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ABSTRACT

Information Diffusion and Social Influence in Online Networks

by

Eytan Bakshy

Chair: Lada A. Adamic

The explosive growth of online social systems has changed how individuals consume

and disseminate information. In this thesis, we conduct large-scale observational and

experimental studies that allow us to determine the role that social networks play

in information diffusion online, and the factors that mediate this influence. We first

examine the adoption of user-created content in a virtual world, and find that social

transmission appears to play a prominent role in the adoption of content. Ultimately,

we are faced with a critical problem that underlies all contemporary empirical research

on social influence: how do we measure whether individuals in a network influence

one another, when the basis for their interaction rests upon commonalities that are

predictive of their future behavior? We use two coupled experiments to address this

question. In our first experiment, we randomize exposure to social signals about

friends’ information sharing behavior to determine the causal effect of networks on

diffusion among 253 million subjects in situ. Our second experiment further tests how

social information affects individual sharing decisions when viewing content. Finally,

this thesis concludes with a study that examines how individuals allocate attention

across their network of contacts, which has implications for influence and information

diversity in networks.

x



CHAPTER I

Introduction

Quantifying social influence is crucial to understanding a range of behavioral phe-

nomena, from the dissemination of information, to the adoption of political opinions,

products, and health-related behaviors (Granovetter , 1978; Watts and Dodds , 2007;

Christakis and Fowler , 2007). As social interactions move online, exposure to in-

formation is increasingly mediated through online social networks. Nearly 75% of

Americans who read news online are directed to news articles through email or on-

line social networking sites, and over half also share links to news with their online

contacts (Purcell et al., 2010). Moreover, such networks also represent real world

social connections. A recent survey found that over 55% of U.S. adults over the age

of 18 use Facebook, and among these individuals, 48% of their real-world contacts

were also their contacts on Facebook (Hampton and Rainie, 2011). Therefore, the

systematic study of online diffusion not only sheds light on how Internet technologies

alter the face of human communication, but also has the potential to inform basic

social science research beyond the digital domain.

Each day hundreds of millions of Internet users consume and propagate informa-

tion shared by friends. Given the right set of resources, one can capture these users’

networks, their sharing behavior, and their contacts’ sharing behavior. Assuming all

information exchange occurred within these networks, such data would enable us to

study the dynamics of social contagion with physics-like precision. Unfortunately, no

dataset will ever encompass all sources of information. To make matters worse, one

of the most robust findings in the social networks literature is that of homophily:

individuals tend to associate with others that are similar to themselves (McPherson

et al., 2001). As a result, individuals have common interests and activities, which

make them more likely to be tuned into the same, potentially unobservable, informa-

tion sources.
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This situation reflects a grave problem underlying many observational studies of

social contagion: individuals’ attributes are predictive of their past, present, and

future behavior, as well as of the friends they maintain. Therefore, an individual’s

behavior may be predicted by their friend’s behavior, without that friend causally

influencing that individual in any way (Shalizi and Thomas , 2011). Long lines of

research are based on explicitly modeling social contagion as a function of the number

of “infected” friends. Other research suggests that strong ties are more influential than

weaker ones. When confronted with data that shows that individuals are more likely

to engage in the same behavior as their friends, it is tempting to assume that the

data corroborates with these theories. However, since homophily implies that those

who interact more often, or have overlapping friendship ties, tend to be more similar

to one another, such evidence for influence may simply be mere social correlation.

Not all contagion studies have to infer whether one individual influenced another.

Many studies (e.g. Katz and Lazarsfeld (1955); Greenberg (1964); Brown and Reingen

(1987)) use interviews and surveys to directly ask respondents to identify sources of

contagion. Still, even if the source is a friend, the data does not tell us about the

relative importance of social ties in the spread of information. For example, though

50% of respondents in Greenberg’s 1964 study of news diffusion learned about the

Kennedy assassination from interpersonal ties, many of the respondents may have

gotten the news at a slightly later point in time from the very same media outlets

as their friends. Therefore, a complete understanding of how social networks affect

information diffusion not only requires us to identify interpersonal contagion, but also

requires a counterfactual understanding of what would happen if certain interactions

did not take place.

In this thesis, we take a twofold approach to understanding social influence and

information diffusion in online networks. First, we conduct broad data-intensive

exploratory studies to examine how individuals interact with one another and share

information online. In doing so, we identify similarities and differences between online

and offline interactions that can guide further research. While observational studies

tend to yield many insights into how individuals behave, they struggle to identify

mechanisms that generate this behavior. For that reason, we combine the exploratory

approach with more systematic experimental methods which isolate specific causal

effects and explain diffusion phenomena.

We begin in Chapter 2 with an exploratory study that analyzes the diffusion of

content on Second Life, a virtual world made up entirely of user-created content.

We discover regularities that are consistent with research on social contagion and

2



suggestive of interpersonal influence. Using detailed information about when users

adopt content and their social networks over time, we develop a model of adoption

to explain the diffusion of content within time-evolving social networks. Our results

provide intuition for the mass spread of content in online social systems.

While our model of diffusion based on friends’ behavior appears to provide a

reasonable description for how individuals behave, the homophily confound makes it

impossible to determine how well such a model reflects the underlying mechanisms

responsible for content spread. To understand the causal effect of social information

on content diffusion in real-world settings, we conduct two very large randomized

field experiments. Chapter 3 presents an experiment that randomizes exposure to

Web content shared by friends among 253 million subjects on Facebook. We show

that individuals exposed to content from their strong ties are more likely to propagate

that information, but that weak ties expose individuals to information that they would

not have otherwise spread. Using the underlying distribution of known tie strengths,

and causal estimates of how much influence is exerted by strong and weak ties, we

are able to conclude that weak ties are collectively more influential.

Our experiment shows that networks surface information that would not have

otherwise been shared; but to what extent do social signals affect an individual’s

decision to share content? Chapter 4 presents a second field experiment that isolates

the effect of social information on sharing decisions for individuals visiting pages on

the Web. We show that while the number of sharing friends and a subject’s strength

of ties with those friends is predictive of whether or not content they choose to share,

much of this correlation exists even when friends’ sharing behavior is not shown to

subjects.

One friend’s ability to influence another is undoubtedly mediated by the amount of

attention given to the influencer. In Chapter 5, we examine how individuals allocate

their attention across friends. This new measurement, which we call the balance of

attention, captures the extent to which individuals focus their attention upon few or

many contacts, and has important implications for how information flows in networks.

Chapter 2 was done in collaboration with Brian Karrer and Lada Adamic, and

is published as Bakshy et al. (2009). Chapter 5 was done in collaboration with Lars

Backstrom, Jon Kleinberg, Tom Lento, and Itamar Rosenn, and is published as Back-

strom et al. (2011). Chapters 3 and 4 are unpublished work done in collaboration

with Itamar Rosenn, Cameron Marlow, and Lada Adamic.
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CHAPTER II

The Spread of User-Created Content

Social influence determines to a large extent what we adopt and when we adopt

it. This is just as true in the digital domain as it is in real life, especially with the

proliferation of user generated content that one must first become aware of and then

select from. We present an empirical study of user-to-user content transfer occurring

in the context of a time-evolving social network in Second Life, an immersive massively

multiplayer virtual world. We model social influence based on the change in adoption

rate following the actions of one’s friends and find that the social network plays a

significant role in the adoption of content. Adoption rates quicken as the number of

friends adopting increases and this effect varies with the connectivity of a particular

user. We further find that sharing among friends occurs more rapidly than sharing

among strangers, but that content that diffuses primarily through social influence

tends to have a more limited audience. Finally, we examine the role of individuals,

finding that some play a more active role in distributing content than others, but that

these influencers are distinct from the early adopters.

2.1 Introduction

In the digital age, the creation and distribution of digital goods has been democ-

ratized. On YouTube, users view millions of videos created by millions of users, on

Flickr users upload their own photos and view others’, and news are reported on, con-

sumed, and commented on by a distributed network of bloggers and media sources.

Perhaps the purest example of a market for user-generated content is that of the

virtual world Second Life. The vast majority of the content, in fact pretty much all of

This chapter is published as Social Influence and the Diffusion of User-Created Content in the
EC 2009 Proceedings of the 10th ACM Conference on Electronic Commerce (Bakshy et al., 2009).
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the virtual world itself, from buildings to objects to fashion, is created, distributed,

and consumed by the users themselves.

The unique property of studying social contagion in Second Life is that one can

observe not just adoption in the context of an explicit social network, but also trace

direct transfers of user-contributed content owned by users, which we will refer to

as assets . In Second Life, you can search for interesting places to visit on your

own, or a friend or business can give you a landmark – a bookmark that allows

you to teleport directly to a location. If upon arriving, you would like your avatar

to dance, wave, or make a certain sound, you need to retrieve that gesture from

your inventory of assets. That gesture may have been given to you by a friend, or

you may have purchased it from a store. Such transfer of assets and information

presents a unique opportunity to compare diffusion via word-of-mouth to adoption

resulting from broadcasts. Depending on the intellectual property rules attached to

each object, some assets can be freely copied and shared; one Second Life user can

pass on a gesture, hairstyle, or article of clothing to another.

The chapter proceeds as follows. After reviewing related work and motivating our

approach in Section 2.1.1, in Section 2.1.2 we describe the Second Life data set and the

characteristics of information diffusion among Second Life users. In Section 2.1.3 we

quantify the properties of asset transfer cascades and their relationship to the social

network. We find that assets that are passed from friend to friend tend to produce

deeper cascades, but the overall popularity of the asset is lower. We demonstrate

that this insight can be used to predict how many additional individuals will adopt

an asset over a period of time. Section 2.2 models the rate of adoption which we find

to strongly depend upon the number of adopting friends a user has at any given time.

As might be expected, when users have no previously adopting friends, their rate of

adoption is related to the popularity of the asset in the population overall. However,

once a friend has adopted, the adoption rate increases significantly, especially for less

popular, niche assets. In Section 2.3 we identify two kinds of individuals, influencers

who directly influence many of their friends to adopt, and early adopters. We find that

early adopters are more likely to adopt without having to first observe their friends,

but that they are not necessarily influential in subsequent adoptions. Section 2.4

concludes and discusses future directions.

2.1.1 Background & motivation

The context in which our study occurs, the virtual world Second Life (Ondrejka,

2004b) has been studied for aspects of its economy (Ondrejka, 2004a; Castronova,

5



2008) and social conventions (Yee et al., 2007; Friedman et al., 2007). Our study pro-

vides a complementary perspective on how individuals influence one another, while

contributing to a larger body of work in the measurement of large-scale social phe-

nomena relating to the dynamics of content consumption in online communities.

In the marketing science literature there is a wealth of macro-scale studies of new

product diffusion (Mahajan et al., 1990). For example, the Bass model is a differential

equation model that predicts adoption based on relative populations of “innovators”

that are not influenced by the decisions of others and “imitators” whose adoption

depends of the total number of adoptions in the system (Bass , 1969). Extensions

to these models have traditionally not taken into account social structure, nor the

individual decision making processes of the adopters. On the other hand, micro-level

studies, such as (Chatterjee and Eliashberg , 1990), do model factors that influence the

adoption of a product, but have only been studied in the context of small laboratory

experiments.

Although the theory of information diffusion in social networks was developed

decades ago (Rogers , 1995), social contagion has only recently been measurable on

a large scale through the digital traces that modern communication leaves behind.

Social contagion can be distinguished from viral, unintentional sharing of e.g. hu-

man (Pastor-Satorras and Vespignani , 2001; Newman, 2002) or electronic (Newman

et al., 2002) malaises over networks. One feature of social contagion is that there may

be thresholds to infection, with many individuals waiting for several of their friends to

adopt before taking the plunge themselves (Centola and Macy , 2007). Unlike disease

spread, this diffusion typically has the property that an individual decides whether

to accept the contagious object.

The availability of large scale social network data has lead to a number of studies

quantifying various aspects of social contagion. Of interest in all these studies is how

one might maximize the spread of influence through a social network by selecting

a subset of influential individuals to initially infect with an idea or product (Kempe

et al., 2003). On the other hand, one may simply wish to find out early what assets are

“hot” by monitoring a subset of individuals that are likely early adopters of popular

assets (Leskovec et al., 2007). Although some have modeled adoption simply as a

function of observing strangers’ actions (Salganik et al., 2006; Wu and Huberman,

2007), principally, these studies measured the likelihood that an individual takes an

action as a result of their friends’ choosing the same action.

Social network information has successfully been used, for example, to predict

whether a customer will sign up for a new calling plan once one of their phone contacts

6



does the same (Hill et al., 2006). The photos we view and the stories we “Digg” are

often the ones we observed our friends consuming (Lerman, 2007; Lerman and Jones ,

2007). LiveJournal bloggers are more likely to join a group if many of their friends

joined, and if those friends belong to the same clique (Backstrom et al., 2006). Blogs

are likely to link to content that other blogs have linked to (Song et al., 2007). The

insight that individuals tend to like (or like to have) the same things that their friends

like can be used to improve collaborative filtering algorithms (Zheng et al., 2007).

On the other hand there are relatively few studies that have included direct trans-

fers between users. A study of person-to-person book and video recommendations

found conditions under which such recommendations are successful (Leskovec et al.,

2006a,b). A study of online chain letters discovered that as messages diffuse through

individuals’ email contact networks, they form cascades that are far deeper than one

would expect at random (Liben-Nowell and Kleinberg , 2008). However, information

cascades spreading through email were not studied in the context of an explicit social

network that would allow one to measure both direct or indirect influence simultane-

ously.

In contrast to prior work, we are able to analyze social influence not just indirectly

through separate information about the social network and user adoption, but also by

accounting for direct transfer of assets between individuals. The direct transfers allow

us to more precisely identify influencers who are responsible for a disproportionate

fraction of the asset adoptions. Furthermore, we develop a simple model of adoption

rates, as opposed to probabilities, that can incorporate information about the evolving

social network without needing to make arbitrary decisions about how to subdivide

time intervals. This model allows us to clearly illustrate the importance of network

effects in the adoption of content.

2.1.2 Description of data

Our data set includes time-stamped content ownership data and weekly snapshots

of the complete social network over a 130 day period between September 1, 2008 and

January 16, 2009, with the exception of the weeks of September 19th and November

14th. We do not have the exact time stamps of when the friendship ties were formed

or dissolved, but by using weekly snapshots, we can approximate the coarse evolution

of the social graph. At the user level, we have information on when the user first

joined Second Life and how many hours they have played. The data also includes the

social network of users. The data were provided directly by Linden Lab, the maker

of Second Life and no personally identifying information of Second Life’s users was

7



shared with the authors.

The observed social network we observe is made explicit by the users themselves,

who add one another as “friends”. By default, friends are aware of when their other

friends are in Second Life, and if they grant additional permissions, those friends can

see where in the virtual world they are located. Some users will even grant each other

permission to modify each others’ objects. This tends to occur among a small group

of users for the purpose of collaboratively creating content. In other cases, users

may not grant one another any permissions. Friend permissions do not necessarily

need to be reciprocal.

As in many online social networks, the meaning of a friendship tie is somewhat

ambiguous and can denote anything from casual acquaintanceship to a close relation-

ship. One user may add another as a friend because they met in Second Life and

wished to continue interacting. Or a Second Life friendship may reflect a “first life”

relationship that has been carried into the virtual realm. While privacy preferences

can vary from user-to-user, we consider the user’s “social network” to consist of all

friendship linkages that have, at a minimum, reciprocated permissions to see one an-

other’s online status. Throughout the chapter, we will refer to two users connected

in this fashion as “friends” or “neighbors” in the social graph.

Since the subject of the work is on the diffusion of user-created content, we focus on

studying content that is freely available, non-trivial to produce, and widely distributed

amongst users. Content that can be carried around by a user is called an asset and is

stored in the users’ inventories. We chose to study gestures: transferable animations

that allow a user’s avatar to carry out programmed physical movements or make

sounds. The choice of this type of asset was made because gestures are discrete and

simple to trace. In our analysis, we use Linden Lab’s definition of an active user:

those we have logged in in the 60 days prior to the last observation date (Jan. 2009)

and have used Second Life for more than six hours. In addition we focus on the users

who have exchanged at least one object with another user between September 2008

and January 2009. We chose gesture assets that had at least sixteen unique owners

and were never directly distributed to users by Linden Lab. The former exclusion

rule omitted gestures that had not diffused, and the latter excludes gestures the users

may have received without opting to. With these restrictions, our sample population

contains 100,229 users and 106,499 assets. Because of the long-tail of asset popularity,

this represents only a small fraction of the unique 5,327,671 gestures.

Most assets in our data set are owned by a relatively small number of users, and

very large assets of size 1,000 or greater make up less than 10% of all assets. This

8



is the familiar long tail, shown in Figure 2.1, of content popularity; a few gestures

are widely adopted by users, while the majority remain of little or niche interest.

Interestingly, none of the content has saturated the user population, with the largest

assets owned by roughly 10% of the population.
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Figure 2.1: Cumulative distribution of the number of unique owners per asset in our
sample population.

The content ownership data comes in the form of asset transfers, that contain the

asset, previous owner, next owner, and time-stamp. It indicates that the previous

user had given a copy of the asset to the next user. There are a total of 12,585,298

asset transfers over the observation period, 3,409,630 (23%) of which have accurate

information about the previous owner. On average, approximately 43% of the obser-

vations in each asset have previous owner information. The average is higher than

the total percentage because for larger assets there are more observations without

previous owner information. Information can be lost, for example, when a user copies

or moves assets in their inventory. The extent to which individual assets are miss-

ing previous ownership information does not appear to vary systematically with the

owner’s experience level, their connectedness to others, or how many gestures they

own.

The transfers of each asset can be visualized as a cascade forest, with edges drawn

between each owner and the previous owner, showing an “infection” path that rep-

resents the direct flow of content between users. Where previous owner information
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is missing, we start a new tree in the forest. Figure 2.2 shows a cascade forest for

one particular gesture. We note a fanning pattern, with some users transferring the

gesture to many others.

Of the assets transfers for which we have accurate previous ownership information,

1,754,852 (approx. 48%) of the transfers occurred between friends. This suggests

that direct social influence over the social network plays a considerable role in the

distribution of content. In addition to direct influence, we find that indirect influence

along the social network also plays a large role in adoption. Of those transfers that

did not occur between friends, 678,908 (approx. 38%) of the users who had acquired

a new asset did so after at least one of their friends had also adopted.

Figure 2.2: Example of a cascade forest for the Aerosmith(916) gesture. Edges denote
transfers of the gesture between users.
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2.1.3 Friend-to-friend vs. one-to-many

Given the above observations on the role of the social graph in the transfer and

adoption of content, an important question a viral marketer may wish to answer is

how much of a boost one can expect from having customers themselves advertise to

one another and distribute the assets (Domingos and Richardson, 2001). Previous

work on book and DVD recommendations found that viral marketing is more effective

for niche products as opposed to widely popular ones (Leskovec et al., 2006a). We

find a similar trend here.

In order to quantify between-user transfers, we look at the following variables for

each asset: the total number of adopters for the asset (the asset size or popularity), the

percentage of the transfers that were between friends (% direct), and the percentage

of transfers that resulted in subsequent transfers by the adopting user (% non-leaf).

We find the percentage of non-leaf nodes, which can be thought of as a measure of

cascade depth, to be correlated with the percentage of the adoptions that can be

accounted for by the social graph (ρ = 0.42), indicating that the diffusion along the

social network produces deeper cascades for which users actively participate in the

transfer of the asset. But while these cascades tend to be deeper, they are not wider.

The average popularity of the asset falls as the proportion of non-leaf nodes and social

influence increases. As Figure 2.3 shows, having more adopters actively transferring

assets is actually indicative of the asset not being broadly popular.

One can use the above observation of asset size and the role of social influence to

predict the growth in the number of adoptions for a particular asset. We differentiate

social influence (having a friend adopt before you do), and direct influence (obtaining

an asset from a friend). Not all assets can be obtained from a friend, even if the friend

has said asset, because of copy permissions. We therefore separate the assets where

no transfers occur between friends (these likely cannot be copied), and ones that do.

We observe the number of adoptions in the first 30 days since the asset is created.

We then run a regression to model the number of adoptions in the following 60 days.

Besides the initial number of adoptions, we also included the following statistics

from the first 30 days: whether the adoption occurred after at least one other friend

adopted (% social), the percent of adoptions that are direct transfers along the social

network, and the percent of adoptions occurring directly through the social network

that resulted in further adoptions. Just two variables yielded the greatest explanatory

power: the number of initial adoptions, and the percentage of initial adoptions that

can be explained by the social network. We further find that using those same two

variables, assets that are transfered from friend-to-friend at least sometimes are more
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Figure 2.3: Percentage of non-leaf nodes vs. asset size for assets over the first 90 days
of their spread.

predictable than those that are never passed between friends. A possible reason is that

if friends are unable to share assets due to copying restrictions, then the distribution

falls on a limited set of individuals, making the sharing of the assets more variable.

Although information diffusing through a social network may lead to unpredictable

cascades (Watts , 2002), in this case being able to observe such diffusion actually

makes the cascade more predictable.

As Table 2.1 shows, unsurprisingly, a higher initial rate of spread translates to a

higher number of subsequent adoptions. What is interesting is that the percentage of

social adoptions (those that can be easily attributed to friends’ adoptions) is negatively

correlated with the the number of additional users who adopt. This suggests that

assets that are diffusing through the social network may be of interest to a smaller

subset of individuals. Because of homophily, the tendency of like to associate with

like, these individuals are more likely to be friends with one another. So while a niche

product may be shared more readily through the social network because the social

network reflects niche tastes, the product does not have a wide susceptible audience,

and therefore will not be adopted as widely.

While the regression suggests that the overall rate of spread through the social

network is slower than through alternate paths, we find individual transfers to be

more rapid between friends. Figure 2.4 shows the distribution of lags between when
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all assets all assets d d
log(initial size) 0.362 0.388 0.508 0.476

% social -0.808 -0.897
R2 0.112 0.161 0.164 0.196

Table 2.1: Regressing the subsequent number of adoptions on the initial adoptions
and percentage that can be explained by social influence. d is the restricted
set of assets that were observed to have been transfered on the social
network.

an individual becomes infected and when they infect either a friend, vs. when they

infect a non-friend. First, we note that individuals are most likely to share a gesture

within a short time of receiving it, while the context and novelty of the asset are still

fresh.

Furthermore, we find that friends will more rapidly share with one another than

with strangers: the average time lag between when a user acquires an asset and when

they give it to a friend is 53.1 days, compared to the 75.6 it takes them to transfer

it to a non-friend. The average time lag between one friend adopting after another

(without sharing the asset with one another directly) is 105.2 days, compared to 228.3

days for adopters who are not friends. Although there is a mild cohort effect (with

friends being more likely to join Second Life around the same time), it alone would not

explain why friends are adopting so closely in time. That there is variation in speed

depending on the relationship type is of interest because the speed of a interpersonal

link can dramatically effect the fastest route information will take as it spreads, to

the point where some slower links play little role at all (Kossinets et al., 2008). It is

therefore of interest to model the rate of adoption following a friend’s adoption, and

this is what we undertake in the next section.

2.2 Modeling adoption

As a Second Life user observes other users’ avatars adopting particular assets, she

may not only be more likely to adopt the asset herself, but the rate at which she

does so may quicken as she observes more and more of her friends adopting. In order

to characterize this social influence effect that occurs through Second Life’s social

network, we utilize a simple model of users’ adoption rates. We show how with slightly

different assumptions the same model can be applied to adoption rates both at the

asset and at the user levels. Our results are compared with a Cox proportional hazards

model with time-varying covariates that incorporates other possible influences such
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Figure 2.4: Lags between a users’ adoption and retransmission times, for assets with
100-200 adopters.

as the total number of adopters in the user population. We show that the estimates

produced by the Cox model are consistent with our simple model.

2.2.1 Formulation

One way in which this neighbor influence has been measured before is by comput-

ing the probability of adoption as a function of the number of neighbors who have

already adopted in some time interval (Backstrom et al., 2006). To be more precise,

one counts the number of individuals who have not adopted that have k neighbors

who have adopted at the beginning of the time interval and then compute the fraction

of these individuals who have adopted at the end of the time interval.

An improved and related approach, used by (Anagnostopoulos et al., 2008), con-

siders the probability of adoption within many identical discrete time intervals, rather

than just one. Our approach presents a further refinement by utilizing a continuous

time model of adoption where we have stochastic rates of adoption rather than prob-

abilities of adoption. We consider rates of adoption from two perspectives: at the

level of adopting a particular asset and at the level of the user. In the former case, we

assume that the rates of adoption are characteristic of a particular asset, are fixed in

time, and the same for all users. These assumptions are analogous to the assumptions

used in (Anagnostopoulos et al., 2008) and (Backstrom et al., 2006). At the level of
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the individual user, we assume that a particular user’s rates are fixed in time and

equivalent for all assets, but that they differ from user to user.

We first explain the model formulation from the perspective of a particular asset

computed over the entire population of users. A user enters into state k at the moment

that their kth friend adopts the particular asset. The model assumes that once an

individual is in state k, the time until they adopt, Tk, is exponentially distributed, i.e.

they draw an exponentially distributed random variable Tk with mean 1/λk where

λk will be referred to as the adoption rate for state k. If an avatar’s state changes

before they reach their adoption time, they discard that time and draw a new time

from the next exponential distribution corresponding to their new state. There are

three ways in which a user can exit state k. If one of their existing neighbor adopts

or they become friends with someone who has already adopted (adding an edge in

the social network), they advance to state k + 1. If they end a friendship with an

adopter (deleting an edge in the social network), they return to state k − 1.

We use maximum-likelihood to estimate λk from the available data for each asset.

To do this, we have to compute the probability of observing the data given the model.

Let tik be the total amount of time the ith user spent in the k state and θi be one if

the user adopted by the end of our observation period or zero if the avatar did not

adopt. For the users that did adopt an asset, let ai be the state from which that

avatar adopted. Then the probability (density) of the data given the model is∏
i

λθiaiexp(−
∑
k

λkt
i
k). (2.1)

We can further simplify the probability of the data given the model by defining

Ak to be the number of individuals who adopted from state k and Mk =
∑

i t
i
k to be

the total amount of time spent in state k over all individuals. Then∏
k

λAkk exp(−λkMk). (2.2)

Maximizing with respect to the model parameters yields

λk = Ak/Mk, (2.3)

as the maximum-likelihood estimate of the rates, assuming a uniform prior over the

model.

We make a further distinction based on the population of measurements used to
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calculate the characteristic rates in our model. For a particular asset, it’s unclear

whether the entire population of users should be included in the calculation. The

reason for not including all users is that some individuals may never want to acquire

the asset regardless of the number of their neighbors that adopt. Including all users

for each asset is what has been done previously, which carries the assumption that

all individuals considered will adopt if one waits a sufficiently long time. However,

a user may never want to adopt, no matter how long they have been exposed to it.

For example, Aerosmith gestures may be a taste that a particular user will never

acquire. Rather, individuals are selective in their adoptions, and will resist both

advertising and social influence if an asset does not match their tastes or interests.

Therefore, our alternative approach is to estimate the rates only using measurements

from the observed user population that has adopted the asset. We can be sure that

this population wants the asset, but of course, there may be other individuals who

want the asset but have just not acquired it yet.

Since there are advantages and disadvantages in including the non-adopting pop-

ulation in our measurements, we report our results for both specifications, referring

to the respective calculations as utilizing the entire population and the adopting pop-

ulation of users. We note that our population of all users is still restricted to users

who have adopted at least one asset during the time period, which means that all

users were susceptible to adopting in general. To specify to the adopting population

only, we follow the above derivation only including users that were observed to adopt

the asset. This adjustment again leads to Eq. 2.3, where now Mk is the total amount

of time spent in state k over individuals that adopted the asset.

As we mentioned above, one can model many users adopting the same asset, or

one can model a particular user as they adopt different assets. Calculating adoption

rates for a particular user over the entire population of assets is also simple. We again

use maximum-likelihood to estimate λk for each individual using every asset. Let tik
be the total amount of time a user spent in the k state for the ith asset, θi be one or

zero if the avatar adopted or did not adopt the ith asset respectively, and ai be the

state from which that user adopted the ith asset. Then the probability (density) of

the data for that individual given the model is again Eq. 2.1. Defining Ak to be the

number of assets adopted from state k and Mk =
∑

i t
i
k to be the total amount of

time the individual spent in state k over all assets, and then maximizing with respect

to model parameters leads to Eq. 2.3. As in the analysis for particular assets, we

also can decide to only include assets that the user was observed to acquire. This

specification results in Mk being the amount of time that an individual has spent in
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state k over all assets that they were observed to adopt. Again, we report our results

for both cases for each user, which we refer to as either utilizing the entire population

and the adopted population of assets.

In all cases, because our social network data begins on September 1st, 2008, we

only consider times tik calculated after the beginning of September. The state of

adoption on September 1st, 2008 is treated as the initial condition to the model and

no rate estimation is done using pre-September timing information for which the

social network is uncertain.

2.2.2 Analysis

We first report on the differences in adoption rates as a function of the number of

adopting neighbors for small and large assets separately. Asset size denotes simply

the total number of adopting users for the asset. We also consider the trends across

all assets, and “new” assets that appeared after Sept. 1, 2008. Examining new

assets helps us avoid confounds such as large assets being in the later stages of their

adoption curve. Figure 2.2.2 shows that adoption rates increases with the number of

previously adopting neighbors a user has, whether one considers all users or just the

adopters, and whether one includes all assets or just newer ones. When one considers

all users, the rate increase is initially convex, suggesting that having two, rather than

just one adopting increases the likelihood that a user will adopt at all. This is in

agreement with previous analyses (Leskovec et al., 2006a; Backstrom et al., 2006;

Anagnostopoulos et al., 2008), which found that the probability initially increases

steeply with k but then shows diminishing returns as k increases further.

Once we consider the population of just the adopting users, the rates do not show

as steep of an initial gain as they did for all users. This is because now the rates do not

reflect a binary outcome of whether or not the user adopts at all, but rather how much

more quickly a susceptible user adopts following the adoption of multiple neighbors.

For smaller assets that have between 50 and 500 adopters, the rate doubles between

having no adopting neighbor to having one, with the increase more pronounced for

new assets. It then increases roughly another 60% when a second neighbor adopts.

What is most striking, however, is that this rate of adoption as a function of the

number of neighbors increases more rapidly for smaller assets. These plots confirm our

intuition from Section 2.1.3 concerning the relationship between relative popularity

and channels of influence. The increase in rate appears most strong for more niche

items, whereas neighborhood effects appear to play less of the role for more popular

assets. This suggests that what is driving the adoption of more popular assets must
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Figure 2.5: The average rate of adoption of assets as a function of adopting neighbors,
k. The black curve corresponds to assets that are owned by 50-500 users,
and the red curve corresponds to assets owned by 500 or more users. (a)
entire population, all assets (b) adopting population, all assets (c) entire
population, new assets (d) adopting population, new assets. The rates
are in units of inverse days.

lie at least partly outside of the social network. For large assets, those with ≥ 500

adopters, λ0 is 4.73 times higher than for smaller assets. For newer assets, this ratio

is 7.43. Because collectively users spend much more time in the k = 0 state (having

no adopting neighbors) than in the k > 0 states, a small difference in λ0 can lead to

significant differences in asset size. For example, across assets with between 50 and

500 adopters, the total length of time spent by all users in the k = 0 state is a factor

of 190 times greater than the total length of time spent with at least one adopting

neighbor.

We next turn to an analysis of user-characteristic adoption rates. We average the

data over all individuals, where we divide the data into high and low degree, as shown

in Figure 2.2.2. The first column and second column use the entire population and
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Figure 2.6: The average rate of adoption for users as function of adopting neighbors,
k. The black curve corresponds to users of low degree that have 15-100
friends, and the green curve corresponds to users with 100-1000 friends.
Left: entire population of assets. Right: adopted population of assets.
The rates are in units of inverse days.

adopted population of assets, respectively. Interestingly, the users with high degree

tend to adopt at comparably lower rates than their lower degree counterparts. This

suggests that individuals may accumulate many friends, especially in online contexts,

but consequently any individual friend holds less influence.

2.2.3 Comparison with the hazard model

A more general approach to adoption rates that can also be applied to our data is

the Cox proportional hazards model with time-varying covariates. For the regression

we included a fixed average degree observed over the time period, the number of

assets owned, the user’s cohort (0-5, 5 being most recent), and usage (in days). We

include the number of adopting neighbors and number of adopting users as time-

varying covariates. The number of assets, usage, and number of adopting users were

log-transformed. Results from the regression are shown in 2.2.

As in the previous model, we find that the number of adopting neighbors has

a significant and positive effect. We also see that high average degree does indeed

have a negative effect on the adoption rate. By itself, the overall popularity of an

asset does increase the rate of adoption, as suggested in 2.2.2(d). In combination

with the other factors, however, overall popularity has a weakly negative effect in

the rate of adoption. Finally, we see that users that have signed up recently tend

to adopt friends content more rapidly, and that this effect decreases with experience.
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parameter estimate error
mean degree -0.00134 0.00009
assets owned 0.03391 0.00601

cohort 0.62933 0.01176
usage -0.18349 0.00470

adopting neighbors 0.32795 0.00902
adopting users -0.04634 0.00754

Table 2.2: Cox proportional hazards model with time-varying covariates. All esti-
mates have p < 0.001.

The results indicate substantial heterogeneity in user behavior, which we further

investigate in the next section where we look for influential users and early adopters.

The above results indicate substantial heterogeneity in user behavior and we fur-

ther investigate this in the next section, where we look for influential users and early

adopters.

2.3 Influencers and early adopters

Thus far we have observed social influence from the point of view of the adopter

– finding that the rate of adoption increases as one observes more and more friends

adopting. This suggests that each friend holds some influence, and that having more

adopters among one’s friends increases the “hazard” that one will catch the bug

and adopt as well. But one may also pose the question of whether all adopters are

equally contagious to their friends. More specifically, using data on user-to-user asset

transfers among friends, we can examine whether a few individuals are responsible

for distributing assets.

2.3.1 Concentration of influence

First, we look at the distributions of transfers per individual, shown in Figure 2.7.

The distributions are heavy tailed, indicating that a majority of individuals play a

negligible to small role in distributing assets, while a handful of users disproportion-

ately contribute to the dissemination of content. Some of the heavy-tailedness may

be explained by primary content providers (i.e. store owners) whose role includes

marketing assets to individuals. While approximately 52% of the transfers occur

between non-neighboring users, many transfers occur at similar scales between users

that are affiliated with one another, or more strongly, have at least three other friends
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Figure 2.7: Distributions of the number of assets shared by users with other users
with whom they share a specified number of friends in common.

We can also measure the entropy of users who are responsible for transfers and

compare it against a null model where each subsequent adopter receives the asset

from a randomly chosen previous adopter. The entropy is simply computed using the

proportion of transfers that can be attributed to each user in the cascade who shared

at least one asset. The null model has two parameters, the total number of owners of

the asset n, and the proportion p of missing edges in the cascade. At each time step,

the null model adds a new owner, who with probability p starts a new tree, and with

probability (1−p) picks one of the previous owners uniformly at random as its parent

node. The null model was computed for each asset using the corresponding (n, p). We

find that the distribution of entropies from the data, measured in bits, have a mean

of 2.72, which is significantly lower than that of the null model (3.48), (t = 97.08, p

= 0). This indicates that the actual distribution of assets is more concentrated than

one would expect if every previous adopter participated with equal probability.

An obvious distinction between the null model and the actual cascades is the

tendency of the observed cascades to be concentrated on the social graph, with many

users adopting after their friends do. As we mentioned before, 48% of the direct

transfers occur on the social graph. A null model that takes just any previous adopter
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Figure 2.8: Comparison between actual growth of cascades and a null model where
each previous adopter is equally likely to be sharing assets.

as the source of an asset would pick a friend 6.6% percent of the time. This is

calculated by computing the fraction of previous adopters who are friends for each

transfer with accurate previous owner information and dividing by the total number

of such transfers. Unsurprisingly, direct sharing is much more a feature of friendship

ties than simply a desire to share with others of similar tastes.

2.3.2 Strength of influence

The number of times a user transfers assets is an unambiguous influence measure.

However, it doesn’t capture how successful a user would be in a competition where

one’s friends could obtain assets from others. We propose a simple measure, γ,

that compares the number of times a user A infected one of its friends B, against

the expected number given the odds that B was not infected by one of their other

adopter friends. For example, if B had 2 other friends besides A who had previously

adopted, and B obtained the asset through a friend, then the probability that A was

the infector is 1/3. This adds 1/3 to the expected number of transfers for A.

We measure γ =(transfers - expected)/expected for all users who had at least 20

instances where one of their friends acquired an asset through a social tie after they

did. If odds were even that the adopter receives the asset from any one of their friends,

the user’s γ scores would be narrowly distributed around 0 – they would be doing no

worse or better than odds. Figure 2.9 shows what the distribution of gamma scores

would be if all the observed transfers occurred from a randomly chosen previously
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adopting friend. In contrast, the distribution of observed γ scores is highly skewed

– approximately 74%, fall below 0 and while the remaining 26% are more influential

than odds. The actual gammas have a mean of -0.286.

A further question one might have is whether a user can be influential in dis-

tributing many assets or just a few. The overall correlation between the number of

transfers a user made and the number of assets they were sharing was highly positive

(ρ = 0.63), but still displayed a wide range of behaviors. For example, one user in-

fluenced 73 transfers to friends (when just 4 were expected) involving just 2 different

assets. In another case, a user who was expected to have made 13.3 transfers, but

made 104, had similarly high γ but these transfers involved 16 different assets. In

yet another case, 47 transfers involved 46 assets, implying that one user is repeatedly

transferring items to the same user.
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Figure 2.9: Users’ influence using the γ measure, for actual and randomized adop-
tions.

Who are these influencers and what are their characteristics? Interestingly, even

though users with a higher number of friends tend to have been around longer (ρ =

0.13), have more assets(ρ = 0.16), and have made more transfers in total (ρ = 0.14), a
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user’s γ score is negatively correlated with their number of friends (ρ = −0.171). This

is likely because maintaining strong ties with many individuals is more difficult, hence

influencing any single one is less likely. We observe, for example, that the number of

assets shared by two friends is correlated with the strength of their tie (ρ = 0.10), as

given by the number of friends the two have in common.

A higher γ is slightly negatively correlated with the number of assets (ρ = −0.05),

but highly positively correlated with the number of transfers to friends per asset

owned (ρ = 0.35). This means that influencers don’t necessarily have more assets

than others, but the ones that they do have, they like to share with their friends.

Overall, we find that users who are sharing a higher number of assets and making

more transfers tend to be sharing less popular ones ρ = −0.15, again suggesting, as

in Section 2.1.2 that assets shared tend to be niche products.

We also examine whether those who are directly responsible for their friends’

adoptions tend to acquire assets earlier. While users who have more transfers per

asset tend to be “earlier” in their adoption (ρ = −0.06), both in terms of absolute

rank (they were the rth person to adopt) and relative rank (they were among the first

p% of users to adopt), a user’s γ score and relative adoption rank are uncorrelated.

Altogether, combining the age, number of friends, number of assets, average adoption

rank, and average number of transfers in a linear regression model yields an R2 of

0.17 for a user’s γ score.

2.3.3 Early adopters

This still leaves the question of whether the very earliest adopters might be dif-

ferent as a group from other users. We select 779 users who have 20 or more gestures

and have an average relative rank of 0.05 (meaning that they are on average among

the first 5% of adopters for all the assets that they own). This corresponds to be-

ing the 15th adopter on average across the assets one owns. For the analysis below

we obtained qualitatively similar results when we selected an early adopter group

of approximately the same size, but slightly different criteria: adopting 40 or more

gestures, and being among the first 10% of users to acquire them.

We compare the early adopter group against the group of 50,000 users who have

also acquired 20 or more gestures, but are on average in the latter half of adopters

for those gestures. We can immediately rule out some factors relating to whether

a user becomes an early adopter. The early adopters were on average born just 68

days earlier, meaning that joining Second Life earlier yields only a slightly higher

1number of friends and assets were log-transformed before their correlation was measured
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advantage in being one of the first adopters of an asset. Early adopters have actually

had a bit less playtime than the later adopters (40 hours), and have an average of 8

fewer friends (for an average of 61 and median of 33). Clearly the early adopters are

neither especially early, active, nor gregarious.

The very earliest adopters distinguish themselves in other ways. For the assets

that they eventually adopt, the rate of adoption before any of their friends adopt,

λk=0, is twice as high as that of the laggard group (t = 4.2, p < 0.0001), as is their

rate of adoption under initial social influence, λk=1, though this difference was not

as significant (t = 2.3, p < 0.05). This indicates that they are more susceptible to

adopting assets early (when none or one of their friends have adopted), although on

average they own 20 fewer assets than late adopting users (t = 10.3, p = 0). Possibly

it is not so much that they are early adopters, but, being trendsetters, they resist

acquiring assets that have become too common.

Finally, we examine the direct influence that these early adopters wield, and find

that their γ scores, though closer to odds (-0.08) than that of the later adopters (-0.22)

are not particularly impressive. The number of transfers they make is not significantly

higher than the laggard group, even though the assets they adopt eventually grow to

be more popular than those owned by laggard group (t = 5.5, p < 10−7). Previously

simulated models of social influence over social networks have established a negative

link between being an early adopter (easily succumbing to a new trend) and therefore

been less influential (Watts and Dodds , 2007). This is not the case for the most

extreme early adopters in Second Life. But the overall trend for all users is a very

slight but statistically significant negative correlation between the probability that

one adopts before one’s friends do, and both γ (ρ = −0.015, p < 0.001) and number

of transfers the user makes (ρ = −0.02, p < 10−7).

In summary, we identified some users as influential, and others as early adopters.

They don’t appear to be one and the same, with the early adopters being more easily

susceptible early on, but not being more likely to share their finds. We were able to

identify some characteristics of both early adopters and influencers, however, these

characteristics alone cannot be used reliably to identify such users. The size of a

users’ social network is just one of the variables that was of little help in identifying

influencers, although the social network itself is responsible for many of the transfers.
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2.4 Conclusion

We examined the interplay of social networks and social influence in the adop-

tion of online content. Roughly 48% of transfers occur along the social graph, the

remainder occurring between users who are not friends. We find that assets whose

transfers typically occur through the social graph tend to have deeper transfer cas-

cades measured as a higher proportion of non-leaf nodes, but tend to grow more

slowly. This suggests that social networks are an important medium for diffusion of

niche information in Second Life.

We applied models of social contagion that capture the rate at which users adopt

following the adoption by one of more of their friends. We find that the rate of

adoption increases as more of one’s friends adopt, and that this is more significant for

smaller, niche assets. We also find that someone who has many friends is less likely

to be influenced by any particular one. A user with many ties would have difficulty

maintaining all of them, increasing the probability that many of the ties are weak

and therefore hold less influence. Indeed, we found a slight correlation between the

strength of a tie and number of assets that are transferred between two friends.

We further find that some individuals play a more active role in the transfer of

assets than others. A random cascade model, where any node is equally likely to

produce another leaf node, yields a higher entropy than the empirically observed

cascades. But the variability in influence cannot be attributed to the social network

alone: when we measure the direct influence an individual has on a particular friend,

this influence is negatively correlated with the number of friends. Finally, the early

adopters, while being more susceptible to adopting content without waiting for many

of their friends to so, do not wield greater influence over others.
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CHAPTER III

The Effect of Social Networks on Information

Diffusion

Social networks are thought to play an important role in the dissemination of in-

formation. Quantifying this effect not only requires that one identify who influences

whom, but also how individuals would share information in the absence of interper-

sonal influence. We determine the role of networks in information diffusion with a

large-scale experiment that randomizes exposure to information about friends’ shar-

ing behavior among 253 million subjects in situ. We find that those who are exposed

are significantly more likely to spread information, and share sooner than those who

are not. Although stronger ties are individually more influential, we show that the

majority of content is disseminated via the more abundant weak ties who expose their

friends to novel information that would not have otherwise been spread.

3.1 Introduction

The structure of social interactions can have a substantial effect on social contagion

and other spreading processes (Granovetter , 1978; Watts and Strogatz , 1998; New-

man, 2002). This insight has generated academic and commercial interest in quantify-

ing influence in face-to-face (Christakis and Fowler , 2007) and online networks (Aral

et al., 2009; Goldenberg et al., 2009; Cha et al., 2010; Bakshy et al., 2011). But to

what extent are individuals actually influencing one another, and how critical are

these interactions to the overall spread of information within a network? Regardless

of scale, empirical studies face a persistent challenge of distinguishing influence from

mere correlation (Manski , 1993; Aral et al., 2009). Homophily, the tendency of indi-

viduals with similar characteristics to associate with one another (McPherson et al.,

2001; Adamic and Adar , 2001; Kossinets and Watts , 2009), provides an alternative
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explanation of why connected individuals may share the same content: they regularly

frequent similar information sources, such as web sites (Adar et al., 2009). Statisti-

cal methods that attempt to disambiguate homophily from influence (Christakis and

Fowler , 2007; Anagnostopoulos et al., 2008; Aral et al., 2009) cannot entirely account

for unobserved factors that fundamentally confound the two (Shalizi and Thomas ,

2011).

Moreover, since individuals are more similar to those with whom they interact

often (Granovetter , 1973; McPherson et al., 2001), the relative role of strong and

weak ties in information diffusion becomes even less clear. On one hand, individuals

who interact more often have greater opportunity to influence one another and have

more aligned interests, increasing the chances of contagion (Brown and Reingen, 1987;

Hill et al., 2006). However, this commonality amplifies the potential for confounds:

those who interact more often are more likely to have increasingly similar information

sources. As a result, inferences made from observational data may overstate the role

of strong ties in information spread. Conversely, individuals who interact infrequently

have more diverse social networks that provide access to novel information (Granovet-

ter , 1973; Burt , 1992). But because contact between such ties are intermittent, and

the individuals tend to be dissimilar, any particular piece of information is less likely to

flow across weak ties (Centola and Macy , 2007; Centola, 2010). While data on how

often individuals communicate has historically been biased (Marin, 2004; Bernard

et al., 1984), the increasing ubiquity of networked communications technologies have

allowed researchers to more precisely analyze the relationship between social structure

and information diversity (Aral and Van Alstyne, 2011).

3.2 Experimental design

We use a randomized field experiment on Facebook to determine the causal effect

of networks on information diffusion, which allows us examine how tie strength is re-

flective of common information sources and interpersonal influence. A recent survey of

US Facebook users shows that the average user maintains 48% of their social network

on Facebook, and that 40% of users are connected to all core discussion confidants

on Facebook (Hampton and Rainie, 2011). Given the strong connection to real-world

contacts and scale of usage, Facebook is an ideal platform to test theories of diffusion

in situ. Facebook users primarily interact with information through an aggregated

history of their friends’ recent activity, called the news feed, or simply feed for short

(Figure 3.1). A user can share a link (URL) to content she finds on the Web, which
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Figure 3.1: Causal relationships resolved by our experimental design. Informa-
tion presented in users’ news feeds and other sharing behavior on
facebook.com are observed. Exogenous events that cause users to be
exposed to information outside of Facebook cannot be observed and may
explain their sharing behavior. Our experiment blocks the causal relation-
ship (dashed arrow) between Facebook and user visitation by randomly
removing stories about friends’ sharing behavior in subjects’ feeds. Thus,
our experiment allows us to compare situations where both endogenous
social influence and exogenous correlations exist (the feed condition), to
situations in which only exogenous correlations exist (the no feed condi-
tion).

is then broadcast to her friends via the feed; a user can also re-share a URL that her

friend previously shared, which will subsequently be broadcast to her other friends.

By randomly selecting individuals and removing their exposure to social information

about randomly selected content, we are able to directly compare the overall proba-

bility with which subjects share links that they were or were not exposed to on the

feed. We then combine this information with data on users’ interaction frequencies,

which allows us to contrast the amount of correlation and influence between strong

and weak ties.

URLs shared by subjects’ friends are assigned to two experimental conditions:

the feed and no feed conditions. Subject-URL pairs assigned to the feed condition are

presented to subjects, whereas those in the no feed condition are not shown. Pairs

are deterministically assigned to a condition at the time of display, so any subsequent

share by any of a subject’s friends is assigned to the same condition. Because removal

occurs on a subject-URL basis, and we include only a small fraction of subject-URL
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pairs in the no feed condition, a URL is on average delivered to over 99% of its

potential targets. All viewing and sharing activity related to the subject and URL

are logged. Our experiment took place over the span of seven weeks in 2010 and

includes 253,238,367 subjects, 75,888,466 URLs, and 1,168,633,941 unique subject-

URL pairs.

3.3 Results

We find that subjects who are exposed to content on the feed are many times more

likely to share, and share sooner than those who are not exposed. To measure the

relative increase in sharing due to exposure, we compute the risk ratio: the likelihood

of sharing in the feed condition (0.260%) divided by the likelihood of sharing in the

no feed condition (0.044%), and find that individuals in the feed condition are 5.59

(95% CI = [5.53, 5.65]) times more likely share. Subjects who share the same URL as

their friends typically do so within a time that is proximate to their friends’ sharing

time. For those URLs that were assigned to both experimental conditions, the median

sharing latency in the feed condition is 6 hours, compared to 20 hours when assigned

to the no feed condition (Wilcoxon rank-sum test, p < 10−16; see Appendix A).

Models of biological and social contagion posit that the likelihood of contagion

increases as a function of activated contacts Granovetter (1978); Newman (2002);

Centola and Macy (2007); Centola (2010). Our experiment shows that the probability

of sharing a link on Facebook increases with the number of sharing friends in both

experimental conditions (Figure 3.2A). The presence of this relationship in the no feed

condition provides evidence of correlation among individuals due to factors outside of

social information in the feed. The effect of the feed relative to these other exogenous

factors can be measured as either the difference or ratio between the probability of

sharing in the feed and no feed conditions (Figure 3.2BC). While the difference in

sharing likelihood grows with the number of activated friends, the relative risk ratio

falls. This contrast suggests that social information in the feed is most likely to

influence a user to share a link that many of her friends have shared, but the relative

impact of that influence is highest for content that few friends are sharing.

In addition to claims about the number of contacts, social contagion research

suggests that tie strength contributes to the amount of influence between two indi-

viduals, and that weak ties provide access to more novel information Granovetter

(1973). Our experiment enables us to evaluate these hypotheses using measures of

tie strength that are informed by the complete set of interactions between users on
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Figure 3.2: Users with more friends sharing a Web link are themselves more likely
to share. (A) The probability of sharing for subjects that were (feed)
and were not (no feed) exposed to content increases as a function of the
number sharing friends. (B) The absolute effect of the feed is greater when
subjects have more sharing friends, but additional friends have decreasing
marginal influence. (C) The multiplicative impact of the feed, measured
as the ratio of probabilities in the two conditions, is greatest when few
friends are sharing. Error bars represent the 95% bootstrapped confidence
intervals clustered on the URL (see Appendix A for details).

Facebook. We construct two measures of tie strength using data from a time period

directly prior to our experiment: (i) the frequency of interaction on Facebook in terms

of comments the subject receives from a friend on her posts, during the past three

months, and (ii) number of photo coincidences between the two individuals, during

the past year. The measurements are chosen to reflect the strength of online and

offline interactions; two other measures are further analyzed in Appendix A.

We then examine how the likelihood of sharing a URL in the no feed and feed

conditions varies according to the strength of tie between a subject and her friend,

for subjects with exactly one sharing friend. In both conditions, a subject is more

likely to share a link when her previously sharing friend is a strong tie (Figure 3.3AB).

For example, subjects who were exposed to a link shared by a friend from whom the

subject received three comments are 2.83 times more likely to share than subjects

exposed to a link shared by a friend from whom they received no comments. For

those who were not exposed, the same comparison shows that subjects are 3.84 times

more likely to share a link that was previously shared by the stronger tie. We find

that the risk ratio of sharing between the feed and no feed conditions is highest

for content shared by weak ties (Figure 3.3CD). This suggests that weak ties carry

information that one is unlikely to be exposed to otherwise, thereby increasing the

diversity of information propagated within a portion of a social network. Using the
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experimental data, we can compute the average amount of contagion on the feed

due to strong and weak ties. Even under a generous classification of strong ties as

friends with whom the subject had at least one interaction, we find that the vast

majority of information shared originates from weak ties, with whom the subject had

no interactions1 (Figure 3.4).

By separating exogenous correlation from endogenous social influence, our experi-

ment sheds light on the role of social ties in propagating information within networked

communication technologies. We are able to estimate the causal effect of ties on in-

formation diffusion through randomization, and show that although strong ties are

individually more influential, the majority of information travels between individuals

who interact infrequently. Unlike the spread of items that are subject to positive ex-

ternalities Aral and Van Alstyne (2011) or require effort to adopt Centola and Macy

(2007); Centola (2010), mere exposure to information is often sufficient to induce large

increases in spread. This suggests that in highly connected networked environments,

the capacity for weak ties to disseminate information may differ significantly from

situations examined by previous work. As online social networks play an increasingly

important role in the dissemination of information, these findings carry important

implications for the diversity of information individuals are exposed to. In addition,

we also expect that other non-network features play an important role in diffusion

processes. Future work may investigate how properties of the individual, such as age,

gender, and nationality, or features of the content, such as popularity and breadth of

appeal, relate to influence and its confounds.

1Since only 4.2% of shares occur when more than one friend has shared, consideration of cases in
which subjects have more than one sharing friends would not effect the significance of our findings.
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Figure 3.3: Strong ties are more influential, and weak ties expose friends to informa-
tion they would not have otherwise shared. Figures show the effect of two
measures of tie strength on sharing: the number of photo coincidences and
the number of comments received from a subject’s friend. (A) and (B)
show the increasing relationship between tie strength and the probability
of sharing a link that a friend shared in the feed and no feed conditions.
(C) and (D) show that the multiplicative effect of feed diminishes with tie
strength, suggesting that exposure through strong ties may be redundant
with exogenous exposure, while weak ties carry information one might
otherwise not have been exposed to.
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Figure 3.4: Weak ties are collectively more influential than strong ties. (A) and (B)
show the percentage of information spread by weak and strong ties. We
classify a tie as strong and weak if two users did or did not appear in
the same photograph (A), or if the influencer had or had not previously
commented on their friend’s post (B). The percentage of influence on
feed is computed by taking the number of links appearing in the feed
from each tie type, and weighting them by the expected probability of
sharing due to influence on the feed, given the tie type. Although the
probability of influence is significantly higher for those with any trace
of interaction, most information travels along weak ties, which are more
abundant (Appendix A).
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CHAPTER IV

The Effect of Social Information on Sharing

Decisions

Social networks act as pathways for information diffusion, but to what extent does

social information affect individual sharing decisions? We present an experiment that

randomizes the amount of information about friends’ sharing behavior given to 1.1

million Facebook users visiting 470 thousand web pages. Our design evaluates how

social information increases content sharing beyond its ability to expose others to

novel content, while simultaneously controlling for confounding factors related to

homophily. We find that the number of sharing friends an individual has, and the

strength of ties with those friends, is a significant predictor of whether an individual

shares a page, even when no social information is displayed. In addition, the number

of friends shown has a significant but relatively modest increase in the likelihood of

sharing compared to the baseline condition in which no friends are displayed. Lastly,

we find that stronger ties are more predictive of an individual’s sharing behavior,

but that strong ties do not appear to be any more influential than weak ties. Our

results quantify the effect of social information on individual sharing decisions in

online settings, and highlight the importance of experimentation in the evaluation of

such systems.

4.1 Introduction

Many models of social influence in networks exist, but to what extent do they cap-

ture the mechanisms responsible for the spread of information online? In the spread of

a disease, every exposure to a contagion has some independent probability of infecting

the exposed individual (Anderson and May , 1992; Newman, 2002). In contrast, the

spread of social contagions is thought to depend critically on properties and behaviors
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of a given individual’s network of contacts, which may affect the individual’s adoption

beyond simple exposure (Schelling , 1973; Granovetter , 1978). Whether this contagion

be an idea, political stance, rumor, or news bulletin, its spread occurs in two stages:

an individual must first be exposed to information, then make a purposeful decision

to propagate that information. Measures of social influence can pertain to the first

stage, second stage, or the entire process. In this study, we focus on the second stage

of the diffusion process using a large-scale randomized field experiment that controls

for correlations between the sharing behavior of subjects and their friends.

There are many reasons that may explain why one’s network of contacts can

affect decision making processes. For example, the utility of adopting a technology

may depend on the current number of adopters (Schelling , 1973). The behavior of

one’s close friends increases the perceived legitimacy of social movements (Finkel

et al., 1989) or clothing styles (Crane, 1999). The credibility of one’s peers plays

a role in the spread of innovations (Coleman et al., 1966; Markus , 1987) and folk

knowledge (Granovetter , 1978). These examples form the basis of threshold models

of contagion, which assert that one’s willingness to adopt a behavior or idea depends

critically on the total number of “infected” contacts that one observes. Because the

spread of these behaviors requires affirmation from multiple sources, this process is

sometimes referred to as complex contagion (Centola and Macy , 2007; Centola, 2010),

and stands in contrast to simple contagion, where the effect of every exposure on an

individual’s behavior is independent of signals received from other contacts. Online

information diffusion can be thought of as a composite of both models: exposure

is a prerequisite for being able to make a decision about sharing content, and it

seems reasonable to expect that knowledge of ones’ network would affect the ultimate

decision to share.

Identifying the process of influence is further complicated by external factors.

Connected individuals in networks are similar to one another (McPherson et al.,

2001; Adamic and Adar , 2001; Kossinets and Watts , 2009), and in Chapter 3, we show

that they are more likely to share the same information as one another, and therefore

have similar information sources. We capture the effect of social information along

both stages of the contagion process by censoring exposure to content in subjects’

Facebook feeds: subjects in the no feed condition are neither exposed to content their

friends share via the feed, nor can this social information come to bear on subjects’

decision to share that content if they find it independently. To separate the effect

of social signals on the decision making process from the exposure process, one must

manipulate signals given to subjects after they have discovered content independent

36



of their friends.

In this study, we examine how social information specifically affects sharing de-

cisions by randomizing the amount of information subjects see about their friends’

sharing behavior on web pages the subjects visit independent of the Facebook feed.

Our experimental design builds upon the experiment discussed in the previous chap-

ter: by focusing solely on subjects who were not shown their friends’ sharing behavior

in feed (those assigned to the no feed condition), we are able to control for exposure

and isolate the effect of social information on sharing decisions. In Section 4.2, we

describe the experimental design and population. Section 4.3 examines how the like-

lihood of sharing varies as a function of the number of friends shown, controlling for

the actual number of sharing friends. We show that subjects are much more likely

to share when they have at least one sharing friend, even when no social informa-

tion is presented, suggesting that much of the variation may be attributed to factors

unrelated to so-called influence response functions. In Section 4.4, we analyze the re-

lationship between tie strength and influence by comparing the likelihood of sharing

for subjects who did or did not see a friend with whom they had interacted at a cer-

tain frequency. We show that while strong ties are most predictive of an individual’s

sharing behavior, they are at most marginally more influential than weak ties.

4.2 Experimental design

4.2.1 Setup

We conduct our experiment on the population of Facebook users visiting pages

with like widgets. Like widgets are interface elements that can be embedded on any

web page and allow users to share the page on Facebook with a single click to a

button, labeled “Like” or “Recommend”. When an individual visits a page with a

like widget while logged into Facebook, the like widget renders the names and faces of

the individual’s friends who have shared that page. Our experiment randomizes the

amount of social information displayed to a small percentage of visitors by randomly

removing friends’ names and faces from the widget (Figure 4.1). For example, if a

visitor has two friends that have shared a page, she may see zero, one, or two friends,

depending on her assignment to an experimental condition. Using this design, we

can compute the increase in the likelihood of sharing as a function of the number of

friends displayed.

Our experimental population consists only of subject-URL pairs that were, or

would have been, assigned to the no feed condition of the experiment discussed in the
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Figure 4.1: An example of the like widget interface for a user with two sharing friends
in the three possible treatment conditions where (A) no friends are shown
(B) one friend is shown (C) all friends are shown.

previous chapter. Therefore, our population consists solely of cases where a subject

was never shown the URL on the Facebook feed, regardless of whether her friends ever

shared that content. Subject-URL pairs in our population are then deterministically

assigned to one of five experimental conditions, 0, 1, 2, 3, 4, denoted by ω, which spec-

ifies the maximum number of friends shown to that subject. Therefore, the amount of

social information given to a subject within the experiment is o = min(ω, k), where k

is the actual number of sharing friends. Note that this implies that for subject-URL

pairs with a given value of k that is less than 4, more pairs will be assigned to the

o = k condition than other conditions. Subjects who arrive at a page via Facebook

through other means of sharing on Facebook (e.g. direct messaging) are also removed

from the analysis.

4.2.2 Population statistics

We randomize the number of observed friends for subjects with a particular value

of k sharing friends, so the population for any particular k may differ. Table 4.2.2

compares basic self-reported demographic information for subjects with varying val-

ues of o and k for up to three sharing friends1. Our experimental population only

includes subjects where k is greater than zero; for comparison, the table also presents

demographic information for k = 0, meaning subjects who visit web pages that none

of their friends had previously shared. Within any particular k, the demographics

across o remain relatively stable. Those with no sharing friends tend to be somewhat

older and are slightly less likely to identify as male, and those with more than one

sharing friend tend to all have similar demographic features. In total, there were

1We leave out the k = 4 case from the majority of the analysis, since there are too few observations
to make comparisons with the necessary power.
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1,156,608 unique subjects visiting 470,089 distinct URLs2.

k = 0 k = 1 k = 2 k = 3
Treatment (o) 0 0 1 0 1 2 0 1 2 3
Num. Trials 166,970,891 300,923 1,220,197 51,808 55,167 163,066 18,877 19,971 20,308 41,451
Num. Subjects 63,247,399 216,941 811,954 37,261 39,985 112,265 13,664 14,972 14,633 29,883

Age
13-17 9.7% 19.4% 20.1% 20.8% 21.9% 21.9% 23.1% 25.1% 26.1% 24.2%
18-24 37.2% 37.6% 38.5% 37.8% 37.8% 37.6% 37.6% 37.7% 37.4% 36.5%
25-34 28.9% 23.2% 23.0% 23.0% 22.4% 21.8% 22.0% 21.2% 19.8% 21.3%
35-44 13.0% 9.9% 9.9% 9.6% 9.8% 9.9% 8.9% 8.8% 8.3% 9.5%
45-54 5.9% 5.3% 4.7% 4.6% 4.5% 4.7% 4.6% 3.9% 4.7% 4.5%
55-64 3.0% 2.7% 2.2% 2.2% 2.0% 2.4% 2.1% 2.1% 2.0% 2.3%
65+ 2.3% 1.9% 1.6% 1.8% 1.4% 1.7% 1.7% 1.1% 1.5% 1.7%
Gender
Female 50.5% 47.2% 45.7% 48.9% 46.1% 48.3% 48.3% 46.6% 49.1% 48.6%
Male 47.7% 51.7% 53.1% 50.0% 52.5% 50.5% 50.5% 52.1% 49.9% 50.1%
Unknown 1.8% 1.1% 1.2% 1.2% 1.4% 1.1% 1.1% 1.3% 1.0% 1.3%

Table 4.1: Summary of demographics for subjects with 0, 1, 2, or 3 sharing friends
(k), who were randomly assigned to a treatment condition (o) between 0
and k. Those with o < k did not see all of their sharing friends, while
those with o = k were not affected by the experiment. More subjects are
randomly assigned to o = k for the reasons described in Section 4.2.1.

4.3 The marginal effect of social information

In empirical studies of diffusion, contagion effects are commonly inferred by com-

puting the likelihood that an individual engages in a certain behavior given the current

number of friends with that behavior. Such relationships have been examined in the

context of numerous online behaviors, including participation in groups (Backstrom

et al., 2006; Cha et al., 2009), games (Wei et al., 2010), product purchases (Leskovec

et al., 2006a), tagging (Anagnostopoulos et al., 2008), and the adoption of user-created

content (Bakshy et al., 2009). In all of these settings, the relationship between the

number of contacts with a behavior and a user’s likelihood of adopting that behavior

is concave increasing, and widely believed to be suggestive of influence.

In our experiment, subjects visiting pages with like widgets were not exposed via

the Facebook feed, but still exhibit similar correlated sharing behavior (Figure 4.2).

Empirically, a subject’s likelihood of sharing, given one sharing friend, is over five

times greater compared to situations in which the subject has no sharing friends.

While a subject’s friends may be predictive of whether or not the subject chooses

to share a page, this fact does not on its own demonstrate that the display of social

information affects the decision making process. There are two possible hypotheses

2URLs that were classified as malicious or “spam” content by Facebook’s security team were
removed from the analysis.

39



      number of sharing friends (k)

pr
ob

ab
ili

ty
 o

f s
ha

rin
g

0.00

0.02

0.04

0.06

0.08

0 1 2 3 4

Figure 4.2: The probability of sharing a link as a function of the number of sharing
friends for subjects who visit pages with like widgets that display all shar-
ing friends (o = k). Error bars represent 95% bootstrapped confidence
intervals.

that easily explain the phenomenon: (1) visitors are motivated to share a page when

they see that friends have also shared the page, or (2) because of homophily, friends’

sharing behaviors reflect the habits, tastes, and preferences of the visitor, and are

therefore predictive, but not causal. Another more complex explanation is the possi-

bility that one of the subject’s Facebook friends had shared the page with the subject

using a communication medium other than Facebook, which motivates her to share

that page on Facebook.

We measure the effect of social information on sharing decisions by randomizing

the number of friends shown to subjects. Figure 4.3 shows the marginal effect of

social information (o), for subjects with some fixed number of sharing friends (k).

In the figure, each panel represents some fixed value of k, the x-axis represents the

number of friends displayed, and each point is the probability that a subject decides

to share the page she has visited. For subject-URL pairs where k = 1, we find

that the increase in the likelihood of sharing is only about 12% (relative risk ratio =

1.12, 95% CI = [1.10, 1.15]). Similarly, we find that for subjects with two and three

sharing friends, there is a significant difference between being shown zero and one

friend: for k = 2 the increase in likelihood is estimated at about 12% (relative risk

ratio = 1.12, 95% CI = [1.03, 1.21]), and for k = 3 the increase is about 9% (relative

risk ratio = 1.09, 95% CI = [1.03, 1.15]). In both cases, the estimated difference is

significant at a p < 0.005 significance level. Despite the presence of these effects, a

subject’s behavior is mostly predicted by the number of sharing friends regardless of

whether those friends are visible. Furthermore, for cases with more than one sharing
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Figure 4.3: The probability of sharing a link as a function of the number of observed
sharing friends (o), given the number of actual sharing friends (k). Error
bars represent 95% bootstrapped confidence intervals.

friend, increasing amounts of social information beyond the first displayed friend do

not have a statistically significant effect on individual decision making. For example,

in the case of k = 2, we fail to detect a significant difference between cases where one

friend is shown and cases where two friends are shown. These results suggest that, in

situations when individuals have already been exposed to content, the presentation

of a single friend’s sharing behavior provides a significant yet modest increase in the

likelihood of sharing, and that there is no significant marginal effect of presenting

additional peers beyond the first.

4.4 The effect of tie strength

The strength of a tie is also relevant to influence. Strong ties are more likely

to be perceived as influential, and have a higher likelihood of spreading informa-

tion (Weimann, 1982; Brown and Reingen, 1987; Hill et al., 2006). However, given

that an individual has already been exposed to content, and is aware of their friends’

willingness to share that content, to what extent does the strength of her relationship

with that contact impact the decision to share? Because of homophily, we expect

that strong ties better reflect individuals’ preferences, and are thus more predictive

of subjects’ behavior. To separate these effects, we first examine the extent to which

strong ties are predictive, then examine how the display of strong versus weak ties
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Figure 4.4: The distribution of the four tie strength measures between subjects and
their alters in the k = 1 conditions.

affects subjects’ sharing decisions.

We examine four measurements of tie strength using data from three months di-

rectly prior to the experiment: (1) the number of comments the subject received from

their alter, which reflect public online interaction; (2) the number of messages the

subject received from their alter, which reflects private interpersonal communication;

(3) the number of photos the subject and alter were tagged in together, which reflects

real-world coincidences; and (4) the number of thread coincidences, which indicates

the number of times the subject and alter had participated in the same public discus-

sion thread. The distribution of these measurements for subjects in the k = 1 group

is shown in Figure 4.4.

4.4.1 Predictive power of tie strength

To test whether the sharing behaviors among strong ties more closely reflect one

another compared to the behaviors among weak ties, we consider the likelihood of

sharing for subjects with one sharing friend (k = 1) who is a weak or strong tie.

Figure 4.5 shows the probability of sharing for subjects with alters with whom they

had or had not interacted in the past three months (tie strength > 0). From this

figure, we can see that individuals with strong tie alters are more likely to share, and

that this effect exists even when no social information is shown to the subject.
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Figure 4.5: The relationship between tie strength and likelihood of sharing. Subjects
are more likely to share when their alter is a friend with whom they have
interacted at least once, and are more likely to share when that friend is
shown. Error bars represent 95% bootstrapped confidence intervals.

If subjects who communicate often with friends that share pages on Facebook

are themselves more likely to share on Facebook, then this correlation may partially

explain the relationship we observe in Figure 4.5. Using logistic regression, we si-

multaneously estimate the effect of tie strength as well as viewing a friend, while

controlling for subjects’ propensity to share. Equation 4.1 gives a logistic regression

model of the effect of a friend with whom the subject had interacted at least once

(interacted), whether the alter was shown to the subject (shown), and the number of

times the subject had used a like widget over the three months directly prior to the

experiment. We fit the model in Eq. 4.1 separately for each of the four measurements

of tie strength. The regression coefficients are summarized graphically in Figure 4.6A.

shared ∼ β0 + βtinteracted+ βsshown+ βplog(1 + prev.likes) (4.1)

shared ∼ β0+βtinteracted+βsshown+βt:sinteracted∗shown+βplog(1+prev.likes) (4.2)

Our results support the hypothesis that individuals are significantly more likely to share

the same content as their stronger ties, even when no friends are displayed, and that this

effect is not simply a result of correlations between subjects’ propensity to share and tie

strength. We use a similar regression model with an interaction term (Eq. 4.2) to test if

the presence of social information affects pages shared by stronger ties compared to weaker

ties. Figure 4.6B shows that there is no significant effect for comments or messages, and

that there is a weak, but significant positive effect for subjects with alters whom they had

appeared in at least one photo or thread discussion. This positive effect implies that for
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Figure 4.6: The effect of social information and tie strength on the probability of
liking a page, for subjects with one sharing friend, using the logistic re-
gression models in Eq. 4.1 (left) and Eq. 4.2 (right). Previous likes is
one plus the logarithm of the number of times the subject had used like
widgets over the three months directly prior to the experiment. For each
regression coefficient β, we plot the point estimate, exp(β), and its corre-
sponding 99% confidence interval.

these two measures of tie strength, the presence of social information has a stronger impact

on the subject’s propensity to share when that information pertains to a strong tie rather

than a weak tie. This may suggest that strong ties exert more influence on a subject’s

decision to share, or it may simply mean that the presence of social information has greater

impact for pages that are shared by strong ties.

4.4.2 Influence of strong ties

To answer the question of how much more or less influence strong ties exert, we consider

subjects who visit a page that has been shared by exactly one weak tie and one strong tie,

and are only shown one of those two friends on the like widget (that is, a subset of those

in the k = 2, o = 1 condition). In these cases, whether the strong or weak tie was shown is

randomly assigned, so we can directly evaluate the effect of tie strength by comparing the

difference in likelihood of sharing among the two groups.

Table 4.2 summarizes the propensity to share for subjects that were randomly assigned

to see either one weak or one strong tie. We do not observe a statistically significant

difference in likelihood of sharing when comparing whether the displayed friend is a strong
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or weak tie, along any of the four measures of tie strength. To show the robustness of this

result, we report the minimum detectable difference our data affords, at 90% power and

a 95% significance level. The likelihood of sharing given the display of a weak tie varies

between 6.05% and 7.23% while the minimum detectable difference if the displayed friend

is a strong tie is roughly an order of magnitude smaller, varying between 0.44% and 0.90%.

This suggests that if our test fails to detect a true difference between the influence exerted

by strong versus weak ties, that difference is modest at most.

comments messages photos threads
Tie Strength 0 > 0 0 > 0 0 > 0 0 > 0

Num. trials 9800 9680 5217 5414 3487 3496 11376 11401
Num. clicks 614 591 331 322 252 265 688 702

% shared 6.27% 6.11% 6.34% 5.95% 7.23% 7.58% 6.05% 6.16%

p>0 − p0 −0.15% −0.39% +0.35% +0.10%
Min. det. diff. ±0.49% ±0.68% ±0.90% ±0.44%

p-value 0.66 0.42 0.60 0.75

Table 4.2: The difference in the propensity to share for subjects who were shown
their strong or weak tie, among subjects with one weak or one strong tie.
All differences are not significant. We also give the minimum detectable
difference computed at the 90% power level to show that even with more
randomized trials, the difference between the the two treatment conditions
would be small.

Admittedly, our formulation of strong ties is generous, since it only requires that pairs

of users interact once within the past three months. Since there is no a priori obvious cutoff

for what should be considered a strong tie, we also perform comparisons between those

who have not interacted and those with some minimum number of interactions (τ). As we

increase this threshold, the effect size tends to increase slightly, but the number of subjects

in our population decreases rapidly, thereby widening the minimum detectable difference

(Table 4.3). Across all four measures and a wide range of cutoffs, we are unable to detect a

significant difference between the amount of influence due to exposure to information about

strong and weak ties.

4.5 Conclusion

Unlike many theories of social contagion, the behavior of multiple friends or strong

ties hold little influence in subjects’ decision to follow the behavior of their friends. In

combination with our experimental results from the previous chapter, it appears that the

primary role of social networks in information diffusion is to expose individuals to relevant

content. Relational aspects, such as the number of sharing friends or strength of tie with a
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Comments Messages Photos Threads
τ p>τ − p0 N p>τ − p0 N p>τ − p0 N p>τ − p0 N

1 +0.04% 6277 -0.50% 3183 +0.50% 1920 +0.31% 6433
2 -0.27% 4735 -0.27% 2220 +0.78% 1309 +0.26% 4459
3 +0.30% 3750 +0.57% 1753 +0.90% 1011 0.00% 3407
4 +0.42% 3075 +0.53% 1420 +2.01% 781 -0.04% 2778
5 +0.16% 2593 +0.51% 1213 +1.59% 638 +0.11% 2296
6 +0.63% 2286 +0.92% 1007 +1.96% 539 +0.08% 1977
7 +0.25% 1998 +1.15% 845 +2.32% 471 +0.35% 1712
8 +0.46% 1782 +1.65% 751 +2.28% 392 +0.70% 1486
9 +0.66% 1607 +1.54% 686 +3.14% 351 +0.85% 1312

10 +0.92% 1442 +1.42% 627 +1.75% 293 +1.41% 1189
11 +0.84% 1327 +1.72% 579 +2.04% 266 +1.79% 1090
12 +0.56% 1207 +2.05% 532 +1.68% 245 +1.18% 977
13 -0.02% 1138 +2.18% 489 +3.26% 219 +0.75% 861
14 -0.15% 1054 +1.96% 452 +1.87% 209 +0.20% 771
15 +0.39% 1000 +1.30% 424 +1.47% 188 +0.38% 674
16 +0.23% 927 +1.68% 387 +0.51% 174 +0.30% 637

Table 4.3: Even under more strict definitions of tie strength, for which pairs of indi-
viduals must have at least some minimum threshold of interaction (τ) to
be considered strong ties, we are unable to detect a statistically significant
difference in the propensity to share for subjects who are shown a weak
versus a strong tie. N is the number of comparisons available for our test
of proportions, and falls off rapidly with τ due to skew in the distribution
of tie strengths. All differences have p > 0.1.

sharing alter are predictive of whether or not an individual will take interest in and share

content. Consequently, these features may be critical to how information spreads, but have

little causal impact on an individual’s ultimate decision to share once she has arrived at a

particular piece of content.

As practitioners move toward enhancing technologies with social data, we expect that

the use of experimentation will become increasingly important for how information systems

are evaluated. In our study, a naive estimate might suggest that the display of a single

friend increases use by over 800%, but more careful analysis through experimentation shows

that the increase is only about 12%. Such differences do not just represent a problem with

measuring diffusion, but reflect a fundamental problem caused by homophily that can affect

the evaluation of systems that draw upon friends’ behavior.
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CHAPTER V

Allocating Attention

An individual’s personal network — their set of social contacts — is a basic object of

study in sociology. Studies of personal networks have focused on their size (the number of

contacts) and their composition (in terms of categories such as kin and co-workers). Here

we propose a new measure for the analysis of personal networks, based on the way in which

an individual divides his or her attention across contacts. This allows us to contrast people

who focus a large fraction of their interactions on a small set of close friends with people

who disperse their attention more widely.

Using data from Facebook, we find that this balance of attention is a relatively stable

property of an individual over time, and that it displays interesting variation across both

different groups of people and different modes of interaction. In particular, activities based

on communication involve a much higher focus of attention than activities based simply

on observation, and these two types of modalities also exhibit different forms of variation

in interaction patterns both within and across groups. Finally, we contrast the amount of

attention paid by individuals to their most frequent contacts with the rate of change in the

identities of these contacts, providing a measure of churn for this set.

5.1 Introduction

People maintain a broad range of personal relationships. In the language of social

networks, these relationships can be thought of as the links connecting an individual to her

network neighbors, a set of people we will refer to as her contacts. A significant body of

research in sociology has focused on an individual’s contacts — her personal network — as

an important attribute in settings that range from professional opportunities Granovetter

(1973); Burt (1992) to social support and advice on important matters. Fischer (1982);

McPherson et al. (2006); Wellman and Wortley (1990).

This chapter is published as Center of Attention: How Facebook Users Allocate Attention across
Friends in the ICWSM 2011 Proceedings of the 5th International AAAI Conference on Weblogs and
Social Media (Backstrom et al., 2011).
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This line of work has considered variations in both the size and the composition of per-

sonal networks. Size is most naturally defined simply as the number of contacts (Killworth

et al., 1990). Composition has generally been studied in terms of discrete variables that

include the number of kin and non-kin contacts, and the distinction between close friends

and more distant acquaintances. Earlier research has considered how the composition of

personal networks differs across attributes including age, race/ethnicity, gender, and educa-

tional level (Marsden, 1987; McPherson and Smith-Lovin, 1993; Moore, 1990) while more

recent work has examined personal network composition within the context of social media

(Chang et al., 2010; Gilbert et al., 2008).

We propose a new measure for analyzing personal networks that addresses a dimension

distinct from network size and composition. This measure expresses the way in which

an individual divides his or her attention across contacts. Everyday experience suggests

that some people focus most of their attention on a small circle of close friends, while others

disperse their attention more broadly over a large set. As a specific property of an individual,

this contrast between focus and dispersion — the individual’s balance of social attention

— is distinct from the properties discussed above: two people with personal networks of

similar size and composition can differ greatly in the extent to which their attention is

focused on a small or large subset of their personal network. Furthermore, the balance of

social attention is not a purely structural measure, since it takes into account both the links

in the underlying social network and the amount of time that an individual allocates to

these links.

We believe this type of measure can play a useful role in illuminating the fine structure

of an individual’s personal network in both on-line and off-line settings. An understanding

of how the balance of attention varies across individuals can also help to inform the design

of social media applications, many of which must manage a tradeoff between diversity and

relevance. These applications attempt to avoid stale content, while at the same time ensur-

ing that everything that appears is personally relevant. Designers of such social products

can use an individual’s balance of social attention to help customize this tradeoff on a per

user basis. For example, stratification of users by a measure capturing balance of social

attention recently led to increased interaction with the Facebook News Feed.

Although a metric for balance of social attention is potentially useful and theoretically

interesting it has been difficult to study empirically. Even the size and composition of

friendship networks are notoriously difficult to measure, and generally have been captured

through self-reports aided by elicitation mechanisms (Campbell and Lee, 1991). Measuring

the balance of attention requires an even higher resolution, as it depends on a careful esti-

mation of the volume of interaction between an individual and each member of her personal

network. In order to overcome these measurement difficulties we use data from Facebook

to analyze the interaction volume. After reviewing further related work, we turn in the
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next section to a precise formulation for the balance of social attention. Subsequent sec-

tions present analysis that shows how this measure exhibits interesting patterns of variation

across groups of people and across different modalities of interaction.

Further related work. Recent work in on-line social networks has articulated the

contrast between the links in a network and the activity that takes place on these links.

This is also the distinction that motivates our work, although our focus differs from earlier

papers to address this issue: Kossinets et al. (2008) study how link activity can lead to

different pathways for information flow over multi-step paths, and Wilson et al. (2009)

focus on aggregate measures for how activity is distributed, and the network structures

that result from thresholding the links by activity level. In contrast, we are interested in

the distribution of attention levels as an attribute operating at the individual level — in

understanding how this attribute varies across people and groups, and how it relates to

other individual attributes.

From a theoretical perspective the balance of social attention is related to the distinction

between strong and weak ties (Granovetter , 1973), but this is not simply a different measure

of tie strength. Although tie strength is ultimately a synthesis of several factors, including

volume of interaction and affective closeness (Marsden and Campbell , 1984), our measure

begins from the aspects of tie strength related to volume and synthesizes them into a

node-level measure in the network that takes into account an individual’s full set of ties.

Furthermore, our approach also relates to arguments by Milgram (1970) and Mayhew and

Levinger (1976) that settings such as dense urban areas, which produce many interactions

ought to result in less time spent on any one of these interactions. Our measure enriches

these considerations by formulating multiple ways in which an individual can manage a

large personal network: either by slicing her attention relatively evenly over all contacts, or

by focusing on a few at the expense of the others. Finally, our measure is related to other

quantitative trade-offs between focus and dispersion in an individual’s personal network,

such as the geographic spread of one’s friends and the searchability of social networks

(Kleinberg , 2006; Backstrom et al., 2010). The focus of our work is to quantify this trade-

off in terms of the volume of interaction, rather than embedding the analysis in external

frames of reference such as geography or social categories.

5.2 The balance of social attention

Consider a population of n individuals, and a person i in this population who sends

messages to her contacts. (Later we will consider a range of different interaction modalities,

but for purposes of exposition it is useful to think about messages.) Suppose mj is the

number of messages sent by person i to person j in her set of contacts. If the total number
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of messages sent by i (over all contacts) is m, we say that the fraction of i’s attention that

she devotes to j is aj = mj/m.

As a function of k, what fraction of i’s attention does she devote in total to her k most

frequent contacts? We sort all of i’s contacts j in order of decreasing aj , and we say that

i’s top k contacts are the people corresponding to the first k positions in this sorted list.

The fraction of i’s attention devoted to her top k contacts, denoted fk, is the sum of aj

over all individuals j in this set of top k contacts. If i has n contacts, then the vectors

a = (a1, a2, . . . , an) and f = (f1, f2, . . . , fn) are each complete descriptions of how i divides

her volume of interaction across her contacts, and these vectors serve as our starting point

for measuring the balance of social attention.

The full vectors turn out to be a highly redundant representation. For much of our

analysis, we find that individual coordinates of the vector f can serve as relatively stable

summaries of aggregate properties computed from the full vector. Specifically, if we compare

individuals simply by the single number fk, we get extremely similar aggregate comparison

results for all k in a broad middle range where most of the volume of interaction takes

place, i.e., in the interval between k = 5 and k = 25. There is a natural reason for this: in

general, if user A has lower fk value than user B, then A will also typically have a lower f`

value compared to B, when k and ` are in this middle range from 5 to 25. As a result, any

coordinate from this range produces roughly similar results, which allows us to collapse a

collection of measurements to something that is effectively a single-dimensional question.

5.3 Balance of attention across modalities

5.3.1 Data

To examine how an individual balances her attention across her friends, we compute

metrics for a number of different modalities of attention. These modalities can be divided

into two distinct groups: communication and viewing. The communication modalities en-

compass directed interaction, such as sending a private message or posting a public comment

on a photo, while viewing behavior is derived from users visiting pages on Facebook. Thus,

in the communication modalities the target is aware of the user’s actions (since they receive

the communication), but in the viewing modalities they are not; only the user is aware of

the viewing activity. (See also Jiang et al. (2010) for further discussion of this contrast in

on-line social networks.)

• Messages. Individuals can send each other private messages similar to email.

• Comments. When a user shares a piece of content, such as posting a photo or a link,

other users can typically leave a public comment on the item.
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• Wall Posts. A user’s Facebook profile includes a publicly viewable ‘wall’, on which

other users can post content.

• Profile Views. This measures how many times one user views another’s profile page.

• Photo Views. This measures how many times a user views photos posted by another

user.

An individual might focus her attention toward differing subsets of her contacts through

each of the modalities mentioned above. Therefore, we compute attention measurements

independently for each modality by collecting the sum of all actions for each user-target pair

within each modality from January 2010 to December 2010. All data has been anonymized

and aggregated prior to analysis. For comments and messages, each individual post counts

as a single action directed at a given target. For wall posts we consider only the subset of

items posted outside of the target user’s birthday window, defined as the time span from two

days prior through one day after the target’s birthday.1. We exclude birthday wall posts

from our measurements because they are typically triggered by a birthday reminder on

Facebook rather than some user-specific mechanism, and are therefore not representative

of the directed attention the communication modalities generally capture. The viewing

modalities require the user to make a direct navigation to view a target user’s profile page

or a photo owned by the target user. Simply encountering a target user or a target user’s

photo in the News Feed or on another user’s profile does not constitute a view. Henceforth,

when we talk about a user’s level of activity in a given modality, we refer to the number of

discrete actions the user performed in this modality, as measured according to the definitions

above.

In order to minimize the impact of behavioral trends related to the overall growth of

Facebook, we restrict our analysis to users who were already members as of January 1,

2009. In addition, we are interested in measuring the behavior of users for whom Facebook

represents a non-trivial medium of communication and social attention, so that we can

see the balance of attention among people in a context where this is a relevant quantity.

Therefore, we select only those Facebook users who have visited the site on at least 80% of

the days in 2009 and 2010. This user sample represents a population of 16 million heavily

active Facebook users.

Figure 5.1 shows the distribution of activity for each modality, with the percentile rank

within the modality along the x-axis and the total number of actions within each modality

on the y-axis. A given user’s volume of viewing actions is likely to be an order of magnitude

higher than her volume of communication actions, while non-birthday wall posts are least

common. As even active users may not use some of the features (for instance, 27% of these

1This time span represents the average time window in which the number of wall posts received
is significantly higher than normal.
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Figure 5.1: Distribution of volume of activity per user for each modality between
January 2010 to December 2010.
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active users users sent less than 100 messages in a year), some of our subsequent analyses

will further restrict the user set studied.

5.3.2 The average balance of attention

Figure 5.2 shows ak, the fraction of attention given to the kth friend, as a function of k

for the five modalities. We only consider the users in the 70th to 95th percentiles of activity

level for each modality. In doing so, we filter out individuals who do not significantly use

each modality as well as the extreme outliers at the top end.

The communication curves begin somewhat higher than the viewing curves, but tail

off more quickly at the higher ranks. This happens because many users, even within this

relatively active set, have not communicated with more than 50 unique targets, causing us to

average in zeros. All of the communication modalities and profile viewing have very similar

slopes for low k in a log-log plot, each fitting Cxα for α between 0.75 and 0.78. Thus,

while the viewing modalities account for an order of magnitude more activity than the

communication modalities, and the quantities a1, a2, a3, . . . are smaller in absolute terms,

they fall off at a very similar rate (proportional to about k−3/4) for both viewing and

communication. The one modality that behaves differently is photo views and one possible

explanation is that the viewing target is less clear: user A might look at a photo created by

user B not because of interest in B, but because of interest in one of the photo’s subjects.

Although the curves in Figure 5.2 are restricted to users in the upper percentiles of

activity level, they still aggregate over users with varying activity levels, which may hide

the importance of a user’s overall activity level in impacting the shape of her attention

curve. Indeed, the impact of overall activity on these curves is not immediately clear. It

may be that people who communicate more are doing so because they communicate more

with their lower ranked contacts. But it could also be the case that most people are only

capable of maintaining a small number of direct contacts, and increased activity occurs

mostly within this fixed set.

To understand the impact of activity on attentional balance, we consider the fraction

of activity f15 as a function of activity level. (Results for fk are very similar for all k in the

range between 5 and 25, and somewhat beyond this as well.) In order to enable comparisons

between modalities like messaging (which a typical user performs a few hundred times a

year) and activity types like profile viewing (which occur in the thousands), we examine

f15 as a function of a user’s percentile rank of activity level within each modality. Figure

5.3 shows that within each modality, there is a sharper initial decrease for users at low

activity levels, but then a long section that is relatively more gradual. Indeed, while users

with low activity necessarily have high f15 (those with 15 or fewer contacts have f15 = 1),

the middle region of activity levels decreases quite slowly, and in the case of messaging and

especially profile views is approximately flat. One can also look at the distribution of fk
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modality, against level of activity.
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values at a given activity level rather than their mean: Figure 5.4 shows this for varying

levels of activity within messaging and profile viewing. While higher activity groups are

slightly left-shifted, the distributions are qualitatively similar once we move beyond the 30th

percentile (many below the 30th percentile have messages to 15 or fewer people), and are

nearly identical for profile views.

These graphical comparisons show evidence of a broad distinction between viewing and

communicating modalities. In general, communication is much more focused, with a high

fraction going towards top contacts, while viewing is significantly more dispersed across

contacts.

In addition to a user’s activity level within a given modality, the size of her personal

network within that modality will also affect the value of f15. Naturally, as the network size

increases for a fixed activity level, f15 tends to decrease, since the individuals added to the

network must receive some share of this fixed activity. On the other hand, Figure 5.5 shows

that among users with comparable personal network size, those with higher activity level

are more focused. Thus, larger networks tend to lead to smaller f15, while more activity

tends to lead to larger f15. Due to the high correlation (0.83 for messaging, 0.91 for profile

viewing) between network size and activity level, this effect is lost when looking at fk only

as a function of activity level.
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5.4 Variation by individual characteristics

5.4.1 Variation across individuals

The distributions in Figure 5.4 show that, even for a fixed activity level, some individuals

seem significantly more focused than others in their attention. Although it’s possible that

this variation arises primarily from the inherent randomness in all of our interactions over

time, the more intriguing possibility is that some individuals are genuinely more focused or

dispersed than others, and that these differences persist over time.

In order to examine whether users who are active in two distinct time periods have

consistent attention patterns across both observation windows, we compare data from early

2010 and late 2010. A simple regression that attempts to predict a user’s f5 value in Oct-

Dec 2010 from just her f5 in Jan-Mar 2010 yields R2 values of 0.45 and 0.23 for viewing and

messaging that — while relatively modest in absolute terms — show a non-trivial level of

stability in this quantity over time. This is all the more notable given that this computation

has access only to this single f5 number for predicting the corresponding value close to a

year later. Moreover, using only the user’s activity level and personal network size in Jan-

Mar 2010 performs worse at predicting f5 in Oct-Dec 2010 than simply using the Jan-Mar

f5 by itself for this prediction (0.23 vs. 0.19 and 0.45 vs. 0.31).

5.4.2 Age and gender

Figure 5.6 shows the average value of f15 for users between the ages of 13 and 60.

We restrict to users in 70th-95th percentiles of activity in each modality, for the reasons

discussed above. Each modality exhibits a roughly monotonic relationship with age, but

the relationship for viewing moves in the opposite direction of communication: we find

that older users are more focused in their viewing behavior, but more dispersed in their

communication behavior. Moreover, these two directions of change appear at different rates

as we consider older users: the decreasing focus in communication is rapid over ages ranging

roughly from 13 to 30, with slower changes beyond this point, while the increasing focus in

viewing is much steadier over the full range of ages considered.

Compared to males, females tend to focus more of their attention toward their top k

friends in all modalities (Figure 5.7). This difference may be partly explained by differences

in the underlying distribution of activity and network size for each gender. For example, fe-

male Facebook users tend to maintain larger active networks than their male counterparts.2

To adjust for this, we perform a regression analysis to explain the relationship between f5,

number of contacts, activity level, age, and gender (Table 5.1), using data from all users

that self-report their gender and fall within the 5th−95th percentile in terms of total activity

and number of contacts. The regression indicates that the fraction of attention allocated

2See http://www.facebook.com/note.php?note id=55257228858 for a comparison.
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Figure 5.6: f15 as a function of age, for users in the 70th to 95th percentile of activity
in the given modality.
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Modality inter con act age male R2

Profile 0.18 -0.53 0.44 0.03 0.02 0.38
Photo 0.20 -0.47 0.21 -0.01 0.01 0.53

Comment 0.43 -0.81 0.41 -0.03 -0.01 0.67
Message 0.44 -0.87 0.48 0.03 0.00 0.59

Wall 0.51 -1.48 0.92 -0.02 0.00 0.62

Table 5.1: Regressions explaining the variation in the fraction of f5 as a function of
individual characteristics (N = 1, 037, 885) for different modalities. Ac-
tivity (act) and number of contacts (con) are centered percentiles within
each modality, and range between -0.45 and 0.45. Age is given in terms of
centered percentiles, with -0.5, -0.25, 0, -0.25, and 0.5 corresponding to 13,
21, 25, 33, 65 years, respectively. The intercept (inter) shows the expected
f5 score for a 25 year old female with a median number of contacts and
activity level. All coefficients are significant at the p < 10−16 level and
have standard errors that are at least two orders of magnitude less than
the coefficient.

to the top five friends depends to a large extent on the number of contacts and activity

level of an individual: more contacts are associated with lower values of fk, and this effect

is balanced by higher levels of activity (as seen in Figure 5.5). For a given level of activity

and number of contacts, gender and age both have a small but significant effect. For ex-

ample, a male user with the same activity level and number of contacts as a female would

be expected to have a f5 score that is 0.02 higher than that of a female. Thus, while there

are significant differences in f5 that depend solely on age and gender, the primary effect on

f5 seems to stem from the fact that total activity and number of contacts vary significantly

with age and gender. Note that in some cases, the coefficients on age and gender appear to

contradict Figure 5.6 and Figure 5.7. However, this is not a contradition and shows that,

for example, while older users tend to be less focused in their messaging overall, comparing

users with the same activity level and number of contacts, the older ones will be slightly

more focused.

5.4.3 Interactions within and between genders

In general, the structure of social ties among people of the same gender is quite different

than the structure of social ties across genders (McPherson et al., 2001). Thus, we further

refine the gender analysis to separately consider the interaction of users within their own

gender and across genders. We find that females send 68% of their messages to females,

while males send only 53% of their messages to females. This distinction is consistent with

gender homophily — in which each gender has a bias toward within-gender communication

— modulated by the overall distribution of Facebook messages. On the other hand, we

see much smaller differences in viewing: for typical activity levels, both females and males
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Figure 5.8: f5 for messages, fixing the gender of both the initiator and the target of
the action.

direct roughly 60% of their profile viewing activity to female users.

We then examine how a person balances their social attention separately to their con-

tacts of each gender. That is, we partition each user’s set of actions into two subsets —

one for the actions directed at females, and one for the actions directed at males — and

then compute the quantities ak and fk separately for these subsets. Figure 5.8 shows the

results for messaging: the average f5 value for actions by users of gender X toward users of

gender Y , for each choice of X and Y . We see that there is greater concentration in across-

gender communication than within-gender communication. Furthermore, females are more

concentrated than men with respect to across-gender communication, and more dispersed

than males with respect to within-gender communication. Viewing behaviors provide (in

Figure 5.9) an interesting contrast with messaging: females and males have roughly equiva-

lent levels of focus in viewing profiles of female users, but markedly differing levels of focus

in viewing profiles of male users, where female viewers are much more focused.

5.4.4 Relationship status

The effect of gender on interaction patterns is further influenced by factors such as

marital status — unmarried people display different network structures than married ones

(McPherson and Smith-Lovin, 1993). To understand the effect of these factors, we consider

the subset of active users in our population whose listed relationship status on Facebook

remained unchanged throughout 2010 and was set to one of the following three values:
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Figure 5.9: f5 for profile views, fixing the gender of both the initiator and the target
of the action.

single, in a relationship, or married.3 Therefore, we consider 12 categories of behavior for

each modality: for users of gender X and relationship status S we look at the balance of

attention in their interactions with users of gender Y . Table 5.2 shows the average f5 values

for these 12 categories for messaging, and Table 5.3 shows them for profile viewing. For

messaging, we see a refinement of the gender homophily effects in Figure 5.8. For viewing,

a striking “non-monotonic” effect shows up clearly in interactions across the genders: for

both females viewing males’ profiles and males viewing females’ profiles, the level of focus

for single and married users is roughly the same, while the focus for users in a relationship

is significantly higher than either of these.

5.5 Attention over time

We have shown that the fraction of attention to users’ top k contacts, fk, decreases

as a function of activity when averaged over all individuals. One might expect that as a

result the top k contacts will tend to change more rapidly over time for those with higher

activity. However, we find that increased levels of activity are actually associated with

higher levels of stability over time. We examine the overlap between a user’s top k contacts

in two consecutive time periods; Jan-Feb 2010 constitute the first time period, and Mar-Apr

2010 form the second period. We find the relationship between activity level, number of

3Note that since most relationships in a broad population are heterosexual (Black et al., 2000),
such relationships will be the bulk of our computed averages.
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Initiator-
Target

Rel. Status f5
(Msg.)

F → F married 0.476
F → F single 0.523
F → F relationship 0.524
M →M married 0.570
M →M relationship 0.578
M →M single 0.584
M → F single 0.631
M → F married 0.637
F →M single 0.663
M → F relationship 0.678
F →M relationship 0.700
F →M married 0.715

Table 5.2: Focus in messaging, grouped by gender and relationship status.

Initiator-
Target

Rel. Status f5 (Pro-
file)

F → F married 0.225
F → F relationship 0.225
M →M married 0.225
M →M relationship 0.227
M →M single 0.228
M → F single 0.232
M → F married 0.242
F → F single 0.244
M → F relationship 0.274
F →M single 0.311
F →M married 0.329
F →M relationship 0.364

Table 5.3: Focus in profile viewing, grouped by gender and relationship status.

contacts, and overlap to be qualitatively similar for ranges of k between 1 and 20; we report

on k = 10 for concreteness.

5.5.1 Stability and activity

Figure 5.10 shows the overlap between the two time periods as a function of activity.

Although we found in Section 5.3 that users’ attention to their top k contacts was lowest for

profile and photo views, we find that they are among the highest in terms of overlap. We

also find differences between modalities of similar total volume and aggregate fk values; for

example, commenting exhibits significantly higher overlap than messaging, and in fact its

overlap is quite similar to that of profile viewing. It is an interesting question to consider

the possible bases for these contrasts and similarities; one possibility is that a large fraction

of profile views are initiated from the News Feed. While the news feed may in part be

responsible for the stability of top contacts, the act of sending messages or leaving wall

posts are not directly affected by stability introduced by the Facebook news feed. We find

that the messages and wall posts tend to have the greatest churn, although higher levels of

activity lead to relatively large increases in stability.
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Figure 5.10: Overlap between top 10 users from January & February to March &
April as a function of activity. Higher activity levels are associated with
greater stability in users’ networks over time.

5.5.2 Regression analysis of model stability

To further explore the predictability of network churn and the relationship between

network size and activity, we perform a regression analysis for each modality shown in

Figure 5.10. We consider modalities independently, and attempt to predict the fraction

of each user’s top 10 neighbors that persist between two time periods. We use two basic

properties of users’ networks that factor into attention: activity level and network size.

The regressions are summarized in Table 5.4. One can see that in all regressions, the

con coefficient is negative, meaning an increase in the number of contacts decreases the

expected amount of overlap for a user with median activity level. Conversely, an increase

in activity generally increases the expected degree of overlap, as act is positive.

We find that the stability of users’ networks can depend significantly on the tradeoff

between network size and activity level. For example, wall posts exhibit a relatively large

and positive interaction term, meaning that high levels of activity mitigate the negative

effect of additional contacts. In other cases, such as comments or profile views, highly

active users are even less likely to retain top contacts as they interact with more contacts.

The models explain between 7% and 62% of the variance, which suggests that activity and

network size are useful but not sufficient for predicting shifts in attention over time.
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Modality intercept act con act× con R2

Profile 0.39 0.83 -0.56 -0.11 0.31
Photo 0.24 0.38 -0.31 -0.02 0.07

Comment 0.38 0.65 -0.40 -0.26 0.30
Message 0.20 0.53 -0.24 -0.09 0.26

Wall post 0.15 1.07 -0.64 0.20 0.62

Table 5.4: Regressions explaining the variation in the fraction of top 10 contacts
that persist over time. Independent variables are given as percentiles,
centered at zero, so that the intercept captures the expected level of overlap
between the two time periods for users with a median level of activity (act)
and median number of contacts (con). N = 103, 058 All coefficients are
significant at the p < 10−16 level and have standard errors that are at least
an order of magnitude smaller than the coefficient itself.

5.6 Conclusion

We have provided a way of analyzing individuals’ personal networks in terms of the way

they balance their attention across social contacts. This measure exposes properties that

are distinct from traditional analyses of personal networks based on size and composition,

and it enables a comparison of different interaction modalities and different patterns within

and between groups. In addition, the measure has important practical implications: by

modeling an individual’s balance of social attention, product designers can properly tailor

that individual’s experience to match her preferences for keeping in touch mostly with her

top contacts, or with a more diverse set of people.

While our analysis here is based on Facebook data, the framework is very general, and

can be applied to any context where detailed interaction data is available, including other

social media sites as well as communication modalities such as phone and e-mail. It is an

interesting open question to see how the balance of social attention varies across different

domains, and in principle these measures can provide a way of categorizing such domains

as more focused or more dispersed. It also becomes promising to consider using the balance

of attention as a potential feature of individuals in user-based classification and learning

tasks, since we have seen that it captures sources of variation among individuals in ways

that other measures may miss.
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CHAPTER VI

Conclusions

Online social networks increasingly pervade people’s daily lives, and as we show in this

thesis, can be used to study human behavior at an unimaginable scale. Online networks

create new ways for information to flow, and necessitates the use of data-driven exploratory

studies. In doing so, one can discover phenomena unique to online networks, and draw

parallels between online and offline behaviors. More significantly, online systems do not

just give us the ability to observe human behavior at a mass scale, but also enable us to

conduct controlled experiments in situ, which can identify causal effects that would have

been impossible to rigorously establish in offline situations.

Our first study examines the adoption of user-created content in a virtual world, and

finds evidence for social influence. In the subsequent two chapters, we evaluate causal

claims about the role of networks in the daily spread of information using two very large

field experiments on Facebook. The first experiment shows that while strong ties are more

likely to influence others to share information, weak ties are collectively responsible for

the majority of diffusion that takes place. Our second experiment further evaluates the

effect of friends’ behavior on sharing decisions. Together, the studies suggest that the

primary role of social networks in information diffusion is to expose individuals to relevant

content, but that social signals only play a minor role in individuals’ ultimate decision to

share content. The experiments also demonstrate that observational evidence can greatly

overrepresent the effect of social influence by giving the appearance that individuals are

subject to previously studied theories of social contagion. This likeness can alternatively be

be explained by homophily, and highlights the importance conducting experiments. Finally,

using the complete set of viewing and communication activity between users on Facebook,

we analyze how individuals allocate their attention across friends.

As individuals continue to share more online, the success of future online technologies

will depend critically upon their ability to predict and shape how information will flow in

networks. Our experiments focus on average effects, where we primarily consider whether

or not subjects had been exposed to information, and the strength of tie with their friends.
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Other features of the individual and her alters, such as age, gender, or location may modu-

late the effect of social influence. Further study is needed to understand how these factors,

as well as differences in spread according to topic or content type (e.g. advertisements,

music, software) relate to influence and its confounds. Work along these lines can be used

to develop models that predict whether individuals will engage with or re-share content,

which can be used in social news ranking algorithms, recommender systems, and ad target-

ing. For those who wish to maximize the spread of information, more empirical work must

be done to understand how the timing of activity and algorithmic ranking systems affect

information flow. For example, whether an individual is exposed to information shared by

a source might depend on when the information is shared, when the individual logs in,

and what other content might take priority over the information. Finally, since there are

few technical limits on the number of contacts an individuals has online, and how much

information those contacts share, the ability to route information effectively will be of great

practical significance. I hope to resolve many of these outstanding problems and help build

better online social networking systems in my future work.
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APPENDIX A

Supporting Material for The Effect of Social

Networks on Information Diffusion

A.1 Experimental design

All users visiting facebook.com are presented with a list of stories about their friends’

activity on the site, in an interface called the feed. Some of these stories contain links to

content on the World Wide Web, uniquely identified by URLs (Uniform Resource Locators).

Our experiment evaluates how much exposure to these URLs on the feed increases sharing

beyond correlations that one might expect among Facebook friends. For example, friends

with whom a user interacts more often may be more likely to visit sites that the user also

visits. As a result, those friends may be more likely to share the same URL as the user

before she has the opportunity to share that content herself. Other unobserved correlations

may arise due to external influence via e-mail, instant messaging, etc.

Subject-URL pairs are randomly assigned to control (no feed) and treatment (feed)

conditions at the time of display. Stories that contain links to a URL assigned to the no

feed condition for the subject are never displayed in the subject’s feed. Those assigned

to the feed condition are displayed. All activity relating to subject-URL pairs assigned to

either experimental condition is logged, including feed exposures, censored exposures, and

clicks to the URL (from the feed or other sources, like messaging). Because we expected the

probability of sharing to be much lower for subjects assigned to the no feed condition, we

assign twice as many subject-URL pairs to the no feed condition to improve the statistical

significance of our results. Directed shares, such as a link that is included in a private

Facebook message or explicitly posted on a friend’s wall, are not affected by the assignment

procedure. If a subject-URL pair is assigned to an experimental condition, and the subject

clicks on content containing that URL in any interface other than feed, that subject-URL

pair is removed from the experiment.
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A.2 Subject experience

Stories that contain URLs assigned to the no feed condition are removed from subjects’

feeds, but the experience of subjects assigned to each condition are otherwise indistinguish-

able from one another. Figure A.1A and A.1B show an example of a Facebook feed for

a hypothetical user assigned to the feed and no feed conditions. In the latter condition, a

share present in the feed condition is not displayed.

A subject in the feed condition may share a link in three ways. First, the subject can click

on the “share” link located directly below a feed story containing that link (Figure A.1A,

red arrow). Second, the subject may visit the page being linked to (Figure A.2), and copy

and paste the URL of the site into her status update box (Figure A.3B). Status updates are

the primary way in which Facebook users broadcast content without directly responding

to content that others have shared. Finally, the subject may click on “Share”, “Like”, or

“Recommend” action links on the external page that she is visiting (an example of such

links can be seen in Figure A.2, red arrow). These action links are deployed on millions

of pages throughout the web, and the exact interface and wording of these links may vary

from site to site. Subjects in the no feed condition may only share links using the latter

two methods.

A.3 Population

Subject-URL pairs are randomly assigned to experimental conditions at the time of dis-

play, and therefore our experimental population consists of a random sample of all Facebook

users who visited the site during the experiment (August 14th to October 4th 2010) and

had at least one friend sharing a link. At the time of the experiment, there were approxi-

mately 500 million Facebook users logging in at least once a month. Our sample consists

of approximately 283M of these users. All Facebook users report their age and gender, and

a user’s country of residence can be inferred from the IP address with which she accesses

the site. In our sample, the median and average age of subjects is 26 and 29.3, respectively.

Subjects originate from 236 countries and territories, 44 of which have one million or more

subjects. Additional details on user demographics are summarized in Table A.1.

A.4 Ensuring data quality

Threats to data quality include using content that was or may have been previously

seen by subjects on Facebook prior to the experiment, content that subjects may have

seen through mediums on Facebook other than feed, and malicious content. We address

these issues in several ways. First, we only consider content that was shared by any of

the subjects’ friends after the start of the experiment. This enables our experiment to
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Figure A.1: An example of the Facebook News Feed interface for a hypothetical sub-
ject who has an NPR link assigned to the feed (A) or no feed condition
(B). The red arrow points to a link that triggers the re-share action
depicted in Figure A.3A.
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Figure A.2: An example of a web page that can be shared on Facebook. The address
bar at the top of the window gives the URL of the page, which may
be copied and pasted into the status update interface on facebook.com

(e.g. Figure A.3B), or shared by clicking the “Facebook” share link (red
arrow) embedded on the lefthand side of the web page.

Figure A.3: Links may be shared on facebook.com either by (A) re-sharing a link on
the feed or (B) copying and pasting a URL directly into the status post
update interface.
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Demographic Feature feed (% of subjects) no feed
(N = 160, 688, 092) (N = 218, 743, 932)

Gender
Female 51.6% 51.4%
Male 46.7% 47.0%
Unspecified 1.5% 1.5%

Age
17 or younger 12.8% 13.1%
18-25 36.4% 36.1%
26-35 27.2% 26.9%
36-45 13.0% 12.9%
46 or older 10.6% 10.9%

Country (top 10 & other)
United States 28.9% 29.1%
Turkey 6.1% 5.8%
Great Britain 5.1% 5.2%
Italy 4.2% 4.1%
France 3.8% 3.9%
Canada 3.7% 3.8%
Indonesia 3.7% 3.5%
Philippines 2.1% 2.3%
Germany 2.3% 2.3%
Mexico 2.0% 2.1%
226 Others 37.5% 37.7%

Table A.1: Summary of demographic features of subjects assigned to the feed and no
feed condition (total N = 253, 238, 367)
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accurately capture the first time a subject is exposed to a link in the feed, and ensures

that URLs in our experiment more accurately reflect content that is primarily being shared

contemporaneously with the timing of the experiment. We also exclude potential subject-

URL pairs where the subject had previously clicked on the URL via (i) any interface on

the site at any time up to two months prior to exposure, or (ii) any interface other than

the feed for content assigned to the no feed condition. Finally, we use Facebook’s internal

classification of “spam” and malicious sites to remove URLs that may not reflect ordinary

users’ purposeful intentions of distributing content to their friends.

A.5 Data analysis

Our assignment procedure allows us to directly compare the overall probability that

subjects share links they were or were not exposed to on the feed. Although the assignment

is completely random, subjects and URLs may differ in ways that impact our measure-

ments. For example, certain users may be highly active on Facebook, so that they are

assigned to experimental conditions more often than other users. If these users were to vary

significantly in terms of their information sharing propensities, such as sharing or re-sharing

greater or fewer links than others, the disproportionate inclusion of these users may bias our

measurements and threaten the population validity of our findings. Similarly, very popular

URLs may also introduce biases; they may be more or less likely to be re-shared because

of their inherent appeal or more likely to be discovered independently of Facebook because

of their relative popularity amongst friends. To provide control for these biases, we use

bootstrapped averages clustered by the subject or URL. We find that in all of our analyses,

clustering by the URL rather than the subject yields nearly identical probability estimates

that have marginally wider confidence intervals, so we chose to present our results using

means and 95% confidence intervals clustered by URL.

Risk ratios are obtained by computing the 95% bootstrapped confidence intervals of

likelihood of sharing in the feed and no feed conditions. To obtain the lower bound, we

divide the lower bound of the probability of sharing in the feed condition by the upper

bound for the no feed condition. The upper bound is obtained by dividing the upper bound

in the feed condition by the lower bound of the no feed condition. The additive analog of

the same procedure is used to obtain confidence intervals for the absolute differences.

The presence of strong temporal clustering A.4 in both conditions highlights the dif-

ficulty with attributing temporal proximity in sharing times to influence: sharing may be

due to a host of other factors, such as regular revisitation to sites that link to the same

content.

We examined four measures of tie strength between a subject and her sharing friend:

(i) the frequency of private online communication between the two users in the form of
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Figure A.4: Temporal clustering in sharing the same link as a friend in the feed and
no feed conditions. (A) The difference in sharing time between a subject
and their first sharing friend. (B) The difference between the time at
which a subject was first to exposed (or was to be exposed) to the link
and the time at which they shared. The difference is negative when a
subject shares content after their friend, but did not log into Facebook
until a later time. Vertical lines indicate one day and one week.

Facebook messages; (ii) the frequency of public online interaction in the form of comments

left by one user on another user’s post; (iii) the number of real-world coincidences captured

on Facebook in terms of both users being labeled as appearing in the same photograph;

and (iv) the number of online coincidences in terms of both users responding to the same

Facebook post with a comment. All four measurements yield qualitatively similar results

(e.g. Figure A.5, and Figure 2 in the main text.) In our main text, we report on comments

because they are more widely used than Facebook messages, and report on photos because

they are the best available proxy for offline interaction. For plots showing probabilities or

risk ratios as a function of tie strength, the horizontal axes range from zero to the 99th

percentile of tie strength (from all impressions).

Comments and messages are directed actions in the sense that they have a sender and

recipient, while photo and thread coincidences are undirected. Thus, for our measure-

ments of comment and message frequency between a subject and her sharing friend, we

had the option of using the number of communications that the subject received, sent, or

a combination of the two, such as the geometric mean. Figure A.6 shows the probability

measurements (A, B) and risk ratios (C) for the number of comments received, sent, and

the geometric mean of the two (results for messages are qualitatively similar). We chose to

present our main results in terms of comments received because it is easiest to interpret,

and because this measure produces a more generous classification of weak ties that provides

a conservative estimate of the differences in sharing probability and risk ratios for strong
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Figure A.5: The relationship between likelihood of sharing and two other measures
of tie strength, thread coincidences and personal messages received. (A)
and (B) show the relationship between tie strength and the probability
of sharing a link that a friend in the feed and no feed condition. (C) and
(D) show the multiplicative effect of feed (pfeed/pno feed).
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Figure A.6: Sensitivity of probability estimates to choice of directed tie strength mea-
surement for (A) no feed and (B) feed conditions. The main text expresses
tie strength in terms of comments received (•). Comments sent (×) and
the geometric mean of the two directions (�), b

√
sent ∗ receivedc, yield

similar results. (C) Shows the risk ratio between the feed and no feed
conditions, illustrating that slightly different formulations would lead to
more substantial differences in the multiplicative effect of feed with re-
spect to tie strength.

versus weak ties.

While the causal effect of feed is larger for stronger ties, the overall amount of influence

generated by weak and strong ties depends on the empirical distribution of tie strength.

Figure A.7 shows this distribution, and illustrates that the majority of ties are weak in the

sense that subjects had no trace of previous interaction with those ties.

To estimate the fraction of influence generated by ties of strength k, we first compute

the average treatment effect for subjects with a tie of strength k: ATE(k) = pk, feed −
pk, no feed (e.g. the difference in probabilities in Figure A.5AB). We then multiply the

average treatment effect at k by nk, the fraction of links displayed in users’ feeds that are of

strength k. To compare the impact of weak and strong ties, we must set a cutoff value for the

minimum amount of interaction required between two individuals in order to consider that

tie strong. Setting the cutoff at k = 1 provides the most generous classification of strong

ties while preserving some meaningful distinction between strong and weak ties, thereby

giving the most influence credit to strong ties. Therefore, in our main text, we consider the

comparison of ATE(0) ∗ n0 and
∑N

k=1 ATE(k) ∗ nk, and find that the majority of influence

is generated by weak ties. In Figure 4 of the main text, these quantities are expressed in

terms of overall percentage of influence on feed, which can be obtained by dividing by the

estimated total fraction of shares due to exposure on Facebook,
∑N

k=0 ATE(k) ∗ nk.
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