is a technique widely used in many clinical and biomedical laborato-

ries for rapid cell analysis. It has proven its usefulness in a number of tasks, especially

hematopathology, the study of blood-related diseases. In modern clinical laboratories,

pathologists use flow cytometry on a regular basis in the diagnosis of diseases such as

acute leukemia, chronic lymphoproliferative disorder and malignant lymphomas.

Flow cytometry provides quantitative measurements of physical and chemical proper-

ties of individual cells. The measured attributes include cell size, granularity and expres-

sion level of different antigens on the cell surface. While recent technological advances

make it possible to measure up to 20 different attributes simultaneously, the dimensional-

ity of flow cytometry data ranges from 7–12 in most clinical applications. A single session

produces multidimensional readouts of 10,000 to 1,000,000 cells. In clinical settings, these

cells are typically prepared from the peripheral blood, lymph node or bone marrow of a

patient.

Traditionally, however, the analysis of flow cytometry data heavily relies on manual

processing. For diagnostic evaluation, pathologists visualize the flow cytometry data set

with a series of two-dimensional scatter plots and inspect the shape, range, and other dis-

tributional characteristics of cell populations. Depending on specific diseases, pathologists

1
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use specialized software tools to draw line segments to select and identify interesting sub-

sets of cells. They repeat this operation on a sequence of two-dimensional scatter plots

until they purify the cell population to a homogeneous group. This process is performed

manually in clinical settings.

This analytic process is labor-intensive and causes many problems in flow cytometry.

Since pathologists or technologists resort to their experience and knowledge to choose the

sequence of scatter plots and select cell populations on the plots, it is highly operator-

dependent and subjective. Hence, the analysis results can differ and lead to different clin-

ical decisions depending upon the individual who performs it. This problem causes more

challenges when the analysis involves multiple data sets. Furthermore, biological vari-

ability from different patient health conditions and technical variability from instrument

calibration also pose difficulties in the high throughput flow cytometric analysis.

In this thesis, we present novel machine learning methods to automate flow cytometry

data analysis and provide robust analytic tools. We evaluate these techniques with clinical

flow cytometry datasets.

1.1 Thesis Outline and Contributions

The goal of the work presented in this thesis is applying machine learning techniques to

the analysis of flow cytometry data using statistical data modeling and learning principles.

Although analysis of flow cytometry data has traditionally considered one or two mark-

ers at a time, there has been increasing interest in multidimensional analysis. However,

flow cytometers are limited in the number of markers they can jointly observe, which is

typically a fraction of the number of markers of interest. For this reason, practitioners of-

ten perform multiple assays based on different, overlapping combinations of markers. In

Chapter 2, we address the challenge of imputing the high dimensional jointly distributed
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values of marker attributes based on overlapping marginal observations. We show that sim-

ple nearest neighbor based imputation can lead to spurious subpopulations in the imputed

data and introduce an alternative approach based on nearest neighbor imputation restricted

to a cell’s subpopulation. This requires us to perform clustering with missing data, which

we address with a mixture model approach and novel EM algorithm. Since mixture model

fitting may be ill-posed in this context, we also develop techniques to initialize the EM

algorithm using domain knowledge.

As explained above, flow cytometry data, whether it is straight from a measurement

instrument or synthesized from smaller data sets (Chapter 2), is analyzed via the process

of gating. However, a flow cytometer can measure a limited range of signal strength and

records each marker value within a fixed range. If a measurement falls outside this range,

the value is censored and replaced by an indicator. Moreover, a large number of cell

measurements can be excluded from recording by the judgment of an instrument operator.

While these data deformations (truncation and censoring) exist in flow cytometry data,

these issues have not been explicitly addressed in the literature. Therefore, automatic

gating approaches based on mixture model fitting can result in biases in the parameter

estimates and poor gating results when these data deformations are not properly handled.

Chapter 3 focus on these two types of incomplete measurements of flow cytometry data.

We present EM algorithms for fitting multivariate Gaussian mixture models to data that is

truncated, censored, or truncated and censored. We show that truncation and censoring can

be naturally handled together through their relation to the multivariate truncated Gaussian

distribution.

While a vast amount of approaches are proposed to automate the gating process, most

of them fall under the framework of unsupervised learning and mixture model fitting.

However, these approaches have a number of difficulties. The non-elliptical shape of cell
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clusters requires complex parametric models and leads to complex inference problems.

Furthermore, depending on the clustering procedure used, cluster labeling may be needed

to find similar cell populations between multiple samples after automating gating. Fi-

nally, these algorithms are unsupervised, and do not fully leverage expert knowledge. In

Chapter 4, we view the automatic gating problem as a transfer learning problem. By re-

formulating the problem, we can leverage existing data sets previously gated by experts,

while accounting for biological variation, to automatically gate a new flow cytometry data.

In particular, we show how expert knowledge can be adaptively transferred to a new data

set by optimizing a low-density separation criterion.

Chapter 5 is not directly related to flow cytometry data analysis, but to the problems

of multiple set estimation. One-class and cost-sensitive support vector machines (SVMs)

are state-of-the-art machine learning methods for estimating density level sets and solv-

ing weighted classification problems, respectively. However, the solutions of these SVMs

do not necessarily produce set estimates that are nested as the parameters controlling the

density level or cost-asymmetry are continuously varied. Such nesting not only reflects

the true sets being estimated, but is also desirable for applications requiring the simultane-

ous estimation of multiple sets, including clustering, anomaly detection, and ranking. We

propose nested versions of one-class and cost-sensitive SVMs in this chapter. These meth-

ods are compared to conventional (non-nested) SVMs on synthetic and benchmark data

sets, and are shown to exhibit more stable rankings and decreased sensitivity to parameter

settings.

Based on the research on flow cytometry, the following publications were produced:

(1) G. Lee, W. Finn, and C. Scott. Statistical File Matching of Flow Cytometry Data. In

Journal of Biomedical Informatics, 44(4):663–676, 2011.
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(2) G. Lee and C. Scott. EM Algorithms for Multivariate Gaussian Mixture Models

with Truncated and Censored Data. In review for Computational Statistics and Data

Analysis.

(3) G. Lee, L. Stoolman, and C. Scott. Transfer Learning for Auto-gating of Flow

Cytometry Data. To appear in Journal of Machine Learning Research: Workshop

and Conference Proceedings, vol. 7, 2011.

(4) G. Blanchard, G. Lee, and C. Scott. Generalizing from Several Related Classifica-

tion Tasks to a New Unlabeled Sample. To appear in Advances in Neural Informa-

tion Processing Systems (NIPS), 2011.

In addition to the above publications, I have produced the following works outside the

topic of flow cytometry:

(5) G. Lee and C. Scott. The One Class Support Vector Machine Solution Path. In

Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP 2007), 2:II-521–II-524, April 2007.

(6) G. Lee and C. Scott. Nested support vector machines. In Proc. IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP 2008), pages

1985-1988, April 2008.

(7) G. Lee and C. Scott. Nested support vector machines. In IEEE Transactions on

Signal Processing, 58(3):1648–1660, 2010.

(8) G. Blanchard, G. Lee, and C. Scott. Semi-supervised novelty detection. In Journal

of Machine Learning Research, 11:2973–3009, Nov. 2010.



CHAPTER 2

Statistical File Matching of Flow Cytometry Data

2.1 Introduction

Flow cytometry is a technique for quantitative cell analysis [63]. It provides simultane-

ous measurements of multiple characteristics of individual cells. Typically, a large number

of cells are analyzed in a short period of time – up to thousands of cells per second. Since

its development in the late 1960s, flow cytometry has become an essential tool in various

biological and medical laboratories. Major applications of flow cytometry include hema-

tological immunophenotyping and diagnosis of diseases such as acute leukemias, chronic

lymphoproliferative disorders and malignant lymphomas [9].

Flow cytometry data has traditionally been analyzed by visual inspection of one-

dimensional histograms or two-dimensional scatter plots. Clinicians will visually inspect

a sequence of scatter plots based on different pairwise marker combinations and perform

gating, the manual selection of marker thresholds, to eliminate certain subpopulations of

cells. They identify various pathologies based on the shape of cell subpopulations in these

scatter plots. In addition to traditional inspection-based analysis, there has been recent

work, reviewed below, on automatic cell gating or classification of pathologies based on

multidimensional analysis of cytometry data.

Unfortunately, flow cytometry analysis is limited by the number of markers that can

6
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be simultaneously measured. In clinical settings, this number is typically five to seven,

while the number of markers of interest may be much larger. To overcome this limitation,

it is common in practice to perform multiple assays based on different and overlapping

combinations of markers. However, many marker combinations are never observed, which

complicates scatter plot-based analysis, especially in retrospective studies. In addition,

automated multidimensional analysis is not feasible because all cell measurements have

missing values.

To address these issues, we present a statistical method for file matching, which im-

putes higher dimensional flow cytometry data from multiple lower dimensional data files.

While Pedreira et al. [51] proposed a simple approach based on Nearest Neighbor (NN)

imputation, this method is prone to induce spurious clusters, as we demonstrate below.

Our method can improve the file matching of flow cytometry and is less likely to generate

false clusters. The result is a full dataset, where arbitrary pairs can be viewed together, and

multidimensional methods can be applied.

In the following, we explain the principles of flow cytometry and introduce the file

matching problem in the context of flow cytometry data. We then present a file matching

approach which imputes a cell’s missing marker values with the values of the nearest

neighbor among cells of the same type. To implement this approach, we develop a method

for clustering with missing data. We model flow cytometry data with a latent variable

Gaussian mixture model, where each Gaussian component corresponds to a cell type, and

develop an expectation-maximization (EM) algorithm to fit the model. We also describe

ways to incorporate domain knowledge into the initialization of the EM algorithm. We

compare our method with nearest neighbor imputation on real flow cytometry data and

show that our method offers improved performance. Our MATLAB implementation is

available online at http://www.eecs.umich.edu/˜cscott/code/cluster_
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Fig. 2.1: A flow cytometer system. As a stream of cells passes through a laser beam,
photo-detectors detect forward angle light scatter, side angle light scatter and
light emissions from fluorochromes. Then the digitized signals are analyzed in a
computer.

nn.zip.

2.2 Background

In this section, we explain the principles of flow cytometry. We also define the statisti-

cal file matching problem in the context of flow cytometry data and motivate the need for

an improved solution.

2.2.1 Flow cytometry

In flow cytometry analysis for hematological immunophenotyping, a cell suspension is

first prepared from peripheral blood, bone marrow or lymph node. The suspension of cells

is then mixed with a solution of fluorochrome-labeled antibodies. Typically, each antibody

is labeled with a different fluorochrome. As the stream of suspended cells passes through

a focused laser beam, they either scatter or absorb the light. If the labeled antibodies are

attached to proteins of a cell, the associated fluorochromes absorb the laser and emit light

with a corresponding wavelength (color). Then a set of photo-detectors in the line of the

light and perpendicular to the light capture the scattered and emitted light. The signals

from the detectors are digitized and stored in a computer system. Forward scatter (FS) and
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side scatter (SS) signals as well as the various fluorescence signals are collected for each

cell (see Fig. 2.1).

For example, in a flow cytometer capable of measuring five attributes, the measure-

ments of each cell can be represented with a 5-dimensional vector x = (x(1), · · · , x(5))

where x(1) is FS, x(2) is SS and x(3), · · · , x(5) are the fluorescent markers. We use “marker”

to refer to both the biological entities and the corresponding measured attributes. Then the

measurements of N cells are represented by vectors x1, · · · ,xN and form a N × 5 matrix.

The detected signals provide information about the physical and chemical properties

of each cell analyzed. FS is related to the relative size of the cell, and SS is related to

its internal granularity or complexity. The fluorescence signals reflect the abundance of

expressed antigens on the cell surface. These various attributes are used for identification

and quantification of cell subpopulations. FS and SS are always measured, while the

marker combination is a part of the experimental design.

Flow cytometry data is usually analyzed using a sequence of one dimensional his-

tograms and two or three dimensional scatter plots by choosing a subset of one, two or

three markers. The analysis typically involves manually selecting and excluding cell sub-

populations, a process called “gating”, by thresholding and drawing boundaries on the

scatter plots. Clinicians routinely diagnose by visualizing the scatter plots.

Recently, some attempts have been made to analyze directly in high dimensional

spaces by mathematically modeling flow cytometry data. In [8,15], a mixture of Gaussian

distributions is used to model cell populations, while a mixture of t-distributions with

a Box-Cox transformation is used in [44]. A mixture of skew t-distributions is studied

in [53]. The knowledge of experts is sometimes incorporated as prior information [38].

Instead of using finite mixture models, some recent approaches proposed information

preserving dimension reduction to analyze high dimensional flow cytometry data [12,13].
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Fig. 2.2: Flow cytometry analysis on a large number of antibody reagents within a limited
capacity of a flow cytometer. A sample from a patient is separated into multiple
tubes with which different combinations of fluorochrome-labeled antibodies are
stained. Each output file contains at least two variables, FS and SS, in common
as well as some variables that are specific to the file.

However, standard techniques for multi-dimensional flow cytometry analysis are not yet

established.

2.2.2 Statistical file matching

The number of markers used for selection and analysis of cells is constrained by the

number of measurable fluorochrome channels (colors) in a given cytometer, which in turn

is a function of the optical physics of the laser light source(s) and the excitation and emis-

sion spectra of the individual fluorochromes used to label antibodies to targeted surface

marker antigens. Recent innovations have enabled measuring near 20 cellular attributes,

through the use of multiple lasers of varying energy, multiple fluorochrome combinations,

and complex color compensation algorithms. However, instruments deployed in clinical

laboratories still only measure 5-7 attributes simultaneously [52].

There may be times in which it would be useful to characterize cell populations using

more colors than can be simultaneously measured on a given cytometry platform. For
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example, some lymph node biopsy samples may be involved partially by lymphoma, in a

background of hyperplasia of lymphoid follicles within the lymph node. In such cases, it

can be useful to exclude the physiologic follicular lymphocyte subset based on a known

array of marker patterns (for example, CD10 expression, brighter CD20 expression than

non-germinal center B-cells, and CD38 expression) and evaluate the non-follicular lym-

phocyte fraction for markers known to be useful in the diagnosis of non-Hodgkin lym-

phomas (for example, CD5, CD19, CD23, kappa immunoglobulin light chain, and lambda

immunoglobulin light chain). Unless an 8-color (10 channel) flow cytometer is avail-

able, this analysis cannot be done seamlessly. In such case, the markers must be inferred

indirectly, potentially resulting in dilution of the neoplastic lymphoma clone by normal

background lymphocytes. Likewise, recent approaches to the analysis of flow cytometry

data are built around the treatment of datasets as individual high-dimensional distributions

or shapes, again limited only by the number of colors available in a given flow cytome-

try platform. Given the considerable expense of acquiring cytometry platforms capable

of deriving high-dimensionality datasets, the ability to virtually combine multiple lower-

dimensional datasets into a single high-dimensional dataset could provide considerable

advantage in these situations.

When it is not possible to simultaneously measure all markers of interest, it is common

to divide a sample into several “tubes” and stain each tube separately with a different set

of markers (see Fig. 2.2) [56]. For example, consider an experiment with two tubes: Tube

1 containing 5000 cells is stained with CD45, CD5 and CD7, and Tube 2 containing 7000

cells is stained with CD45, CD10 and CD19. File 1 and File 2 record the FS, SS and

marker measurements in the format of 5000× 5 and 7000× 5 matrices.

In the sequel, we present a method that combines two or more tubes and generates

flow cytometry data in which all the markers of interest are available for the union of
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common specific1 specific2
c s1 s2

file 1 (N1)
X1

file 2 (N2)
X2

Fig. 2.3: Data structure of two incomplete data files. The two files have some overlapping
variables c and some variables s1 and s2 that are never jointly observed. File
matching combines the two files by completing the missing blocks of variables.

cells. Thus, we obtain a single higher dimensional dataset beyond the current limits of

the instrumentation. Then pairs of markers that are not measured together can still be

visualized through scatter plots, and methods of multidimensional analysis may potentially

be applied to the full dataset.

This technique, called file matching, merges two or more datasets that have some com-

monly observed variables as well as some variables unique to each dataset. We introduce

some notations to generalize the above example. In Fig. 2.3, each unit (cell) xn is a row

vector in Rd and belongs to one of the data files (tubes) X1 or X2, where each file contains

N1 andN2 units, respectively. While variables c are commonly observed for all units, vari-

ables s2 are missing in X1 and s1 are missing in X2, where s1, s2 and c indicate specific

and common variable sets. If we denote the observed and missing components of a unit

xn with on and mn, then on = c ∪ s1 and mn = s2 for xn ∈ X1 and on = c ∪ s2 and

mn = s1 for xn ∈ X2.

Continuing the previous example, suppose that the attribute measurements are ar-

ranged as in Fig. 2.3 in the order of FS, SS, CD45, CD5, CD7, CD10 and CD19. Then

each individual cell is seen as a row vector in R7 with two missing variables. Thus, X1 is

a matrix with N1 = 5000 rows and X2 is a matrix with N2 = 7000 rows, and the common

and specific attribute sets are c = {1, 2, 3}, s1 = {4, 5} and s2 = {6, 7}.

A file matching algorithm imputes the blocks of missing variables. Among imputation
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methods, conditional mean or regression imputations are most common. As shown in Fig.

2.4, however, these imputation algorithms tend to shrink the variance of the data. Thus,

these approaches are inappropriate in flow cytometry where the shape of cell subpopula-

tions is important in clinical analysis. More discussions on missing data analysis and file

matching can be found in [42] and [54].

Fig. 2.4: Examples of imputation methods: NN, conditional mean and regression. The
NN method relatively well preserves the distribution of imputed data, while other
imputation methods such as conditional mean and regression significantly reduce
the variability of data.

A recent file matching technique in flow cytometry was developed by Pedreira et

al. [51]. They proposed to use Nearest Neighbor (NN) imputation to match flow cytom-

etry data files. In their approach, the missing variables of a unit, called the recipient, are

imputed with the observed variables from a unit in the other file, called the donor, that is

most similar. If xi is a unit in X1, the missing variables of xi are set as follows:

xmii = x∗mij where x∗j = arg min
xj∈X2

‖xci − xcj‖2.

Here xmii = (x
(p)
i , p ∈ mi) and xci = (x

(p)
i , p ∈ c) denote the row vectors of missing and

common variables of xi, respectively. Note that the similarity is measured by the distance

in the projected space of jointly observed variables. This algorithm is advantageous over

other imputation algorithms using conditional mean or regression, as displayed in Fig. 2.4.

It generally preserves the distribution of cells, while the other methods cause the variance

structure to shrink toward zero.
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Fig. 2.5: Comparison of results for two imputation methods to the ground truth cell dis-
tribution. Figures show scatter plots on pairs of markers that are not jointly ob-
served. The middle row and the bottom row show the imputation results from
the NN and the proposed Cluster-NN method, respectively. The results from the
NN method show spurious clusters in the right two panels. The false clusters are
indicated by dotted circles in the CD3 vs. CD8 and CD3 vs. CD4 scatter plots.
On the other hand, the results from our proposed approach better resemble the
true distribution on the top row.
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However, the NN method sometimes introduces spurious clusters into the imputation

results and fails to replicate the true distribution of cell populations. Fig. 2.5 shows an

example of false clusters from the NN imputation algorithm (for the detailed experiment

setup, see Section 2.4). We present a toy example to illustrate how NN imputation can fail

and motivate our approach.

2.2.3 Motivating toy example

Fig. 2.6 shows a dataset in R3. In each file, only two of the three features are observed:

c and s1 in file 1 and c and s2 in file 2. Each data point belongs to one of two clusters, but

its label is unavailable. This example is not intended to simulate flow cytometry data, but

rather to illustrate one way in which NN imputation can fail, and how our approach can

overcome this limitation.

When imputing feature s1 of units in file 2, the NN algorithm produces four clusters

whereas there should be two, as shown in Fig. 2.6 (d). This is because the NN method

uses only one feature and fails to leverage the information about the joint distribution of

variables that are not observed together. However, if we can infer the cluster membership

of data points, the NN imputation can be applied within the same cluster. Hence, we seek

a donor from subgroup (1) for the data points in (3) and likewise we seek a donor from

(2) for the points in (4) in the example. Then the file matching result greatly improves and

better replicates the true distribution as in Fig. 2.6 (e).

In this example, as in real flow cytometry data, there is no way to infer cluster mem-

bership from the data alone, and incorrect labeling can lead to poor results (Fig. 2.6 (f)).

Fortunately, in flow cytometry we can incorporate domain knowledge to achieve an accu-

rate clustering.
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Fig. 2.6: Toy example of file matching. Two files (b) and (c) provide partial information
of data points (a) in R3. The variable c is observed in both files while s1 and s2

are specific to each file. The NN method created false clusters in the s1 vs. s2

scatter plot in (d). On the other hand, the proposed Cluster-NN method, which
applies NN within the same cluster, successfully replicated the true distribution.
If the clusters are incorrectly paired, however, the Cluster-NN approach can fail,
as in (f).
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Algorithm 2.1 Cluster-NN algorithm

Input: Two files X1 and X2 to be matched

1: 1. Jointly cluster the units in X1 and X2.

2: 2. Perform Nearest Neighbor imputation within the same cluster.

Output: Statistically matched complete files X̂1 and X̂2

2.3 Methods

2.3.1 Cluster-based imputation of missing variables

We first focus on the case of matching two files. The case of more than two files

is discussed in Section 2.5. For the present section, we assume that there is a single

underlying distribution with K clusters, and each x ∈ X1 and each x ∈ X2 is assigned to

one of these clusters. Let X k
1 and X k

2 denote the cells in X1 and X2 from the kth cluster,

respectively.

Suppose that the data is configured as in Fig. 2.3. To impute the missing variables of

a recipient unit in X1, we locate a donor among the data points in X2 that have the same

cluster label as the recipient. When imputing incomplete units in X2, the roles change.

The similarity between two units is evaluated on the projected space of jointly observed

variables, while constraining both units to belong to the same cluster. Then we impute the

missing variables of the recipient by patching the corresponding variables from the donor.

More specifically, for xi ∈ X k
1 , we impute the missing variables by

xmii = x∗mij where x∗j = arg min
xj∈Xk2

‖xci − xcj‖2.

Algorithm 2.1 describes the proposed Cluster-NN imputation algorithm.

In social applications such as survey completion, file matching is often performed on

the same class such as gender, age, or county of residence [54]. Unlike our algorithm,

however, the information for labeling each unit is available in those applications and the
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class inference step is unnecessary.

2.3.2 Clustering with missing data

To implement the above approach, it is necessary to cluster the flow cytometry data.

Thus, we concatenate two input files X1 and X2 into a single dataset as in Fig. 2.3. We

model the data with a mixture model with each component of the mixture corresponding to

a cluster. We emphasize that we are jointly clustering X1 and X2, not each file separately.

Thus, each x in the merged dataset is assigned to one of theK mixture model components.

In a mixture model framework, the probability density function of a d-dimensional

data vector x takes the form

p(x) =
K∑
k=1

πk pk(x)

where πk are mixing weights of K components and pk are component density functions.

In flow cytometry, mixture models are widely-used to model cell populations. Among

mixture models, Gaussian mixture models are common [8, 15, 38], while distributions

with more parameters, such as t-distributions, skew normal or skew t-distributions, have

been recently proposed [44, 53]. While non-Gaussian models might provide a better fit,

there is a trade-off between bias and variance. More complicated models tend to be more

challenging to fit. Furthermore, even with an imperfect data model, we may still achieve

an improved file matching.

Clustering amounts to fitting the parameters of the mixture model to the data points

in X1 and X2. Given the model, a data point x is assigned to cluster k for which the

posterior probability is maximized. Here we explain the mixture model that we used to

model the cell populations (Section 2.3.2) and present an EM algorithm for inferring the

model parameters, which determine the cluster membership of each data point (Section

2.3.2).
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Mixture of PPCA

Fitting multidimensional mixture models require estimating a large number of param-

eters, and obtaining reliable estimates becomes difficult when the number of components

or the dimension of the data increase. Here we adopt a probabilistic principal component

analysis (PPCA) mixture model as a way to concisely model cell populations.

PPCA was proposed by [71] as a probabilistic interpretation of PCA. While conven-

tional PCA lacks a probabilistic formulation, PPCA specifies a generative model, in which

a data vector is linearly related to a latent variable. The latent variable space is generally

lower dimensional than the ambient variable space, so the latent variable provides an eco-

nomical representation of the data. Our motivations for using PPCA over a full Gaussian

mixture model are that the parameters can be fit more efficiently (as demonstrated in Sec-

tion 2.4), and in higher dimensional settings, a full Gaussian mixture model may have too

many parameters to be accurately fit.

The PPCA model is built by specifying a distribution of a data vector x ∈ Rd condi-

tional on a latent variable t ∈ Rq, p(x|t) = N (Wt + µ, σ2I) where µ is a d-dimensional

vector and W is a d×q linear transform matrix. Assuming the latent variable t is normally-

distributed, p(t) = N (0, I), the marginal distribution of x becomes Gaussian p(x) =

N (µ,C) with mean µ and covariance matrix C = WWT + σ2I. Then the posterior

distribution can be shown to be Gaussian as well: p(t|x) = N (M−1WT (x−µ), σ2M−1)

where M = WTW + σ2I is a q × q matrix.

The PPCA mixture model is a combination of multiple PPCA components. This model

offers a way of controlling the number of parameters to be estimated without completely

sacrificing the model flexibility. In the full Gaussian mixture model, each Gaussian com-

ponent has d(d+ 1)/2 covariance parameters if a full covariance matrix is used. The num-

ber of parameters can be reduced by constraining the covariance matrix to be isotropic or
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diagonal. However, these are too restrictive for cell populations since the correlation struc-

ture between variables cannot be captured. On the other hand, the PPCA mixture model

lies between those two extremes and allows control of the number of parameters through

specification of q, the dimension of the latent variable.

A PPCA mixture can be viewed as a Gaussian mixture with structured covariances. In

Gaussian mixtures, various approaches constraining covariance structures have been pro-

posed [26], where each cluster is required to share parameters to have the same orientation,

volume or shape. However, in the PPCA model, the geometry of each cluster is allowed to

vary between clusters, and the cluster parameters for different clusters are not constrained

to be related to one another. Therefore, the PPCA mixture model is preferable in flow

cytometry where cell populations typically have different geometric characteristics.

In a mixture of PPCA model, each PPCA component explains local data structure or

a cell subpopulation, and the collection of component parameters θk = {πk,µk,Wk, σ
2
k},

k = 1, · · · , K, defines the model. An EM algorithm can learn the model by iteratively

estimating these parameters. More details on the PPCA mixture and the EM algorithm for

data without missing values are explained in [70].

Missing data EM algorithm

The concatenated dataset of X1 and X2 contains only partial observations of N =

N1 +N2 units. Hence, we cannot directly apply the EM algorithm for a PPCA mixture to

infer the model parameters. In the present section, we devise a novel EM algorithm for the

missing data.

Even though our file matching problem has a particular pattern of missing variables, we

develop a more general algorithm that allows for an arbitrary pattern of missing variables.

Our development assumes values are “missing at random,” meaning that whether a variable
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is missing or not is independent of its value [42]. We note that [31] presented an EM

algorithm for a Gaussian mixture with missing data, and [70] presented EM algorithms

for a PPCA mixture when data is completely observed. Therefore, our algorithm may be

viewed as an extension of the algorithm of [31] to PPCA mixtures, or the algorithm of [70]

to data with missing values.

Denoting the observed and missing variables by on and mn, each data point can be

divided as xn =

 xonn

xmnn

. Recall that, in the file matching problem, on indexes the union

of common variables and the observed specific variables, and mn indexes the unobserved

specific variables so that x(i)
n , i ∈ on, are observed variables and x(i)

n , i ∈ mn, are missing

variables. This is only for notational convenience and does not imply that the vector xn is

re-arranged to this form.

Thus, we are given a set of partial observations {xo11 , · · · ,x
oN
N }. To invoke the EM

machinery, we introduce indicator variables zn. One and only one entry of zn is nonzero

and znk = 1 indicates that the kth component is responsible for generating xn. We also

include the missing variables xmnn and the set of latent variables tnk for each component

to form the complete data (xonn ,x
mn
n , tnk, zn) for n = 1, · · · , N and k = 1, · · · , K.

We derive an EM algorithm for the PPCA mixture model with missing data. The key

difference from the EM algorithm for completely observed data is that the conditional

expectation is taken with respect to xo as opposed to x in the expectation step.

To develop an EM algorithm, we employ and extend the two-stage procedure as de-

scribed in [70]. In the first stage of the algorithm, the component weights πk and the
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component center µk are updated:

π̂k =
1

N

∑
n

〈znk〉, (2.1)

µ̂k =

∑
n〈znk〉

[ xonn

〈xmnn 〉

]
∑

n〈znk〉
(2.2)

where 〈znk〉 = P (znk = 1|xonn ) is the responsibility of mixture component k for generating

the unit xn and 〈xmnn 〉 = E[xmnn |znk = 1,xonn ] is the conditional expectation. Note that we

are not assuming the vectors in the square bracket are arranged to have this pattern. This

notation can be replaced by the true variable ordering.

In the second stage, we update Wk and σ2
k:

Ŵk =SkWk(σ
2
kI + M−1

k WT
k SkWk)

−1, (2.3)

σ̂2
k =

1

d
tr
(
Sk − SkWkM

−1
k ŴT

k

)
(2.4)

from local covariance matrix Sk:

Sk =
1

Nπ̂k

∑
n

〈znk〉〈

[ xonn

〈xmnn 〉

]
− µ̂k


[ xonn

〈xmnn 〉

]
− µ̂k


T

〉.

The new parameters are denoted by π̂k, µ̂k,Ŵk and σ̂2
k. These update rules boil down to

the update rules for completely observed data when there are no missing variables. We

derive the EM algorithm in detail in Section 2.A.

After model parameters are estimated, the observations are divided into groups accord-

ing to their posterior probabilities:

arg max
k=1,···K

p (znk = 1|xonn ),

so each unit (cell) is classified into one of K cell subpopulations. Note that this posterior

probability is computed in the E-step. This gives the desired clustering.
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Cell Type CD markers
granulocytes CD45+, CD15+
monocytes CD45+, CD14+
helper T cells CD45+, CD3+
cytotoxic T cells CD45+, CD3+, CD8+
B cells CD45+, CD19+ or CD45+, CD20+
Natural Killer cells CD16+, CD56+, CD3-

Table 2.1: Types of human white blood cells. The T cells, B cells and NK cells are called
lymphocytes. Each cell type is characterized by a set of expressed cluster of
differentiation (CD) markers. The CD markers are commonly used to identify
cell surface molecules on white blood cells. The ‘+/−’ signs indicate whether
a certain cell type has the corresponding antigens on the cell surface.

Domain knowledge and initialization of EM algorithm

Because of the missing data, fitting a PPCA mixture model is ill-posed, in the sense

that several local maxima of the likelihood may explain the data equally well. For ex-

ample, in the toy example in Section 2.2.3, there is no way to know the correct cluster

inference based solely on the data. However, we can leverage domain knowledge to select

the number of components and initialize model parameters.

In flow cytometry, from the design of fluorochrome marker combinations and knowl-

edge about the blood sample composition, we can anticipate certain properties of cell

subpopulations. For example, Table 2.1 summarizes white blood cell types and their char-

acteristic cluster of differentiation (CD) marker expressions. The six cell types suggests

choosing K = 6 when analyzing white blood cells.

The CD markers indicated are commonly used in flow cytometry to identify cell sur-

face molecules on leukocytes (white blood cells) [75]. However, this information is qual-

itative and needs to be quantified. Furthermore, the appropriate quantification depends on

the patient and flow cytometry system.

To achieve this, we use one-dimensional histograms. In a histogram, two large peaks

are generally expected depending on the expression level of the corresponding CD marker.
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If a cell subpopulation expresses a CD marker, denoted by ‘+’, then it forms a peak on the

right side of the histogram. On the other hand, if a cell subpopulation does not express the

marker, denoted by ‘−’, then a peak can be found on the left side of the histogram. We

use the locations of the peaks to quantify the expression levels.

These quantified values can be combined with the CD marker expression levels of

each cell type to specify the initial cluster centers. Thus, each element of µk of a cer-

tain cell type is initialized by either the positive quantity or the negative quantity from the

histogram. In our implementation, these are set manually by visually inspecting the his-

tograms. Then we initialize the mixture model parameters {πk,µk,Wk, σ
2
k} as described

in Algorithm 2.2.

Cell populations are partitioned into K groups by the distance to each component

center. The component weight πk is proportional to the size of each partition. From the

covariance matrix estimate Ck, parameters Wk and σ2
k are initialized by taking the eigen-

decomposition.

Algorithm 2.2 Parameter initialization of an EM algorithm for missing data.
Input: X1, X2 data files; K the number of components; q the dimension of the latent

variable space; µk the initial component means.

for k = 1 to K do

1. Using distance ‖xonn −µon
k ‖2, find the set of data points X k whose nearest compo-

nent mean is µk

2. Initialize observable submatrices of Ck with sample covariances of data in X k,
and the remaining entries with random draws from a standard normal distribution.

3. Make Ck positive definite by replacing negative eigenvalues with a tenth of the
smallest positive eigenvalue.

4. Set πk = |X k|/(N1 +N2)

5. Set Wk with the q principal eigenvectors of Ck

6. Set σ2
k with the average of remaining eigenvalues of Ck

end for

Output: {πk, µk, Wk, σ2
k} for k = 1, · · · , K
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c s1 s2
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Fig. 2.7: Structure of covariance matrix C. The sub-matrices Cs1,s2
k and Cs2,s1

k cannot
be estimated from a sample covariance matrix because these variables are never
jointly observed.

An important issue in file matching arises from the covariance matrix. When data is

completely observed, a common way of initializing a covariance matrix is using a sample

covariance matrix. In the case of file matching, however, it cannot be evaluated since

some sets of variables are never jointly observed (see Fig. 2.7). Hence, we build Ck

from variable to variable with sample covariances, whenever possible. For example, we

can set Cc,s1
k with the sample covariance of data points in X1 where variables c and s1

are available. On the other hand, the submatrix Cs1,s2
k cannot be built from observations.

In our implementation, we set the submatrix Cs1,s2
k randomly from a standard normal

distribution. However, the resulting matrix may not be positive definite. Thus, we made

Ck positive definite by replacing negative eigenvalues with a tenth of the smallest positive

eigenvalue. Once a covariance matrix Ck is obtained, we can initialize Wk and σ2
k by

taking the eigen-decomposition of Ck.

2.4 Results

We apply the proposed file matching technique to real flow cytometry datasets and

present experimental results. Three flow cytometry datasets were prepared from lymph

node samples of three patients. These datasets were provided by the Department of Pathol-

ogy at the University of Michigan.

We consider two experimental settings. In the first experiment (Section 2.4.1), we arti-

ficially create two incomplete data files from a single tube and compare the imputed results
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FS SS CD56 CD16 CD3 CD8 CD4
file 1
file 2

Fig. 2.8: File structure used in the single tube experiments in Section 2.4.1. FS, SS and
CD56 are common in both files, and a pair of CD markers are observed in only
one of the files. The blank blocks correspond to the unobserved variables. The
blocks in file 1 are matrices with N1 rows and the blocks in file 2 are matrices
with N2 rows.

to the original true dataset. In the second experiments (Section 2.4.2), we investigate mul-

tiple tubes where each file is derived individually from two different tubes and the imputed

results are compared to separate reference data.

2.4.1 Single tube experiments

From each patient sample, a dataset is obtained with seven attributes: FS, SS, CD56,

CD16, CD3, CD8 and CD4. Two files are built from this dataset, and two attributes from

each file are made hidden to construct hypothetical missing data. Hence, CD16 and CD3

are available only in file 1, and CD8 and CD4 are available only in file 2, while FS, SS and

CD56 are commonly available in both files. Fig. 2.8 illustrates the resulting data pattern

where the blocks of missing variables are left blank.

For each white blood cell type, its expected marker expressions (CD markers), relative

size (FS) and relative granularity (SS) are presented in Table 2.2. The ‘+/−’ signs indicate

whether a certain type of cells expresses the markers or not. For example, helper T cells

express both CD3 and CD4 but not others. As explained in Section 2.3.2, we quantify

this qualitative knowledge with the help of one dimensional histograms. Two dominant

peaks corresponding to the positive and negative expression levels are picked from each

histogram, and their measurement values are set to the expression levels. Fig. 2.9 and

Table 2.3 summarize this histogram analysis. When two negative peaks are present as in

CD8, the stronger ones are chosen in our implementation. In flow cytometry, it is known
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Cell type FS SS CD56 CD16 CD3 CD8 CD4
granulocytes + + − + − − −
monocytes + − − + − − −
helper T cells − − − − + − +
cytotoxic T cells − − − − + + −
B cells − − − − − − −
Natural Killer cells − − + + − − −

Table 2.2: Cell types and their corresponding marker expressions for data in the single tube
experiments. ‘+’ or ‘−’ indicates whether a certain cell type expresses the CD
marker or not.

that two types of cells with the same ‘−’ marker can cause slightly different measurement

levels. However, this difference between ‘−’ peaks is often small and less significant

compared to the difference between ‘+’ and ‘−’ peaks. When we tried experiments (not

presented) by choosing weaker peaks, we could not observe meaningful changes in the

results.

Fig. 2.9: Histogram of each marker in the single tube experiments (Section 2.4.1). The
peaks are selected manually and are indicated in each panel.

Following the procedure delineated in Section 2.3, two incomplete data files are com-

pleted. A mixture of PPCA is fitted with six components because six cell types are ex-

pected on this dataset. The latent variable dimension of each PPCA component is fixed
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FS SS CD56 CD16 CD3 CD8 CD4
+ 800 680 500 350 550 750 650
− 400 400 240 130 200 170 200

Table 2.3: The positive and negative expression levels are extracted from the histograms in
Fig. 2.9. These values are used to initialize the EM algorithm.

to two. The convergence of the missing data EM algorithm is determined when the rela-

tive change of log-likelihood value is less than 10−10 or the number of iterations reaches

5000. Fig. 2.10 shows the evolution as iteration continues. The likelihood value increases

sharply during the dozens of steps in the beginning and then converges.
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Fig. 2.10: Typical convergence of the proposed missing data EM algorithm.

The synthesized data after file matching is displayed in Fig. 2.5. The figure shows

scatter plots of specific variables: CD16, CD3, CD4 and CD8. Note that these marker

pairs are not available from any of the two incomplete data files, while other marker pairs

are directly obtainable from the observed cells. The imputation results from the NN and

the Cluster-NN methods are compared in the figure. For reference, the figure also presents

scatter plots of the ground truth dataset. As can be seen, the results from the Cluster-NN

better coincide with the true distributions. By contrast, the NN method generates spurious

clusters in the CD3-CD8 and CD3-CD4 scatter plots, and the results are far from the true

distributions. These false clusters are indicated in Fig. 2.5. We quantify the quality of the
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FS SS CD5 CD45 CD19
file 1
file 2

Fig. 2.11: Data pattern used in the multiple tube experiments in Section 2.4.2. Both files
contain FS, SS and CD5 commonly, and each file contains one of CD45 and
CD19. All marker attributes are available in a separate reference file.

imputed values below in Section 2.4.3.

2.4.2 Multiple tube experiments

In this second experiment, we involve multiple tubes and demonstrate the file matching

of flow cytometry data.

Two tubes from each of the three patient samples are stained individually with dif-

ferent marker combinations: CD5/CD45 and CD5/CD19. For comparison with actually

measured data, an additional tube is conjugated with markers CD5/CD45/CD19. This ad-

ditional tube dataset is used only for evaluation of imputation results and is not involved

during the file matching. Fig. 2.11 illustrate the pattern of datasets used in the experiments.

As opposed to the previous single tube experiments, the experiments on multiple tubes

impose another complication. It is well-known that in flow cytometry, the instrument

can drift over time. This technical variation causes the shifts in population positions. To

minimize the effects from this variation, data files can be preprocessed with normalization

techniques [25, 32] before applying file matching algorithms.

However, the rate of this drift is typically very slow and on a much larger scale than the

time for one set of tubes. Furthermore, operators are careful to calibrate each tube (based

on the same sample) in the same way to minimize such variation. For these reasons,

technical variation within a batch of tubes corresponding to the same patient/sample is

much less of an issue in flow cytometry, compared to technical variation between data

gathered at different times. Since no noteworthy population shift was found from the
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Cell type FS SS CD5 CD45 CD19
granulocytes + + − + −
monocytes + − − + −
helper T cells − − + + −
cytotoxic T cells − − + + −
B cells − − − + +
Natural Killer cells − − − + −

Table 2.4: Types of white blood cells and their corresponding markers expressions for data
in the multiple tube experiments..

histogram analysis in Fig. 2.12, we proceeded without any normalization.

Fig. 2.12: The top row shows histograms from the two incomplete files. Histograms from
the reference file are shown in the bottom row. The peaks of each marker are
indicated. No noticeable population shift across files was observable.

For datasets in multi-tube experiments, Table 2.4 shows the relative marker expression

levels of various types of white blood cells. Their corresponding numerical measurement

levels are found from this table and the histograms in Fig. 2.12, and given in Table 2.5.

Since all white blood cells express CD45, its negative level is left blank in the table.

FS SS CD5 CD45 CD19
+ 850 670 700 615 545
− 410 395 280 − 255

Table 2.5: The positive and negative expression levels are obtained from the histograms in
Fig. 2.12. Since all white blood cells express CD45, the negative level is left
blank.

Similarly to the above experiments, the two incomplete data files are imputed using
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the Cluster-NN algorithm as explained in Section 2.3. In this experiment, a PPCA mixture

model with five components is fitted to the missing data. We choose five components

because the two types of T cells share the same row in Table 2.4. The dimension of the

latent variable of each component, q, is set to two.

Fig. 2.13 displays the cell distributions of imputed data files. The presented marker

pair CD45-CD19 is not originally available in any of the two files in experiments. The cor-

responding scatter plot from the separate reference file is also drawn. While the imputed

results from the NN method and the Cluster-NN method look similar, a horizontal drift of

cells in high CD19 subpopulation can be observed in the NN result. This spread of cells is

not present in the reference plot and the Cluster-NN result.

Fig. 2.13: Comparison of two imputation results with the actual measurements in the ref-
erence file. The result from the NN method shows a horizontal drift of cells in
high CD19 population. This is not observed in the Cluster-NN result and the
reference file.

2.4.3 Evaluation method

To quantitatively evaluate the previous results, we use Kullback-Leibler (KL) diver-

gence. The KL divergence between two distribution f(x) and g(x) is defined by

KL(g ‖ f) = Eg [log g − log f ] .

Let f be a true distribution responsible for the observations and g be its estimate.
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The KL divergence is asymmetric and KL(f ‖ g) and KL(g ‖ f) have different mean-

ings. We prefer KL(g ‖ f) to KL(f ‖ g) because the former more heavily penalize the

over-estimation of the support of f . This allows us to assess when an imputation method

introduces spurious clusters.

For the single tube and the multiple tube experiments, we evaluated the KL divergence

of the imputation results. We randomly permuted each dataset ten times, and divided into

incomplete data files and evaluation sets. Then we computed the KL divergence for each

permutation, and reported their averages and standard errors in Table 2.6. The details of

dividing datasets and computing the KL divergence are explained in Section 2.B.

As can be seen, the KL divergences from Cluster-NN are substantially smaller than

those from NN in the first set of experiments on a single tube. Therefore, the Cluster-NN

yielded a better replication of true distribution. In the second series of experiments, the

differences in KL divergence between algorithms were minor. While we could observe

the spread of cells in the NN results (see Fig. 2.13), their effect on the KL divergence was

sometimes small due to their relatively small number.

2.4.4 Computational considerations

Here we consider computational aspects of the PPCA mixture model and its EM algo-

rithm.

As we described above in Section 2.3.2, through the PPCA mixtures, we can control

the number of model parameters without losing the model flexibility. When combining

more tubes, this ensures that there is sufficient data for parameter estimation with higher

dimensionality. Another advantage of using PPCA mixtures is the execution time of the

EM algorithm. Under Windows 7 system equipped with two Intel(R) Xeon(R) 2.27 GHz

processors and RAM 12GB, the average convergence time with PPCA mixtures was about
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ID NN (file 1) Cluster-NN (file 1) NN (file 2) Cluster-NN (file 2)
Patient1 2.90 ± 0.05 1.55 ± 0.05 2.66 ± 0.03 1.12 ± 0.04
Patient2 4.54 ± 0.07 1.22 ± 0.03 4.12 ± 0.08 0.92 ± 0.03
Patient3 4.46 ± 0.10 2.40 ± 0.11 4.18 ± 0.11 2.30 ± 0.07

(a) Single tube experiments

ID NN (file 1) Cluster-NN (file 1) NN (file 2) Cluster-NN (file 2)
Patient1 0.51 ± 0.01 0.46 ± 0.02 0.41 ± 0.01 0.40 ± 0.01
Patient2 0.64 ± 0.01 0.62 ± 0.03 0.80 ± 0.03 0.78 ± 0.04
Patient3 0.88 ± 0.05 0.78 ± 0.07 0.80 ± 0.02 0.65 ± 0.03

(b) Multiple tube experiments

Table 2.6: The KL divergences are computed for ten permutations of each flow cytometry
dataset. The averages and standard errors are reported in the table. For both the
NN and Cluster-NN algorithm, the file matching results are evaluated. (a) In the
single tube experiments, the KL divergences of Cluster-NN are closer to zero
than those of NN. Thus, the results from Cluster-NN better replicated the true
distribution. (b) In the multiple tube experiments, the Cluster-NN consistently
performed better than the NN. However, the differences between two algorithms
are small.

23 seconds in the above single tube experiment. On the contrary, it took nearly 200 seconds

on average to fit full Gaussian mixtures. That is, fitting a PPCA mixture model took

approximately eight times less relative to one based on a full Gaussian mixture model.

This computational improvement is highly desirable because demands for high-throughput

analysis are sharply increasing in flow cytometry.

Fig. 2.14: The scatter plots of a dataset used in the single tube experiments (Section 2.4.1)
are drawn on several marker pairs. The fitted mixture components are shown as
well on each panel. For clarity, four among the six components are displayed.

During the series of experiments, we have chosen the number of mixture components

based on the number of cell types. Then mixture models are learned from the partially
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observed data. Fig. 2.14 illustrates how the clustering behaves on a dataset used in the

single tube experiments (Section 2.4.1). Component contours are overlaid on the scatter

plots over a few observed marker pairs. Most contours can be successfully identified with

important cell subpopulations in the dataset, while there are some cases where we could

not find the corresponding cell types.

Although many mixture model-based analysis in flow cytometry rely on criteria such

as Akaike information criterion or Bayesian information criterion to select the number

of components [15, 44, 53], these approaches assume completely observed data, whereas

most of the data are missing in file matching. In practice, a good rule of thumb is to set the

number of mixture components with the number of cell types. Fig. 2.15 shows the effect

of the number of components. For a range of K, where K is the number of components,

we repeated the single tube experiments in Section 2.4.1. Six points are first selected

from from Fig. 2.9 and Table 2.2, and then used for K = 6. For models with more or

less than 6 components, each centroid is initialized by random drawing from a Gaussian

distribution centered at one of the six points. Once cluster centers are initialized, the

rest of the parameters are initialized by following the method described in Algorithm 2.2.

The best performance is given when K = 7, with the performance slightly better than

the performance when K = 6. For values of K less than 6, the performance was much

worse, and for values greater than 7, the performance gradually degraded as the number

of components was increased.

2.5 Discussion

In this chapter, we demonstrated the use of a cluster-based nearest neighbor (Cluster-

NN) imputation method for file matching of flow cytometry data. We applied the proposed

algorithm on real flow cytometry data to generate a dataset of higher dimension by merging
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Fig. 2.15: The KL divergence of Cluster-NN imputation results over the number of com-
ponents of a PPCA mixture model. As the NN method does not involve cluster-
ing, the KL divergence remains constant. The best performance of Cluster-NN
is achieved near K = 7.

two data files of lower dimensions. The resulting matched file can be used for visualization

and high-dimensional analysis of cellular attributes.

While the presented imputation method focused on the case of two files, it can be

generalized to more than two files. We envision two possible extensions of the Cluster-

NN imputation method. For concreteness, suppose that five files X1, · · · ,X5 are given and

a missing variable of xi ∈ X1 is available in X2 and X3.

Method 1 The first approach fits a single mixture of PPCA model to the all units in

the five files using the missing data EM algorithm in Section 2.3.2. According to their

posterior probabilities, units in each file are clustered into classes. If xi belongs to X k
1 ,

then the similarities are computed between xi and units in X k
2 and X k

3 . Then the most

similar unit is chosen to be the donor.

Method 2 In the second method, a pair of files are considered at a time by selecting and

limiting the search for a donor to one of X2 and X3. One can pick a file with more cells,



36

say X3. Thus, the donor candidates are found among units in X3. Then the PPCA mixture

model is trained with the cells in X1 and X3 using the missing data EM algorithm. After

units in X1 and X3 are labeled, a donor is found from X k
3 for xi ∈ X k

1 .

Once a donor is elected either from Method 1 or from Method 2, the missing variable

of xi is imputed from the donor. Method 2 solves smaller problems involving less number

of data points for model fitting, but needs to train mixture models multiple times to impute

all the missing variables in the dataset. On the contrary, Method 1 solves a single large

problem involving all data points.

Future research directions include finding ways of automatic domain information ex-

traction. The construction of covariance matrices from incomplete data in the initialization

of the EM algorithm is also an interesting problem. We expect that better covariance struc-

ture estimation, which will be available from better prior information, will be helpful for

better replication of non-symmetric and non-elliptic cell subpopulations in the imputed

results.

In the present study, we validated our method with lymphocyte data, where, for cer-

tain marker combinations, cell types tend to form relatively well-defined clusters. How-

ever, for other samples and marker combinations, clusters may be more elongated or less

well-defined due to cells being at different stages of physiologic development. Fig. 2.14

indicates that flow cytometry clusters are often not Gaussian distributed. It may therefore

be worth extending the ideas here to incorporate non-elliptical clusters using, for exam-

ple, skewed Gaussian or skewed multivariate t components [53]. The cluster merging

technique of [24] may also be helpful in this regard.
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2.A Appendix: Derivation of EM algorithm for mixture
of PPCA model with missing data

Suppose that we are given an incomplete observation set. We can divide each unit xn

as xn =

 xonn

xmnn

 by separating the observed components and the missing components.

Note that we do not assume that the observed variables come first and the missing variables

next, and this should be understood as a notational convenience.

In the PPCA mixture model, the probability distribution of x is

p(x) =
K∑
k=1

πkp(x|k)

where K is the number of components in the mixture and πk is a mixing weight cor-

responding to the component density p(x|k). We estimate the set of unknown pa-

rameters θ = {πk,µk,Wk, σ
2
k} using an EM algorithm from the partial observations

{xo11 , · · · ,x
oN
N }.

To develop an EM algorithm, we introduce indicator variables zn = (zn1, · · · , znK)

for n = 1, · · · , N . One and only one entry of zn is nonzero, and znk = 1 indicates

that the kth component is responsible for generating xn. We also include a set of the

latent variables tnk for each component and missing variables xmnn to form the complete

data (xonn ,x
mn
n , tnk, zn) for n = 1, · · · , N and k = 1, · · · , K. Then the corresponding

complete data likelihood function has the form

LC =
∑
n

∑
k

znk ln [πkp(xn, tnk)]

=
∑
n

∑
k

znk

[
ln πk −

d

2
lnσ2

k −
1

2σ2
k

tr
(
(xn − µk)(xn − µk)

T
)

+
1

σ2
k

tr
(
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T
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T
k

)
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tr
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kWktnkt
T
nk

) ]
,

where terms independent of the parameters are not included in the second equality. Instead
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of developing an EM algorithm directly on this likelihood functionLC , we extend the strat-

egy in [70] and build a two-stage EM algorithm, where each stage is a two-step process.

This approach monotonically increases the value of the log-likelihood each round [70].

In the first stage of the two-stage EM algorithm, we update the component weight

πk and the component mean µk. We form a complete data log-likelihood function with

the component indicator variables zn and missing variables xmn , while ignoring the latent

variables tnk. Then we have the following likelihood function:

L1 =
N∑
n=1

K∑
k=1

znk ln[πkp(x
on
n ,x

mn
n |k)]

=
∑
n

∑
k

znk

[
lnπk −

1

2
ln |Ck| −

1

2
tr
(
C−1
k (xn − µk)(xn − µk)

T
)]

where terms unrelated to the model parameters are omitted in the second line. We take the

conditional expectation with respect to p(zn,xmnn |xonn ). Since the conditional probability

factorizes as

p(zn,x
mn
n |xonn ) = p(zn|xonn )p(xmnn |zn,xonn ),

we have the following conditional expectations

〈znk〉 =p(k|xonn ) =
πkp(x

on
n |k)∑

k′ πk′p(x
on
n |k′)

,

〈znkxmnn 〉 =〈znk〉〈xmnn 〉,

〈xmnn 〉 =µmn
k + Cmnon

k Conon−1

k (xonn − µon
k ),

〈znkxmnn xmn
T

n 〉 =〈znk〉〈xmnn xmn
T

n 〉,

〈xmnn xmn
T

n 〉 =Cmnmn
k −Cmnon

k Conon−1

k Conmn
k + 〈xmnn 〉〈xmn

T

n 〉

where 〈·〉 denotes the conditional expectation. Maximizing 〈L1〉 with respect to πk, using
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a Lagrange multiplier, and with respect to µk give the parameter updates

π̂k =
1

N

∑
n

〈znk〉, (2.5)

µ̂k =

∑
n〈znk〉

 xonn

〈xmnn 〉


∑

n〈znk〉
. (2.6)

In the second stage, we include the latent variable tnk as well to formulate the com-

plete data log-likelihood function. The new values of π̂k and µ̂k are used in this step to

compute sufficient statistics. Taking the conditional expectation on LC with respect to

p(zn, tnk,x
mn
n |xonn ), we have

〈LC〉 =
∑
n

∑
k

〈znk〉
[

ln π̂k −
d

2
lnσ2

k −
1

2σ2
k

tr
(
〈(xn − µ̂k)(xn − µ̂k)

T 〉
)

+
1

σ2
k

tr
(
〈(xn − µ̂k)t

T
nk〉WT

k

)
− 1

2σ2
k

tr
(
WT

kWk〈tnktTnk〉
) ]
.

Since the the conditional probability factorizes

p(zn, tnk,x
mn
n |xonn ) = p(zn|xonn )p(xmnn |zn,xonn )p(tnk|zn,xonn ,xmnn ),
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we can evaluate the conditional expectations as follows :

〈(xn − µ̂k)(xn − µ̂k)
T 〉 =


 xonn

〈xmnn 〉

− µ̂k



 xonn

〈xmnn 〉

− µ̂k


T

+

 0 0

0 Qnk

 ,
Qnk =Cmnmn

k −Cmnon
k Conon−1

k Conmn
k ,

〈tnk〉 =M−1
k WT

k (xn − µ̂k),

〈(xn − µ̂k)t
T
nk〉 =〈(xn − µ̂k)(xn − µ̂k)

T 〉WkM
−1
k ,

〈tnktTnk〉 =M−1
k WT

k 〈(xn − µ̂k)(xn − µ̂k)
T 〉WkM

−1
k

+ σ2
kM

−1
k .

Recall that the q × q matrix Mk = WT
kWk + σ2

kI. Then the maximization of 〈LC〉 with

respect to Wk and σ2
k leads to the parameter updates,

Ŵk =

[∑
n

〈znk〉〈(xn − µ̂k)t
T
nk〉

][∑
n

〈znk〉〈tnktTnk〉

]−1

, (2.7)

σ̂2
k =

1

d
∑

n〈znk〉

[∑
n

〈znk〉tr
(
〈(xn − µ̂k)(xn − µ̂k)

T 〉
)

− 2
∑
n

〈znk〉tr
(
〈(xn − µ̂k)t

T
nk〉WT

k

)
+
∑
n

〈znk〉tr
(
WT

kWk〈tnktTnk〉
) ]
. (2.8)

Substituting the conditional expectations simplifies the M-step equations

Ŵk =SkWk(σ
2
kI + M−1

k WT
k SkWk)

−1, (2.9)

σ̂2
k =

1

d
tr
(
Sk − SkWkM

−1
k ŴT

k

)
(2.10)
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ID N1 N2 Ne

Patient1 10000 10000 5223
Patient2 7000 7000 4408
Patient3 3000 3000 3190

Table 2.7: Datasets from three patients in the single tube experiments (Section 2.4.1). Each
tube is divided into two data files and an evaluation set. N1 and N2 denote the
sizes of the two data files, and Ne is the size of the evaluation set.

where

Sk =
1

Nπ̂k

∑
n

〈znk〉〈

[ xonn

〈xmnn 〉

]
− µ̂k


[ xonn

〈xmnn 〉

]
− µ̂k


T

〉.

Each iteration of the EM algorithm updates the set of old parameters {πk,µk,Wk, σ
2
k}

with the set of new parameters {π̂k, µ̂k,Ŵk, σ̂
2
k} in (2.5), (2.6), (2.9) and (2.10). The

algorithm terminates when the value of the log-likelihood function changes less than a

predefined accuracy constant.

2.B Appendix: Computing KL divergences

For each experiment in Section 2.4, we quantify the imputation results using the KL

divergence.

2.B.1 Single tube experiments

In the single tube experiments, each dataset corresponding to the different patients is

divided into two data files and a separate evaluation set. Table 2.7 summarizes the cell

counts in these sets. N1, N2 and Ne are the cell counts of the two files and the hold-out set,

respectively. After imputing the two files with either the NN or the Cluster-NN method,
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ID N1 N2 Ne1 Ne2 N3

Patient1 10000 10000 3982 21828 47248
Patient2 8000 8000 14661 3793 28101
Patient3 2000 5000 1817 7228 9795

Table 2.8: Datasets from three patients in the multiple tube experiments (Section 2.4.2).
N1 and N2 denote the sizes of the two data files, and Ne1 and Ne2 denote the
sizes of the evaluation sets. N3 is the number of cells in the additional tube that
is treated as the ground truth.

the KL divergences are computed. The empirical estimate of the KL divergence is

KL(g ‖ f) =Eg [log g − log f ]

≈ 1

Ne

Ne∑
n=1

[log g (x̂n)− log f (x̂n) ]

≈ 1

Ne

Ne∑
n=1

[
log ĝ (x̂n)− log f̂ (x̂n)

]
where the distributions f and g are replaced by their corresponding density estimates and

the expectation is approximated by a finite sum over imputed results x̂n on the hold-out

set of size Ne. For f̂ and ĝ, we used kernel density estimation on the ground truth data and

the imputed data, respectively.

2.B.2 Multiple tube experiments

As explained in Section 2.4.2, three tubes per patient are available in the multiple tube

experiments. The third tube of higher dimension is a reference dataset and is not involved

during the file matching. Each of the two lower dimensional tubes is split into two halves.

The first halves of the two tubes form the incomplete data: file 1 and file 2 with N1 and

N2 cells, respectively. The second halves of size Ne1 and Ne2 form the evaluation sets and

their imputed results are used to approximate the expectation of the KL divergence. For

each patient, the sizes of these sets are shown in Table 2.8. The reason for splitting each

tube in half is so that the data used to approximate the expectation are independent to the

data used to estimate density of the imputed result. Therefore, the imputation result of file
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1 is evaluated by

KL(g1 ‖ f) ≈ 1

Ne1

Ne1∑
n=1

[
log ĝ1 (x̂n)− log f̂ (x̂n)

]
where ĝ1 is the kernel density estimate based on imputed rows from the first half of tube 1.

The third tube is treated as the ground truth data and used to obtain the density estimate f̂ .

When evaluating the KL divergence of file 2, ĝ1 is replaced by ĝ1, the kernel density

estimate on the imputed result of file 2, and the finite sum is taken over the evaluation set

of size Ne2.



CHAPTER 3

EM Algorithms for Multivariate Gaussian Mixture
Models with Truncated and Censored Data

3.1 Introduction

This chapter addresses the problem of fitting Gaussian mixture models on censored and

truncated multivariate data. Censoring and truncation arise in numerous applications, for

reasons such as fundamental limitations of measuring equipment, or from experimental

design. Data are said to be censored when the exact values of measurements are not

reported. For example, the needle of a scale that does not provide a reading over 200

kg will show 200 kg for all the objects that weigh more than the limit. Data are said to

be truncated when the number of measurements outside a certain range are not reported.

For example, an electronic component manufacturer can limit the test duration to 100

hours for life time tests. A data collector might provide only the survival times of the

components that failed during the test, but not the number of components tested. In these

cases, it is often natural to seek the statistical characteristics of the original (uncensored

and untruncated) data instead of the observed (censored or truncated) data.

This work is motivated by the analysis of flow cytometry data. Flow cytometry is an

essential tool in the diagnosis of diseases such as acute leukemias, chronic lymphoprolif-

erative disorders, and malignant lymphomas [9, 63]. A flow cytometer measures antigen-

44
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based markers associated to cells in a cell population. The analysis of flow cytometry

data involves dividing cells into subpopulations and inspecting their characteristics. This

clustering process, called gating, is performed manually in practice. To automate gating,

researchers recently have been investigating mixture models [8, 15, 38, 44, 53].

However, a flow cytometer measures a limited range of signal strength and records

each marker value within a fixed range, such as between 0 and 1023. If a measurement

falls outside the range, then the value is replaced by the nearest legitimate value; that

is, a value smaller than 0 is censored to 0 and a value larger than 1023 is censored to

1023. Moreover, a large portion of cell measurements can be truncated from recording by

the judgment of an operator. Therefore, mixture model fitting that does not account for

censoring and truncation can result in biases in the parameter estimates and poor gating

results. In flow cytometry, a mixture model fitting algorithm should take censoring and

truncation into account to avoid biases. Here we present an Expectation-Maximization

(EM) algorithm to fit a multivariate mixture model while accounting for both censoring

and truncation.

When censored and truncated data are from an exponential family, Dempster, Laird

and Rubin [20] suggested using the EM procedure to find the maximum likelihood esti-

mate. Atkinson [4] derived an EM algorithm for a finite mixture of two univariate normal

distributions when data is right-censored. Chauveau [17] also studied a mixture model

of univariate censored data, and presented an EM algorithm and its stochastic version.

McLachlan and Jones [47] developed an EM algorithm for univariate binned and trun-

cated data. Cadez et al. [10] extended the development of McLachlan and Jones [47] to

multivariate case and applied to bivariate blood sample measurements for diagnosis of

iron deficiency anemia. To our knowledge, previous work has not addressed censored

multivariate data, or continuous (not binned) truncated multivariate data. Furthermore,



46

censoring and truncation have been treated separately. As we will show below, the de-

velopment of the truncated data EM algorithm and the censored data EM algorithm are

closely related to the truncated multivariate Gaussian distribution [46, 67] and we handle

these two problems together under the same framework.

Our algorithms make use of recent methods [22, 28–30] for evaluating the cumulative

distribution function of a multivariate Gaussian. These algorithms run slower as the di-

mension increases but, when combined with modern computing resources, they can be

used successfully in the kinds of lower dimensional settings where mixture methods tend

to be applied. Our MATLAB implementation is available online at http://www.eecs.

umich.edu/˜cscott/code/tcem.zip.

In the following, we briefly review the standard EM algorithm in Section 3.2. Then we

consider truncation (Section 3.3), censoring (Section 3.4) and both truncation and censor-

ing (Section 3.5). We derive EM algorithms for each case and discuss how these algorithms

improve the standard EM algorithm. We discuss the initialization and the termination of

the EM algorithms in Section 3.6. Experimental results are reported in Section 3.7, and

Section 3.8 concludes.

3.2 Standard EM Algorithm

In a mixture model, the probability density function of an observation is

f(y; Θ) =
K∑
k=1

πkfk(y; θk) (3.1)

where πk are positive mixing weights summing to one, fk are component density functions

parameterized by θk, and Θ = (π1, · · · , πK , θ1, · · · , θK) is the collection of all model

parameters. Each observation is assumed to be from one of theK components. A common

choice of the component density is a multivariate normal with mean µk and covariance Σk.
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Given a set of independent observations y1:N := {y1, · · · ,yN} in Y ⊆ Rd, the objective

is to fit such a model to the data.

The EM algorithm proposed by Dempster et al. [20] is a widely-applied approach

for finding the maximum likelihood estimate of a mixture model. In the EM procedure,

the unknown true association of each observation to a component is considered missing,

and the expected likelihood of the “complete” data is maximized. Let zn ∈ {0, 1}K be the

membership indicator variable such that znk = 1 if yn is generated from fk and 0 otherwise.

Then the complete log-likelihood function becomes

L(Θ) =
∑
n

∑
k

znk [lnπk + ln fk(y
n)]

=
∑
n

∑
k

znk

[
lnπk −

1

2
ln |Σk| −

1

2
tr
(
Σ−1
k (yn − µk)(y

n − µk)
T
) ]

+ const

(3.2)

where tr denotes the trace operator of a matrix. The EM algorithm first computes

Q(Θ; Θold) = E[L(Θ)|y1:N ; Θold] (E step) and then finds a new Θ such that Θnew =

arg maxΘQ(Θ; Θold) (M step). The EM algorithm repeats the E step and M step and

updates Θ each iteration. An acclaimed property of the EM algorithm is that each round

the value of the log-likelihood monotonically increases [35]. The E step simplifies to

computing the conditional probabilities

〈znk 〉 := p(znk = 1|yn; Θold) =
πk fk(y

n)∑
l πl fl(y

n)
.

In the M step, we have an update rule in closed form:

π̂k =
1

N

∑
n

〈znk 〉, (3.3)

µ̂k =

∑
n〈znk 〉yn∑
n〈znk 〉

, (3.4)

Σ̂k =

∑
n〈znk 〉(yn − µ̂k)(y

n − µ̂k)
T∑

n〈znk 〉
. (3.5)
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The EM algorithm alternates between the E step and the M step until convergence.

When truncation and/or censoring occur, however, the true values of yn are not always

available and the blindfold use of the standard EM algorithm can result in undesirable

parameter estimates.

3.3 Truncated Data EM Algorithm

Truncation restricts the observation to a subset YT ⊆ Y . Thus, the data points outside

YT are not available for estimation of Θ. For example, in clinical flow cytometry, cells

with low forward scatter (FS) value are not of much pathological interest and are often

dropped during data collection to save data storage space. Hence, all the recorded forward

scatter values are always greater than a truncation level chosen by an operator.

Here we assume that the observation window YT is a hyper-rectangle in Rd with two

vertices s = (s1, · · · , sd)T and t = (t1, · · · , td)T on the diagonal opposites such that every

observed event satisfies s ≤ yn ≤ t. These inequalities are element-wise, and si = −∞

and ti =∞ mean no truncation below and above, respectively, on the ith coordinate.

The probability density function after truncation is given by g(y) = f(y)/
∫ t

s
f(y′)dy′

for y ∈ [s, t] and by g(y) = 0 otherwise. Then it can be easily seen that g(y) is also a

mixture

g(y) =
K∑
k=1

ηk gk(y)1{[s,t]}(y) (3.6)

with mixing weights ηk and component density functions gk:

ηk = πk

∫ t

s
fk(y)dy∫ t

s
f(y)dy

and gk(y) =
fk(y)∫ t

s
fk(y′)dy′

1{[s,t]}(y). (3.7)

The indicator function 1{A}(y) equals one if y ∈ A and zero otherwise. Hence, the

component density functions gk are truncated versions of the original component density

functions fk.
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Proceeding similarly as in Section 3.2, we can express the complete data log-likelihood

as

LT (Θ) =
∑
n

∑
k

znk [ln ηk + ln gk(y
n)]

=
∑
n

∑
k

znk

[
ln ηk + ln fk(y

n)− ln

∫ t

s

fk(y)dy

]
. (3.8)

Recall that zn are the component membership indicator variables. It is conceivable to

define the complete data differently by treating the unknown number of truncated mea-

surements as a random variable and including it into the complete data [20]. However,

this approach requires to make an additional assumption on the distribution of the new

parameter. It might generalize our approach, but it can be sensitive to the choice of the

distribution of the number of truncated sample points [27].

The E step applied to (3.8) requires us to compute

QT (Θ; Θold) =E[LT (Θ)|y1:N ; Θold]

=
∑
n

∑
k

〈znk 〉
[
ln ηk + ln fk(y

n)− ln

∫ t

s

fk(y)dy

]
.

The main difference from (3.2) is the terms of normalizing factors, ln
∫ t

s
fk(y)dy, which

do not complicate the E step of the EM algorithm, and whose calculation is discussed

below. Thus, the E step is simply computing the posterior probability that yn belongs to

component k

〈znk 〉 := p(znk = 1|yn) =
ηk gk(y

n)∑
l ηl gl(y

n)
=

πk fk(y
n)∑

l πl fl(y
n)
. (3.9)

As the last equality indicates, this posterior remains unchanged as if yn in the truncated

data is from the entire sample space Y . Then the M step computes Θ̂ that maximizes

QT (Θ; Θold), which is found by taking the derivatives of QT (Θ; Θold) with respect to

each ηk, µk and Σk, and setting to zero. Since ηk should satisfy
∑

k ηk = 1, a Lagrange
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multiplier is used to find the maximizer. Using (3.35) and (3.36) in 3.A.2 to calculate the

derivatives of the normalizing factors, we have the following M step equations:

η̂k =
1

N

∑
n

〈znk 〉, (3.10)

µ̂k =

∑
n〈znk 〉yn∑
n〈znk 〉

−mk, (3.11)

Σ̂k =

∑
n〈znk 〉(yn − µ̂k)(y

n − µ̂k)
T∑

n〈znk 〉
+Hk (3.12)

where η̂k, µ̂k and Σ̂k denote the new parameters and

mk =M1(0,Σk ; [s− µk, t− µk]), (3.13)

Hk =Σk −M2(0,Σk ; [s− µk, t− µk]). (3.14)

The notationsM1(µ,Σ ; [s′, t′]) andM2(µ,Σ ; [s′, t′]) in (3.13) and (3.14) indicate the

first and second moments of a Gaussian with mean µ and covariance Σ when it is truncated

to a hyper-rectangle with vertices s′ and t′. We discuss the computational aspects of these

moments in 3.A. Comparing (3.10)-(3.12) with the standard EM equations (3.3)-(3.5)

shows that the updates for truncated data are similar to those for untruncated data except

the correction terms mk and Hk.

The original component weight πk can be recovered from (3.7). The normal integrals

can be evaluated with the help of computational tools for evaluating the multivariate nor-

mal cumulative distribution function. Our implementation relies on mvncdf function in

the MATLAB 7.9.0 statistics toolbox, which uses algorithms developed by Drezner and

Wesolowsky [22] and by Genz [28] for bivariate and trivariate Gaussian. The toolbox uses

a quasi-Monte Carlo integration algorithm developed by Genz and Bretz [29, 30] for four

or more dimensional Gaussians.
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3.4 Censored Data EM Algorithm

As discussed above, truncation excludes data points from the dataset, and the number

of data points falling outside the measuring range remains unknown. On the contrary,

censoring retains such data points while their exact locations remain unknown.

In the following, we investigate censoring on a hyper-rectangle, in which each data

point yn is censored above at b = (b1, · · · , bd)T and below at a = (a1, · · · , ad)T . 1 Let

Y0,Y1, · · · ,YC be a partition of the overall sample space Y . If yn ∈ Y0, we observe the

exact values of yn. When yn ∈ Yc, c > 0, however, censoring occurs and the true values

are modified so that

xni = yni 1{[ai,bi]}(y
n
i ) + ai1{(−∞,ai)}(y

n
i ) + bi1{(bi,∞)}(y

n
i ), ∀i,∀n

are observed. Therefore, instead of y1:N , we obtain a set of observations x1:N , which

satisfy ai ≤ xni ≤ bi for i = 1, · · · , d and n = 1, · · · , N . Note that ai = −∞ means no

censoring below and bi =∞ means no censoring above.

Chauveau [17] also studied the analysis of censored data. The difference is that in his

setup xn = c if yn ∈ Yc, c > 0, whereas in ours some coordinates can preserve their exact

values. Furthermore, while his primary concern remained on univariate data, our focus

extends to multivariate data.

As described above, unless yn ∈ Y0 =
∏d

i=1[ai, bi], one or more coordinates are

censored and its original location is lost. However, we can infer which partition yn belongs

to from xn, the censored observation of yn, by noting when xni = ai or bi. Since each data

vector may have different censoring patterns, let the censored and uncensored coordinates

be indexed by mn and on, respectively, so that yni , i ∈ mn, are censored values and yni , i ∈

1For univariate data (d = 1), left and right censoring are the usual terms.
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on, are observed values. Then yn can be divided into the form yn =

 ynon

ynmn

 where

ynmn = (yni , i ∈ mn)T and ynon = (yni , i ∈ on)T denote the censored and uncensored

components of yn. Note that this does not imply that the vector is arranged to have this

pattern and should be understood as a notational convenience. Then the likelihood of xn

is

f(xn) = f(yn) for yn ∈ Y0 (3.15)

f(xn) =

∫
Xcn

f(ymn ,y
n
on)dymn

= f(xnon)

∫
Xcn

f(ymn|xnon)dymn for yn ∈ Ycn , cn > 0 (3.16)

where the integration is only over the censored coordinates, and Xcn denote the corre-

sponding integration range. For example, if xn1 = a1 and xn2 = b2 while other el-

ements are strictly between a and b, then Ycn = (−∞, a1) × (b2,∞) ×
∏d

i=3[ai, bi],

Xcn = (−∞, a1)× (b2,∞) and (3.16) becomes

f(xn) = f(xnon)

∫ a1

−∞

∫ ∞
b2

f(y1, y2|xnon)dy2 dy1.

To invoke the EM machinery, we first compute the expected complete log-likelihood

QC(Θ; Θold) =E[L(Θ)|x1:N ; Θold]

=E

[∑
n

∑
k

znk

[
lnπk −

1

2
ln |Σk|

− 1

2
tr

Σ−1
k


 ynon

ynmn

− µk



 ynon

ynmn

− µk


T
]
∣∣∣∣∣x1:N ; Θold

]
.

Hence, we need to find posterior probabilities, p(znk = 1|xn), and conditional expectations,

E[znk y
n
mn|x

n] = p(znk = 1|xn)E[ynmn|x
n, znk = 1] and E[znk y

n
mny

n
mn

T |xn] = p(znk =

1|xn)E[ynmny
n
mn

T |xn, znk = 1].
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The posterior probability is

〈znk 〉 :=p(znk = 1|xn) =
πk fk(x

n)∑
l πl fl(x

n)
, (3.17)

and it can be computed by (3.15) or (3.16). When one or more coordinates are censored,

fk(x
n) = fk(y

n
on)
∫
Xcn

fk(ymn|ynon) dymn; thus; it is a product of the probability density

function and the cumulative distribution function of Gaussians of lower dimensions, and

can be evaluated as explained in 3.A.1.

The conditional expectations are taken with respect to fk(ym|x). Because fk(ym|yo)

is a normal density function 2 and satisfies

fk(ym|x) = fk(ym|yo,y ∈ Yc) =
fk(ym|yo)∫

Xc fk(ym|yo) dym
1{Xc}(ym), (3.18)

the conditional density fk(ym|x) is a truncated normal density function over Xc. Then we

can calculate the following sufficient statistics of QC :

〈ynmn|k〉 :=E[ynmn|x
n, znk = 1] = E[ynmn|y

n
on ,y

n ∈ Ycn , znk = 1]

=M1(µk
mn|on ,Σ

k
mn|on ; Xcn), (3.19)

〈ynmny
n
mn

T |k〉 :=E[ynmny
n
mn

T |xn, znk = 1] = E[ynmny
n
mn

T |ynon ,y
n ∈ Ycn , znk = 1]

=M2(µk
mn|on , Σk

mn|on ; Xcn) (3.20)

where µk
mn|on and Σk

mn|on are the mean and covariance of fk(ynmn|y
n
on). Recall thatM1 and

M2 denote the first and second moments of a truncated normal distribution (see 3.A.1).

Next, we maximize QC with respect to Θ. Again using a Lagrange multiplier, maxi-

mization with respect to πk gives

π̂k =
1

N

∑
n

〈znk 〉. (3.21)

2If y = (yTm,y
T
o )T is normally distributed with mean µ and covariance Σ, then the con-

ditional distribution of its partition, ym|yo, is also normally distributed with mean µm|o =
µm + Σm,oΣ

−1
o,o(yo − µo) and covariance Σm|o = Σm,m − Σm,oΣ

−1
o,oΣo,m.
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Similarly, maximization with respect to µk and Σk leads to

µ̂k =

∑
n〈znk 〉

[
ynon

〈ynmn|k〉

]
∑

n〈znk 〉
, (3.22)

Σ̂k =

∑
n〈znk 〉Snk∑
n〈znk 〉

(3.23)

where

Snk =


 ynon

〈ynmn|k〉

− µ̂k



 ynon

〈ynmn|k〉

− µ̂k


T

+

 0 0

0 Rn
k

 , (3.24)

Rn
k =〈ynmny

n
mn

T |k〉 − 〈ynmn|k〉〈y
n
mn|k〉

T . (3.25)

Notice that these equations (3.21)-(3.23) resemble the update equations (3.3)-(3.5) of the

standard EM algorithm. In the censored data EM algorithm, the censored elements of yn

are replaced by the conditional means 〈ynmn|k〉 and the sample covariance correction Rn
k .

When none of the data points are censored, these update equations are equivalent to the

standard EM algorithm.

3.5 Truncated and Censored Data EM Algorithm

In this section, we consider truncation and censoring together and present an EM pro-

cedure that encompasses the algorithms above.

Truncation reduces the sample space from Y to YT . By restricting the partition regions

Yc and the integration ranges Xc to this reduced sample space YT , we can see that the

likelihood of an observation x is g(x) = f(x)/
∫ t

s
f(y) dy where the numerator f(x) is

defined by (3.15) and (3.16). Then this truncated distribution g(x) is a mixture g(x) =∑K
k=1 ηk gk(x) with mixing weights ηk and component density functions gk, where

ηk = πk

∫ t

s
fk(y)dy∫ t

s
f(y)dy

and gk(x) =
fk(x)∫ t

s
fk(y)dy

. (3.26)
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The E step of the EM algorithm begins by finding the expectation

QTC(Θ; Θold) =E[LT (Θ)|x1:N ; Θold]

=E

[∑
n

∑
k

znk

[
ln ηk + ln fk(y

n)− ln

∫ t

s

fk(y)dy

] ∣∣∣∣∣x1:N ; Θold

]

conditional on the observed data. This involves computing the posterior probabilities

〈znk 〉 :=p(znk = 1|xn) =
ηk gk(x

n)∑
l ηl gl(x

n)
=

πk fk(x
n)∑

l πl fl(x
n)

and the conditional expectations 〈ynmn|k〉 := E[ynmn|x
n, znk = 1] and 〈ynmny

n
mn

T |k〉 :=

E[ynmny
n
mn

T |xn, znk = 1] with respect to gk(ym|x). Since gk(ym|x) satisfies

gk(ym|x) = gk(ym|yo,y ∈ Yc) =
gk(ym|yo)∫

Xc gk(ym|yo) dym
=

fk(ym|yo)∫
Xc fk(ym|yo) dym

from (3.26) and this equals (3.18), we can deduce that the sufficient statistics 〈znk 〉, 〈ynmn|k〉

and 〈ynmny
n
mn

T |k〉 retain the same forms of (3.17), (3.19) and (3.20) in Section 3.4.

In the M step, we find the new parameters η̂k, µ̂k and Σ̂k that maximize QTC . To take

account of the constraint
∑

k ηk = 1, a Lagrange multiplier is used in the maximization

with respect to ηk. Combining with the quantities computed in the E step, we obtain the

following update equations

η̂k =
1

N

∑
n

〈znk 〉, (3.27)

µ̂k =

∑
n〈znk 〉

[
ynon

〈ynmn|k〉

]
∑

n〈znk 〉
−mk, (3.28)

Σ̂k =

∑
n〈znk 〉Snk∑
n〈znk 〉

+Hk (3.29)

where the correction terms mk and Hk are given in (3.13) and (3.14), and the matrix Snk

is given in (3.24). Recall that the original component weight πk can be obtained from
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ηk through (3.26) as in Section 3.3. The remarks on mean and covariance updates in

the truncated data EM algorithm and the censored data EM algorithm naturally lead to

an observation that (3.28) and (3.29) have the combined forms of (3.11) and (3.22), and,

respectively, (3.12) and (3.23).

3.6 Initialization and Termination of EM Algorithms

The initialization is an important issue because the result from an EM algorithm is of-

ten sensitive to the initial parameter setting. We suggest to proceed as follows to initialize

the parameters for the presented EM algorithms. First, perform the k-means clustering

algorithm multiple times with different starting points. Next, compute the mixture model

parameter and the corresponding complete data log-likelihood from each k-means clus-

tering result. Finally, choose the parameter that achieves the largest log-likelihood as an

initial parameter estimate for the truncated and censored data EM algorithm.

To check the convergence of the EM algorithms, we compute the expectation of the

complete data log-likelihood function after each iteration. We terminate the EM algo-

rithms when the relative change of the expected complete data log-likelihood falls below

10−10, or when the number of iteration reaches a fixed number, say 500.

In the following section, we use the described initialization and termination methods

for experiments.

3.7 Experiments and Results

We present experimental results to demonstrate the algorithms described above. In

the following, we describe experiments on univariate and bivariate synthetic data, and on

multi-dimensional flow cytometry data.
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3.7.1 Synthetic Data

In each experiment, we generated datasets from a known distribution and performed

censoring and truncation. On the censored and truncated data, we trained mixture models

using the standard EM algorithm and the truncated and censored version of the EM algo-

rithm. We also ran the standard EM algorithm on the set of data points in Y0, that is, the

observations that were not censored.

We first investigated three cases of one dimensional data. In cases (a) and (b), 1000

data points were drawn from a Gaussian (a single component mixture) with means 3 and

−8, respectively, and with the same standard deviation 20. Values smaller than 0 were

discarded (truncation) and those greater than 40 were set to 40 (censoring). Among 1000

data points, the uncensored data points in Y0 were about 50% in case (a) and 30% in case

(b).

Figure 3.1 (a) and (b) show the histograms of each case before and after censoring

and truncation. In the figure, the true mean and the estimates are also drawn. As can be

seen, the standard EM algorithm always tries to find mean estimates between 0 and 40.

Thus, when the true mean is outside this range, the discrepancy between the estimates and

the ground-truth can be arbitrarily large. On the other hand, the proposed algorithm finds

better estimates. Table 3.1 compares the true parameter values and the estimated parameter

values, and numerically supports this observation.

This result is also validated in case (c) in which data points were drawn from a two-

component mixture model as illustrated in Figure 3.1 (c). One component with weight

0.6 is centered at −3 and the other component with weight 0.4 is centered at 15 with a

common variance 20. The dataset was truncated below at 0 and censored above at 20.

Most of the data points from the component on the left were truncated, and nearly 50%

of data points were uncensored in each realization. While both algorithms accurately
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estimated the positive component, the deviations of mean estimates to the true means are

evident for the negative component. As shown in Table 3.1, the variance estimates of the

proposed method are also much more close to the ground-truth.

(a) A Gaussian at 3 (b) A Gaussian at −8 (c) Two Gaussians

Fig. 3.1: Experiments on 1-dimensional synthetic data. The original data histograms (top)
are significantly different from the observed data histograms (bottom) when trun-
cation and censoring occur. All data are truncated at 0 and right-censored at 40
(a),(b) or 20 (c). Dotted lines indicate the true means of each Gaussian compo-
nent. Solid lines and dash-dot lines are mean estimates from the truncated and
censored data EM algorithm and the standard EM algorithm, respectively.

Next we compared the algorithms on multivariate datasets. Two experiments were

designed with three-component bivariate Gaussian mixtures. In both cases, an observation

(x1, x2) was limited to a rectangular window [0, 25] × [0, 25]. In case (a), all three com-

ponent centers were located within the window (π = (0.5, 0.2, 0.3), µ1 = (3, 3), µ2 =

(13, 3), µ3 = (20, 20),Σ1 = diag(20, 5),Σ2 = diag(5, 20),Σ3 = [20, 10; 10, 20]).

On the contrary, in case (b), two centroids were located outside the window (π =

(0.5, 0.2, 0.3), µ1 = (−3, 3), µ2 = (10,−1), µ3 = (20, 20),Σ1 = diag(20, 5),Σ2 =

diag(5, 20),Σ3 = [20, 10; 10, 20]). After 1000 data points were drawn in each case, data
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true standard EM on uncensored standard EM truncated and censored EM
1-dim (a)

µ 3 15.34 ± 0.14 16.80 ± 0.09 2.87 ± 1.31
σ2 400 105.42 ± 2.18 133.12 ± 1.62 410.65 ± 27.59

1-dim (b)
µ -8 12.37 ± 0.13 12.90 ± 0.16 -5.83 ± 1.77
σ2 400 86.14 ± 2.19 98.65 ± 3.06 352.66 ± 28.84

1-dim (c)
µ1 -3 2.08 ± 0.11 2.06 ± 0.10 -1.01 ± 0.36
µ2 15 13.64 ± 0.11 14.46 ± 0.10 14.89 ± 0.10
σ2

1 20 2.31 ± 0.23 2.25 ± 0.21 11.68 ± 1.33
σ2

2 20 14.19 ± 0.69 17.28 ± 0.70 21.79 ± 1.10
π1 0.6 0.27 ± 0.03 0.24 ± 0.03 0.47 ± 0.09

Table 3.1: The true parameters and the estimated parameters are compared for the univari-
ate data experiments. We repeated the experiment ten times, and presented the
averages and the standard errors of parameter estimates.

points with x1 < 0 were truncated, and all other values outside the observation window

were censored. More than 100 data points were truncated and about 700 data points re-

mained uncensored in case (a), and nearly 400 data points were truncated and about 400

data points remained uncensored in case (b). The data points after truncation and censor-

ing are depicted in Figure 3.2. In the figure, level contours are displayed to compare the

estimated distributions to the true distribution. The figure also shows the results when the

standard EM algorithm is applied on a subset after the censored data points are excluded

from the dataset (standard EM on uncensored). The differences between algorithms are

most conspicuous in case (b) where the estimates from the truncated and censored data

EM algorithm significantly outperform the estimates from the standard EM algorithms.

To quantitatively evaluate model estimates, we computed Kullback-Leibler (KL) di-

vergences

KL(p || q) = Ep [log p− log q] ≈ 1

Ne

Ne∑
n=1

[log p (xn)− log q (xn)]

between the known true distribution p and estimated distribution q, where the expectation

is approximated by a sample mean over Ne = 10, 000 data points drawn from p. The KL
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(a) Three Gaussian components with centroids at (3, 3), (13, 3) and (20, 20)

(b) Three Gaussian components with centroids at (−3, 3), (10,−1) and (20, 20)

Fig. 3.2: Experiments on 2-dimensional synthetic data. The solid ellipses and ‘o’s are
level-curves and centroids of each component estimates. The dashed ellipses and
‘+’s are for true mixture components. Small crosses represent data points in the
truncated and censored data. x2 is censored at 0 and 25, and x1 is truncated at 0
and censored at 25.
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standard EM on uncensored standard EM truncated and censored EM
1-dim (a) 1.46 ± 0.03 1.15 ± 0.02 0.02 ± 0.01
1-dim (b) 3.48 ± 0.09 3.07 ± 0.09 0.07 ± 0.03
1-dim (c) 3.82 ± 0.07 3.56 ± 0.07 0.35 ± 0.17
2-dim (a) 0.37 ± 0.02 0.50 ± 0.02 0.03 ± 0.01
2-dim (b) 4.05 ± 0.36 4.21 ± 0.36 0.59 ± 0.20

Table 3.2: The KL divergences between the true densities and the estimated densities are
computed for each synthetic dataset. The averages and standard errors across
ten samples are reported in the table. The proposed algorithm outperforms the
standard EM algorithm.

divergence is non-negative and equals to zero if and only if the estimated distribution is

the same as the true distribution. We repeated experiments on the ten different samples

and averaged the resulting KL divergences. The computed KL divergences are reported in

Table 3.2. For all the investigated datasets, the estimated distributions from the proposed

method show significantly smaller KL divergences. Therefore, the truncated and censored

data EM algorithm successfully corrects the biases that exist in the standard EM algorithm.

3.7.2 Application to Flow Cytometry Data

We now discuss a real world application. As explained earlier, this work is motivated

by flow cytometry analysis. A flow cytometer measures multiple antigen-based markers

associated with cells in a cell population.

In practice, clinicians usually rely on rudimentary tools to analyze flow cytometry data.

They select a subset of one, two or three markers and diagnose by visually inspecting the

one dimensional histograms or two or three dimensional scatter plots. To facilitate the

analysis, the clinicians often select and exclude cell subpopulations. This process is called

“gating” and usually performed manually by thresholding and drawing boundaries on the

scatter plots. It is labor-intensive and time-consuming, and limits productivity. Moreover,

the results of gating vary by user experience, and replicating the same results by others is

difficult.
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These difficulties have recently motivated interest in automatic and systematic gating

methods. Although standard techniques have not been established yet, mathematical mod-

eling of cell populations with mixture models is favored by many researchers due to the

possibility of direct analysis in multi-dimensional spaces. In [8, 15], Gaussian mixtures

are used to model cell populations. The use of a mixture of t-distributions combined with

a Box-Cox transformation is studied in [44]. A more recent study reported successful ap-

plications of a mixture of skew normal distributions or skew t-distributions in [53]. The

domain knowledge of field experts is sometimes incorporated in the mixture model [38].

However, while truncation and censoring are present in flow cytometry data, we note that

these issues have not been explicitly addressed in the literature.

Here we present the analysis of two flow cytometry datasets. These datasets were

provided by the Department of Pathology at the University of Michigan. Each cell contains

five marker readings. The markers in the first dataset are FS, SS, CD3, CD8 and CD45.

These are intended for finding T-cells, a type of white blood cells, in the blood sample.

The second dataset includes FS, SS, CD20, CD5 and CD45, and these markers are for

identifying B-lymphocytes. The forward scatter (FS) threshold is set at approximately

100, and cells with low FS values are truncated from these datasets. Each dataset also

underwent censoring so that it includes no marker values out of the range from 0 to 1023.

The censoring was severe in these datasets, and only 20% and 40% of total observed cells

are uncensored as can be seen in the scatter plots in Fig. 3.3 and Fig. 3.4. Furthermore, for

each dataset, the distribution of all cells is significantly different from the distribution of

the uncensored cells. When we exclude censored cells, the cluster of CD45+ CD3− cells

are lost in the first dataset (Fig. 3.3 fourth column) and the cluster of CD45+ CD20+ cells

are lost in the second dataset (Fig. 3.4 fourth column). Thus, analysis based exclusively

on the uncensored cell population can be misleading.
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(a) Scatter plots of all observed cells

(b) Scatter plots of uncensored cells

Fig. 3.3: The first flow cytometry dataset has markers FS, SS, CD3, CD8 and CD45. These
markers are chosen to investigate the T-cells in the blood sample of a patient.
Only 20% of cells are uncensored. The CD45+ CD3− subpopulation is missing
in (b).

(a) Scatter plots of all observed cells

(b) Scatter plots of uncensored cells

Fig. 3.4: The second dataset includes FS, SS, CD20, CD5 and CD45 for B-cell population.
The uncensored cells are 40% of the total observed cells. Scatter plots show that
the CD45+ CD20+ cells are missing among the uncensored cells.
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We modeled the cell population with a Gaussian mixture and fitted the model to the ob-

served 5000 cells using the standard EM algorithm and the truncated and censored version

of EM algorithm. We chose a six-component model (K = 6) since, from these datasets,

we expect to find several types of cells such as lymphocytes, which mostly consist of T-

cells and B-cells, lymphoblasts, and small populations of granulocytes and monocytes.

We treated each cell as a point in 5-dimensional space. The k-means algorithm is first per-

formed to initialize each EM algorithm. The convergence is determined when the relative

change of the log-likelihood is less than 10−10 or the number of iteration reaches 500. Fig.

3.5 shows the evolution of the log-likelihood of the truncated and censored data EM on the

flow cytometry datasets. The value increases sharply in the first dozens of steps and then

converges. The average times per iteration were 0.01 seconds for the standard EM and

2.50 seconds for the truncated and censored data EM under Windows 7 system equipped

with two Intel(R) Xeon(R) 2.27 GHz processors and RAM 12 GB. We repeated this pro-

cess with 10 different starting points based on different runs of the k-means algorithm, and

presented the results that achieved the highest log-likelihood.

Fig. 3.5: The truncated and censored data EM algorithm terminates when the log-
likelihood value changes less than a predefined constant or the number of iter-
ation reaches 500.

The mixture models fitted by the standard EM and the truncated and censored data EM

are shown in Fig. 3.6 and Fig. 3.7. In the first dataset, both algorithms generated similar
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estimates of lymphocyte populations (component 1, 2, and 3), which are the primary in-

terest in the flow cytometry data analysis. On the other hand, the results for lymphoblasts

are different (component 4 in Fig. 3.6(a) and component 4, 5 in Fig. 3.6(b)). Because a

large number of lymphoblasts were truncated or censored, the component centers from the

truncated and censored data EM algorithm were located outside the observation window.

In the second flow cytometry dataset, the key difference is that the standard EM failed to

find the B-lymphocytes (CD45+ CD20+) while component 3 in Fig. 3.7(b) clearly iden-

tified the B-cells. The truncated and censored data EM also estimated that the centers of

component 1 and 2 have negative CD20 values because a large amount of CD45+ CD20−

lymphocytes were censored.

(a) Standard EM algorithm

(b) Truncated and censored EM algorithm

Fig. 3.6: For the first flow cytometry dataset, the mixture model fits using the standard EM
algorithm and the truncated and censored EM algorithm are shown. The level
contour and centroid ‘o’ of each component are indicated and labeled. Lympho-
cyte populations (component 1, 2, and 3) were found well by both algorithms.
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(a) Standard EM algorithm

(b) Truncated and censored EM algorithm

Fig. 3.7: The results for the second flow cytometry dataset are displayed. While the stan-
dard EM result failed to find the CD45+ CD20+ B-lymphocytes, the truncated
and censored EM found this cell population (component 3 in (b)).

3.8 Discussion

In this chapter, we addressed the problem of fitting multivariate Gaussian mixture mod-

els to truncated and censored data. We presented EM algorithms and showed that their

computation can be achieved using the properties of truncated multivariate normal dis-

tributions. Simulation results on synthetic datasets showed that the proposed algorithm

corrects for the biases caused by truncation and censoring, and significantly outperforms

the standard EM algorithm. We also applied the truncated and censored data EM algo-

rithm to automatic gating of flow cytometry data and compared the gating results to the

standard EM algorithm. Our results suggest that the proposed algorithm can be effective

in identifying clinically important cell populations in flow cytometry data analysis.

Although these algorithms can be readily applied to lower dimensional data, they de-

pend on methods for evaluating a multivariate normal cumulative distribution function,

and the algorithms can run slower as the dimension increases. However, ever-growing
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computing power will lower the hindrance to using these algorithms in the future.

Several criteria such as the Akaike information criterion (AIC) and Bayesian infor-

mation criterion (BIC) have been proposed to select the number of components for fi-

nite mixture models. However, they are based on complete measurements, and it is not

straightforward to use them for censored and truncated data. We envision that extending

these model selection criteria to the truncated and censored data is an interesting problem

for future work.

Another future direction is developing stochastic versions of the truncated and cen-

sored data EM algorithm. The stochastic EM (SEM) algorithms are known to be less

susceptible to the initialization. While [17] proposed SEM algorithms for censored data,

his focus was on univariate data. Therefore, the SEM for multivariate mixture models

would be an interesting next step.

3.A Appendix: Truncated Multivariate Normal

We consider here some key properties of truncated multivariate normal distributions

used in this paper. The first two moments are derived and the derivatives of normal inte-

grals are related to the moments.

3.A.1 First and Second Moments

Tallis [67] derived the moment generating function of a standardized and truncated

normal distribution. Then he derived the first and the second moments from the moment

generating function. Here we extend his approach to a normal distribution with arbitrary

mean and covariance that is truncated above and below, and show that we can simplify the

computation of the first two moments. We note that a similar derivation appeared in [46].

Let X ∈ Rd be normally distributed with a probability density function φd(x;0,Σ)
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where

φd(x;µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
.

We consider the nonzero mean case later in this section. Suppose a truncation of X below

at a and above at b and denote

α = P (a ≤ X ≤ b) =

∫ b

a

φd(x;0,Σ) dx = Φd(a,b;0,Σ)

where the inequality is component-wise and Φd(a,b;0,Σ) denotes the normal integration

over the rectangle with vertices a and b. Then the moment generating function is

m(t) =
1

α

∫ b

a

exp(tTx)φd(x;0,Σ) dx =
exp(1

2
tTΣt)

α

∫ b−Σt

a−Σt

φd(x;0,Σ) dx. (3.30)

We can find the first moment and the second moment from (3.30). We first differentiate

(3.30) with respect to ti and evaluate at t = 0. Then

α
∂m(t)

∂ti

∣∣∣∣
t=0

= αE[Xi] =
d∑

k=1

σi,k(Fk(ak)− Fk(bk)) (3.31)

where σi,k = [Σ]i,k and

Fk(x) =

∫ b−k

a−k

φd(x,x−k;0,Σ) dx−k

=φ1(x; 0, σk,k)

∫ b−k

a−k

φd−1(x−k;µ−k|k(x), Σ−k|k) dx−k

=φ1(x; 0, σk,k)Φd−1(a−k,b−k;µ−k|k(x), Σ−k|k).

Here we used−k to denote the set of elements {1, · · · , (k−1), (k+ 1), · · · , d} other than

the kth. The conditional mean and covariance are µ−k|k(x) = Σ−k,kΣ
−1
k,k x and Σ−k|k =

Σ−k,−k − Σ−k,kΣ
−1
k,kΣk,−k.
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Taking the derivatives of (3.30) with respect ti and tj at t = 0 gives the second moment

α
∂2m(t)

∂ti∂ti

∣∣∣∣
t=0

=αE[XiXj]

=ασi,j +
d∑

k=1

σi,k σj,k
σk,k

(
ak Fk(ak)− bk Fk(bk)

)
+

d∑
k=1

σi,k
∑
q 6=k

(
σj,q −

σk,qσj,k
σk,k

)[
Fk,q(ak, aq) + Fk,q(bk, bq)

− Fk,q(ak, bq)− Fk,q(bk, aq)
]

(3.32)

where

Fk,q(xk, xq) =

∫ b−(k,q)

a−(k,q)

φd(xk, xq,x−(k,q);0,Σ) dx−(k,q)

=φ2(xk, xq, ;0,Σ(k,q),(k,q))

·
∫ b−(k,q)

a−(k,q)

φd−2(x−(k,q) ; µ−(k,q)|(k,q)(xk, xq), Σ−(k,q)|(k,q)) dx−(k,q)

=φ2(xk, xq, ;0,Σ(k,q),(k,q))

· Φd−2(a−(k,q),b−(k,q) ; µ−(k,q)|(k,q)(xk, xq), Σ−(k,q)|(k,q)).

Likewise, −(k, q) indicates the set of elements except the kth and qth elements. The

conditional mean µ−(k,q)|(k,q)(xk, xq) and covariance Σ−(k,q)|(k,q) are also defined similarly.

Therefore, we can compute the first moment (3.31) and the second moment (3.32)

from a density function and a normal integration, which can be evaluated from the cumu-

lative distribution function and are available in many statistical toolboxes (for example,

FORTRAN, R or MATLAB). In particular, mvncdf function in MATLAB 7.9.0 evalu-

ates the multivariate cumulative probability using the methods developed by Drezner and

Wesolowsky [22] and by Genz [28] for bivariate and trivariate Gaussian. For four or more

dimensional Gaussians, it uses a quasi-Monte Carlo integration algorithm developed by

Genz and Bretz [29, 30].

Note that Fk(x)
α

and Fk,q(xk,xq)

α
are univariate and bivariate marginals of Xk and

(Xk, Xq).
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Now consider a normal distribution φd(y;µ,Σ) truncated at a∗ and b∗. Then

M1(µ,Σ ; [a∗,b∗]) :=E[Y] (3.33)

=E[X] + µ,

M2(µ,Σ ; [a∗,b∗]) :=E[YYT ] (3.34)

=E[XXT ] + µE[X]T + E[X]µT + µµT

=E[Y]E[Y]T + E[XXT ]− E[X]E[X]T

where E[Xi] and E[XiXj] are evaluated at a = a∗ − µ and b = b∗ − µ. In Section 3.3,

we introduced the notationsM1 andM2 to denote above expectations (3.33) and (3.34).

For example, consider a univariate random variable Y distributed normally with mean

µ and variance σ2. If it is truncated above at 0 (that is, a∗ = −∞, b∗ = 0), then

E[Y ] =µ− σ
φ1(−µ

σ
; 0, 1)

Φ1(−µ
σ
; 0, 1)

,

E[Y 2] =µ2 + σ2 − µσ
φ1(−µ

σ
; 0, 1)

Φ1(−µ
σ
; 0, 1)

where the fraction of the standard normal density function φ and the distribution function

Φ is known as the inverse Mills ratio.

3.A.2 Derivatives

Here we consider the derivatives of α(µ,Σ) :=
∫ b

a
φd(y;µ,Σ) dy with respect to µ

and Σ used in the derivation in Section 3.3, and relate them with the first and the second

moments. Taking the derivative of α(µ,Σ) with respect to µ,

∂

∂µ

∫ b

a

φd(y;µ,Σ) dy =

∫ b

a

Σ−1(y − µ)φd(y;µ,Σ) dy

= Σ−1
[
αM1(µ,Σ ; [a,b])− αµ

]
=αΣ−1M1(0,Σ ; [a− µ,b− µ])
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where the last equality is from (3.33), so we obtain

∂

∂µ
ln

∫ b

a

φd(y;µ,Σ) dy = Σ−1M1(0,Σ ; [a− µ,b− µ]). (3.35)

Next if we take the derivative with respect to Σ, we have

∂

∂Σ
ln

∫ b

a

φd(y;µ,Σ) dy =
1

α

∂

∂Σ

∫ b−µ

a−µ
φd(y;0,Σ) dy

=
1

α

∫ b−µ

a−µ

(
−1

2
Σ−1 +

1

2
Σ−1yyTΣ−1

)
φd(y;0,Σ) dy

=− 1

2
Σ−1 +

1

2
Σ−1M2(0,Σ ; [a− µ,b− µ]) Σ−1 (3.36)

where we used the following facts [45] in the second equality:

∂

∂Σ
tr(Σ−1A) = −(Σ−1AΣ−1)T ,

∂

∂Σ
ln |Σ| = (Σ−1)T .



CHAPTER 4

Transfer Learning for Automatic Gating of Flow
Cytometry Data

4.1 Introduction

Flow cytometry is a technique widely used in many clinical and biomedical laborato-

ries for rapid cell analysis [9, 63]. It plays an important role in the diagnosis of diseases

such as acute leukemia, chronic lymphoproliferative disorders and malignant lymphomas.

While flow cytometry is used in other contexts, our motivation is hematopathology, the

study of blood-related diseases.

Mathematically, a flow cytometry dataset can be represented as a collection D =

{xi}Ni=1, where i indexes individual cells, and xi is a d-dimensional attribute vector record-

ing physical and chemical attributes of the ith cell. The measured attributes include the

cell’s size, surface complexity, and a variety of features related to the expression levels of

different antigens. The number of cells N can range from 10,000 to 1,000,000 (order of

magnitude). The dimension d ranges from 7-12 in most clinical applications and 15-20 in

some research applications. In clinical settings, each dataset corresponds to a particular

patient, where the cells are typically drawn from a peripheral blood, lymph node, or bone

marrow sample.

To make a diagnosis, a pathologist will use a computer to visualize different two-

72
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dimensional scatter plots of a flow cytometry dataset. Figure 4.1 shows examples of such

scatter plots for two different patients. The attributes in these datasets are denoted here

only by their abbreviations (FS, SS, CD45, etc.) for simplicity. These plots illustrate the

presence of several clusters of cells within each dataset. They also illustrate the variation

of measured data from one patient to another. This variation arises from both biological

(e.g., health condition) and technical (e.g., instrument calibration) sources.

Depending on the illness being screened for, the pathologist will typically visualize

one type of cell in particular. For example, in the diagnosis of leukemias, lymphocytes are

known to be relevant. By visualizing different two-dimensional scatter plots, the patholo-

gist makes a diagnosis based on the shape, range, and other distributional characteristics

of these cells. Therefore, a necessary preprocessing step is to label every cell as belong-

ing to the cell type of interest or not, a process known as “gating.” This amounts to the

assignment of binary labels yi ∈ {−1, 1}, i = 1, . . . , N, to every cell. In Figure 4.1, the

lymphocytes are indicated by an alternate color/shading. Without gating, cells of other

types will overlap with the targeted cell type in the two-dimensional scatter plots used for

diagnosis. After gating, only the cells of interest are visualized.

This chapter concerns the automation of gating. Unfortunately, in clinical settings gat-

ing is still performed manually. It is a labor-intensive task in which a pathologist or tech-

nologist visualizes the data from different two-dimensional scatter plots, and uses special

software to draw a series of boundaries (“gates”), each of which eliminates a portion of

the cells outside of the desired type. In many clinical settings, several “gating” decisions,

all currently manual, are required to “purify” a population of interest. For example, one

might first draw a series of bounding line segments on pairwise plots of FS, SS and CD45

to select all “cells,” which eliminates spurious attribute vectors arising from dead cells, air

bubbles, etc. Next, gating on (restricting to) cells, the same three attributes can be used to
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identify lymphocytes. Finally, a CD20 vs. CD10 plot, gated on lymphocytes, may be used

to select B-cell lymphocytes for further analysis. Unfortunately, because of the aforemen-

tioned variation in data, this process is difficult to quantify in terms of a small set of simple

rules. Instead, the person performing gating must utilize specialized domain knowledge

together with iterative refinement. Since modern clinical laboratories can see dozens of

cases per day, it would be highly desirable to automate this process.

Because of this need, several researchers have tackled the auto-gating problem. This

is evidenced by a recent survey on flow cytometry analysis methods, which revealed that

more than 70% of studies focus on automated gating techniques [6]. The vast majority

of approaches rely on a clustering/mixture modeling, using a parametric representation

for each cell type, together with unsupervised learning (usually an EM algorithm) to fit

the model parameters [8, 15, 44, 53]. The mixture modeling approach has a number of

difficulties, however. One is that the clusters are typically not elliptical, meaning complex

parametric models must be employed, such as skewed Gaussians, leading to challenging

inference problems. Another limitation is that clustering is a harder problem than the one

that needs to be solved, in the same sense that determining a decision boundary is easier

than estimating a density. Finally, these algorithms are unsupervised, and do not fully

leverage expert knowledge.

We propose to view auto-gating as a kind of transfer learning problem. In particular,

we assume that a collection of expert-gated datasets are available. Although different

datasets have different distributions, there is enough similarity, (e.g., lymphocytes show

low levels of SS while expressing high levels of CD45) that this expert knowledge can be

transferred to the new dataset. Our basic approach is to train a classifier on each expert-

gated dataset, and to summarize these classifiers to form a baseline classifier. This baseline

is then adapted to the new dataset by optimizing a “low-density separation” criterion.
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The transfer learning problem we study is, to our knowledge, a new one, although it has

similarities to previously studied transfer learning problems, as well as multi-task learning.

These connections are reviewed below.

The rest of the chapter is structured as follows. Section 4.2 gives the problem state-

ment. Related work is described in Section 4.3. Our methodology is described in Sec-

tion 4.4, and in Section 4.5 we describe the application of our methods to the gating of

lymphocytes in peripheral blood samples. Some concluding remarks are given in Sec-

tion 4.6.

Fig. 4.1: Clinicians analyze flow cytometry data using a series of scatter plots on pairs of
attributes. The distribution of cell populations differs from patient to patient, and
changes after treatments. Lymphocytes, a type of white blood cell, are marked
dark (blue) and others are marked bright (green). These were manually selected
by a domain expert.

4.2 Problem Setup

There are M labeled datasets Dm = {(xm,i, ym,i)}Nmi=1, m = 1, · · · ,M , each a random

sample from a distribution Pm. Dm corresponds to the mth flow cytometry dataset and

its labels are determined by experts. There is also an unlabeled dataset T = {xt,i}Nti=1, a

random sample from a new distribution Pt corresponding to a new flow cytometry dataset.

The labels {yt,i}Nti=1 are not observed. The goal is to assign labels {ŷt,i}Nti=1 to T so that the
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misclassification rate is minimized. All the distributions are different, but defined on the

same space Rd × {−1,+1}.

While there are obvious connections to transfer learning (discussed in the next sec-

tion), this problem might also be described as a supervised learning problem called set

prediction. Whereas in traditional supervised learning, the inputs are vectors and the out-

puts are scalar labels, here the inputs are distributions (random samples), and the outputs

are subsets of Euclidean space (subsamples). Given several examples of distributions and

corresponding subsets, the goal is to generalize to predict the subsets associated with pre-

viously unseen distributions.

4.3 Related Work

As a transfer learning problem, our problem is characterized by having multiple source

domains (the expert-gated datasets), and a single target domain (the unlabeled dataset). In

addition, using the taxonomy of Pan and Yang [50], our setting can be described as follows:

(1) the source and target domains are different, because the marginal distributions of x

are different,

(2) the source and target tasks are different, because each dataset requires a different

gating,

(3) there are no labeled examples in the target domain.

To the best of our knowledge, previous work has not addressed this combination of char-

acteristics. Many previous works fall under the heading of inductive transfer learning,

where at least a few labels are given for the target domain [2, 55]. In transductive transfer

learning, and the related problems of sample selection bias and covariate shift, the source

and target tasks are assumed to be the same [3].
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Another closely related area is multi-task learning [14, 23, 69]. However, our problem

contrasts to this line of studies in the sense that our ultimate goal is achieving high perfor-

mance for the target task only, and not the source tasks. It would be natural, however, to

extend our problem to the case where there are multiple unlabeled target datasets, which

might be called “transductive set prediction.”

Toedling et al. [72] explore using support vector machines (SVMs) for flow cytome-

try datasets from multiple patients. They form a single large dataset by merging all the

source datasets, and train a classifier on this dataset. However, due to its large size of the

combined dataset, the training requires demanding computational and memory resources.

Furthermore, this approach ignores the variability among multiple datasets and treats all

the datasets as arising from the same distribution. This reduces the problem to standard

single-task supervised learning.

4.4 Algorithm

We describe our approach to the problem. In this section, we show how our algorithm

summarizes knowledge from the source data and adapts it to the new task.

4.4.1 Baseline Classifier for Summarizing Expert Knowledge

We suppose that the knowledge contained in the source tasks can be represented by a

set of decision functions f1, · · · , fM . The sign of a decision function fm provides a class

prediction of a data point x: ŷ = sign(fm(x)). Each fm is separately learned from each

of the M source datasets. Then these decision functions form the pool of knowledge.

In the present work, we consider linear decision functions of the form f(x) = 〈w,x〉+

b. This decision function defines a hyperplane {x : f(x) = 0} with a normal vector

w ∈ Rd and a bias b ∈ R.
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Algorithm 4.1 Baseline Classifier
Input: source task data Dm for m = 1, · · · ,M , regularization parameters {Cm}Mm=1

1: for m = 1 to M do
2: (wm, bm)← SVM(Dm, Cm)

3: end for
4: Robust Mean:

(w0, b0)← Algorithm 4.2 ({(wm, bm)}m)

Output: (w0, b0) or f0(x) = 〈w0,x〉+ b0

The SVM is among the most widely used methods for learning a linear classifier [58].

It finds a separating hyperplane based on the maximal margin principle. We use the SVM

to fit a decision function fm or a hyperplane (wm, bm) to the mth source dataset Dm.

Training of a SVM needs a regularization parameter Cm that can be set individually for

each source task.

We devise a baseline classifier f0 = 〈w0,x〉 + b0, where (w0, b0) is the mean of

(wm, bm). Instead of the simple mean, Algorithm 4.1 uses a robust mean to prevent f0 from

being unduly influenced by atypical variations among datasets. Algorithm 4.2 presents the

robust estimator as formulated in [11]. Here ψ is a weight function corresponding to a

robust loss, and we use the Huber loss function. Note that we also robustly estimate the

covariance of the wm, which is used below in Section 4.4.2.

The learning of f0 does not involve T at all. Thus, it is not expected to provide a good

prediction for the target task. Next we describe a way to adapt this baseline classifier to

the target data based on the low-density separation principle.

4.4.2 Transferring Knowledge to Target Task

Low-density separation is a concept used extensively in machine learning. This notion

forms the basis of many algorithms in clustering analysis, semi-supervised classification,

novelty detection and transductive learning. The underlying intuition is that the decision
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Algorithm 4.2 Robust Mean and Covariance
Input: (wm, bm) for m = 1, · · · ,M

1: Concatenate: um ← [wm, bm], ∀m
2: Initialize: µ← mean(um), C← cov(um)
3: repeat
4: dm ←

(
(um − µ)TC−1(um − µ)

)1/2

5: wm ← ψ(dm)/dm
6: Update: µnew ←

∑
m wmum∑
m wm

Cnew ←
∑
m w2

m(um−µnew)(um−µnew)T∑
m w2

m−1

7: until Stopping conditions are satisfied

Output: µ = [w0, b0], C0 = C(1 : d, 1 : d)

Algorithm 4.3 Shift Compensation
Input: hyperplane (w, b), source task data {Dm}Mm=1, target task data T

1: zt,i ← 〈w,xt,i〉+ b, ∀i
2: for m = 1 to M do
3: zm,i ← 〈w,xm,i〉+ b, ∀i
4: em ← arg maxzKDE(z, zt,i) ? KDE(z, zm,i)

5: end for
6: b← b−median(em)

Output: b

boundaries between clusters or classes should pass through regions where the marginal

density of x is low. Thus, our approach is to adjust the hyperplane parameters so that it

passes through a region where the marginal density of T is low.

Preprocessing

The ranges of each attribute are manually determined by an operator in a way that

is specific to each dataset. While operators attempt to minimize this source of technical

variation, datasets invariably differ by shifting (and possible scaling) along coordinate axis.

Rather than aligning all datasets via some global d-dimensional shift/scale transformation,

it is sufficient for our purposes to align datasets in the direction of the baseline normal



80

Algorithm 4.4 Bias Update
Input: hyperplane (w, b), target task data T

1: Compute: zi ← 〈w,xt,i〉+ b, ∀i
2: Build a Grid: si ← sort (zi)

3: for j = 1 to Nt do
4: cj ←

∑
i 1{ |zi−sj |‖w‖ <1}

5: end for
6: h← kernel bandwidth ( {(sj, cj)}j )

7: Smooth: p̂(z)←
∑

j cjkh(z, sj)

8: z∗ ← gradient descent (p̂(z), 0)

9: bnew ← b− z∗

Output: bnew or fb(x) = 〈w,x〉+ bnew

vector w0. Specifically, for each dataset, we compute a kernel density estimate (KDE)

of the projection onto w0. Then, we align the target data to each source dataset using

maximum cross-correlation (denoted by ? in Algorithm 4.3), and modify the baseline bias

by the median of these shifts. This new bias b will serve as the initial bias when adapting

the baseline to T .

Varying Bias

We first describe adapting the bias variable to the unlabeled target data T based on

low-density separation. The process is illustrated in Algorithm 4.4.

To assess whether a linear decision boundary is in a low density region, we count data

points near the hyperplane. As the hyperplane moves, this number will be large in a high

density region and small in a low density region. In particular, we define a margin, as in

SVMs, to be a region of a fixed distance from a hyperplane, say ∆, and count data points

within this margin. We use ∆ = 1. Given a hyperplane (w, b), basic linear algebra shows
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Algorithm 4.5 Kernel Bandwidth
Input: grid points and counts {(sk, ck)}

1: N ←
∑

k ck

2: s← 1
N

∑
k skck

3: σ̂ ←
(

1
N−1

∑
k ck(sk − s)2

)1/2

4: h← 0.9 · σ̂ ·N−1/5

Output: h

that 〈w,x〉+b‖w‖ is the signed distance from x to the hyperplane. Hence, computing

∑
i

1
{
|〈w,xt,i〉+b|
‖w‖ <∆}

over a range of b followed by locating a minimizer near the baseline hyperplane gives

the desired solution. Algorithm 4.4 implements this on a grid of biases {sj} and builds∑
j cj δ(z − sj) where δ is the Dirac delta. The grid points and the counts at each grid

point are denoted by sj and cj .

Before searching for the minimizing bias, we smooth these counts over the grid by

convolving with a Gaussian kernel kh(z, z′) = 1√
2πh

exp
(
− |z−z

′|2
2h2

)
. The bandwidth h

controls the smoothness of the kernel. This operation yields a smooth function p̂(z) =∑
j cjkh(z, sj). Running a gradient descent algorithm on this smoothed function p̂(z)

returns a local minimum near 0 if initialized at 0 (the second parameter in Line 8).

To facilitate a streamlined process for practical use, we automatically select the kernel

bandwidth h as shown in Algorithm 4.5. This kernel choice is motivated from the rule of

thumb for kernel density estimation suggested in [64].

Varying Normal Vector

We can also adjust the normal vector of a hyperplane. Given a hyperplane having a

normal vector w, we let the updated normal vector be of the form wnew = w+atvt where

vt is the direction of change and at is the amount of the change. Thus, the new normal
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vector is from an affine space spanned by vt.

Now we explain in detail the ways of choosing vt and at. We find a direction of change

from the robust covariance matrix of the normal vectors w1, · · · ,wM obtained from Al-

gorithm 4.2. We choose the first principal eigenvector for vt after making it orthogonal

to w0, the baseline classifier normal vector, because changes in the direction of w0 do not

affect the decision boundary.

To determine the amount of change at, we proceed similarly to the method used to

update the bias. We count the number of data points inside the margin as the normal

vector varies by a regular increment in the direction of vt. Filtering with a Gaussian kernel

smooths these quantities over the range of variation. Then a gradient descent algorithm

can spot at that leads to a low density solution near the baseline hyperplane. Algorithm 4.6

summarizes this process.

Even though the presented algorithm here confines the varying direction of normal

vector to a single vector vt, we can generalize this to multiple directions. To do this, more

than one eigenvector can be chosen in Step 1 of Algorithm 4.7. Then the Gram-Schmidt

process generates a set of orthonormal vectors that spans a subspace for a new normal

vector. The counting in-margin points in Algorithm 4.6 can be extended to a multivariate

grid with little difficulty.

Putting It All Together

Once the normal vector is updated, we build a new hyperplane by combining it with

an updated bias so that the hyperplane accords to a low density region of T . The overall

scheme is outlined in Algorithm 4.7. In the algorithm, one can repeatedly update the bias

and the normal vector of the hyperplane until stopping conditions are met. A simpler

method is fixing the number of iterations. In our experience, running one round of the
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Algorithm 4.6 Normal Vector Update
Input: hyperplane (w, b), direction of change vt, target task data T

1: for ak = −0.5 to 0.5 step 0.01 do
2: wk ← w + akvt

ck ←
∑

i 1{
∣∣∣∣ 〈wk,xt,i〉+b‖wk‖

∣∣∣∣<1}

3: end for
4: h← kernel bandwidth ( {(ak, ck)}k )

5: Smooth: g(a)←
∑

k ckkh(a, ak)

6: at ← gradient descent (g(a), 0)

7: wnew ← w + atvt

Output: wnew

loop was sufficient for good solutions.

4.5 Experiments
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Fig. 4.2: Number of total events and lymphocytes in each of the flow cytometry datasets.

We demonstrate the proposed methods on clinical flow cytometry datasets. Specif-

ically, we apply them to the problem of detecting lymphocytes from peripheral blood

samples. Lymphocytes are kinds of white blood cells and play a major role in the human

immune system. In diagnosing diseases such as leukemias, identifying these cells is the

first step in most clinical analysis.
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Algorithm 4.7 Set Estimation based on Low-Density Separation
Input: source task data {Dm}Mm=1, target task data T , regularization parameters {Cm}Mm=1

1: for m = 1 to M do
2: (wm, bm)← SVM(Dm, Cm)

3: end for
4: Initialize:

((w0, b0),C0)← Algorithm 4.2 ({(wm, bm)}m)
v0 ← eig(C0)

5: Normalize:
wt ← w0/‖w0‖, bt ← b0/‖w0‖
vt ← orthonormalize v0with respect to w0

6: Compensate Shift:
bt ← Algorithm 4.3 (wt, bt, {Dm}, T )

7: Update Bias:
bt ← Algorithm 4.4 (wt, bt, T )

8: repeat
9: Update Normal Vector:

wt ← Algorithm 4.6 (wt, bt,vt, T )

10: Update Bias:
bt ← Algorithm 4.4 (wt, bt, T )

11: until Stopping conditions are satisfied

Output: (wt, bt) or ft = 〈wt,x〉+ bt

For the experiments, peripheral blood sample datasets were obtained from 35 normal

patients. These datasets are provided by the Department of Pathology at the University

of Michigan. The number of events in a dataset ranges from 10, 000 to 100, 000 with a

varying portion of lymphocytes among them. Ordinary cells as well as dead cells, cell

debris and doublets are referred to as events. Figure 4.2 shows the number of total events

and lymphocytes in each dataset. An event in a dataset has six attributes (known as FS,

SS, CD45, CD4, CD8 and CD3) and a corresponding binary label (+1 for lymphocytes

and −1 for others) from the manual gates set by experts (see Figure 4.1).

For the experiments, we adopt a leave-one-out setting: choose a dataset as a target task
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T , hide its labels, and treat the other datasets as source tasks Dm. Each of the source task

datasets constitutes a binary classification problem with the goal of predicting the correct

labels.

On each source datasetDm, we trained a SVM classifier fm with the LIBSVM package

[16]. Throughout the experiments, we fixed all the regularization parameters Cm to 1.

Then we applied the algorithms described in Section 4.4 and evaluated the prediction

accuracy on the unlabeled target dataset T . The following transfer learning algorithms

are considered:

• f0 : baseline classifier with no adaptation, referred to as “baseline.”

• fb : classifier adapted to T by varying the bias-only, referred to as “bias.”

• ft : classifier adapted to T by varying both the direction and the bias, referred to as

“dir. and bias.”

In addition to the above classifiers, we compared the error rates from the following classi-

fiers as points of reference:

• Pooling

A SVM is trained after merging all source data as in Toedling et al. [72].

• fm for m = 1, · · · ,M

Each classifier fm learned from a source dataset Dm is applied straight to the target

dataset T . Note that this emulates a supervised learning setup with a train sample

Dm and a test sample T while implicitly assuming Dm and T are drawn from the

same distribution. A box plot in Figure 4.3 displays the range of results with some

‘+’ indicating extreme values. Table 4.1 numbers fBestm , the best of the 34 error

rates.
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• Oracle

We also applied the standard SVM with the true labels of the target task data. Its per-

formance is computed by 5-fold cross validation. This quantity gives us a glimpse

of the misclassification rate we can expect when a sufficient amount of labeled data

are available for the target task.

For each of the datasets, we repeated this experiment and reported their results in

Figure 4.3 and Table 4.1.

As can be seen in the figure and table, applying one of the fm to the target task can

result in a wide range of accuracy. The Pooling performs poorly on many datasets.

The classifier from Pooling can be biased toward larger source data. In addition, the

Pooling also makes the classification problem more difficult. Even if classes are well-

separated in each dataset, the separation will be lost in the merged dataset. The baseline

classifier f0 typically improves when we adapt f0 by changing the bias variable in most

cases except Case 14 and Case 23. They further improve by adaptively varying both the

direction and the bias. The differences among the fBestm , Oracle and ft are very small.

This reveals that our strategy can successfully replicate what experts do in the field without

labeled training set for the target task.

4.6 Conclusion

We cast flow cytometry auto-gating as a novel kind of transfer learning problem. By

combining existing ideas from transfer learning, together with a low-density separation

criterion for class separation, our approach can leverage expert-gated datasets for the au-

tomatic gating of a new unlabeled dataset.

Although linear classifiers are sufficient to gate lymphocytes in peripheral blood, non-

linear classifiers may be necessary for other kinds of auto-gating. Our approach accom-
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modates the incorporation of inner-product kernels, which may offer a solution to such

problems. It is also quite likely that several other strategies from the transfer learning

literature can be adapted to this problem.

Biological and technical variation pose challenges for the analysis of many types of

biomedical data. Typically one or both types of variation is accounted for by performing

task-independent “normalization” prior to analysis. Our approach to flow cytometry auto-

gating can be viewed as a task-dependent approach. The application of transfer learning

to overcome biological and/or technical variations in other kinds of biomedical data is an

interesting problem for future work.
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CASE POOL f0 fb ft fBestm ORACLE

1 38.65 2.91 3.05 3.17 2.87 2.79
2 20.27 5.44 2.09 2.10 2.06 1.71
3 2.05 1.66 1.00 0.94 0.91 0.74
4 2.93 2.62 2.54 2.67 2.44 2.56
5 5.06 1.50 1.40 1.44 1.41 1.58
6 1.60 1.84 1.60 1.80 1.62 1.56
7 7.00 0.91 0.82 0.77 0.80 0.79
8 2.44 0.65 0.60 0.50 0.52 0.47
9 8.31 2.19 1.91 1.83 1.78 1.71

10 26.65 2.16 1.09 1.09 1.03 1.03
11 2.67 5.11 1.86 1.86 1.77 1.79
12 21.89 6.69 1.60 1.63 1.78 1.54
13 39.44 1.69 1.63 1.65 1.59 1.64
14 3.67 2.29 3.55 0.87 0.71 0.81
15 5.90 1.78 1.16 1.22 1.11 1.11
16 4.34 3.79 3.19 3.23 2.82 2.83
17 7.70 2.75 3.49 3.51 2.47 2.44
18 2.53 1.86 1.64 1.67 1.59 1.60
19 8.25 3.44 3.45 3.14 2.46 2.29
20 3.03 4.48 2.39 2.37 2.56 2.45
21 10.14 7.71 6.28 6.30 5.64 5.08
22 4.16 1.60 1.81 1.82 1.54 1.42
23 21.73 2.89 7.51 1.58 1.61 1.43
24 2.79 2.41 2.06 2.06 1.91 1.89
25 1.98 2.22 2.25 2.32 2.04 1.47
26 1.55 2.13 1.82 1.83 1.42 1.39
27 11.34 11.22 9.02 9.18 8.17 8.72
28 2.21 1.68 2.23 2.17 1.56 1.48
29 9.19 1.06 0.96 0.97 0.77 0.73
30 7.80 1.25 1.24 1.25 1.25 1.24
31 16.08 13.46 4.57 4.59 4.80 4.45
32 20.39 12.66 2.62 2.62 2.72 2.21
33 5.57 4.58 5.74 5.74 2.28 1.77
34 4.66 2.10 1.90 1.93 1.79 1.80
35 9.33 6.68 5.46 5.49 5.56 5.59

AVG 9.81 3.70 2.73 2.49 2.21 2.12
STD ERR 1.68 0.54 0.33 0.30 0.26 0.27

Table 4.1: The error rates (%) of various classifiers on each flow cytometry dataset, with
the other 34 treated as labeled datasets. The results from ft adapted to the
unlabeled target data are comparable to the results from Oracle trained on
labeled target data. For detailed explanations of the experiment setup and the
header, readers are referred to the text.



CHAPTER 5

Nested Support Vector Machines

5.1 Introduction

Many statistical learning problems may be characterized as problems of set estimation.

In these problems, the input takes the form of a random sample of points in a feature space,

while the desired output is a subset G of the feature space. For example, in density level

set estimation, a random sample from a density is given and G is an estimate of a density

level set. In binary classification, labeled training data are available, and G is the set of all

feature vectors predicted to belong to one of the classes.

In other statistical learning problems, the desired output is a family of sets Gθ with

the index θ taking values in a continuum. For example, estimating density level sets at

multiple levels is an important task for many problems including clustering [33], outlier

ranking [43], minimum volume set estimation [61], and anomaly detection [59]. Esti-

mating cost-sensitive classifiers at a range of different cost asymmetries is important for

ranking [36], Neyman-Pearson classification [60], semi-supervised novelty detection [62],

and ROC studies [5].

Support vector machines (SVMs) are powerful nonparametric approaches to set esti-

mation [58]. However, both the one-class SVM (OC-SVM) for level set estimation and

the standard two-class SVM for classification do not produce set estimates that are nested

90
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(a) one-class SVM (b) cost-sensitive SVM

Fig. 5.1: Two decision boundaries from a one-class SVM (a) and a cost-sensitive SVM
(b) at two density levels and cost asymmetries. The shaded regions indicate the
density level set estimate at the higher density level and the positive decision set
estimate at the lower cost asymmetry, respectively. These regions are not com-
pletely contained inside the solid contours corresponding to the smaller density
level or the larger cost asymmetry, hence the two decision sets are not properly
nested.

as the parameter λ of the OC-SVM or, respectively, the misclassification cost of the two-

class SVM is varied. As displayed in Fig. 5.1, set estimates from the original SVMs are

not properly nested. On the other hand, Fig. 5.2 shows nested counterparts obtained from

our proposed methods (see Section 5.3, 5.4). Since the true sets being estimated are in

fact nested, estimators that enforce the nesting constraint will not only avoid nonsensical

solutions, but should also be more accurate and less sensitive to parameter settings and

perturbations of the training data. One way to generate nested SVM classifiers is to train

a cost-insensitive SVM and simply vary the offset. However, this often leads to inferior

performance as demonstrated in [5].

Recently Clémençon and Vayatis [18] developed a method for bipartite ranking that

also involves computing nested estimates of cost-sensitive classifiers at a finite grid of

costs. Their set estimates are computed individually, and nesting is imposed subsequently

through an explicit process of successive unions. These sets are then extended to a com-

plete scoring function through piecewise constant interpolation. Their interest is primarily
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(a) nested OC-SVM (b) nested CS-SVM

Fig. 5.2: Five decision boundaries from our nested OC-SVM (a) and nested CS-SVM (b)
at five different density levels and cost asymmetries, respectively. These deci-
sion boundaries from nested SVMs do not cross each other, unlike the decision
boundaries from the original SVMs (OC-SVM and CS-SVM). Therefore, the
corresponding set estimates are properly nested.

theoretical, as their estimates entail empirical risk minimization, and their results assume

the underlying Bayes classifiers lies in a Vapnik-Chervonenkis class.

In this chapter, we develop nested variants of one-class and two-class SVMs by in-

corporating nesting constraints into the dual quadratic programs associated with these

methods. Decomposition algorithms for solving these modified duals are also presented.

Like the solution paths for conventional SVMs [5, 34, 39], nested SVM solution paths are

also piecewise linear in the control parameters, but require far fewer breakpoints. We

compare our nested paths to the unnested paths on synthetic and benchmark data sets.

We also quantify the degree to which standard SVMs are unnested, which is often quite

high. The Matlab implementation of our algorithms is available at http://www.eecs.

umich.edu/˜cscott/code/nestedsvm.zip. A preliminary version of this work

appeared in [40].

5.1.1 Motivating Applications

With the multiple set estimates from nested SVMs over density levels or cost asymme-

tries, the following applications are envisioned.
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Ranking : In the bipartite ranking problem [1], we are given labeled examples from

two classes, and the goal is constructing a score function that rates new examples according

to their likelihood of belonging to the positive class. If the decision sets are not nested

as cost asymmetries or density levels varies, then the resulting score function leads to

ambiguous ranking. Nested SVMs will make the ranking unambiguous and less sensitive

to perturbations of the data. See Section 5.6.3 for further discussion.

Clustering : Clusters may be defined as the connected components of a density level

set. The level at which the density is thresholded determines a tradeoff between cluster

number and cluster coverage. Varying the level from 0 to ∞ yields a “cluster tree” [66]

that depicts the bifurcation of clusters into disjoint components and gives a hierarchical

representation of cluster structure.

Anomaly Detection : Anomaly detection aims to identify deviations from nominal

data when combined observations of nominal and anomalous data are given. Scott and

Kolaczyk [59] and Scott and Blanchard [62] present approaches to classifying the contam-

inated, unlabeled data by solving multiple level set estimation and multiple cost-sensitive

classification problems, respectively.

5.2 Background on CS-SVM and OC-SVM

In this section, we will overview two SVM variants and show how they can be used to

learn set estimates. To establish notation and basic concepts, we briefly review SVMs.

Suppose that we have a random sample {(xi, yi)}Ni=1 where xi ∈ Rd is a feature vector

and yi ∈ {−1,+1} is its class. An SVM finds a separating hyperplane with a normal
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vector w in a high dimensional spaceH by solving

min
w,ξ

λ

2
‖w‖2 +

∑
i

ξi

s.t. yi〈w,Φ(xi)〉 ≥ 1− ξi, ξi ≥ 0, ∀i

where λ is a regularization parameter and Φ is a nonlinear function that maps each data

point into H generated by a positive semi-definite kernel k : Rd × Rd → R. This kernel

corresponds to an inner product in H through k(x,x′) = 〈Φ(x),Φ(x′)〉. Then the two

half-spaces of the hyperplane {Φ(x) : f(x) ≡ 〈w,Φ(x)〉 = 0} form positive and negative

decision sets. Since the offset of the hyperplane is often omitted when Gaussian or inho-

mogeneous polynomial kernels are chosen [37], it is not considered in this formulation.

More detailed discussion on SVMs can be found in [58].

5.2.1 Cost-Sensitive SVM

The SVM above, which we call a cost-insensitive SVM (CI-SVM), penalizes errors

in both classes equally. However, there are many applications where the numbers of data

samples from each class are not balanced, or false positives and false negatives incur dif-

ferent costs. The cost-sensitive SVM (CS-SVM) handles this issue by controlling the cost

asymmetry between false positives and false negatives [49].

Let I+ = {i : yi = +1} and I− = {i : yi = −1} denote the two index sets, and γ

denote the cost asymmetry. Then a CS-SVM solves

min
w,ξ

λ

2
‖w‖2 + γ

∑
I+

ξi + (1− γ)
∑
I−

ξi (5.1)

s.t. yi〈w,Φ(xi)〉 ≥ 1− ξi, ξi ≥ 0, ∀i

where w is the normal vector of the hyperplane. When γ = 1
2
, CS-SVMs reduce to CI-

SVMs.
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In practice this optimization problem is solved via its dual, which depends only on a

set of Lagrange multipliers (one for each xi):

min
α

1

2λ

∑
i

∑
j

αiαjyiyjKi,j −
∑
i

αi (5.2)

s.t. 0 ≤ αi ≤ 1{yi<0} + yiγ, ∀i.

where Ki,j = k(xi,xj) and α = (α1, α2, . . . , αN). The indicator function 1{A} returns 1

if the condition A is true and 0 otherwise. Since there is no offset term, a linear constraint∑
i αiyi = 0 does not appear in the dual.

Once an optimal solution α∗(γ) = (α∗1(γ), . . . , α∗N(γ)) is found, the sign of the deci-

sion function

fγ(x) =
1

λ

∑
i

α∗i (γ)yik(x,xi) (5.3)

determines the class of x. If k(·, ·) ≥ 0, then this decision function takes only non-positive

values when γ = 0, and corresponds to (0, 0) in the ROC. On the other hand, γ = 1

penalizes only the violations of positive examples, and corresponds to (1, 1) in the ROC.

Bach et al. [5] extended the method of Hastie et al. [34] to the CS-SVM. They showed

that α∗i (γ) are piecewise linear in γ, and derived an efficient algorithm for computing the

entire path of solutions to (5.2). Thus, a family of classifiers at a range of cost asymmetries

can be found with a computational cost comparable to solving (5.2) for a single γ.

5.2.2 One-Class SVM

The OC-SVM was proposed in [57, 68] to estimate a level set of an underlying proba-

bility density given a data sample from the density. In one-class problems, all the instances
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are assumed from the same class. The primal quadratic program of the OC-SVM is

min
w,ξ

λ

2
‖w‖2 +

1

N

N∑
i=1

ξi (5.4)

s.t. 〈w,Φ(xi)〉 ≥ 1− ξi, ξi ≥ 0, ∀i.

This problem is again solved via its dual in practice:

min
α

1

2λ

∑
i

∑
j

αiαjKi,j −
∑
i

αi (5.5)

s.t. 0 ≤ αi ≤
1

N
, ∀i.

This formulation is equivalent to the more common ν parametrization [57], and is more

convenient for our purposes. We also note that the OC-SVM can be solved by setting

γ = 1/2 and yi = 1 in the CS-SVM. However, our path algorithm for the OC-SVM,

which varies λ, is not a special case of our path algorithm for the CS-SVM, which varies

γ while holding λ fixed.

A solution α∗(λ) = (α∗1(λ), . . . , α∗N(λ)) defines a decision function that determines

whether a point is an outlier or not. Here α∗i (λ) are also piecewise linear in λ [39]. From

this property, we can develop a path following algorithm and generate a family of level

set estimates with a small computational cost. The set estimate conventionally associated

with the OC-SVM is given by

Ĝλ = {x :
∑
i

α∗i (λ)k(xi,x) > λ}. (5.6)

Vert and Vert [73] showed that by modifying this estimate slightly, substituting α∗i (ηλ)

for α∗i (λ) where η > 1, (5.6) leads to a consistent estimate of the true level set when a

Gaussian kernel with a well-calibrated bandwidth is used. Regardless of whether η = 1 or

η > 1, however, the obtained estimates are not guaranteed to be nested as we will see in

Section 5.6. Note also that when α∗i (λ) = 1
N

, (5.6) is equivalent to set estimation based on

kernel density estimation.
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5.3 Nested CS-SVM

In this section, we develop the nested cost-sensitive SVM (NCS-SVM), which aims

to produce nested positive decision sets Gγ = {x : fγ(x) > 0} as the cost asymmetry

γ varies. Our construction is a two stage process. We first select a finite number of cost

asymmetries 0 = γ1 < γ2 < . . . < γM = 1 a priori and generate a family of nested

decision sets at the preselected cost asymmetries. We achieve this goal by incorporating

nesting constraints into the dual quadratic program of CS-SVM. Second, we linearly inter-

polate the solution coefficients of the finite nested collection to a continuous nested family

defined for all γ. As an efficient method to solve the formulated problem, we present a

decomposition algorithm.

5.3.1 Finite Family of Nested Sets

Our NCS-SVM finds decision functions at cost asymmetries γ1, γ2, . . . , γM simulta-

neously by minimizing the sum of duals (5.2) at each γ and by imposing additional con-

straints that induce nested sets. For a fixed λ and preselected cost asymmetries 0 = γ1 <

γ2 < · · · < γM = 1, an NCS-SVM solves

min
α1,...,αM

M∑
m=1

[
1

2λ

∑
i,j

αi,mαj,myiyjKi,j −
∑
i

αi,m

]
(5.7)

s.t. 0 ≤ αi,m ≤ 1{yi<0} + yiγm, ∀i,m (5.8)

yiαi,1 ≤ yiαi,2 ≤ · · · ≤ yiαi,M , ∀i (5.9)

where αm = (α1,m, . . . , αN,m) and αi,m is a coefficient for data point xi and cost asym-

metry γm. Then its optimal solution α∗m = (α∗1,m, . . . , α
∗
N,m) defines the decision function

fγm(x) = 1
λ

∑
i α
∗
i,myik(xi,x) and its corresponding decision set Ĝγm = {x : fγm(x) >

0)} for each m. In Section 5.7, the proposed quadratic program for NCS-SVMs is inter-

preted as a dual of a corresponding primal quadratic program.
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5.3.2 Interpolation

For an intermediate cost asymmetry γ between two cost asymmetries, say γ1 and γ2

without loss of generality, we can write γ = εγ1 + (1− ε)γ2 for some ε ∈ [0, 1]. Then we

define new coefficients α∗i (γ) through linear interpolation:

α∗i (γ) = εα∗i,1 + (1− ε)α∗i,2. (5.10)

Then the positive decision set at cost asymmetry γ is

Ĝγ = {x : fγ(x) =
1

λ

∑
i

α∗i (γ)yik(xi,x) > 0}. (5.11)

This is motivated by the piecewise linearity of the Lagrange multipliers of the CS-SVM,

and is further justified by the following result.

Proposition 5.1. The nested CS-SVM equipped with a kernel such that k(·, ·) ≥ 0 (e.g.,

Gaussian kernels or polynomial kernels of even orders) generates nested decision sets. In

other words, if 0 ≤ γε < γδ ≤ 1, then Ĝγε ⊂ Ĝγδ .

Proof. We prove the proposition in three steps. First, we show that sets from (5.7) satisfy

Ĝγ1 ⊂ Ĝγ2 ⊂ · · · ⊂ ĜγM . Second, we show that if γm < γ < γm+1, then Ĝγm ⊂ Ĝγ ⊂

Ĝγm+1 . Finally, we prove that any two sets from the NCS-SVM are nested.

Without loss of generality, we show Ĝγ1 ⊂ Ĝγ2 . Let α∗1 and α∗2 denote the optimal

solutions for γ1 and γ2. Then from k(·, ·) ≥ 0 and (5.9), we have
∑

i α
∗
i,1yik(xi,x) ≤∑

i α
∗
i,2yik(xi,x). Therefore, Ĝγ1 = {x : fγ1(x) > 0} ⊂ Ĝγ2 = {x : fγ2(x) > 0}.

Next, without loss of generality, we show Ĝγ1 ⊂ Ĝγ ⊂ Ĝγ2 when γ1 ≤ γ ≤

γ2. The linear interpolation (5.10) and the nesting constraints (5.9) imply yiα
∗
i,1 ≤

yiα
∗
i (γ) ≤ yiα

∗
i,2, which, in turn, leads to

∑
i α
∗
i,1yik(xi,x) ≤

∑
i α
∗
i (γ)yik(xi,x) ≤∑

i α
∗
i,2yik(xi,x).
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Now consider arbitrary 0 ≤ γε < γδ ≤ 1. If γε ≤ γm ≤ γδ for some m, then

Ĝγε ⊂ Ĝγδ by the above results. Thus, suppose this is not the case and assume γ1 <

γε < γδ < γ2 without loss of generality. Then there exist ε > δ such that γε = εγ1 +

(1 − ε)γ2 and γδ = δγ1 + (1 − δ)γ2. Suppose x ∈ Ĝγε . Then x ∈ Ĝγ2 , hence fγε(x) =

1
λ

∑
i(εα

∗
i,1 + (1− ε)α∗i,2)yik(xi,x) > 0 and fγ2(x) = 1

λ

∑
i α
∗
i,2yik(xi,x) > 0. By adding

δ
ε
fγε(x) + (1− δ

ε
)fγ2(x), we have fγδ(x) =

∑
i(δα

∗
i,1 + (1− δ)α∗i,2)yik(xi,x) > 0. Thus,

Ĝγε ⊂ Ĝγδ .

The assumption that the kernel is positive can in some cases be attained through pre-

processing of the data. For example, a cubic polynomial kernel can be applied if the data

support is shifted to lie in the positive orthant, so that the kernel function is in fact always

positive.

5.3.3 Decomposition Algorithm

The objective function (5.7) requires optimization over N × M variables. Due to

its large size, standard quadratic programming algorithms are inadequate. Thus, we de-

velop a decomposition algorithm that iteratively divides the large optimization problem

into subproblems and optimizes the smaller problems. A similar approach also appears

in a multi-class classification algorithm [19], although the algorithm developed there is

substantively different from ours. The decomposition algorithm follows:

1. Choose an example xi from the data set.

2. Optimize coefficients {αi,m}Mm=1 corresponding to xi while leaving other variables

fixed.

3. Repeat 1 and 2 until the optimality condition error falls below a predetermined tol-

erance.
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The pseudo code given in Algorithm 5.1 initializes with a feasible solution αi,m =

1{yi<0} + yiγm, ∀i,m. A simple way of selection and termination is cycling through

all the xi or picking xi randomly and stopping after a fixed number of iterations. How-

ever, by checking the Karush-Kuhn-Tucker (KKT) optimality conditions and choosing xi

most violating the conditions [7], the algorithm will converge in far fewer iterations. In

the Appendix, we provide a detailed discussion of the data point selection scheme and

termination criterion based on the KKT optimality conditions.

In step 2, the algorithm optimizes a set of variables associated to the chosen data point.

Without loss of generality, let us assume that the data point x1 is chosen and {α1,m}Mm=1

will be optimized while fixing the other αi,m. We rewrite the objective function (5.7) in

terms of α1,m :

∑
m

 1

2λ

∑
i,j

αi,mαj,myiyjKi,j −
∑
i

αi,m


=

1

λ

∑
m

1

2
α2

1,mK1,1 + α1,m

∑
j 6=1

αj,my1yjK1,j − λ

+ C

=
1

λ

∑
m

[
1

2
α2

1,mK1,1 + α1,m

(
λy1f1,m − αold

1,mK1,1 − λ
)]

+ C

=
K1,1

λ

∑
m

[
1

2
α2

1,m − α1,m

(
αold

1,m +
λ(1− y1f1,m)

K1,1

)]
+ C

where f1,m = 1
λ

(∑
j 6=1 αj,myjK1,j + αold

1,my1K1,1

)
and αold

1,m denote the output and the

variable preceding the update. These values can be easily computed from the previous

iteration result. C is a collection of terms that do not depend on α1,m.

Then the algorithm solves the new subproblem with M variables,

min
α1,1,...,α1,M

∑
m

[
1

2
α2

1,m − α1,mα
new
1,m

]
s.t. 0 ≤ α1,m ≤ 1{y1<0} + y1γm, ∀m

y1α1,1 ≤ y1α1,2 ≤ · · · ≤ y1α1,M
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Algorithm 5.1 Decomposition algorithm for a nested cost-sensitive SVM.
Input: {(xi, yi)}Ni=1, {γm}Mm=1

1: Initialize:

αi,m ← 1{yi<0} + yiγm, ∀i,m

2: repeat
3: Choose a data point xi.
4: Compute:

fi,m ←
1

λ

∑
j

αj,myjKi,j, ∀m

αnew
i,m ← αi,m +

λ(1− yifi,m)

Ki,i

, ∀m

5: Update {αi,m}Mm=1 with the solution of the subproblem:

min
αi,1,...,αi,M

∑
m

[
1

2
α2
i,m − αi,mαnew

i,m

]
s.t. 0 ≤ αi,m ≤ 1{yi<0} + yiγm, ∀m

yiαi,1 ≤ yiαi,2 ≤ · · · ≤ yiαi,M

6: until Accuracy conditions are satisfied

Output: Ĝγm = {x :
∑

i αi,myik(xi,x) > 0}, ∀m

where αnew
1,m = αold

1,m + λ(1−y1f1,m)

K1,1
is the solution if feasible. This subproblem is much

smaller and can be solved efficiently via standard quadratic program solvers.

5.4 Nested OC-SVM

In this section, we present a nested extension of OC-SVM. The nested OC-SVM

(NOC-SVM) estimates a family of nested level sets over a continuum of levels λ. Our ap-

proach here parallels the approach developed for the NCS-SVM. First, we will introduce

an objective function for nested set estimation, and will develop analogous interpolation

and decomposition algorithms for the NOC-SVM.
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5.4.1 Finite Family of Nested Sets

For M different density levels of interest λ1 > λ2 > · · · > λM > 0, an NOC-SVM

solves the following optimization problem

min
α1,...,αM

M∑
m=1

[
1

2λm

∑
i,j

αi,mαj,mKi,j −
∑
i

αi,m

]
(5.12)

s.t. 0 ≤ αi,m ≤
1

N
, ∀i,m (5.13)

αi,1
λ1

≤ αi,2
λ2

≤ · · · ≤ αi,M
λM

, ∀i (5.14)

where αm = (α1,m, . . . , αN,m) and αi,m corresponds to data point xi at level λm. Its

optimal solution α∗m = (α∗1,m, . . . , α
∗
N,m) determines a level set estimate Ĝλm = {x :

fλm(x) > 1} where fλm(x) = 1
λm

∑
i α
∗
i,mk(xi,x). In practice, we can choose λ1 and λM

to cover the entire range of interesting values of density level (see Section 5.6.2, Appendix

5.C). In Section 5.7, this quadratic program for the NOC-SVM is interpreted as a dual of

a corresponding primal quadratic program.

5.4.2 Interpolation and Extrapolation

We construct a density level set estimate at an intermediate level λ between two pres-

elected levels, say λ1 and λ2. At λ = ελ1 + (1− ε)λ2 for some ε ∈ [0, 1], we set

α∗i (λ) = εα∗i,1 + (1− ε)α∗i,2.

For λ > λ1, we extrapolate the solution by setting α∗i (λ) = α∗i,1 for ∀i. These are motivated

by the facts that the OC-SVM solution is piecewise linear in λ and remains constant for

λ > λ1 as presented in Appendix 5.C. Then the level set estimate becomes

Ĝλ = {x :
∑
i

α∗i (λ)k(xi,x) > λ}. (5.15)

The level set estimates generated from the above process are shown to be nested in the

next Proposition.
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Proposition 5.2. The nested OC-SVM equipped with a kernel such that k(·, ·) ≥ 0 (in

particular, a Gaussian kernel) generates nested density level set estimates. That is, if

0 < λε < λδ <∞, then Ĝλε ⊃ Ĝλδ .

Proof. We prove the proposition in three steps. First, we show that sets from (5.12) satisfy

Ĝλ1 ⊂ Ĝλ2 ⊂ · · · ⊂ ĜλM . Second, the interpolated set (5.15) is shown to satisfy Ĝλm ⊂

Ĝλ ⊂ Ĝλm+1 when λm > λ > λm+1. Finally, we prove the claim for any two sets from

the NOC-SVM.

Without loss of generality, we first show Ĝλ1 ⊂ Ĝλ2 . Let λ1 > λ2 denote two density

levels chosen a priori, and α∗1 and α∗2 denote their corresponding optimal solutions. From

(5.14), we have
∑

i

α∗i,1
λ1
k(xi,x) ≤

∑
i

α∗i,2
λ2
k(xi,x), so the two estimated level sets are

nested Ĝλ1 ⊂ Ĝλ2 .

Next, without loss of generality, we prove Ĝλ1 ⊂ Ĝλ ⊂ Ĝλ2 for λ1 > λ > λ2. From

(5.14), we have
α∗i,1
λ1
≤ α∗i,2

λ2
and

α∗i,1
λ1

=
λ
α∗i,1
λ1

λ
=
εα∗i,1 + (1− ε)λ2

λ1
α∗i,1

λ

≤
εα∗i,1 + (1− ε)α∗i,2

λ
=
α∗i (λ)

λ

≤
ελ1
λ2
α∗i,2 + (1− ε)α∗i,2

λ
=
λ
α∗i,2
λ2

λ
=
α∗i,2
λ2

.

Hence, fλ1(x) ≤ fλ(x) ≤ fλ2(x).

Now consider arbitrary λδ > λε > 0. By construction, we can easily see that Ĝλδ ⊂

Ĝλε ⊂ Ĝλ1 for λδ > λε > λ1, and ĜλM ⊂ Ĝλδ ⊂ Ĝλε for λM > λδ > λε. Thus we only

need to consider the case λ1 > λδ > λε > λM . Since above results imply Ĝλδ ⊂ Ĝλε if

λδ > λm > λε for some m, we can safely assume λ1 > λδ > λε > λ2 without loss of

generality. Then there exist δ > ε such that λδ = δλ1 +(1−δ)λ2 and λε = ελ1 +(1−ε)λ2.
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Suppose x ∈ Ĝλδ . Then x ∈ Ĝλ2 and

∑
i

(δα∗i,1 + (1− δ)α∗i,2)k(xi,x) > λδ (5.16)

∑
i

α∗i,2k(xi,x) > λ2. (5.17)

By ε
δ
× (5.16) + (1 − ε

δ
)× (5.17), we have

∑
i(εα

∗
i,1 + (1 − ε)α∗i,2)k(xi,x) > λε. Thus,

Ĝλδ ⊂ Ĝλε .

The statement of this result focuses on the Gaussian kernel because this is the primary

kernel for which the OC-SVM has been successfully applied.

5.4.3 Decomposition Algorithm

We also use a decomposition algorithm to solve (5.12). The general steps are the same

as explained in Section 5.3.3 for the NCS-SVM. Algorithm 5.2 shows the outline of the

algorithm. In the algorithm, a feasible solution αi,m = 1
N

for ∀i,m is used as an initial

solution.

Here we present how we can divide the large optimization problem into a collection

of smaller problems. Suppose that the data point x1 is selected and its corresponding

coefficients {α1,m}Mm=1 will be updated. Writing the objective function only in terms of

α1,m, we have

∑
m

 1

2λm

∑
i,j

αi,mαj,mKi,j −
∑
i

αi,m


=
∑
m

 1

2λm
α2

1,mK1,1 + α1,m

 1

λm

∑
j 6=1

αj,mK1,j − 1

+ C

=
∑
m

[
1

2λm
α2

1,mK1,1 + α1,m

(
f1,m −

αold
1,m

λm
K1,1 − 1

)]
+ C

=K1,1

∑
m

[
1

2λm
α2

1,m −
α1,m

λm

(
αold

1,m +
λm(1− f1,m)

K1,1

)]
+ C
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where αold
1,m and f1,m = 1

λm

(∑
j 6=1 αj,mK1,j + αold

1,mK1,1

)
denote the variable from the

previous iteration step and the corresponding output, respectively. C is a constant that

does not affect the solution.

Then we obtain the reduced optimization problem of M variables,

min
α1,1,...,α1,M

∑
m

[
1

2λm
α2

1,m −
α1,m

λm
αnew

1,m

]
(5.18)

s.t. 0 ≤ α1,m ≤
1

N
, ∀m (5.19)

α1,1

λ1

≤ α1,2

λ2

≤ · · · ≤ α1,M

λM
(5.20)

where αnew
1,m = αold

1,m + λm(1−f1,m)

K1,1
. Notice that αnew

1,m becomes the solution if it is feasible.

This reduced optimization problem can be solved through standard quadratic program

solvers.

5.5 Computational Considerations

Here we provide guidelines for breakpoint selection and discuss the effects of interpo-

lation.

5.5.1 Breakpoint Selection

The construction of an NCS-SVM begins with the selection of a finite number of cost

asymmetries. Since the cost asymmetries take values within the range [0, 1], the two break-

points γ1 and γM should be at the two extremes so that γ1 = 0 and γM = 1. Then the rest

of the breakpoints γ2, · · · , γM−1 can be set evenly spaced between γ1 and γM .

On the other hand, the density levels for NOC-SVMs should be strictly positive. With-

out covering all positive reals, however, λ1 and λM can be chosen to cover practically all

the density levels of interest. The largest level λ1 for the NOC-SVM is set as described

in Appendix 5.C where we show that for λ > λ1, the CS-SVM and OC-SVM remain un-
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Algorithm 5.2 Decomposition algorithm for a nested one-class SVM.
Input: {xi}Ni=1, {λm}Mm=1

1: Initialize:

αi,m ←
1

N
, ∀i,m

2: repeat
3: Choose a data point xi.
4: Compute:

fi,m ←
1

λm

∑
j

αj,mKi,j, ∀m

αnew
i,m ← αi,m +

λm(1− fi,m)

Ki,i

, ∀m

5: Update {αi,m}Mm=1 with the solution of the subproblem:

min
αi,1,...,αi,M

∑
m

[
1

2λm
α2
i,m −

αi,m
λm

αnew
i,m

]
s.t. 0 ≤ αi,m ≤

1

N
, ∀m

αi,1
λ1

≤ αi,2
λ2

≤ · · · ≤ αi,M
λM

6: until Accuracy conditions are satisfied

Output: Ĝλm = {x :
∑

i αi,mk(xi,x) > λm}, ∀m

changed. A very small number greater than 0 is set for λM . Then the NOC-SVM is trained

on evenly spaced breakpoints between λ1 and λM .

In our experiments, we set the number of breakpoints to be M = 5 for NCS-SVMs

and M = 11 for NOC-SVMs. These values were chosen because increasing the number

of breakpoints M had diminishing AUC gains while causing training time increases in our

experiments. Thus, the cost asymmetries for the NCS-SVM are (0, 0.25, 0.5, 0.75, 1) and

the density levels for NOC-SVM are 11 linearly spaced points from λ1 = 1
N

maxi
∑

jKi,j

to λ11 = 10−6.
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5.5.2 Effects of Interpolation

Nested SVMs are trained on a finite number of cost asymmetries or density levels and

then the solution coefficients are linearly interpolated over a continuous range of parame-

ters. Here we illustrate the effectiveness of the linear interpolation scheme of nested SVMs

using the two dimensional banana data set.

Consider two sets of cost asymmetries, γ̃ = (0 : 0.25 : 1) and γ = (0 : 0.1 : 1),

with different numbers of breakpoints for the NCS-SVM. Let α̃∗i (γm) denote the linearly

interpolated solution at γm from the solution of the NCS-SVM with γ̃, and let α∗i (γm)

denote the solution from the NCS-SVM with γ. Fig. 5.3 compares these two solution

coefficients α̃∗i (γm) and α∗i (γm). The box plots Fig. 5.3 (a) shows that values of α̃∗i (γm)−

α∗i (γm) tend to be very small. Indeed, for most γm, the interquartile range on these box

plots is not even visible. Regardless of these minor discrepancies, what is most important

is that the resulting decision sets are almost indistinguishable as illustrated in Fig. 5.3 (c)

and (e). Similar results can be observed in the NOC-SVM as well from Fig. 5.3 (b), (d)

and (f). Here we consider two sets of density levels λ̃ with 11 breakpoints and λ with 16

breakpoints between λ1 = 1
N

maxi
∑

jKi,j and λM = 10−6.

5.5.3 Computational complexity

According to Hastie et al. [34], the (non-nested) path following algorithm has O(N)

breakpoints and complexityO(m2N +N2m), where m is the maximum number of points

on the margin along the path. On the other hand, our nested SVMs have a controllable

number of breakpoints M . To assess the complexity of the nested SVMs, we make a

couple of assumptions based on experimental evidence. First, our experience has shown

that the number of iterations of the decomposition algorithm is proportional to the number

of data points N . Second, we assume that the subproblem, which has M variables, can
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(a) α̃∗i (γm)− α∗i (γm)
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(b) α̃∗i (λm)− α∗i (λm)

(c) Ĝγm(α̃∗i (γm)) (d) Ĝλm(α̃∗i (λm))

(e) Ĝγm(α∗i (γm)) (f) Ĝλm(α∗i (λm))

Fig. 5.3: Simulation results depicting the impact of interpolation on the coefficients and
final set estimates. See Section 5.5.2 for details.
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Data set dim Ntrain Ntest

banana 2 400 4900
breast-cancer 9 200 77
diabetes 8 468 300
flare-solar 9 666 400
german 20 700 300
heart 13 170 100
ringnorm 20 400 7000
thyroid 5 140 75
titanic 3 150 2051
twonorm 20 400 7000
waveform 21 400 4600
image 18 1300 1010
splice 60 1000 2175

Table 5.1: Description of data sets. dim is the number of features, and Ntrain and Ntest are
the numbers of training and test examples.

be solved in O(M2) operations. Furthermore, each iteration of the decomposition algo-

rithm also involves a variable selection step. This involves checking all variables for KKT

condition violations (as detailed in the Appendices), and thus entails O(MN) operations.

Thus, the computation time of nested SVMs are O(M2N + MN2). In Section 5.6.5, we

experimentally compare the run times of the path following algorithms to our methods.

5.6 Experiments and Results

In order to compare the algorithms described above, we experimented on 13 bench-

mark data sets available online 1 [48]. Their brief summary is provided in Table 5.1.

Each feature is standardized with zero mean and unit variance. The first eleven data sets

are randomly permuted 100 times (the last two are permuted 20 times) and divided into

training and test sets. In all of our experiments, we used the Gaussian kernel k(x,x′) =

exp
(
−‖x−x

′‖2
2σ2

)
and searched for the bandwidth σ over 20 logarithmically spaced points

1http://ida.first.fhg.de/projects/bench/
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from davg/15 to 10 davg where davg is the average distance between training data points.

This control parameter is selected via 5-fold cross validation on the first 10 permutations,

then the average of these values is used to train the remaining permutations.

Each algorithm generates a family of decision functions and set estimates. From these

sets, we construct an ROC and compute its area under the curve (AUC). We use the AUC

averaged across permutations to compare the performance of algorithms. As shown in

Fig. 5.1, however, the set estimates from CS-SVMs or OC-SVMs are not properly nested,

and cause ambiguity particularly in ranking. In Section 5.6.3, we measure this violation

of the nesting by defining the ranking disagreement of two rank scoring functions. Then

in Section 5.6.4, we combine this ranking disagreement and the AUC, and compare the

algorithms over multiple data sets using the Wilcoxon signed ranks test as suggested in

[21].

5.6.1 Two-class Problems

CS-SVMs and NCS-SVMs are compared in two-class problems. For NCS-SVMs, we

set M = 5 and solved the optimization problem (5.7) at uniformly spaced cost asymme-

tries γ = (0, 0.25, 0.50, 0.75, 1).

In two-class problems, we also searched for the regularization parameter λ over 10

logarithmically spaced points from 0.1 to λmax where λmax is

λmax = max

max
i

∑
j∈I+

yiyjKi,j, max
i

∑
j∈I−

yiyjKi,j

 .

Values of λ > λmax do not produce different solutions in the CS-SVM (see Appendix

5.C).

We compared the described algorithms by constructing ROCs and computing their

AUCs. The results are collected in Table 5.2. More statistical treatments of these results

are covered in Section 5.6.4.
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Fig. 5.4: The effect of kernel bandwidth σ on the performance (AUC). The AUC is eval-
uated when the alternative class is from the positive class in the data sets (a) and
from a uniform distribution (b). The NOC-SVM is less sensitive to σ than the
OC-SVM.

5.6.2 One-class Problems

For the NOC-SVM, we selected 11 density levels spaced evenly from λ11 = 10−6 to

λ1 = 1
N

maxi
∑

jKi,j (see Appendix 5.C). Among the two classes available in each data

set, we chose the negative class for training. Because the bandwidth selection step requires

computing AUCs, we simulated an artificial second class from a uniform distribution. For

evaluation of the trained decision functions, both the positive examples in the test sets and

a new uniform sample were used as the alternative class. Table 5.2 reports the results for

both cases (denoted by Positive and Uniform, respectively).

Fig. 5.4 shows the AUC of the two algorithms over a range of σ. Throughout the

experiments on one-class problems, we observed that the NOC-SVM is more robust to

the kernel bandwidth selection than the OC-SVM. However, we did not observe similar

results on two-class problems.

5.6.3 Ranking disagreement

The decision sets from the OC-SVM and the CS-SVM are not properly nested, as

illustrated in Fig. 5.1. Since larger λ means higher density level, the density level set
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estimate of the OC-SVM is expected to be contained within the density level set estimate

at smaller λ. Likewise, larger γ in the CS-SVM penalizes misclassification of positive

examples more; thus, its corresponding positive decision set should contain the decision

set at smaller γ, and the two decision boundaries should not cross. This undesired nature

of the algorithms leads to non-unique ranking score functions.

In the case of the CS-SVM, we can consider the following two ranking functions:

s+(x) = 1− min
{γ:fγ(x)≥0}

γ, s−(x) = 1− max
{γ:fγ(x)≤0}

γ. (5.21)

For the OC-SVM, we consider the next pair of ranking functions,

s+(x) = max
{λ:x∈Ĝλ}

λ, s−(x) = min
{λ:x∈Ĝλ}

λ. (5.22)

In words, s+ ranks according to the first set containing a point x and s− ranks according

to the last set containing the point. In either case, it is easy to see s+(x) ≥ s−(x).

In order to quantify the disagreement of the two ranking functions, we define the fol-

lowing measure of ranking disagreement:

d(s+, s−) =
1

N

∑
i

max
j 6=i

1{(s+(xi)−s+(xj))(s−(xi)−s−(xj))<0},

which is the proportion of data points ambiguously ranked, i.e., ranked differently with

respect to at least one other point. Then d(s+, s−) = 0 if and only if s+ and s− induce the

same ranking.

With these ranking functions, Table 5.3 reports the ranking disagreements from the

CS-SVM and OC-SVM. In the table, d2 refers to the ranking disagreement of the CS-

SVM, and dp and du respectively refer to the ranking disagreement of the OC-SVM when

the second class is from the positive samples and from an artificial uniform distribution.

As can be seen in the table, for some data sets the violation of the nesting causes severe

differences between the above ranking functions.
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Data set d2(s+, s−) dp(s+, s−) du(s+, s−)
banana 0.024 0.498 0.389
breast-cancer 0.013 0.252 0.093
diabetes 0.119 0.020 0.001
flare-solar 0.300 0.657 0.198
german 0.019 0.000 0.000
heart 0.005 0.000 0.000
ringnorm 0.244 0.000 0.000
thyroid 0.002 0.019 0.000
titanic 0.000 0.250 0.231
twonorm 0.006 0.000 0.000
waveform 0.078 0.002 0.001
image 0.307 0.276 0.047
splice 0.105 0.000 0.000

Table 5.3: The measure of disagreement of the two ranking functions from the CS-SVM
and OC-SVM. The meaning of each subscript is explained in the text. s+ and
s− are defined in the equations (5.21) and (5.22).

5.6.4 Statistical comparison

We employ the statistical methodology of Demšar [21] to compare the algorithms

across all data sets. Using the Wilcoxon signed ranks test, we compare the CS-SVM and

the NCS-SVM for two-class problems, and the OC-SVM and the NOC-SVM for one-class

problems.

The Wilcoxon signed ranks test is a non-parametric method testing the significance of

differences between paired observations, and can be used to compare the performances be-

tween two algorithms over multiple data sets. The difference between the AUCs from the

two algorithms are ranked ignoring the signs, and then the ranks of positive and negative

differences are added. Table 5.4 and Table 5.5 respectively report the comparison results

of the algorithms for two-class problems and one-class problems. Here the numbers under

NCS or NOC denote the sums of ranks of the data sets on which the nested SVMs per-

formed better than the original SVMs; the values under CS or OC are for the opposite. T

is the smaller of the two sums. For a confidence level of α = 0.01 and 13 data sets, the
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CS NCS T
78 13 13

Table 5.4: Comparison of the AUCs of the two-class problem algorithms: CS-SVM (CS)
and NCS-SVM (NCS) using the Wilcoxon signed ranks test (see text for detail.)
The test statistic T is greater than the critical difference 9, hence no significant
difference is detected in the test.

OC NOC T
Positive 35 56 35
Uniform 21.5 69.5 21.5

Table 5.5: Comparison of the OC-SVM (OC) and NOC-SVM (NOC). In the one-class
problems, both cases of alternative hypothesis are considered. Here no signifi-
cant difference is detected.

difference between algorithms is significant if T is less than or equal to 9 [74]. Therefore,

any significant performance difference between the CS-SVM and the NCS-SVM was not

detected in the test. Likewise, no difference between the OC-SVM and the NOC-SVM

was detected.

However, the AUC alone does not highlight the ranking disagreement of the algo-

rithms. Therefore, we merge the AUC and the disorder measurement, and consider

AUC − d(s+, s−) for algorithm comparison. Table 5.6 shows the results of the Wilcoxon

signed-ranks test using this combined performance measure. From the results, we can ob-

serve clearly the performance differences between algorithms. Since the test statistic T is

smaller than the critical difference 9, the NCS-SVM outperforms the CS-SVM. Likewise,

the performance difference between the OC-SVM and the NOC-SVM is also detected by

the Wilcoxon test for both cases of the second class. Therefore, we can conclude that the

nested algorithms perform better than their unnested counterparts.

5.6.5 Run time comparison

Table 5.7 shows the average training time for each algorithm. The results for the

CS-SVM and OC-SVM are based on our Matlab implementation of solution path al-
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CS NCS T
4 87 4

OC NOC T
Positive 5 86 5
Uniform 2.5 88.5 2.5

Table 5.6: Comparison of the algorithms based on the AUC along with the ranking dis-
agreement. Left: CS-SVM and NCS-SVM. Right: OC-SVM and NOC-SVM.
T is less than the critical values 9, hence the nested SVMs outperforms the
original SVMs.

Data set CS NCS OC NOC
banana 1.01 24.55 0.29 13.03
breast-cancer 0.43 2.42 0.13 9.64
diabetes 2.92 9.80 0.56 75.46
flare-solar 0.17 4.05 0.02 0.85
german 13.25 0.68 4.48 57.69
heart 0.31 7.76 0.07 5.71
ringnorm 3.16 3.43 0.01 2.07
thyroid 0.22 2.74 0.08 6.50
titanic 0.01 0.66 < 0.01 5.69
twonorm 1.89 8.21 0.31 15.29
waveform 1.87 10.42 0.56 26.60
image 40.08 298.98 1.30 64.77
splice 68.43 149.68 0.55 6.06

Table 5.7: Average training times (sec) for the CS-SVM, NCS-SVM, OC-SVM, and
NOC-SVM on benchmark data sets. This result is based on our implemen-
tation of solution path algorithms for the CS-SVM and OC-SVM.

gorithms [5], [39] available at http://www.eecs.umich.edu/˜cscott/code/

svmpath.zip. We emphasize here that our decomposition algorithm relies on Matlab’s

quadprog function as the basic subproblem solver, and that this function is in no way

optimized for our particular subproblem. A discussion of computational complexity was

given in Section 5.5.3.
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5.7 Primal of Nested SVMs

Although not essential for our approach, we can find a primal optimization problem of

the NCS-SVM if we think of (5.7) as a dual problem:

min
w,ξ

M∑
m=1

λ
2
‖wm‖2 + γm

∑
I+

ξi,m + (1− γm)
∑
I−

ξi,m


s.t.

M∑
k=m

〈wk,Φ(xi)〉 ≥
M∑
k=m

(1− ξi,k), i ∈ I+, ∀m

m∑
k=1

〈wk,Φ(xi)〉 ≤ −
m∑
k=1

(1− ξi,k), i ∈ I−, ∀m

ξi,m ≥ 0, ∀i,m.

The derivation of (5.7) from this primal can be found in [41]. Note that the above primal

of the NCS-SVM reduces to the primal of the CS-SVM (5.1) when M = 1.

Likewise, the primal corresponding to the NOC-SVM is

min
w,ξ

M∑
m=1

[
λm
2
‖wm‖2 +

1

N

∑
i

ξi,m

]
(5.23)

s.t.
M∑
k=m

λk〈wk,Φ(xi)〉 ≥
M∑
k=m

λk(1− ξi,m), ∀i,m

ξi,m ≥ 0, ∀i,m,

which also boils down to the primal of the OC-SVM (5.4) when M = 1.

With these formulations, we can see the geometric meaning of w and ξ. For simplicity,

consider (5.23) when M = 2:

min
w,ξ

λ2

2
‖w2‖2 +

1

N

∑
i

ξi,2 +
λ1

2
‖w1‖2 +

1

N

∑
i

ξi,1

s.t. 〈λ2w2,Φ(xi)〉 ≥ λ2(1− ξi,2), ∀i

〈λ2w2 + λ1w1,Φ(xi)〉 ≥ λ2(1− ξi,2) + λ1(1− ξi,1), ∀i

ξi,m ≥ 0, ∀i,m.
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Here ξi,1 > 0 when xi lies between the hyperplane Pλ2w2+λ1w1
λ2+λ1

and the origin, and ξi,2 > 0

when the point lies between Pw2 and the origin where we used Pw to denote {Φ(x) :

〈w,Φ(x)〉 = 1}, a hyperplane in H. Note that from the nesting structure, the hyperplane

Pλ2w2+λ1w1
λ2+λ1

is located between Pw1 and Pw2 . Then we can show that λ1ξi,1+λ2ξi,2
‖λ1w1+λ2w2‖ is the

distance between the point xi and the hyperplane Pλ2w2+λ1w1
λ2+λ1

.

5.8 Conclusion

In this chapter, we introduced a novel framework for building a family of nested sup-

port vector machines for the tasks of cost-sensitive classification and density level set

estimation. Our approach involves forming new quadratic programs inspired by the cost-

sensitive and one-class SVMs, with additional constraints that enforce nesting structure.

Our construction generates a finite number of nested set estimates at a pre-selected set of

parameter values, and linearly interpolates these sets to a continuous nested family. We

also developed efficient algorithms to solve the proposed quadratic problems. Thus, the

NCS-SVM yields a family of nested classifiers indexed by cost asymmetry γ, and the

NOC-SVM yields a family of nested density level set estimates indexed by density level

λ. Unlike the original SVMs, which are not nested, our methods can be readily applied

to problems requiring multiple set estimation including clustering, ranking, and anomaly

detection.

In experimental evaluations, we found that non-nested SVMs can yield highly ambigu-

ous rankings for many datasets, and that nested SVMs offer considerable improvements

in this regard. Nested SVMs also exhibit greater stability with respect to model selection

criteria such as cross-validation. In terms of area under the ROC (AUC), we found that

enforcement of nesting appears to have a bigger impact on one-class problems. However,

neither cost-sensitive nor one-class classification problems displayed significantly differ-
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ent AUC values between nested and non-nested methods.

The statistical consistency of our nested SVMs is an interesting open question. Such a

result would likely depend on the consistency of the original CS-SVM or OC-SVM at fixed

values of γ or λ, respectively. We are unaware of consistency results for the CS-SVM at

fixed γ [65]. However, consistency of the OC-SVM for fixed λ has been established [73].

Thus, suppose Ĝλ1 , . . . , ĜλM are (non-nested) OC-SVMs at a grid of points. Since these

estimators are each consistent, and the true levels sets they approximate are nested, it

seems plausible that for a sufficiently large sample size, these OC-SVMs are also nested.

In this case, they would be feasible for the NOC-SVM, which would suggest that the NOC-

SVM estimates the true level sets at least as well, asymptotically, at these estimates. Taking

the grid of levels {λi} to be increasingly dense, the error of the interpolation scheme

should also vanish. We leave it as future work to determine whether this intuition can be

formalized.

5.A Appendix: Data Point Selection and Termination
Condition of NCS-SVM

On each round, the algorithm in Algorithm 5.1 selects an example xi, updates its cor-

responding variables {αi,m}Mm=1, and checks the termination condition. In this appendix,

we employ the KKT conditions to derive an efficient variable selection strategy and a

termination condition of NCS-SVM.

We use the KKT conditions to find the necessary conditions of the optimal solution of

(5.7). Before we proceed, we define αi,0 = 0 for i ∈ I+ and αi,M+1 = 0 for i ∈ I− for
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notational convenience. Then the Lagrangian of the quadratic program is

L(α,u,v) =
∑
m

[
1

2λ

∑
i,j

αi,mαj,myiyjKi,j −
∑
i

αi,m

]

+
∑
m

∑
i

ui,m(αi,m − 1{yi<0} − yiγm)

+
∑
m

∑
i∈I+

vi,m(αi,m−1 − αi,m)

−
∑
m

∑
i∈I−

vi,m(αi,m − αi,m+1)

where ui,m ≥ 0 and vi,m ≥ 0 for ∀i,m. At the global minimum, the derivative of the

Lagrangian with respect to αi,m vanishes

∂L
∂αi,m

= yifi,m − 1 + ui,m


−vi,m + vi,m+1, i ∈ I+

+vi,m−1 − vi,m, i ∈ I−

= 0 (5.24)

where, recall, fi,m = 1
λ

∑
j αj,myjKi,j and we introduced auxiliary variables vi,M+1 = 0

for i ∈ I+ and vi,0 = 0 for i ∈ I−. Then we obtain the following set of constraints from

the KKT conditions

yifi,m − 1 + ui,m =


vi,m − vi,m+1, i ∈ I+

−vi,m−1 + vi,m, i ∈ I−

(5.25)

0 ≤ αi,m ≤ 1{yi<0} + yiγm, ∀i, ∀m (5.26)

yiαi,1 ≤ yiαi,2 ≤ · · · ≤ yiαi,M , ∀i (5.27)

ui,m
(
αi,m − 1{yi<0} − yiγm

)
= 0, ∀i, ∀m (5.28)

vi,m(αi,m−1 − αi,m) = 0, i ∈ I+,∀m (5.29)

vi,m(αi,m − αi,m+1) = 0, i ∈ I−,∀m (5.30)

ui,m ≥ 0, vi,m ≥ 0, ∀i,m. (5.31)
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Since (5.7) is a convex program, the KKT conditions are also sufficient [7]. That is,

αi,m, ui,m, and vi,m satisfying (5.25)-(5.31) is indeed optimal. Therefore, at the end of

each iteration, we assess a current solution with these conditions and decide whether to

stop or to continue. We evaluate the amount of error for xi by defining

ei =
∑
m

∣∣∣∣ ∂L∂αi,m

∣∣∣∣ , ∀i.

An optimal solution makes these quantities zero. In practice, when their sum
∑

i ei de-

creases below a predetermined tolerance, the algorithm stops and returns the current so-

lution. If not, the algorithm chooses the example with the largest ei and continues the

loop.

Computing ei involves unknown variables ui,m and vi,m (see (5.24)), whereas fi,m

can be easily computed from the known variables αi,m. Table 5.8 and Table 5.9 are for

determining these ui,m and vi,m. These tables are obtained by firstly assuming the current

solution αi,m is optimal and secondly solving ui,m and vi,m such that they satisfy the KKT

conditions. Thus, depending on the value αi,m between its upper and lower bounds, ui,m

and vi,m can be simply set as directed in the tables. For example, if i ∈ I+, then we find

ui,m and vi,m by referring Table 5.8 iteratively from m = M down to m = 1. If i ∈ I−, we

use Table 5.9 and iterate from m = 1 up to m = M . Then the obtained ei takes a non-zero

value only when the assumption is false and the current solution is sub-optimal.
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5.B Appendix: Data Point Selection and Termination
Condition of NOC-SVM

As in NCS-SVM, we investigate the optimality condition of NOC-SVM (5.12) and

find a data point selection method and a termination condition.

With a slight modification, we rewrite (5.12),

min
α1,...,αM

M∑
m=1

[
1

2λm

∑
i,j

αi,mαj,mKi,j −
∑
i

αi,m

]
(5.32)

s.t. αi,m ≤
1

N
, ∀i,m

0 ≤ αi,1
λ1

≤ αi,2
λ2

≤ · · · ≤ αi,M
λM

, ∀i.

We then use the KKT conditions to find the necessary conditions of the optimal solution

of (5.32). The Lagrangian is

L(α,u,v) =
M∑
m=1

[
1

2λm

∑
i,j

αi,mαj,mKi,j −
∑
i

αi,m

]

+
M∑
m=1

∑
i

ui,m(αi,m −
1

N
)−

∑
i

vi,1
αi,1
λ1

+
∑
i

M∑
m=2

vi,m

(
αi,m−1

λm−1

− αi,m
λm

)

where ui,m ≥ 0 and vi,m ≥ 0 for ∀i,m. At the global minimum, the derivative of the

Lagrangian with respect to αi,m vanishes

∂L
∂αi,m

= fi,m − 1 + ui,m


−vi,m

λm
+

vi,m+1

λm
, m 6= M

−vi,M
λM

, m = M

= 0. (5.33)

where, recall, fi,m = 1
λm

∑
j αj,mKi,j . Then, from the KKT conditions, we obtain the
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following set of constraints for xi:

fi,m − 1 + ui,m =


vi,m
λm
− vi,m+1

λm
, m 6= M

vi,M
λM

, m = M

(5.34)

αi,m ≤
1

N
, ∀m (5.35)

0 ≤ αi,1
λ1

≤ αi,2
λ2

≤ · · · ≤ αi,M
λM

(5.36)

ui,m(αi,m −
1

N
) = 0, ∀m (5.37)

vi,m(
αi,m−1

λm−1

− αi,m
λm

) = 0, ∀m (5.38)

ui,m ≥ 0, vi,m ≥ 0, ∀m. (5.39)

Since (5.32) is a convex program, the KKT conditions are sufficient [7]. That is, αi,m,

ui,m, and vi,m satisfying (5.34)-(5.39) is indeed optimal. Therefore, at the end of each

iteration, we assess a current solution with these conditions and decide whether to stop or

to continue. We evaluate the amount of error for xi by defining

ei =
∑
m

∣∣∣∣ ∂L∂αi,m

∣∣∣∣ , ∀i.

An optimal solution makes these quantities zero. In practice, when their sum
∑

i ei de-

creases below a predetermined tolerance, the algorithm stops and returns the current so-

lution. If not, the algorithm chooses the example with the largest ei and continues the

loop.

Computing ei involves unknown variables ui,m and vi,m (see (5.33)), whereas fi,m can

be easily computed from the known variables αi,m. Table 5.10 are for determining these

ui,m and vi,m. These tables are obtained by firstly assuming the current solution αi,m is

optimal and secondly solving ui,m and vi,m such that they satisfy the KKT conditions.

Thus, depending on the value αi,m between its upper and lower bounds, ui,m and vi,m can
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be simply set by referring Table 5.10 iteratively from m = M down to m = 1. Then

the obtained ei takes a non-zero value only when the assumption is false and the current

solution is not optimal.
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5.C Appendix: Maximum value of λ of CS-SVM and OC-
SVM

In this appendix, we find the values of the regularization parameter λ over which OC-

SVM or CS-SVM generate the same solutions.

First, we consider OC-SVM. The decision function of OC-SVM is given by fλ(x) =

1
λ

∑
j αjk(xj,x), and fλ(x) = 1 forms the margin. For sufficiently large λ, every data

point xi falls inside the margin (fλ(xi) ≤ 1). Since the KKT optimality conditions of

(5.4) imply αi = 1
N

for the data points such that fλ(xi) < 1, we obtain λ ≥ 1
N

∑
jKi,j

for ∀i. Therefore, if the maximum row sum of the kernel matrix is denoted as λOC =

maxi
1
N

∑
jKi,j , then for any λ ≥ λOC , the optimal solution of OC-SVM becomes αi = 1

N

for ∀i.

Next, we consider the regularization parameter λ of in the formulation (5.1) of CS-

SVM. The decision function of CS-SVM is fγ(x) = 1
λ

∑
j αjyjk(xj,x), and the margin

is yfγ(x) = 1. Thus, if λ is sufficiently large, all the data points are inside the margin and

satisfy yifγ(xi) ≤ 1. Then λ ≥
∑

j∈I+ γyiyjKi,j +
∑

j∈I−(1− γ)yiyjKi,j for ∀i because

αi = 1{yi<0}+ yiγ for all the data points such that yifγ(xi) < 1 from the KKT conditions.

For a given γ, let

λCS(γ) = max
i

γ∑
j∈I+

yiyjKi,j + (1− γ)
∑
j∈I−

yiyjKi,j

 .
Then for λ > λCS(γ), the solution of CS-SVM becomes αi = 1{yi<0} + yiγ for ∀i.

Therefore, since λCS(γ) ≤ (1 − γ)λCS(0) + γλCS(1) for all γ ∈ [0, 1], values of λ >

max (λCS(0), λCS(1)) generate the same solutions in CS-SVM.



CHAPTER 6

Conclusions and Future Work

In this thesis, we have applied machine learning techniques to the problem of auto-

matic flow cytometry data analysis. Conventional analysis of flow cytometry data is based

on primitive tools and usually performed by hand. This has been recognized as a labor-

intensive, time-consuming, and highly subjective process. Furthermore, addressing the

challenges of biological and/or technical variations is also an important issue for devel-

oping automatic analysis tools for biomedical data. A machine learning-based framework

enables the development of high-throughput analysis pipelines for flow cytometry data and

may help in establishing standardized and objective analytic procedures.

We began by presenting the work on file matching of flow cytometry data. We pro-

posed cluster-based nearest neighbor imputation method (Cluster-NN). As opposed to the

previous approach that only uses common markers of multiple assays, our approach im-

proves the file matching of flow cytometry data and is less likely to induce spurious clus-

ters. We have demonstrated the ability of the proposed algorithm on real flow cytometry

data to generate a dataset of higher dimension by merging multiple data files of lower

dimensions. The evaluation showed a high degree of agreement between the synthesized

dataset and the measured dataset. We emphasize that the use of the proposed imputa-

tion algorithm and its associated clustering algorithm is not limited to the file matching
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problems. Whereas a file matching problem has a particular missing variable pattern, the

developed methods are more general and can solve problems that have arbitrary missing

variable patterns.

Given a flow cytometry data, a typical analysis process begins by separating cell popu-

lations into regions and identifying interesting subsets. We have presented an unsupervised

learning technique to automate this gating process. A common approach for this task is

clustering flow cytometry data by modeling the entire cell measurements with mixture of

distributions. We addressed this problem by fitting multivariate Gaussian mixture models.

On the contrary to the standard EM algorithms, our approach can handle the truncated and

censored measurements that are present in the flow cytometry data. The performance of

the proposed algorithms has been shown for the simulated data as well as the clinical flow

cytometry data. The truncated and censored data EM algorithms could effectively correct

the biases from the data deformations and outperform the standard EM algorithms. Since

interpretation of gating results often depends on many statistical features such as propor-

tions, locations and spreads of cell populations, these results suggest that our methods will

be useful for producing more reliable analysis results.

Finally, we have reformulated the automatic gating problem into a transfer learning

problem. By combining the transfer learning and the low-density separation principle, our

approach required no labeled training data for the target task unlike conventional super-

vised learning techniques. Furthermore, the presented method could take advantage of

previous expert-gated data sets to solve a new gating problem. The ability of the presented

set estimation algorithm based on low-density separation was demonstrated on the tasks of

automatically identifying lymphocytes in peripheral blood samples. The results provided

empirical evidence that our strategy was able to successfully replicate what experts do in

the field. While biological and technical variation pose challenges in developing fully au-
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tomated analysis pipelines, our solution shows how a transfer learning technique can be

used to facilitate previous solutions to similar problems and design algorithms that can

tune themselves automatically to a new problem with no human intervention.

In future work, we would like to verify the effectiveness of our analytic tools through

rigorous experiments with extensive flow cytometry data and relate the results with clinical

assessments of pathologists. Exploratory analysis with high-dimensional research-grade

flow cytometry data would also be helpful to have insight on the robustness of the algo-

rithms. While we presented empirical evidence in this thesis, more rigorous error analysis

of the presented algorithms will support the usefulness of our transfer learning approach.

Additionally, we would like to provide more general kernel-based framework for auto-

matic gating problems. This involves discovering kernels that measure similarity between

two gating tasks based on their marginal distributions. This kernel will naturally account

for biological and technical variations in multiple data sets. Finally, extending the algo-

rithms developed for flow cytometry data analysis to different kinds of biomedical data

application is also an interesting future direction.
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