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Abstract 
  

Morphine and other opioids exert their effects by activation of opioid receptors, 

which belong to the G protein-coupled receptor (GPCR) superfamily. Clinically used 

opioids exert their effects through the mu (μ) opioid receptor although two other types of 

opioid receptors (delta (δ) and kappa (κ)) exist. Opioid receptors couple to Gαi/o proteins 

and agonists produce inhibition of adenylyl cyclase enzymes and Ca2+ channels with 

activation of K+ channels. Chronic activation of μ receptors is known to produce adaptive 

side effects including tolerance and dependence, limiting the long-term utility of opioids 

as pain-relieving agents.  

In this thesis, I examined the ability of the δ antagonist naltrindole to prevent 

acute antinociceptive tolerance after a single dose of the μ agonist morphine. I 

demonstrate reduced μ agonist-induced antinociceptive tolerance with δ antagonist 

administration in vivo. Ex vivo, morphine exposure produced a decrease in high-affinity μ 

receptors and decreased ability of subsequent μ agonist to stimulate G protein. These 

effects were reversed with δ antagonist administration.  

Evidence for interactions between μ and δ receptors in the production of tolerance 

has furthered interest in novel drugs devoid of tolerance liability. Based on experiments 

in this thesis and previous reports, compounds displaying μ agonism for appropriate 

analgesia with δ antagonism to prevent tolerance development are desirable.  Therefore, I 

synthesized bifunctional opioid peptide ligands displaying this mixed efficacy profile 

with equivalent binding affinities to both μ and δ receptors.  

Novel opioid peptides were synthesized using both tetra- and pentapeptide scaffolds. 

Naphthylalanine-substituted pentapeptide ligands identified a novel μ/κ agonist, δ partial 

agonist/antagonist peptide. Development of tetrapeptide ligands led to the 

characterization of KSK-103, which demonstrated μ agonist efficacy on par with the 
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clinical standard morphine and δ antagonism at both the level of G protein stimulation 

and inhibition of adenylyl cyclase. In silico docking of peptides in computational models 

of the putative ‘active’ and ‘inactive’ conformations of the μ and δ receptors revealed 

steric hindrance in binding the δ ‘active’ conformation, potentially preventing δ agonist 

efficacy.  These studies highlight the potential of bifunctional ligands displaying μ 

agonism and δ antagonism in producing analgesia without the limitations of tolerance 

development.
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Chapter I 

Introduction 

 

Opioids and Opioid Receptors 

Opioid drugs, including opium and its derivatives, have been primary treatments 

for acute and chronic pain conditions for thousands of years (Hamilton et al., 2000; 

Trescot et al., 2008).  While these compounds are used successfully for the management 

of pain, the presence of deleterious side effects and neurochemical adaptations hinder 

their long-term utility.  Specifically, acute use of opioids may lead to dangerous side 

effects including constipation and respiratory depression while prolonged exposure has 

been shown to produce long-lasting alterations in fundamental brain signaling pathways 

and may result in the development of both tolerance and dependence.  Tolerance is an 

adaptation resulting in increasing doses of drug required to elicit the same desired effect 

(or decreasing effectiveness of the same dose of drug after repeated exposure). Tolerance 

develops to a number of opioid effects, including analgesia and euphoria. Dependence is 

characterized by an altered homeostasis whereby users and patients require the presence 

of drug to maintain normal function.  Removal of drug from a dependent individual 

results in symptoms of withdrawal.  Both tolerance and dependence are limiting factors in 

the treatment of pain conditions and dependence is one of the Diagnostic and Statistical 

Manual for Mental Disorders criteria for addiction (Ross et al., 2009).   

Morphine and other clinically used opioid drugs exert their analgesic and 

rewarding effects at three types of opioid receptors present in the brain and spinal cord.  

Opioid pharmacology was advanced in the early 1990s upon cloning of these receptors, 

with the delta (δ) opioid receptor (Evans et al., 1992; Kieffer et al., 1992) cloned first. 

This was followed rapidly by cloning and further characterization of the mu (μ) and
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 kappa (κ) opioid receptors (Chen et al., 1993; Yasuda et al., 1993).  Opioid receptors 

belong to the broad superfamily of Class A G protein-coupled receptors (GPCR), having 

seven transmembrane-spanning domains, an extracellular N terminus, and an intracellular 

C terminus. This GPCR class also includes adrenergic receptors and rhodopsin.  All 

GPCRs bind with heterotrimeric G proteins consisting of α, β, and γ subunits.  Opioid 

receptors couple to adenylyl cyclase inhibitory G proteins, which include the α subunits 

Gαi, Gαo, and Gαz . In addition, Gβγ subunits signal to specific downstream cellular 

effectors including Ca2+ and K+ channels, and the MAP kinase pathway.  

Opioid receptors are present at distinct locations within the central nervous 

system and peripherally, with μ receptors present primarily in the brainstem, thalamus, 

and cortex as well as the gastrointestinal tract.  κ Receptors have been found in the limbic 

regions of the brain and spinal cord while δ receptors are highly expressed in the striatum 

and to a lesser extent throughout the brain (Mansour et al., 1995; Trescot et al., 2008). 

The location of the μ receptor in brain regions described above contributes to the 

euphoric and rewarding effects of opioid drugs, potentially leading to their abuse.  It is 

important to note that not all the effects occurring upon μ receptor activation develop 

tolerance or dependence after long-term exposure in the same manner as analgesia or 

euphoria.  Deleterious side effects including respiratory depression and constipation do 

not decrease in severity with prolonged use of opioids at the same rate as analgesia or 

euphoria (although tolerance to these effects may appear after long-term use), thus 

chronic treatment must be carefully monitored to prevent occurrence of unwanted effects.  

As the euphoric and rewarding properties of abused μ agonist drugs including heroin and 

morphine do develop tolerance, abusers take increasing doses in order to achieve the 

same rewarding effects.  This may lead to overdose via over-stimulation of specific 

opioid receptor cellular signaling pathways resulting in respiratory depression and other 

effects. 

In contrast to μ receptors, compounds acting at the δ receptor are not used 

clinically, as the effects produced include mild analgesia (compared to morphine) and 

seizures.  Research showing a potential antidepressant-like quality of δ agonists 
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(Jutkiewicz, 2006) as well as evidence that δ agonists are not self-administered in animals 

(Negus et al., 1998) has generated proposals for a novel use of these compounds.  

Trafficking of δ receptors is the focus of several studies aiming to better understand how 

these receptors may be exploited in the search for novel pain therapeutics (see review in 

Cahill et al., 2007).  κ receptor agonists produce mild antinociception in animal models 

of pain, however they are also dysphoric, sedating, and may cause psychotomimetic 

effects (Schiller, 2010). Ligands displaying partial agonism at the κ receptor have been 

targeted as addiction therapeutics. Some drugs with mixed μ-κ agonist profiles (e.g. 

nalbuphine and pentazocine) are used clinically as analgesics for their μ properties 

(Trescot et al., 2008).   

 

Theories of tolerance development 

The appearance of tolerance after several administrations of a μ agonist drug such 

as morphine (e.g. an increased number of doses administered or increased amount of drug 

given to a patient over time) greatly hinders long-term clinical use.  While there are 

current protocols in place to switch a patient from an opioid drug to which they are 

tolerant to another opioid compound which does not develop complete cross-tolerance 

(e.g. transdermal fentanyl to oral methadone in patients with cancer; Benitez-Rosario et 

al., 2004), this method is only partially effective.  The cellular mechanism by which 

analgesic tolerance occurs is still unclear; however, several hypotheses have been made 

regarding changes in μ receptor expression and signaling capability.  One hypothesis 

states that in vitro tolerance to μ agonists occurs after long-term application of drug due 

to internalization of the μ receptor, such that fewer receptors are available for subsequent 

agonist stimulation (von Zastrow et al., 2003).  It is known that opioid receptors undergo 

dynamic expression and internalization (von Zastrow, 2010).  This hypothesis has been 

supported through the use of receptor binding studies which measure the change in 

expression of the μ receptor on the plasma membrane following treatment with μ 

agonists (Elliott et al., 1997).   
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Internalization or desensitization of the μ receptor in tolerance development 

Further evidence for internalized receptors has been the demonstration that 

chronic opioid agonist treatment in vitro results in a loss of opioid-mediated signal in 

tissue or cellular systems expressing the opioid receptors (Alt et al., 2002; Alvarez et al., 

2002; Elliott et al., 1997).  Other studies have visualized the internalization of opioid 

receptors after binding with fluorescently-labeled opioid peptides ex vivo through 

confocal microscopy (Arttamangkul et al., 2000). 

The receptor internalization theory does not completely explain tolerance 

development to all clinically used opioids.  It is well-established that many μ agonists 

(e.g. [D-Ala2, N-Me-Phe4, Gly-ol]-enkephalin (DAMGO) and fentanyl) produce robust 

internalization of the μ receptor with an associated loss in cell surface receptor expression 

and signaling capability (Alvarez et al., 2002; von Zastrow et al., 1993).  However, the 

widely used opioid morphine does not produce internalization of the μ receptor in all 

circumstances (Keith et al., 1996; Sternini et al., 1996) and does not downregulate the μ 

receptor when given in vivo, yet has been demonstrated to decrease opioid receptor 

signaling and result in clinical analgesic tolerance.  For morphine and other ligands which 

do not produce robust internalization, it is thought that application of these ligands results 

in receptor desensitization. Desensitization is an adaptation with loss of agonist ability to 

produce signaling endpoints through activation of the receptor (Rozenfeld et al., 2007a; 

Sharma et al., 1975), potentially through recruitment of kinases or arrestins (Zhang et al., 

1998; Zhang et al., 1996). This produces a decrease in total receptor-effector activity and 

downstream signaling events, a precursor to tolerance development (Rozenfeld et al., 

2007a).    

A decrease in the total amount of opioid receptor present on the plasma 

membrane following agonist exposure supports the thought that stimulation via 

endogenous or exogenous ligands can cause recruitment of intracellular molecules, 

‘marking’ the receptor for internalization. Recent studies have examined the role of 

intracellular phosphatases or kinases in ‘marking’ tolerant receptors for either 

desensitization or internalization and the regulation behind these processes (von Zastrow 

et al., 2003).  Other work has analyzed the dynamic recycling opioid receptors undergo 
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and which signaling processes direct an internalized opioid receptor for recycling to the 

cell surface or degradation (Arttamangkul et al., 2008) although no direct conclusions 

have yet been made.   

One popular theory postulates that phosphorylation of Ser375 on the C-terminus of 

the μ receptor by G protein-coupled receptor kinases (GRKs) and subsequent recruitment 

of β-arrestin is required for proper internalization of the receptor (Bailey et al., 2005; 

Christie, 2008; Williams et al., 2001).  Morphine is less effective at producing GRK-

induced receptor phosphorylation (Schulz et al., 2004) and β-arrestin recruitment (Bohn 

et al., 2004) than other μ agonists such as DAMGO in vitro.  In fact, a recently published 

article examining agonist efficacy and the ability of several μ agonists to recruit β-

arrestin-3 reported that, while morphine was able to produce G protein activation to the 

same extent as DAMGO or Met-enkephalin, it was less able to recruit β-arrestin-3 to the 

μ receptor expressed in human embryonic kidney (HEK) cells (McPherson et al., 2010).  

However, as morphine can develop analgesic tolerance to the same extent as other 

clinically used ligands, recruitment of β-arrestin-3 and phosphorylation of the μ receptor 

cannot be the sole molecular mechanism underlying this adaptive phenomenon.  In fact, 

opioid receptors expressed in heterologous cellular systems and activated by selective 

agonists have shown roles for second messenger systems and kinases such as protein 

kinase A, protein kinase C, calcium/calmodulin-dependent kinase II (Ueda et al., 2003), 

as well as phospholipase D2 (Koch et al., 2003) in desensitization of the μ receptor. Other 

research utilizing β-arrestin-2 knockout mouse models have demonstrated a role for this 

arrestin subtype in μ receptor antinociception, tolerance, and dependence (Bohn et al., 

2000; Bohn et al., 1999). It is likely that there is a great deal of redundancy in opioid 

signaling and related systems, and a role for many cellular modulators in tolerance. 

It is important to note that the trafficking mechanisms described above underlie 

acute regulation of opioid receptors.  Long-term exposure to drug may alter signaling 

processes in completely different ways and change gross neuronal morphology.  Cellular-

based tolerance mechanisms may not completely explain the clinical manifestations of 

analgesic tolerance, which could in fact be due to more whole-system or synaptic 

plasticity mechanisms (Christie, 2008).  Long-term (20 day) exposure to amphetamine, a 
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dopamine transporter substrate, has been shown to change neural structure and increase 

the number of dendritic spines expressed on medium spiny neurons (Jedynak et al., 2007; 

Li et al., 2003).  Tolerance to some effects of amphetamine exposure (including anorectic 

effects (Carlton et al., 1971) and responding for reinforcements (Schuster et al., 1961)) 

has been shown to occur in vivo. While these studies were done utilizing different 

systems, it is logical to assume that similar long-lasting effects in neurons may occur 

after chronic opioid exposure as well, and these effects could play a significant role in the 

development and length of tolerance expression. 

 

Role for the δ opioid receptor in modulating μ receptor-induced tolerance and 

dependence development  

 While it is well-established that analgesic effects and development of tolerance to 

clinically used opioid drugs derives from activation of the μ receptor, research in the late 

1990s showed that the δ receptor may also play a role.  Interactions between μ and δ 

receptors have been recognized for many years (Traynor et al., 1993), and several studies 

showed activation of the δ receptor through addition of an agonist contributed to the 

acquisition of morphine tolerance in mice (Abdelhamid et al., 1991; Miyamoto et al., 

1994; Miyamoto et al., 1993).  The analysis of these interactions or co-operativity by 

receptors in the development of tolerance led to several studies examining the effect of δ 

receptor blockade, via treatment with δ antagonists or through knockdown of the receptor 

with specific silencing RNA, on tolerance development.  One study from the Kuhn lab 

(Hepburn et al., 1997) demonstrated that long-term (5-7 days) pre- or co-administration 

of the δ antagonist naltrindole (NTI) with morphine produced a significant decrease in 

antinociceptive tolerance in rats.  δ Receptor antagonism using NTI did not have an effect 

on acute morphine antinociception but also decreased the occurrence of withdrawal 

symptoms in these studies after chronic morphine administration. Earlier studies 

examining the properties of NTI documented a significant increase in the EC50 for 

morphine after long-term exposure, however co-administration of NTI returned the EC50 

of morphine to baseline levels (Abdelhamid et al., 1991; Figure 1.1). Additionally, 

development of δ receptor knockout mouse models allowed for an examination of the 
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link between μ and δ receptors in tolerance or dependence development.  In several 

studies, the Pintar lab (Nitsche et al., 2002; Zhu et al., 1999) showed loss of morphine 

tolerance development in δ knockout mice when compared to wild type controls, along 

with a loss in physical withdrawal symptoms, indicating decreased dependence to 

morphine. 

 
Mechanism for δ receptor activity in μ-induced tolerance  

It is still unknown by what mechanism(s) δ receptors can modulate μ receptor 

activity and alter the appearance of the tolerance and dependence adaptations.  The 

probability exists for an intracellular interaction between these receptors, as studies have 

reported both μ and δ receptors are expressed on the same neuron (Egan et al., 1981; 

Fields et al., 1980; Schoffelmeer et al., 1990), although there are opposing views (see 

below, and Scherrer et al., 2009).  In conjunction with these data, a growing field of 

research is examining the potential for opioid receptors to form heterodimers, with 

different signaling properties than individual receptors (Daniels et al., 2005; George et 

al., 2000; Gomes et al., 2004; Rozenfeld et al., 2007a).  However, the exact cellular 

location or mechanism by which dimerization occurs, especially in endogenous systems, 

is unknown.   

The μ-δ heterodimer hypothesis suggests that blockade of the δ receptor via an 

antagonist compound will prevent the μ portion of the heterodimer from signaling 

appropriately to intracellular components, thus preventing in vitro opioid desensitization 

and/or internalization (Rozenfeld et al., 2007a). Work by the Devi group has shown 

slower phosphorylation of extracellular signal-regulated kinases (ERK) by putative 

opioid receptor heterodimers (Rozenfeld et al., 2007b) in heterologous expression 

systems using HEK cells when compared to singly expressed receptors.  Alternatively, δ 

receptor occupation by an antagonist could alter the process by which intracellular 

internalization molecules (such as β-arrestins) bind the heterodimer and signal 

downstream components (Rozenfeld et al., 2007b), allowing the dimer to maintain 

expression at the cell surface and decrease apparent tolerance.  
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A third potential heterodimer mechanism proposes that a δ antagonist may act as 

a pharmacological chaperone if cell-permeable (Cahill et al., 2007), stabilizing a subset 

of the μ-δ heterodimers held in the endoplasmic reticulum and allowing trafficking of the 

dimer complex to the plasma membrane.  Thus, the increase in available μ receptor 

binding sites on the cell surface allows increased μ receptor-specific signaling and would 

appear as decreased tolerance. A schematic of potential signaling mechanisms is shown 

below (Figure 1.2).  In addition, several groups (Fuxe et al., 2008; Jordan et al., 1999) 

postulate that the difference in reported heterodimeric signaling from single receptor 

results may be attributed to opioid receptor subtypes (e.g. μ1 and μ2), explaining 

historical differences in subtype-specific signaling paradigms and actions by ‘selective’ 

agonists or antagonists at putative opioid receptor subtypes.  Our lab and others have 

shown, without postulating heterodimerization, that different opioid receptors when 

endogenously expressed in the same cell will share access to G proteins and downstream 

signaling effectors (Alt et al., 2002; Levitt et al., 2011), which might provide an impetus 

for receptor heterodimerization and sharing of these signaling molecules. The three 

heterodimer mechanisms described above are postulated primarily for chronic μ agonist 

exposure; there is no consensus on measures to regulate acute μ receptor signaling via 

heterodimerization. 

Additionally, activation of μ receptors can modulate the cell-surface expression 

and signaling capability of δ receptors in vitro. It is well-established that the majority of δ 

receptors are expressed inside the cell (Arvidsson et al., 1995; Cahill et al., 2001a) and 

are trafficked to the plasma membrane upon an as-yet unknown signal.  In 2001, it was 

demonstrated that chronic (48 h) in vitro treatment of cortical neurons with morphine 

produced a significant increase in the number of δ receptors expressed on the cellular 

surface with a corresponding increase in signaling ability (Cahill et al., 2001b).  Shorter 

treatment times did not produce the same extent of δ mobilization. Multiple μ agonists 

could induce this trafficking phenomenon (Morinville et al., 2003). Moreover, this 

increase in membrane-bound δ was transient; lasting no more than 12 h after μ agonist 

removal and indicated δ receptor expression at the plasma membrane is tightly regulated 
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via synthesis and endocytotic pathways. Other studies have shown cellular ‘rescue’ of 

intracellular δ receptors to the plasma membrane via treatment with δ agonists or 

antagonists (Petaja-Repo et al., 2002), hypothesized to be due to stabilization of 

otherwise unstable conformations of the intracellular ‘stored’ δ receptor.   

Increase in δ receptor expression at the cell surface was correlated with an 

increase in the potency of δ agonists to produce antinociception in multiple animal 

models of pain transmission (Cahill et al., 2001b; Morinville et al., 2003). The authors 

suggested that the δ receptor trafficking in response to chronic μ receptor stimulation 

may be a compensatory mechanism to maintain a constant level of enkephalin-type 

signaling in the brain by increasing the number of opioid-available receptors present at 

the cell surface.   

While heterodimerization is feasible if receptors are co-expressed, an opposing 

field of research argues against the existence of opioid heterodimers (Scherrer et al., 

2009) as some studies have demonstrated μ and δ receptors exist in distinct populations 

in the brain (Rossi et al., 1994; Scherrer et al., 2009).  This phenomenon therefore must 

be explained by separately expressed μ and δ receptors interacting through an 

intersecting neuronal pathway and utilizing an intercellular or physiological signaling 

mechanism.  A feedback loop, while not requiring co-expression of receptors, is another 

possible explanation for other μ and δ receptor interactions, including the trafficking of δ 

receptors (Cahill et al., 2001b; Morinville et al., 2003).  To date, there is no conclusive 

evidence that dimerization of opioid receptors or, indeed, other Class A GPCRs is 

necessary for signaling of the receptor.  In fact, single rhodopsin (Whorton et al., 2008), 

β2-adrenergic (Whorton et al., 2007), and μ opioid (Kuszak et al., 2009) receptors have 

been shown to signal appropriately to downstream effectors. While there is a great deal of 

overlap in expression between μ and δ receptors in some regions of the brain, whether the 

interaction demonstrated between these receptors is produced by heterodimerization or 

another intra/extracellular interaction remains to be elucidated.  
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 Interactions between μ and δ receptors in physical dependence and other effects 

of chronic opioid activation 

The intensity of withdrawal symptoms in mice chronically treated with μ agonists 

was directly correlated with the number of δ binding sites expressed in brain membranes 

(Yukhananov et al., 1994), lending more evidence to the hypothesis that μ−δ receptor 

interactions are important in tolerance and dependence development. The effect of 

μ−δ receptor interactions on μ agonist induced trafficking of δ receptors (Cahill et al., 

2001b; Morinville et al., 2003) is a question posed in a recent review of δ receptor 

trafficking (Cahill et al., 2007), but to date has not been studied. 

Evidence also exists for interactions between μ and δ receptors in addition to 

analgesic tolerance or dependence development.  Studies have shown that μ and δ 

receptors are linked using in vivo measures of opioid activation and rewarding effects 

(Chefer et al., 2009; Shippenberg et al., 2009).  In these studies, δ antagonism could 

prevent tolerance development to the locomotor stimulating effects of morphine and 

conditioned place preference, a measure of the rewarding properties of a drug.   

 

Development of multi-functional ligands as tools to investigate interactions between 

opioid receptors 

Taken together, studies suggesting μ and δ receptor interactions in the 

development of adaptations after prolonged μ agonist treatment launched a new area of 

opioid research and compound development in the search for novel ligands displaying μ 

agonism (for appropriate analgesic effects) with concurrent δ antagonism (to lessen or 

altogether prevent development of tolerance and/or dependence) in treatment of long-

term pain conditions.  In addition, a drug with μ agonist and δ antagonist efficacies could 

decrease the appearance of adverse side effects such as respiratory depression or 

constipation when compared to morphine alone (Schiller, 2010), although this has yet to 

be demonstrated experimentally. The research approaches taken have been many and 

varied, with numerous studies reporting novel treatment modalities prepared from a 

mixture of μ agonists and δ antagonists or single mixed-efficacy compounds having both 
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desired efficacies in one compound.  The mixed-efficacy compound literature is 

particularly broad. There are reports of peptide and non-peptide ligands, ligands 

displaying μ partial agonist efficacies with varying δ activities (Ananthan et al., 1998; 

Ananthan et al., 2004; Schiller et al., 1999), and bivalent ligands (Daniels et al., 2005; 

Yamamoto et al., 2008; Figure 1.3).  Small molecule bivalent ligands, such as those 

reported by the Portoghese lab at the University of Minnesota (Portoghese, 1989), consist 

of one opioid pharmacophore, based on structural elements known to be important in 

binding and activating μ receptors, and another opioid pharmacophore which displays δ 

receptor antagonism linked by a carbon chain spacer of varying lengths (Daniels et al., 

2005).  These bivalent ligands have been proposed to bind μ-δ receptor heterodimers 

(Lenard et al., 2007). 

The breadth of research has helped further our understanding of the structural 

basis of efficacy for both the μ and δ receptors.  A review published in 2010 nicely 

describes the potential for bi- or multi-functional opioid peptide drugs and highlights the 

major research findings in opioid ligands for the last decade (Schiller, 2010).  

Bifunctional ligands have been hypothesized to exert their effects in three unique ways. 

Bifunctional ligands may act via two separate, simultaneously acting pharmacophores 

connected directly or with a linker moiety (e.g. bivalent ligands, described above).  

Alternatively, a ligand displaying overlapping pharmacophores may interact at two 

distinct sites of action or highly integrated bifunctional pharmacophores (e.g. 

buprenorphine which acts with varied efficacy at the opioid and ORL-1 receptors) could 

produce effects in multiple receptor systems (Schiller, 2010).   

Application of bi- or multi-functional ligands in clinical practice has been an idea 

growing in popularity over several years due to many promising factors.  A single 

therapeutic agent able to modulate several targets simultaneously decreases the risk of 

drug-drug interactions and increases the probability of patient compliance in taking the 

medication (Morphy et al., 2005; Morphy et al., 2009).   In addition, drug cocktails 

containing one or more components run an increased risk of adverse and unpredictable 

variability between patients.  For ease of clinical use, a mixture of two ligands would 

need to display similar pharmacokinetic and pharmacodynamic profiles in order to ensure 
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proper and timely activation (or blockade) of target receptors to achieve the desired 

effects.   

As there are few clinically used analgesic opioid having low μ efficacy and 

displaying the desired μ agonist/δ antagonist efficacy profile (e.g. buprenorphine, which 

also displays κ antagonist activity), many groups have focused on developing novel 

compounds to capitalize on the hypothesized interactions between these receptors in the 

development of tolerance and dependence.  One such example is the peptide 

DIPP(Ψ)NH2 (Dmt-Tic(Ψ)[CH2NH2]Phe-Phe-NH2; (Schiller et al., 1999), which was 

reported to display both μ agonism and δ antagonism and produced a low degree of 

antinociception in rats with a low propensity for tolerance development after chronic 

administration.  

Investigation of the interactions between μ and δ receptors thus poses an area of 

research that could inform current clinical practice and lead to novel therapeutics or 

treatment strategies.  While is it unclear at the present time the specific mechanism by 

which these interactions occur, regulation of the interactions by novel pharmaceuticals 

represents a potential strategy to improve pain management while simultaneously 

decreasing occurrence of unwanted side effects. Development of bifunctional ligands that 

take advantage of interactions between these receptors would represent a step forward in 

chronic pain management techniques. 

Peptide ligands have been historically regarded as having low clinical relevance 

due to the inherent instability and low bioavailability (e.g. short half-life, fast cleavage 

via proteolysis, and poor oral bioavailability) after peripheral administration.  Indeed, 

many centrally-acting peptide compounds must be studied via direct administration into 

the central nervous system, a route of administration impossible for routine clinical use.  

Still, peptide-based therapeutics has become a growing field of research due to significant 

progress being made to overcome these limiting factors.   Recently, several peripherally 

acting peptide ligands such as exenatide (Byetta®) have been approved for treatment of 

Type-2 diabetes or autoimmune disorders or are in promising stages of development 

(Bellmann-Sickert et al., 2010).  Peptide ligands also represent a flexible field of research 
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as most peptide ligands may be more easily modified and offer a greater number of 

modification points than non-peptidic compounds (Schiller, 2010). 

 

Hypothesis and Objectives  

It is the goal of this body of research to better understand mechanisms underlying 

tolerance development and to further the development of novel, non-selective μ-δ peptide 

ligands which produce analgesia but are not hindered by tolerance or dependence 

liability.  In order to better understand the mechanism behind the interaction between μ 

and δ receptors, a two-fold plan is proposed.  

First, I will re-investigate interactions between μ and δ using behavioral and 

biochemical measures in vivo and ex vivo.  While previous reports have analyzed the 

effect of δ antagonist co-administration on tolerance development after prolonged 

morphine exposure, my studies focus on the acute effects of agonist and antagonist 

administration and the immediate effects of receptor desensitization, a precursor to 

tolerance development. A second aim is the development of bifunctional peptide ligands 

displaying μ agonism and δ antagonism with equivalent binding affinities to each 

receptor.  These bifunctional compounds would be useful to investigate effects of 

concurrent receptor activation on downstream signaling components. This will also allow 

verification of the hypothesized model of decreased tolerance liability as well as probe 

the structural requirements of opioid receptor binding.   

Interactions between μ and δ receptors in vivo and in vitro 

The first aim is to revisit effects of the δ receptor on μ agonist-induced tolerance 

on a behavioral and biochemical basis using both in vivo studies and ex vivo 

characterization. The studies performed for this thesis analyze the effect of concurrent δ 

antagonist treatment on the development of μ agonist-induced tolerance and dependence.  

These were to replicate previously published studies (Abdelhamid et al., 1991; Hepburn 

et al., 1997) using selective concentrations of both the μ agonists morphine and DAMGO 

and the δ antagonist NTI, determining whether the interactions between the receptors is at 

a cellular or more physiological level. The alteration in opioid receptor signaling on an 
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acute (e.g. single exposure) paradigm was performed and these results provide insight 

into mechanism(s) underlying the immediate opioid adaptive side effects. Determining 

what, if any, interactions between μ and δ receptors occur can inform current clinical 

practice and further development of novel ligands devoid of deleterious side effects 

tolerance and dependence.   

Bifunctional Opioid Peptide Ligands   

Synthesis of mixed-efficacy opioid peptides with affinity for both the μ and δ 

receptors requires a detailed understanding not only of proposed peptide structure but 

also the conformational and structural constraints inherent in the binding sites of each 

opioid receptor.  The goals in design of these peptides were equivalent binding affinity to 

both μ and δ receptors (to make sure each receptor binding site is occupied similarly), 

and differential efficacies (μ agonism with concurrent δ antagonism). Through the use of 

conformationally constrained peptide ligands (Mosberg et al., 1983) and computational 

modeling (Fowler et al., 2004a; Fowler et al., 2004b; Mosberg et al., 2002; Pogozheva et 

al., 1998; Pogozheva et al., 1997; Pogozheva et al., 2005), docking of a proposed ligand 

into putative ‘active’ and ‘inactive’ conformations of both μ and δ receptors was 

examined.  Receptor-ligand interactions or steric hindrances were observed and these 

modeling experiments helped direct synthesis of novel peptide sequences that incorporate 

the required structural qualities. Conformationally constrained peptides were synthesized 

to mimic the modeling constraints imposed.  The validation and utilization of the opioid 

receptor models is described in more detail in Chapter 3 and Chapter 4.   

The peptide ligands proposed in this thesis will be used primarily as tools to 

characterize interactions between μ and δ receptors and two approaches are examined in 

Chapter 3 and Chapter 4. Development of ligands using both penta- and tetrapeptide 

scaffolds and displaying the proper bifunctional properties is the primary goal, followed 

by characterization of these ligands. These results allow greater understanding of the 

opioid receptor system and structural determinants to opioid receptor binding.  

Characterization of novel peptide ligands displaying the appropriate efficacies likewise 

represents a step forward in the development of pain therapeutics lacking tolerance and/or 

dependence liability. 
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Figure 1.1 Long-term exposure of mice to the μ agonist morphine produces a 
significant increase in EC50 for the drug over saline-treated control animals. Co-
administration of selective δ antagonist naltrindole (NTI) blocks this increase and 
decreases antinociceptive tolerance to baseline.  NTI alone shows no effect on the 
antinociceptive effect of morphine. (Adapted from Abdelhamid et al., 1991)). 
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Figure 1.2 Potential mechanisms whereby heterodimerization can prevent μ agonist-
induced tolerance. (A) While homomeric opioid receptors are internalized after agonist 
exposure, (B) heterodimerization may prevent receptor phosphorylation by GRK proteins 
and recruitment of β-arrestin, decreasing receptor internalization. (C) Application of a 
cell-permeable δ antagonist may stabilize heterodimers held in intracellular stores and 
traffic the heterodimer to the plasma membrane, providing additional μ receptor signaling 
potential. 
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Figure 1.3 Schematic representation of different bifunctional ligands. (A) two co-
administered ligands (polypharmacy); (B) a bivalent molecule linked by a spacer; and (C) 
a bifunctional ligand targeting both receptor 1 and 2 (R1 and R2). 
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Chapter II 

Inhibition of acute morphine tolerance and dependence by the delta antagonist 
naltrindole 

 
Summary 

A positive role for the delta (δ) opioid receptor system in the production of 

adaptive effects to chronic morphine administration, including tolerance and dependence, 

has been suggested. This is based on experiments showing antagonism, knockdown, or 

knockout of the δ receptor slows the rate of development of morphine tolerance and/or 

dependence. Therefore, I hypothesized the effect of δ blockade might occur at an early 

stage in these adaptive processes.  In this report, I show that tolerance and dependence 

can be observed after a single acute administration of morphine in mice, and show that 

these adaptations are prevented by co-administration of a single dose of the δ antagonist 

naltrindole (NTI). Thus, a single injection of 32 mg/kg morphine in 129S6 mice produced 

an antinociceptive tolerance to a subsequent morphine challenge that was fully blocked 

by co-administration of NTI at a dose that did not inhibit acute morphine antinociception 

in naïve mice. Acute tolerance was accompanied by a loss of high-affinity μ receptor 

binding sites; there was no change in the total number of opioid receptor binding sites. 

The morphine-induced loss of high-affinity binding was prevented by in vivo 

pretreatment with NTI. In addition, administration of naloxone 4 h after a single dose of 

morphine precipitated a number of typical opioid withdrawal signs. These signs were also 

reduced by pretreatment of NTI. The results provide further evidence for a physiological 

interaction between μ and δ receptors in the production of tolerance to and dependence 

on morphine and suggest this may occur at an early stage in the development of these 

adaptations. 
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Introduction 

Long-term use of many illicit drugs including opiates produces neuronal 

adaptations (Fan et al., 2003; Nestler, 2001) and can lead to both tolerance (decreased 

effectiveness of a drug) and dependence (requirement of drug to maintain behavioral and 

cellular homeostasis). Development of tolerance to the mu (μ) opioid agonist morphine 

has been shown to develop rapidly in animal models (Abdelhamid et al., 1991; Cochin et 

al., 1964) and lasts for a sustained period of time; (Kornetsky et al., 1968).  The vast 

majority of both clinical and illicit opioid agonists produce their effects via activation of 

the μ receptor. However, a number of studies (Abdelhamid et al., 1991; Hepburn et al., 

1997; Kest et al., 1996) have provided evidence of a role for the delta (δ) opioid receptor 

in modulating long-term adaptations to morphine, including tolerance and dependence. 

The idea that opioid receptor interactions alter behavioral outcomes is not new 

(Egan et al., 1981; Porreca et al., 1992) and many studies have examined the role of δ 

receptors in μ receptor induced effects. Observations that certain outcomes are changed 

including μ agonist mediated antinociception (Cahill et al., 2001b; Porreca et al., 1992), 

tolerance (Chefer et al., 2009; Kest et al., 1996), and dependence (Fundytus et al., 1995) 

lead to the development of various hypotheses regarding interactions between μ and δ 

receptors. Behavioral studies supporting this idea showed that blockade of the δ receptor 

via antagonism (Abdelhamid et al., 1991; Hepburn et al., 1997) or genetic knockdown 

(Kest et al., 1996) decreased the appearance of antinociceptive tolerance and/or 

dependence on morphine. Interactions between μ and δ receptors are not limited to 

antinociceptive effects, as further studies have demonstrated a link between these 

receptors in behavioral paradigms such as locomotor sensitization and conditioned place 

preference (Chefer et al., 2009; Shippenberg et al., 2009). 

One hypothesis to explain the effect of δ antagonism on μ agonist-mediated 

behaviors is that δ receptors in a μ−δ heterodimeric complex modulate intracellular 

signaling produced by the μ receptor  or that the μ−δ heterodimer uses alternative 

signaling pathways (Gomes et al., 2004; Rozenfeld et al., 2007a), such that development 

of adaptive side effects might be changed.  Results from these and similar experiments 
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have founded an area of opioid ligand development aimed at the design of novel ligands 

that bind to both μ and δ receptors presenting with mixed efficacy at each receptor (e.g. μ 

agonism and δ antagonism; Purington et al., 2009; Schiller, 2010). 

Advances have been made in understanding the cellular mechanism(s) underlying 

tolerance and dependence development after μ agonist treatment. Tolerance to μ agonists 

including morphine likely involves several redundant and compensatory mechanisms. 

Studies have shown μ agonist-specific responses to a number of cell signaling events, 

including G protein stimulation (McPherson et al., 2010), receptor phosphorylation 

(Zhang et al., 1998), desensitization (Alvarez et al., 2002) and internalization 

(Arttamangkul et al., 2008). Most in vitro work has been performed in single (and often 

heterologous) cell systems after short treatment times (min-h), and with high 

concentrations of agonists, conditions inconsisten with behavioral studies in rodents 

published previously. In particular, studies examining the effect of δ  antagonism on 

μ agonist-mediated antinociceptive tolerance or other behavioral effects were performed 

after prolonged exposure (5-7 days) to the μ agonist (Abdelhamid et al., 1991; Hepburn 

et al., 1997) and the effects of NTI were shown only to delay the progress of tolerance 

development. I therefore examined the early stages of the adaptive process. 

Tolerance to the μ agonist morphine has been demonstrated in some behavioral 

measures to occur after a single exposure to the drug (Cochin et al., 1964; Kornetsky et 

al., 1968).  I have utilized an acute tolerance paradigm in 129S6 mice to examine the 

effects of a single dose of morphine to bridge the gap between previously published in 

vitro and in vivo reports and also to look at effects on early time points.  Analysis of the 

production of tolerance and dependence by both in vivo and ex vivo methods in the 

presence or absence of the selective δ antagonist naltrindole (NTI) (Portoghese et al., 

1988) was performed. NTI is the δ antagonist used most often to demonstrate interactions 

in opioid receptor systems (Abdelhamid et al., 1991; Hepburn et al., 1997; Shippenberg 

et al., 2009). The results show decreased acute antinociceptive tolerance and dependence 

to morphine in the presence of NTI and dampening of morphine-mediated changes at the 

level of receptor and G protein. The studies lend further evidence to the hypothesis that δ 
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receptor blockade may be useful in lessening the development of tolerance to, and 

dependence on, morphine. 

 

Results 

Acute tolerance to morphine 

 The ability of morphine to produce antinociception in male 129S6 mice in the hot 

plate assay was measured. The mice showed an antinociceptive response to morphine 

with an ED50 of 11.2  +/- 1.5 mg/kg, with a measured endpoint as forepaw licking or 

jumping (Lamberts et al., 2011). A 10 mg/kg dose of naltrindole (NTI, s.c.) administered 

15 min before morphine did not have an effect on baseline latencies to paw lick, nor on 

the ability of morphine to produce antinociception in the hot plate assay (Figure 2.1A).  

Time-course studies of the effects of morphine indicated a loss in the antinociception 4 h 

after initial exposure (data not shown) and previous studies have shown 4 h to be 

sufficient time to visualize decreased effects of morphine (Kornetsky et al., 1968). 

Therefore, acute tolerance was examined 4 h after a single morphine injection. 

A challenge dose of 32 mg/kg morphine (i.p.) administered 4 h after the initial 

injection (Figure 2.1B) produced less antinociception than the initial morphine dose 

(reported as % Maximum Possible Effect (% MPE); % MPE (initial): 63.4 ± 7.3%; % 

MPE (challenge): 35.8 ± 5.4%; p<0.05). This effect was prevented by NTI pretreatment 

(% MPE (challenge): 60.2 ± 10.9%). NTI had no effect on the ability of morphine to 

produce antinociception in naïve animals (% MPE (initial): 72.0 ± 9.0%; p>0.05). 

Control groups of mice receiving saline or NTI pretreatment 4 h before a single dose of 

morphine (Figure 2.1B, inset) displayed similar antinociceptive effects (saline 

pretreatment, % MPE: 70.2 ± 9.9%; NTI pretreatment, % MPE: 77.7 ± 13.0%), indicating 

that NTI did not have direct off-target effects at the μ receptor and confirming the dose-

effect data (Figure 2.1A). Statistical analysis by two-way ANOVA revealed a significant 

interaction between pretreatment and treatment (F(3,43)=19.56; p<0.0001).  Additionally, 

there were significant main effects of pretreatment (F(3,43)=5.076; p=0.0043) and 

injection (either initial or challenge injections; F(1,43)= 16.30; p=0.0002).  
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In contrast to these data, mice treated seven days with morphine with or without 

NTI pretreatment did not develop antinociceptive tolerance, even with a higher morphine 

dose. There was no shift in the ED50 of the morphine dose-effect curve after chronic 

administration (ED50 initial: 16.0 ± 4.1 mg/kg; ED50 following treatment: 16.3 ± 4.0 

mg/kg, p>0.05) and no decrease in maximum antinociception (data not shown). While 

this protocol has been used with success to develop tolerance (Bohn et al., 2000), 

inability to produce tolerance in these studies and insensitivity to chronic morphine may 

be due to the species of mice used. Morphine antinociception and tolerance has been 

shown to be strain-specific and the 129S6 strain used in these studies does not develop 

antinociceptive tolerance as readily after chronic administration of morphine (Bryant et 

al., 2006; Kest et al., 2002).  

 Precipitated withdrawal following acute morphine treatment  

To examine acute dependence, withdrawal was precipitated by a single dose of 

the non-selective opioid antagonist naltrexone (10 mg/kg, s.c.) Withdrawal symptoms 

observed included paw tremors, wet dog shakes, ptosis, body tremors, and teeth 

chattering (Divin et al., 2008).  Jumping and diarrhea, commonly observed symptoms of 

opioid withdrawal in mice (Maldonado et al., 1996), were not seen after acute morphine 

exposure, which may indicate the withdrawal symptoms are differentially produced or 

develop under a prolonged time course (Kimes et al., 1993) and may not be observed 

after acute opioid exposure.  

As seen in Figure 2.2, saline pretreated mice receiving 32 mg/kg morphine (i.p.) 

displayed 19.2 ± 2.0 counted withdrawal signs in the 20 min observation period, while 

mice receiving saline alone showed 5.8 ± 1.1 signs. As in the hot plate assay, 

pretreatment with 10 mg/kg NTI decreased the appearance of withdrawal signs measured 

in 20 min to 10.0 ± 1.5 (p<0.05 compared to saline-pretreated animals). NTI pretreatment 

had no effect on the number of baseline behavioral signs exhibited by saline treated mice 

(5.0 ± 1.0). Analysis by two-way ANOVA revealed significant main effects of both 

treatment and pretreatment (treatment: F(1,20)=32.35; p<0.0001, pretreatment: 

F(1,20)=9.626; p<0.01), and a significant interaction between the two (F(1,20)=6.684; 

p<0.05).  Chronically treated mice did show naloxone-precipitated withdrawal symptoms 
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after 7 days, but the degree of withdrawal was no different from animals given a single 

dose of morphine (chronic morphine-treated mice: 20.5 ± 4.1 withdrawal signs in 20 

min). 

  [35S]GTPγS binding in brainstem membranes after morphine treatment 

As an ex vivo  measure of morphine antinociceptive tolerance, I examined the 

ability of μ agonist [D-Ala2-N-Me-Phe4-Gly5-ol]enkephalin (DAMGO) to stimulate 

binding of the non-hydrolyzable GTP analog [35S]GTPγS (Traynor et al., 1995) in 

brainstem membranes (Bohn et al., 2000). Addition of increasing concentrations of 

DAMGO to brainstem membranes from saline treated animals stimulated [35S]GTPγS 

binding to μ receptors, with an EC50 of 850 ± 220 nM and a maximum stimulation of 117 

± 11% over basal levels (Figure 2.3A).  In contrast, 4 h after a single in vivo morphine 

treatment, there was a decreased the ability of DAMGO ex vivo to stimulate [35S]GTPγS 

binding, (68 ± 8%, p<0.05), with a small but not significant increase in the DAMGO 

EC50 value (1040 ± 360 nM). NTI pretreatment in vivo rescued the loss of DAMGO-

mediated [35S]GTPγS stimulation in morphine treated animals (NTI-Morphine: 100 ± 

20%; EC50: 1290 ± 200 nM; p>0.05 compared to saline treated controls, Figure 2.3B). 

NTI pretreatment alone in vivo did not affect the ability of DAMGO to stimulate G 

protein in this assay (NTI-Sal: 100 ± 10% stimulation; EC50: 410 ± 120 nM; data not 

shown). 

Expression of μ receptor binding sites after morphine treatment 

Measurement of high-affinity μ receptor binding sites in brainstem and striatal 

membrane preparations was examined following morphine treatment in vivo. I utilized 

radiolabeled [3H]DAMGO to examine the number of μ receptor sites with or without 

morphine treatment. [3H]DAMGO binding in brainstem membranes from saline-treated 

animals showed a Bmax of 108 ± 20 fmol binding sites/mg protein (Figure 2.4), while 

morphine-treated animals had a lower Bmax (Bmax: 57 ± 7 fmol/mg protein, p<0.05; 

Table 2.1). The binding affinity of [3H]DAMGO (Kd) was unchanged between treatment 

groups (Kd (saline): 2.3 ± 0.7 nM; Kd (morphine): 2.4 ± 1.6 nM; p>0.05). [3H]DAMGO 

binding in striatal membrane preparations displayed similar results. Saline treated mice 

showed a Bmax of 147 ± 12 fmol/mg protein with a Kd for [3H]DAMGO of 3.3 ± 1.6 
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nM, while morphine treated animals had a non-significant decrease in μ receptor binding 

sites (86 ± 36 fmol/mg protein, p>0.05; Kd [3H]DAMGO: 1.5 ± 0.8 nM).  

Since DAMGO labels only high-affinity μ receptors, I examined the total number 

of opioid receptors and total μ receptor population in the brainstem and striatum, using 

the non-selective opioid antagonist [3H]diprenorphine at a supramaximal concentration of 

4 nM.  As this was a single concentration radioligand binding assay, these results cannot 

be compared directly with the data from the [3H]DAMGO binding assays. Total μ 

receptor population was defined by displacement of [3H]diprenorphine with 300 nM of 

the μ-selective antagonist peptide D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP). 

In membranes from saline treated mice, [3H]diprenorphine labeled 137 ± 12 fmol/mg 

protein of total opioid receptors in brainstem and 263 ± 43 fmol/mg protein in striatal 

membranes. The μ receptor-specific populations were 72 ± 12 fmol/mg protein and 93 ± 

15 fmol/mg protein, respectively (Table 2.1). In membrane homogenates from morphine 

treated mice, [3H]diprenorphine labeled 136 ± 12 fmol receptor/mg protein in the 

brainstem and 195 ± 60 fmol receptor/mg protein in the striatum; the total amount of μ 

receptors was determined to be 62 ± 13 fmol/mg in brainstem and 76 ± 13 fmol/mg 

protein in striatum (Table 2.1).  A greater number of total opioid receptors was 

determined in striatal membranes over brainstem in saline-treated mice, in agreement 

with the differential expression of opioid receptors in the brain (Mansour et al., 1995).  

As no change in total μ receptor expression was seen between saline or morphine 

treated animals, our results suggest a lack of down-regulation of these receptors. The 

tolerance seen in these studies may therefore be due to the significant decrease in high-

affinity binding sites following morphine treatment.  

cAMP overshoot as a cellular measure of dependence  

To examine the effect of acute morphine treatment ex vivo, I employed an 

adenylyl cyclase (AC) enzyme sensitization paradigm. AC sensitization (Watts et al., 

2005) is a cellular phenomenon that develops following morphine treatment and 

considered to be a withdrawal response.  Administration of opioid drugs in vivo produces 

a re-setting of basal AC activity such that, upon removal of the agonist drug, the enzyme 

is ‘sensitized’ to subsequent stimulation. As the system requires presence of drug to 
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maintain homeostasis, this has become a model of cellular dependence and precipitated 

withdrawal (Divin et al., 2009). 

I examined the ability of morphine treatment in vivo to produce cAMP 

sensitization in striatal membrane preparations upon addition of the AC stimulator, 

forskolin (FSK). In striatal membrane preparations, the basal levels of cAMP were 

similar between membrane preparations from saline or morphine treated mice (data not 

shown).  With addition of 5 μM FSK (Bohn et al., 2000), there was an increase in cAMP 

accumulation but no difference was seen between morphine treated animals over saline 

treated controls.  

 

Discussion 

The studies reported here have examined in vivo and ex vivo measures of acute 

tolerance and dependence after a single administration of morphine. These lend evidence 

in support of the hypothesis that co-administration of morphine with a δ antagonist can 

prevent the development of μ agonist tolerance and dependence (measured by 

precipitated withdrawal) in vivo. The acute tolerance and dependence seen in 129S6 mice 

after a single administration of morphine may be due rapidly reversible changes at the 

receptor level (Gintzler et al., 2008), compared to permanent structural changes and 

altered protein synthesis mechanisms after chronic administration, thus suggesting that 

the effects of δ antagonist treatment are dominant early in the process of tolerance 

development. I was able to determine acute tolerance and dependence in vivo; however, 

chronic administration of morphine at the doses employed did not produce tolerance. In 

contrast, long-term morphine exposure elicited dependence development as a number of 

precipitated withdrawal symptoms were measured following 7 day treatment.  

Tolerance is known to arise via various mechanisms. Roles for β-arrestins (Bohn 

et al., 2000), protein kinase C (Bailey et al., 2006), and other accessory proteins (Clark et 

al., 2005) have all been shown in tolerance development after chronic morphine 

treatment. It is likely that complex compensatory mechanisms are activated upon chronic 

opioid agonist exposure and may be the underlying reason why no tolerance was 

observed in our system. Additionally, μ agonist exposure indirectly alters signaling 
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capabilities of non-opioid containing cells (Mao, 1999) to subsequent stimulation and 

interactions of the μ receptor with other inhibitory G protein-coupled receptors (including 

the α2-adrenergic, cannabinoid, and orphanin (ORL-1) receptor) have been shown (Levitt 

et al., 2011), providing another compensatory signaling mechanism to prevent 

observation of tolerance. In support of our findings in 129S6 mice, propensity to develop 

tolerance among several species of mice has been studied (Bryant et al., 2006; Kest et al., 

2002), demonstrating that some inbred strains (including the 129S6 strain) are resistant to 

morphine tolerance and develop this adaptation less readily than other strains.  

A reduction in the number of high-affinity μ receptor binding sites (without a loss 

in total μ receptor expression) and decrease in agonist ability to elicit receptor-G protein 

activation ex vivo may provide an explanation for the behavioral observations. I postulate 

the reduction in [3H]DAMGO binding ex vivo in membrane preparations from morphine 

treated mice is due to a decrease in the high-affinity μ receptor state without a 

corresponding decrease in total μ receptor number.   A reduced number of high-affinity 

states of the receptor is most likely due to receptor desensitization and uncoupling of G 

protein from the membrane-bound receptor (Zhang et al., 1996). This agrees with 

previous studies demonstrating morphine can produce receptor desensitization but not 

internalization (Kim et al., 2008; McPherson et al., 2010). The decrease in the number of 

high-affinity μ receptors available is not caused by the continued presence of morphine 

after membrane homogenization, as the membrane preparation involves several washing 

steps, there was no change in basal [35S]GTPγS binding (data not shown) and no change 

in the Kd value for [3H]DAMGO between treatment groups. 

Acute exposure to morphine in vivo, while able to produce a significant number of 

withdrawal symptoms (Figure 2.2) may not produce large enough biochemical changes to 

see in the ex vivo procedure. This may be because of insufficient time to develop a high 

degree of sensitization of μ receptor-linked AC enzymes or because this effect may be 

short-lived and readily reversible (Watts et al., 2005). AC isoform V has also been shown 

to play a role in AC sensitization (Kim et al., 2006) after long-term morphine exposure, 

but our results may indicate that striatal adenylyl cyclase isoforms IV and V (Kim et al., 

2006) do not become sensitized after a single administration of μ agonist. It is possible 
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that AC sensitization may be visualized in other brain regions after a single dose of 

morphine (including AC isoforms I and VIII (Zachariou et al., 2008) present in the cortex 

and other brain regions). On the other hand, this adaptation may be only visualized after 

chronic μ agonist administration (Bohn et al., 2000; Kim et al., 2006; Watts et al., 2005; 

Zachariou et al., 2008).  Additionally, there is a possible loss of sensitized AC in the ex 

vivo assay; an acute exposure to morphine may not be sufficient to produce robust 

sensitization that would persist following our membrane preparation procedure.  

 The experiments in this report highlight the role of δ receptor blockade in 

decreasing production of adaptive side effects tolerance and/or dependence after brief 

exposure to morphine. Moreover, they strengthen clinical relevance of bifunctional 

ligands or multi-drug therapies simultaneously containing μ agonist and δ antagonist 

efficacies to effectively produce analgesia with reduced tolerance liabilities.  

 

Materials and Methods 

Drugs: All reagents, including [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin 

(DAMGO) naloxone, and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) were 

from Sigma-Aldrich (St. Louis, MO) unless otherwise indicated and of analytical grade.  

[35S]-guanosine-5'-O-(3-thio)triphosphate ([35S]-GTPγS; 1250Ci (46.2TBq)/mmol), [3H]-

DAMGO, and [3H]-diprenorphine were purchased from Perkin Elmer (Boston, MA).  

Morphine sulfate was obtained from Research Triangle Institute (RTI, NC). All drugs 

were diluted in sterile water for both biochemical and behavioral assays. 

Subjects: Male wild-type 129S6/SvEvTac mice (obtained from in-house breeding 

colony or Taconic (http://www.taconic.com)) were used for all behavioral studies. Mice 

were group-housed (4-6 animals per cage) in a temperature-controlled room maintained 

on a 12 hr light/dark cycle with lights on at 7:00 AM. For behavioral studies, subjects 

were between 8-12 weeks of age and weighed 20-30 g at the time of the studies. Groups 

of 6-8 mice were used in each of the behavioral experiments.  All experimental 

procedures were approved by the University of Michigan Committee on Use and Care of 

Animals (UCUCA) and in accordance with the Guide for the Care and Use of Laboratory 

Animals as adopted and promulgated by the U.S. National Institutes of Health.  
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Behavioral Antinociceptive Testing: The hot plate test was used to evaluate 

supraspinal antinociception as described previously (Lamberts et al., 2011). Mice were 

given two injections of saline (i.p.) to determine baseline latency, followed by three 

cumulative doses of morphine (i.p.) in 30-min intervals or a single 32 mg/kg morphine 

injection (i.p.). Mice were placed on a 52°C hot plate 30 min following each injection. 

The latency to lick forepaw(s) or jump was measured with a cutoff time of 60 s in order 

to prevent tissue damage. Agonist-stimulated antinociception is expressed as a percentage 

of maximum possible effect (% MPE), where % MPE = (post-drug latency-average 

baseline latency) / (cutoff latency-average baseline latency) x 100. 

Acute Tolerance and Dependence: Acute tolerance to the antinociceptive effects 

of morphine (Kornetsky et al., 1968) was induced by a single administration of 32 mg/kg 

morphine. Mice were assessed pre-drug exposure for baseline latency, given a 

pretreatment (s.c.) of saline or 10 mg/kg of the δ antagonist naltrindole (NTI), followed 

15 min later by 32 mg/kg morphine (i.p.).  30 Min post-morphine, the latency to lick 

forepaws or jump from a hot plate as described above was determined. After 4 h 

incubation, the baseline latency was again determined (latencies were between 15-18 s) 

and mice given a challenge injection of 32 mg/kg morphine (i.p.). The post-challenge 

administration latency was measured after 30 min and all data are expressed as % MPE 

for groups containing 8 animals each.   

Following determination of hot plate latency, mice were given a single injection 

of 10 mg/kg naloxone (s.c.) to precipitate withdrawal symptoms (Divin et al., 2008).  To 

assess withdrawal, each mouse was placed singly in a clear Plexiglass box (28 cm x 18 

cm x 13 cm) and observed for 20 min. The total occurrence and frequency in 5 min 

intervals of the following behaviors was measured: wet dog shakes, paw tremors, ptosis, 

teeth chattering, and body tremors. Data are plotted as the total number of withdrawal 

symptoms (Maldonado et al., 1996; Maldonado et al., 1992) in a 20 min period and 

represent the average from groups of 6-8 mice.  

Chronic morphine administration: Mice were treated for 7 days with morphine 

(Bohn et al., 2000). A dose-effect curve for cumulative doses of morphine (10-100 

mg/kg, i.p.) was produced on day 0, followed by twice daily administrations of 128 
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mg/kg morphine (i.p.) for 6 days. On each administration day, mice were weighed and 

baseline latency to lick forepaws on the hot plate examined. Mice were given an injection 

of saline or 128 mg/kg morphine (i.p.), followed 30 min later by analysis of morphine 

latency with a cutoff time of 60 sec as described above.  For the evening injections, mice 

were weighed and administered drug only. On the 7th day, a second cumulative morphine 

schedule was employed (32-320 mg/kg, i.p.) and the dose-effect curve analyzed for 

changes from the initial data.  Mice were assessed for physical dependence following the 

cumulative morphine dose schedule on day 7 as described above.  

Brain Membrane Preparation: Mice were euthanized by cervical dislocation and 

brainstem or striatal tissue was removed, immediately frozen on dry ice and stored at -80 

°C. Samples were used within one week of harvest. Brainstem or striatal membrane 

homogenates  for radioligand or [35S]GTPγS binding assays were prepared as previously 

described (Lester et al., 2006). Briefly, the tissue was suspended in ice-cold 50 mM Tris-

HCl buffer, pH 7.4 and homogenized with a Tissue Tearor (Biospec Products, Inc., 

Bartlesville, OK) for 20 s at setting 4. The homogenate was centrifuged at 20,000xg for 

20 min at 4°C and the pellet re-homogenized in 50 mM Tris-HCl with a Tissue Tearor for 

10 s at setting 2, followed by re-centrifugation. Final membrane pellets were resuspended 

in 50 mM Tris-HCl, pH 7.4 and used immediately. Protein concentration was determined 

using the BCA protein assay (Smith et al., 1985)Thermo Fisher Scientific, Rockford, IL) 

using bovine serum albumin as the standard. 

Striatal membrane preparation used for the examination of cAMP sensitization. 

Striatum were thawed in 1 ml Tris-HCl buffer, pH 7.4 with 1 mM EDTA and 0.32 M 

sucrose in the presence of protease inhibitors and 1 mg/ml BSA.  Samples were 

homogenized and centrifuged at 15,000 rpm for 30 min at 4 °C. The resulting pellet was 

resuspended in buffer containing 50 mM Tris-HCl (pH 7.4), 1 mM EDTA, 100 mM NaCl 

and 5 mM MgCl2. Protein content was analyzed as described above.  

Radioligand Binding Assays:Total opioid receptor expression in brain membranes 

was determined in radioligand binding assays using [3H]diprenorphine and brainstem or 

striatal membrane homogenates prepared as described above. The assay mixture, 

containing membrane suspensions (25-30 μg protein/tube) in 50 mM Tris-HCl buffer (pH 
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7.4) and 4 nM [3H]diprenorphine was incubated at 25°C for 75 min with shaking to allow 

binding to reach equilibrium. The relative number of μ receptors present in the membrane 

preparations was determined by the displacement of 4 nM [3H]diprenorphine by 300 nM 

of μ-selective antagonist peptide CTAP.  This concentration was shown to be μ-selective 

as it was unable to produce a shift in the [35S]GTPγS stimulation concentration-response 

curve for the δ agonist 4-[(R)-[(2S,5R)-4-allyl-2,5-dimethylpiperazin-1-yl](3-

methoxyphenyl)methyl]-N,N-diethylbenzamide (SNC80) in SH-SY5Y cell membranes 

(data not shown).   

Analysis of high-affinity μ receptor binding was determined via [3H]DAMGO 

saturation binding. Membrane homogenate (50 μg protein/tube) was added to 50 mM 

Tris-HCl buffer, pH 7.4 with increasing concentrations of [3H]DAMGO (0.5-25 nM) and 

the mixture incubated as described above. After incubation, samples were filtered rapidly 

through GF/C filters (Whatman, Middlesex, UK) using a Brandel harvester and washed 

three times with ice-cold 50 mM Tris-HCl buffer.  The radioactivity retained on dried 

filters was determined by liquid scintillation counting after saturation with EcoLume 

liquid scintillation cocktail (MP Biomedicals, Solon, OH) in a Wallac 1450 MicroBeta 

(PerkinElmer, Waltham, MA). Non-specific binding was determined in all radioligand 

binding assays with 10 μM naloxone. Data were graphed using GraphPad Prism 5.01 

software (GraphPad Software, La Jolla, CA). The results presented are the mean from at 

least three separate assays, each performed in triplicate.  

[35S]GTPγS Stimulation Assay: Binding of the non-hydrolyzable GTP analog 

[35S]GTPγS was measured as a method to determine receptor activation as described 

previously (Traynor et al., 1995).  Prepared brainstem membranes (10 µg protein/tube) 

were incubated in GTPγS binding buffer (50 mM Tris-HCl, pH 7.4; 100 mM NaCl; and 5 

mM MgCl2) containing 0.1 nM [35S]GTPγS, 100 µM GDP, 2 mM dithiothreitol, 0.4 U/ml 

adenosine deaminase, and varying concentrations (0.1–10,000 nM) of DAMGO for 90 

min at 25°C.  For all [35S]GTPγS-binding assays, nonspecific binding was evaluated in 

the presence of 10 μM GTPγS.  The reaction was terminated by rapidly filtering through 

GF/C filters and washing with 2 ml ice-cold GTPγS binding buffer.  Retained 
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radioactivity was measured as described above. Experiments were performed at least 

three times in duplicate.  EC50 values were determined by nonlinear regression analysis 

using GraphPad Prism 5.01 software.   

Whole cell acute inhibition of adenylyl cyclase: Adenylyl cyclase activity (and 

cyclic AMP (cAMP) accumulation) was measured in striatal membrane preparations 

prepared as described above. Striatal membranes (10 μg/well) were incubated 5 min in 10 

μl assay buffer containing 1 mM 3-isobutyl-1-methylxanthine, 10 μM GDP, 100 mM 

NaCl, 5 mM MgCl2, 2 mM ATP, 100 mM phosphocreatine, and 1000 U/ml creatine 

phosphokinase with or without 5 μM forskolin (FSK) to stimulate cAMP accumulation at 

37 °C (Bohn et al., 2000). The assay was quenched with addition of 20 μl ice-cold 3% 

perchloric acid, neutralized with 5 μl 2.5M KHCO3, and centrifuged 2 min at 10,000xg.  

cAMP accumulation in the presence or absence of FSK was measured from the 

supernatant using an ELISA kit from Cayman Chemical (Ann Arbor, MI), according to 

the manufacturer’s instructions. Experiments were performed in triplicate and repeated a 

minimum of three times. 

Statistical Analysis  Data were analyzed using Student’s two-tailed t test or two-

way analysis of variance followed by Bonferroni’s post-hoc test where appropriate using 

GraphPad Prism version 5.01 for Windows (GraphPad Software, San Diego, CA 

www.graphpad.com).  p values less than 0.05 were considered to be significant.



 

32 

 

 32 

Table 2.1. Loss in high-affinity μ receptor binding sites with morphine treatment, but no change in total opioid receptor 
binding sites in membrane preparations from brainstem and striatum 
 Brainstem Striatum

Treatment [3H]DAMGO* [3H]Diprenorphine+ [3H]DAMGO [3H]Diprenorphine

Bmax 
(fmol/mg 

protein) 

 

Kd (nM) 

Total receptor

(fmol/mg 

protein) 

μ-specific 

(fmol/mg 

protein)  

Bmax

(fmol/mg 

protein) 

 

Kd (nM) 

Total receptor

(fmol/mg 

protein) 

μ-specific 

(fmol/mg 

protein) 
Saline 108 ± 20 2.3 ± 0.7 137 ± 12 72 ± 12 147 ± 12 3.3 ± 1.6 263 ± 43 93 ± 15

Morphine 57 ± 7 2.4 ± 1.6 136 ± 12 62 ± 13 86 ± 36 1.5 ± 0.8 195 ± 60 76 ± 13

 [3H]DAMGO or [3H]diprenorphine binding in brainstem or striatal membrane homogenates prepared 4 h after a single 
administration of saline or 32 mg/kg morphine (i.p.). ∗[3H]DAMGO Bmax values determined from saturation binding curve. +Total 
receptor expression in [3H]diprenorphine assays estimated using a single supramaximal concentration (4 nM) of [3H]diprenorphine. μ 
Receptor-specific binding sites measured via displacement of 4 nM [3H]diprenorphine with 300 nM of the μ-selective antagonist D-
Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP).  There is a loss in agonist-bound, high-affinity [3H]DAMGO binding sites in 
both brainstem and striatal membranes prepared after treatment with 32 mg/kg morphine (i.p.) with no change in the Kd value for 
DAMGO. There is no change in the total opioid receptor expression measured with antagonist [3H]diprenorphine binding or in μ 
receptor-specific binding sites. In the striatum, there is a slight, but not significant, decrease in the number of [3H]DAMGO binding 
sites after morphine treatment. 
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Figure 2.1: Morphine antinociception in the hot plate assay. Data are expressed as % 
maximum possible effect (% MPE), calculated as described in Methods. (A) 15 min 
pretreatment with 10 mg/kg NTI (s.c.) does not affect the antinociceptive properties of 
morphine in the hot plate assay and has no effect on the EC50 of morphine (i.p.) Baseline 
latencies were also unchanged after NTI pretreatment (latency (saline): 12.4 ± 2.0 sec; 
latency (NTI): 13.8 ± 0.7 sec; p>0.05). (B) Mice pretreated with saline or 10 mg/kg NTI 
(s.c.) exhibit the same degree of antinociception upon an initial dose of 32 mg/kg 
morphine (i.p.) (saline pretreated mice % MPE (initial): 63.4 ± 7.3%; NTI pretreated 
mice % MPE (initial): 72.0 ± 9.0%; p>0.05).  A challenge dose of 32 mg/kg morphine 
(i.p.) administered after 4 h produced decreased antinociception in saline pretreated mice 
(% MPE (challenge): 35.8 ± 5.4%) but not NTI pretreated mice (% MPE (challenge): 
60.2 ± 10.9%). NTI pretreatment did not have an effect on morphine antinociception 4 h 
after pretreatment (inset). Statistical analysis by two-way ANOVA revealed a significant 
interaction between pretreatment and treatment (F(3,43)= 19.56, p<0.0001) and 
significant main effects of pretreatment (F(3,43)= 5.076, p=0.0043) and injection (initial 
or challenge; F(1,43)= 16.30, p=0.002).  
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Figure 2.2. Withdrawal precipitated with 10 mg/kg naltrexone (s.c.) 4 h after 
morphine exposure. Mice given 32 mg/kg morphine (i.p.) followed by withdrawal 
precipitated by 10 mg/kg naltrexone (s.c.) exhibit an increase in the number of 
withdrawal symptoms in the 20 min observation period, while mice receiving a 10 mg/kg 
NTI (s.c.) pretreatment show no change in the number of withdrawal symptoms when 
compared to saline pretreated animals.  Two-way ANOVA for these data demonstrated 
significant main effects of both treatment (saline or 32 mg/kg morphine (i.p.); F(1,20)= 
32.35, p<0.001) and pretreatment (saline or 10 mg/kg NTI (s.c.); F(1,20)= 9.626, 
p=0.0056) and a significant interaction between pretreatment and treatment 
(F(1,20)=6.684, p=0.0177). 
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Figure 2.3. [35S]GTPγS binding in mouse brainstem membranes ex vivo is decreased 
when measured in brainstem homogenates harvested 4 h after a single in vivo 
injection of 32 mg/kg morphine (i.p.) Mice were treated with saline or morphine as 
described above and brainstem membranes prepared as in Methods. (A) [35S]GTPγS 
binding is stimulated by μ agonist DAMGO in brainstem membranes from mice treated 
in vivo with saline (i.p.), affording an EC50 value of 850 ± 220 nM.  In contrast, there is a 
decrease in the total stimulation by DAMGO application (saline: 117 ± 11% stimulation 
over baseline; morphine: 68 ± 7.9%; p<0.05) and a non-significant 2.1-fold rightward 
shift in the concentration-response curve for DAMGO (morphine EC50: 1040 ± 360) 
following in vivo treatment with 32 mg/kg morphine (i.p.). (B) In vivo NTI pretreatment 
of morphine treated animals improves stimulation by DAMGO ex vivo following 
morphine treatment ((NTI-morphine): 100 ± 20% stimulation over baseline, p<0.05 
compared to saline-treated controls; EC50: 1290 ± 200 nM). 
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Figure 2.4. Loss in high-affinity μ receptor expression (labeled with [3H]DAMGO) 
in brainstem membranes prepared 4 h after in vivo treatment of mice with a single 
injection of 32 mg/kg morphine (i.p.). Saline treated animals display a Bmax of 108 ± 
20 fmol receptor/mg protein while morphine treated animals show a decrease in high-
affinity μ receptors (Bmax: 57 ± 7 fmol/mg protein). There was no change in the Kd of 
DAMGO after morphine treatment (Kd (saline): 2.3 ± 0.7 nM, Kd (morphine treated): 2.4 
± 1.6 nM; p>0.05).   
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Chapter III 

Pentapeptides displaying mu opioid receptor agonist and delta opioid receptor 
partial agonist/antagonist properties 

 

Summary 

Chronic use of μ agonists has been shown to cause neurochemical adaptations 

resulting in tolerance and dependence.  While the analgesic effects of these drugs are 

mediated by the μ receptor, several studies have shown that antagonism or knockdown of 

δ receptors can lessen or prevent development of tolerance and dependence.  Based on 

computational modeling of putative active and inactive conformations of both μ and δ 

receptors, I have synthesized a series of pentapeptides with the goal of developing a μ 

agonist/δ antagonist peptide with similar affinity at both receptors as a tool to probe 

functional opioid receptor interaction(s).  The eight resulting naphthylalanine-substituted 

cyclic pentapeptides displayed variable mixed-efficacy profiles.  The most promising 

peptide (9; Tyr-c(SCH2S)[DCys-Phe-2-Nal-Cys]NH2) displayed a μ agonist and δ partial 

agonist/antagonist profile and bound with equipotent affinity (Ki ~ 0.5 nM) to both 

receptors, but also showed κ receptor agonist activity. 

 

Introduction 

Mu (μ) opioid receptor agonists such as morphine are commonly used in the 

treatment of moderate to severe pain.  However, use of such drugs is associated with side 

effects including the development of tolerance, limiting the usefulness of these 

                                                 

 
Reproduced with permission from the Journal of Medicinal Chemistry. Purington, L.C., Pogozheva, I.D., 
Traynor, J.R, Mosberg, H.I. JMedChem. 2009. 52(23):7724-7731. Copyright 2009 American Chemical 
Society. 
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compounds.  It has been hypothesized that opioid compounds displaying μ agonism 

paired with a selective δ or κ receptor effects could lessen the severity of limiting side 

effects surrounding current μ agonist use (Schiller, 2009), including respiratory 

depression and  constipation as well as tolerance.  In particular, studies pointing to a role 

of the δ receptor in modulating the development of μ agonist-induced tolerance have led 

to the hypothesis that both μ and δ receptors play major roles in the development of 

tolerance after chronic morphine exposure.  For example, work in δ receptor knockout 

rodent models (Kest et al., 1996; Nitsche et al., 2002; Zhu et al., 1999) or using δ 

antagonists (Abdelhamid et al., 1991; Daniels et al., 2005; Fundytus et al., 1995; 

Hepburn et al., 1997) was shown to prevent or lessen the severity of tolerance 

development to chronic morphine exposure.  More recent in vivo work also points to a 

role of the δ receptor in modulating morphine-induced behavioral sensitization and 

conditioned place preference in rodents (Chefer et al., 2009; Shippenberg et al., 2009; 

Timar et al., 2005).  It has been hypothesized that the formation of homo- or 

heterodimers of μ and δ receptors leads to changes in their pharmacological behaviors 

including alteration in tolerance or dependence development (Daniels et al., 2005; 

George et al., 2000; Gomes et al., 2004; Rozenfeld et al., 2007a).   

The growing body of evidence implicating a role of the δ receptor in modulating 

μ agonist-induced tolerance suggests that opioid ligands with similar affinities at μ and δ, 

but displaying agonism at μ and antagonism at δ might be of great clinical potential, 

especially for the treatment of chronic pain conditions.  Consequently, many groups have 

developed compounds with μ and δ receptor affinity, including peptidic (Balboni et al., 

2002a; Balboni et al., 2002b; Salvadori et al., 1999a; Schiller et al., 1999; Yamamoto et 

al., 2008) and non-peptidic (Ananthan et al., 1998; Ananthan et al., 1999; Ananthan et 

al., 2004; Cheng et al., 2007; Hiebel et al., 2007) ligands displaying μ agonism and δ 

antagonism.  However, many of these compounds, while displaying the desired efficacy 

profile, do not have equivalent binding affinities to both receptors, thus limiting their 

usefulness in probing μ-δ receptor interactions.   
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Our previous work led to the synthesis of peptide 1 (Tyr-c(SCH2CH2S)[DCys-

Phe-Phe-Cys]NH2 (Przydzial et al., 2005b).  Peptide 1 displayed a promising mixed-

efficacy profile at μ and δ receptors, binding with high affinity to both μ and δ receptors 

while exhibiting full agonism at the μ and κ receptors, but only partial agonism at the 

δ receptor.  I wished to improve peptide 1 by decreasing efficacy at the δ receptor while 

increasing affinity, retaining both efficacy and affinity at the μ receptor, and reducing 

affinity at the κ receptor.  To pursue this aim, in silico docking of 1 into computational 

models of μ and δ receptors was performed.  Based on modeling of putative active and 

inactive conformations of μ and δ receptors (Fowler et al., 2004a; Fowler et al., 2004b; 

Pogozheva et al., 1998; Pogozheva et al., 1997), and docking of 1 to these models, I 

focused on steric constraints surrounding the third and fourth Phe residues of 1.  I 

hypothesized that replacement of these Phe residues with bulkier side chains would 

decrease ligand affinity to the δ receptor active state, but not the inactive state and would 

not affect binding to the μ receptor, thus favoring the desired μ agonist/δ antagonist 

profile.  Consequently, I designed and synthesized eight analogues of peptide 1 

containing naphthylalanine in place of Phe3 or Phe4 to more fully explore the steric limits 

of the receptor binding pocket at either of these positions.  The Mosber lab has previously 

used naphthylalanine substitution to add steric bulk in cyclic peptides (Heyl et al., 1992) 

and this has been more recently applied to linear peptides (Fichna et al., 2008).  In vitro, 

our cyclic peptides displayed variable μ receptor efficacies and had decreased δ receptor 

efficacy.  One compound (peptide 9; Tyr-c(SCH2S)[DCys-Phe-2-Nal-Cys]NH2) 

displayed full agonism at the μ receptor (99% stimulation compared with the full μ 

agonist DAMGO) and was an antagonist at δ in the [35S]GTPγS assay, but with partial 

agonist activity in the adenylyl cyclase inhibition assay.  Although this compound 

retained κ efficacy and affinity, 9 bound with similar subnanomolar affinity to μ and δ 

receptors stably and independently expressed in C6 rat glioma cells.  Thus, incorporation 

of a substitution based on rational design and intended to highlight putative steric 

constraints resulted in a compound that had similar affinity for μ and δ receptors but 
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decreased δ efficacy without compromising μ agonism, an important step forward in the 

development of novel ligands presenting μ agonist and δ antagonist effects.  

 

Results 

Rationale for the design of pentapeptides displaying μ agonism and δ 

antagonism.  

Previous work by our group led to the synthesis of the high-affinity, μ-selective 

cyclic pentapeptide 1 (Tyr-c(SCH2S)[DCys-Phe-Phe-Cys]NH2; Przydzial et al., 2005b) 

which has picomolar affinity for the μ receptor (Ki = 0.016 nM) and nM affinities for the 

δ (Ki = 1.8 nM) and κ (Ki = 2.5 nM) receptors.  When evaluated for efficacy at the three 

opioid receptors using the [35S]GTPγS assay (Traynor et al., 1995), 1 displayed full 

agonism at μ and κ receptors, but only partial agonism at the δ receptor (Table 3.1).  In 

order to understand the molecular mechanism underlying the mixed-efficacy profile of 1, 

computational models of μ and δ receptors were utilized.  Peptide 1 was virtually docked 

in models of active and inactive conformations of the μ and δ receptors (Fowler et al., 

2004a; Fowler et al., 2004b; Pogozheva et al., 1998; Pogozheva et al., 1997; Figure 3.1) 

in a similar manner as μ- and δ-selective tetrapeptides, JOM-6 and JOM-13, respectively, 

which were previously positioned in the μ and δ receptor models based on their structure-

activity relationships and receptor mutagenesis data (Fowler et al., 2004a; Fowler et al., 

2004b; Mosberg et al., 2002; Pogozheva et al., 2005).  These receptor models have been 

designated as active and inactive receptor conformations of the μ and δ receptors based 

on the published crystal structure of the α2-adrenergic receptor (Rasmussen et al., 2007; 

as described in the Materials and Methods section).  Though the new adrenoreceptor-

based models of opioid receptors differ from our previously published rhodopsin-based 

models (Fowler et al., 2004a; Mosberg et al., 2002; Pogozheva et al., 1998; Pogozheva et 

al., 1997) by some helix shifts and an outward movement of extracellular loop (EXL) 2 

(r.m.s.d. in the range 2.3-2.6 Å for all Cα-atoms, excluding EXL2), the ligand binding 

mode and receptor-ligand interactions with residues from TMs 3, 5, 6 and 7 of either the 

δ or μ receptor remained essentially the same.  I found that the docking mode of peptide 
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ligands is more influenced by its interactions with helix residues than residues from 

EXL2, whose modeling is expected to be less accurate.     

Examination of the position of pentapeptide 1 inside the binding pocket of the 

active and inactive μ receptor model (Figure 3.1A, B) allowed development of a low-

energy conformation of 1 that did not have steric hindrances or other adverse interactions 

with residues in the receptor binding pocket in either receptor state.  Peptide 1 docked in 

the μ receptor model showed favorable aromatic interactions between its Phe3 side chain 

and the Trp318 side chain in transmembrane helix 7 (TM7), which were more pronounced 

in the active conformation of the  μ receptor.  These aromatic interactions may explain 

the preferential binding of 1 to μ, as compared to the δ or κ receptors, which have Leu300 

or Tyr312 at the corresponding position.  The same conformation of 1, when fitted into the 

active δ receptor model (Figure 3.1C), demonstrated steric overlap between Phe4 of the 

ligand and Trp284 from the TM6 of the δ receptor which was not observed in the inactive 

δ receptor model (Figure 3.1D).  Docking of peptide 1 to both active and inactive 

conformations of the μ receptor and better compatibility with the inactive conformation 

of the δ receptor is consistent with the μ agonist/δ partial agonist profile of 1.   

Based on the above, I hypothesized that incorporation of a bulkier 

naphthylalanine side chain in either the third or fourth position of pentapeptide 1 would 

affect its binding and efficacy properties differentially at μ and δ receptors and could 

result in potent μ agonist/δ antagonist ligands.  To test this hypothesis, I focused on 

replacement of Phe3 and Phe4 of 1 with the bulkier 3-(1-naphthyl)alanine or 3-(2-

naphthyl)alanine (Figure 3.2) to provide eight new cyclic pentapeptides (2-9; Tables 3.1, 

3.2).  Peptides were cyclized via a disulfide bond (SS) or methylene dithioether (SCH2S) 

linkage to allow for altered size and flexibility of the cycle.   

Analysis of synthesized pentapeptides 2-9 for binding affinity and efficacy at 

opioid receptors.  

Most naphthylalanine peptides demonstrated relatively high binding affinities to 

the μ, δ, and κ receptors as measured by competitive displacement of the radiolabeled 

non-selective opioid antagonist [3H]diprenorphine.  However, some loss in affinity to all 
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three opioid receptors was generally noted as compared to the highly potent pentapeptide 

1.  At the μ receptor, the most significant loss of affinity occurred with peptide 6 (p < 

0.001) while at the δ receptor four peptides had ≥ 10-fold decreased affinity (2, 3, 4 p < 

0.001, and 5 p < 0.05).  At the κ receptor, peptides 4 and 5 had > 10-fold decreased 

binding affinity when compared to 1 (p < 0.001; Table 3.1).  Of the eight peptides 

synthesized, only peptide 9 (Tyr-c(SCH2S)[DCys-Phe-2-Nal-Cys]NH2) showed similar 

low nanomolar binding affinity to the μ, δ, and κ receptors (Ki = 0.47 nM, 0.48 nM, and 

1.3 nM, respectively).   

Peptides 2-9 were also analyzed for efficacy at the μ, δ, and κ receptors as 

determined by maximal stimulation of [35S]GTPγS binding (Traynor et al., 1995) as a 

percentage of 10 μM opioid agonists DAMGO, SNC80, and U69,593 (Table 3.1).  

Peptides 3, 6, and 8 showed equivalent full agonism at the μ receptor as peptide 1 (~ 90% 

maximal stimulation), while peptides 2, 4, and 5 had decreased efficacy at the μ receptor 

(31-34% stimulation; p < 0.001).  In contrast, peptides 7 and 9 showed greater 

stimulation of [35S]GTPγS binding at the μ receptor than 1 (p < 0.05), displaying the 

same maximal stimulation.  It is noteworthy that all peptides displaying decreased 

efficacy at the μ receptor (2, 4, and 5) were substituted at position 3 with 

naphthylalanine.  In contrast, analogs with naphthylalanine substitution at position 4 (6-9) 

showed equal or greater efficacy at the μ receptor, indicating substitution at position 3 by 

residues with bulky side chains is deleterious for μ agonism.  One exception was peptide 

3, which has naphthylalanine substitution at position 3 and displayed high efficacy at the 

μ receptor.  Peptide 3 was cyclized via a methylene dithioether, possibly allowing greater 

flexibility of the peptide ring structure and leading to increased stimulation over the 

disulfide-cyclized counterpart 2.  At the δ receptor, peptides 2, 4, 8, and 9 behaved 

essentially as antagonists, providing very little or no [35S]GTPγS stimulation.  

Compounds 3, 5, 6, and 7 displayed partial agonism with maximal stimulation varying 

from 15-23%.  The eight peptides displayed varying efficacy profiles at the κ receptor, 

with most compounds behaving as partial to full agonists (maximal stimulation 35-

100%). 
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Docking of peptide 9 to modeled μ and δ receptor active and inactive 

conformations.   

The binding and efficacy studies described above identify peptide 9 as a candidate 

ligand displaying the desired μ agonist and δ antagonist profile.  In order to better 

understand the mechanism of the decreased efficacy of 9 at the δ receptor, docking 

studies of this peptide in the modeled active and inactive conformations of μ and δ 

receptors similar to the docking of peptide 1 (Figure 3.3) was performed.   

The lowest energy conformation of peptide 9 exhibited no hindrance in the 

binding pocket of either active or inactive conformations of the μ receptor (Figure 3.3A, 

B), nor in the inactive δ receptor conformation (Figure 3.3D).  However, when compared 

to peptide 1 (Figure 3.2C), 9 shows greater overlap between its 2-Nal4 and Trp284 in the 

active conformation of the δ receptor (Figure 3.3C).  This reduced compatibility of 9 

relative to 1 for the active state of the δ receptor supports the decreased agonism at δ.  

Modeling results also explain the high agonist efficacy of 9 at the μ receptor, because 9 

fits both receptor states well and may promote a conformational shift toward the active 

conformation of the μ receptor where favorable aromatic interactions between Phe3 and 

Trp318 of the μ receptor are more prominent.   

Characterization of the functional properties of peptide 9 at opioid receptors.  

 In the [35S]GTPγS binding assay, peptide 9 behaved as a full agonist at the μ 

receptor with EC50 of 1.2 ± 0.05 nM (Figure 3.4A).  On the other hand, at 10 μM 

concentration 9 produced only 7% of SNC80-induced stimulation of δ receptor-mediated 

[35S]GTPγS binding (Table 3.1).   

The properties of 9 were further evaluated by measuring its ability to inhibit 

SNC80-stimulated binding of [35S]GTPγS to G-proteins.  Peptide 9 produced a 3.1-fold 

rightward shift in the dose-response curve of SNC80 in C6-δ containing cells (Figure 

3.4B); the EC50 for SNC80 was shifted from 75 ± 3.8 nM to 188 ± 31 nM in the presence 

of 100 nM 9 (p = 0.02).  However, this shift and the calculated Ke value (48 ± 9.5 nM) 

for 9 was not consistent with its high binding affinity to the δ receptor (Ki = 2.1 nM), 

indicating 9 may have some partial agonist efficacy at the δ receptor which cannot be 
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fully observed using the high efficacy-requiring [35S]GTPγS binding assay.  To more 

fully assess the extent of this partial agonism, I measured the ability of 9 to inhibit cAMP 

accumulation as a measure of adenylyl cyclase activity (Clark et al., 2004).  Due to 

downstream signaling amplification, it is easier to visualize partial agonism using this 

system.  Peptide 9 was shown to be more potent (EC50: 36 ± 4.8 nM) than SNC80 (EC50: 

166 ± 43 nM; p = 0.01) and behaved as a partial agonist, able to produce 55% inhibition 

of that seen with SNC80 (Figure 3.4C).  The δ-selective antagonist naltrindole (NTI) was 

without effect in this assay.   

 

Discussion 

The current studies were aimed toward the development of a potent compound 

with mixed μ agonist/δ antagonist properties, a profile that would be valuable to probe 

interactions of μ and δ receptors and that has considerable clinical promise.  The eight 

newly synthesized cyclic pentapeptides represent modifications of our previously 

reported pentapeptide 1 (Tyr-c(SCH2S)[DCys-Phe-Phe-Cys]NH2; Przydzial et al., 

2005b), which was characterized by high affinity binding to all opioid receptors and a 

mixed efficacy profile.  Based on our computational modeling of active and inactive 

conformations of μ and δ receptors and docking of 1 to these models (Figure 3.1), I 

focused on receptor-ligand interactions surrounding Phe3 and Phe4 residues of 1.  I 

designed and synthesized several derivative peptides containing naphthylalanine 

substitution to more fully explore the steric limits of the receptor binding pocket at either 

of these positions.  All peptides were evaluated for their potential to interact at both μ 

and δ receptors via receptor binding and in vitro functional studies.  The newly 

synthesized peptides demonstrated μ agonism with variable efficacies and had greatly 

decreased δ efficacy in the [35S]GTPγS binding assay.  One compound, peptide 9 (Tyr-

c(SCH2S)[DCys-Phe-2-Nal-Cys]NH2), bound with similar subnanomolar affinity to μ 

and δ receptors stably expressed in rat glioma cells and was characterized as an agonist at 

the μ receptor and an antagonist or partial agonist at the δ receptor, depending on the 
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assay used.  This latter difference highlights the importance of the choice of assay in 

efficacy determination (Nieland et al., 2006). 

The development of pentapeptide 9 represents a significant step forward in the 

development of a mixed-efficacy μ agonist/δ antagonist ligand.  Previously reported 

mixed-efficacy ligands did not show the same equipotent affinity for both μ and δ 

receptors (Ananthan et al., 1998; Ananthan et al., 1999; Ananthan et al., 2004; Balboni et 

al., 2002a; Balboni et al., 2002b; Cheng et al., 2007; Hiebel et al., 2007; Salvadori et al., 

1999a; Yamamoto et al., 2008) or the same full μ agonist properties (Ananthan et al., 

1999; Ananthan et al., 2004; Schiller et al., 1999). These results also represent a 

validation of our receptor models and a novel demonstration of the use of differences in 

modeled active and inactive states to design ligands with prescribed properties.  In this 

example, steric differences in the binding site of the active and inactive δ receptor models 

were exploited by incorporating bulkier naphthylalanine in place of phenylalanine in 

residues 3 and 4 of lead peptide 1 to generate ligands with the desired μ agonist/δ 

antagonist profile.   

Although peptide 9 displays the desired μ agonist/δ antagonist mixed-efficacy 

profile, it also acts as a full agonist at the κ receptor in the [35S]GTPγS binding assay with 

EC50 of 12 ± 0.1 nM although it is 10-fold selective in potency for μ receptors over  κ 

(Figure 3.4A).  This residual κ receptor activity is not surprising, as compound 1 was 

initially developed in a series aiming to improve κ receptor binding and efficacy 

(Przydzial et al., 2005b).  Using computational models of the κ receptor developed as 

described above for putative active and inactive conformation models of the μ and δ 

receptors, future studies will focus on development of analogs that are intended to exhibit 

reduced κ receptor affinity while retaining the desired μ agonist/δ antagonist profile.  

Such compounds will allow the characterization of μ and δ receptor interactions without 

the potential complication of concomitant κ receptor activation or antagonism.   
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Materials and Methods 

Fmoc-protected amino acids were obtained from Advanced ChemTech 

(Louisville, KY) or Sigma-Aldrich (St. Louis, MO). Other reagents for peptide synthesis 

and characterization were from Sigma-Aldrich (St. Louis, MO) unless otherwise 

indicated.  Fetal bovine serum, cell culture media and additives were purchased from 

Gibco Life Sciences (Grand Island, NY).  [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin 

(DAMGO) and other biochemicals were obtained from Sigma-Aldrich and were of 

analytical grade. 4-[(R)-[(2S,5R)-4-allyl-2,5-dimethylpiperazin-1-yl](3-

methoxyphenyl)methyl]-N,N-diethylbenzamide (SNC80) was obtained from the Narcotic 

Drug and Opioid Peptide Basic Research Center at the University of Michigan (Ann 

Arbor, MI). [35S]-guanosine-5'-O-(3-thio)triphosphate ([35S] - GTPγS; 1250Ci 

(46.2TBq)/mmol) and [3H]-diprenorphine were from from Perkin Elmer (Boston, MA).   

Structural modeling: Homology modeling of the inactive conformation of human 

δ (residues 45-338, UniProt accession code P41143) and mouse μ receptors (residues 64-

354, UniProt accession code P42866) was performed as previously described (Fowler et 

al., 2004a; Fowler et al., 2004b; Przydzial et al., 2005a) using the more recent structure 

of the β2-adrenergic receptor fused with T4 lysozyme (2rh1 PDB code; Rasmussen et al., 

2007). Distance geometry calculations with DIANA (Guntert et al., 1991) were used to 

provide helix shift and loop modeling. To model the active receptor conformation, 

several structural constraints between TM 3, 5, and 6 were included that have been shown 

to be compatible with active states of different GPCRs. (Fowler et al., 2004b). 

Introduction of these constraints allowed reproduction of the significant movement of 

TM6 that has been suggested based on numerous experimental studies of different 

GPCRs, as well as on the comparison of the rhodopsin (1f88; Palczewski et al., 2000a) 

and opsin (3dqb; Scheerer et al., 2008) crystal structures.  

3D structures of cyclic pentapeptides were generated by QUANTA (Accelrys 

Inc.) using residue substitution of previously modeled pentapeptides (Przydzial et al., 

2005b), followed by molecular mechanics computations using the CHARMm force field.  

Several conformations of disulfide or methylene dithioether bridges and different 
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rotamers of residues in the third and fourth positions of pentapeptides were tested during 

ligand docking. Several low energy conformations (within 2 kcal/mol) were manually 

positioned inside the receptor binding cavity similarly to tetrapeptides JOM-6 and JOM-

13, whose docking in δ and μ receptors has been previously justified using 

conformational and mutagenesis analysis (Fowler et al., 2004a; Fowler et al., 2004b; 

Mosberg et al., 2002; Pogozheva et al., 2005). During ligand docking, low energy 

conformations were chosen that satisfied the following criteria: (1) provided interactions 

between Tyr1 and Phe3 and functionally important receptor residues (Asp147 from TM3, 

His297 from TM6 and Trp318 from TM7 of the μ receptor (Fowler et al., 2004b) or 

corresponding Asp128, His278, and Leu300 in the δ receptor; (2) had minimal steric overlap; 

and (3) formed more hydrogen-bonds between receptor and ligand polar groups. The 

docking pose of each ligand was subsequently refined using the Solid Docking module of 

QUANTA.  The opioid receptor models are available upon request.  

Solid Phase Peptide Synthesis: All peptides were synthesized by solid phase 

methods (Stewart, 1984) on an ABI Model 431A solid phase peptide synthesizer 

(Applied Biosystems, Foster City, CA) as previously published (Przydzial et al., 2005b). 

Rink resin (Advanced ChemTech) was used as the solid support for C-terminal 

carboxamide peptides. Peptide elongation on the peptide-resin involved treating resin 

with piperidine (Sigma-Aldrich) to cleave the Fmoc-protecting group, 

diisopropylethylamine (DIEA) activation, followed by coupling of the next amino acid 

with o-benzotriazol-1-yl-N,N,N',N'-tetramethyl uronium hexafluorophosphate (HBTU) 

and 1-hydroxybenzotriazole (HOBt; Applied Biosystems). These steps were repeated 

until the entire peptide was assembled. A solution of trifluoroacetic acid/H2O/tri-

isopropylsilane (9:0.5:0.5, v/v/v) was used to cleave the linear peptide from the resin and 

simultaneously remove the side chain-protecting groups. The peptide solution was 

filtered from the resin and subjected to semi-preparative reverse phase high-performance 

liquid chromatography (RP-HPLC) to afford the linear disulfhydryl-containing peptide 

(Table 3.2). Final product was obtained by high resolution mass spectroscopy (HRMS; 

Protein Structure Facility, University of Michigan, Ann Arbor MI). 
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General method for disulfide cyclization of peptides: To obtain disulfide-cyclized 

peptides, linear disulfhydryl-containing peptide was dissolved in a 1% (v/v) acetic acid 

(AcOH) in H2O solution (saturated with N2) at 5°C (1mg linear peptide/mL of aqueous 

AcOH solution). The pH of the peptide solution was raised to 8.5 using NH4OH, 

followed by the addition of 4 equiv of K3Fe(CN)6. The reaction mixture was stirred for 2 

min and quenched by adjusting the pH to 3.5 with AcOH. The mixture was then 

subjected to semi-preparative RP-HPLC to afford the disulfide-cyclized peptide. 

General method for methylene dithioether cyclization of peptides: To form 

methylene dithioether-containing cyclic peptides, linear disulfhydryl peptide was added 

to dimethylformamide (DMF) and maintained at 5°C under a N2 atmosphere (0.1mg 

linear peptide/mL DMF). Approximately 10 equiv of potassium t-butoxide was added to 

the peptide solution, followed by the addition of 10 equiv of dibromomethane. The 

reaction was quenched with 5 mL AcOH after 2 h and the solvent removed in vacuo. The 

residue was dissolved in water, filtered, and subjected to semi-preparative RP-HPLC to 

obtain the methylene dithioether cyclized peptide. 

Characterization of Peptides:Final product peptides were >97% pure as assessed 

by analytical RP-HPLC on a Vydac 218TP C-18 column (The Nest Group, Southboro, 

MA) using two solvent systems; (A): 0.1% trifluoroacetic acid (TFA) in water 

(w/v)/0.1% TFA in acetonitrile with a gradient of 0–70% organic component in 70 min 

and (B): 0.1% TFA in water/0.1% TFA in methanol with a gradient of 20-70% organic 

component in 50 min, monitored at 230 nm.  Peptides displayed the appropriate 

molecular weights as determined by HRMS (Table 3.2). 

Cell Lines and Membrane Preparations: C6-rat glioma cells stably transfected 

with a rat μ (C6-μ) or rat δ (C6-δ) opioid receptor (Lee et al., 1999) and Chinese hamster 

ovary (CHO) cells stably expressing a human κ (CHO-κ) opioid receptor (Husbands et 

al., 2005) were used. Cells were grown to confluence at 37°C in 5% CO2 in either 

Dulbecco's Modified Eagle's Medium (DMEM; C6 cells), or DMEM-F12 Medium (CHO-

κ) containing 10% fetal bovine serum. To prepare membranes for biochemical assays 

(Clark et al., 2003), confluent cells were washed twice with ice-cold phosphate-buffered 

saline (0.9% NaCl; 0.61mM Na2HPO4; and 0.38mM KH2PO4, pH 7.4), detached from the 
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plates by incubation in harvesting buffer (20mM HEPES, pH 7.4; 150mM NaCl; and 

0.68mM EDTA) at room temperature, and pelleted by centrifugation at 200xg for 3 min. 

The cell pellet was suspended in ice-cold 50mM Tris-HCl buffer, pH 7.4 and 

homogenized with a Tissue Tearor (Biospec Products, Inc., Bartlesville, OK) for 20 s at 

setting 4. The homogenate was centrifuged at 20,000xg for 20 min at 4°C and the pellet 

re-homogenized in 50mM Tris-HCl with a Tissue Tearor for 10 s at setting 2, followed by 

re-centrifugation. The final pellet was re-suspended in 50mM Tris-HCl, to 0.5-1.0 mg/ml 

protein and frozen in aliquots at -80°C.  Protein concentration was determined using the 

BCA protein assay(Smith et al., 1985) (Thermo Fisher Scientific, Rockford, IL) using 

bovine serum albumin as the standard.  

Radioligand Binding Assays: Opioid ligand-binding assays were based on the 

competitive displacement of [3H]diprenorphine by the test compound from membrane 

preparations containing opioid receptors as described above. (Przydzial et al., 2005b) The 

assay mixture, containing membrane suspension (10-20 μg protein/tube) in 50 mM Tris-

HCl buffer (pH 7.4), [3H]diprenorphine (0.2 nM), and increasing concentrations of test 

peptide, was incubated at 25°C for 1 h to allow binding to reach equilibrium. 

Subsequently, the samples were filtered rapidly through GF/C filters (Whatman, 

Middlesex, UK) using a Brandel harvester and washed three times with ice-cold 50 mM 

Tris-HCl buffer.  The radioactivity retained on dried filters was determined by liquid 

scintillation counting after saturation with EcoLume liquid scintillation cocktail (MP 

Biomedicals, Solon, OH) in a Wallac 1450 MicroBeta (PerkinElmer, Waltham, MA). 

Non-specific binding was determined using 10 μM naloxone.  Ki values were determined 

from nonlinear regression analysis to fit a logistic equation to the competition data using 

GraphPad Prism 5.01 software (GraphPad Software, La Jolla, CA). The results presented 

are the mean from at least three separate assays, each performed in duplicate where the 

SEM (standard error of the mean) was less than 10% of the mean value.  

[35S]GTPγS Binding Assay: Agonist stimulation of [35S]GTPγS binding was 

measured as described previously (Traynor et al., 1995).  Membranes (20–30 µg of 

protein/tube) were incubated in GTPγS binding buffer (50 mM Tris-HCl, pH 7.4; 100 

mM NaCl; and 5 mM MgCl2) containing 0.1 nM [35S]GTPγS, 100 µM GDP, and varying 
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concentrations (0.1–10,000 nM) or a maximum dose (10 μM) of opioid peptides, 

compared with standards DAMGO, SNC80, or U69,593 (10 μM) in a volume of 500 µl 

for 1 h at 25°C. The reaction was terminated by rapidly filtering through GF/C filters and 

washing four times with 2 ml ice-cold GTPγS binding buffer.  Retained radioactivity was 

measured as described in radioligand binding assay methods. Experiments were 

performed at least three times in duplicate.  EC50 values were determined by nonlinear 

regression analysis using GraphPad Prism 5.01 software as described above.  To 

determine antagonism of 9, [35S]GTPγS binding was determined for SNC80 in the 

presence or absence of 100 nM 9.  The IC50 value in the presence of 100 nM 9 was 

divided by the IC50 value for SNC80 alone, and this ratio (DR) was employed to calculate 

the Ke value using the equation Ke = [antagonist]/(DR-1).  

Whole cell acute inhibition of adenylyl cyclase: Inhibition of adenylyl cyclase by 

opioid standards or test peptides was measured in C6-δ cells grown to confluence in 24-

well plates (Clark et al., 2004). Cells were washed in serum-free DMEM at least 30 min 

prior to the start of the assay and incubated with vehicle or various concentrations (0.1 – 

1000 nM) of SNC80, naltrindole, or peptide 9 in serum-free media containing 5 μM 

forskolin (FSK) and 1 mM 3-isobutyl-1-methylxanthine for 10 min at 37°C.  The assay 

was quenched by replacing media with 1 ml ice-cold 3% perchloric acid and 30 min 

incubation at 4°C.  A 400 μl aliquot of sample was neutralized with 2.5M KHCO3 and 

centrifuged 1 min at 11,000xg.  Cyclic AMP (cAMP) was measured from the supernatant 

using a radioimmunoassay kit from GE Healthcare (Piscataway, NJ), according to the 

manufacturer’s instructions. Inhibition of cAMP accumulation by 9 or standard opioid 

ligands was calculated as a percent of FSK-stimulated cAMP accumulation in vehicle-

treated cells.  EC50 values were calculated for each compound using GraphPad Prism 

5.01 software.  Experiments were performed in duplicate and repeated a minimum of 

three times. 

Statistical Analysis.  Data were analyzed using Student’s two-tailed t test or a one-

way analysis of variance followed by Bonferroni’s post-hoc test using GraphPad Prism 

version 5.01 for Windows (GraphPad Software, San Diego, CA www.graphpad.com).  p 

values less than 0.05 were considered to be significant. 
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Table 3.1. Binding affinities and efficacies of cyclic opioid pentapeptides 1-9 at μ, δ, and κ receptors.   
Peptide Sequence Linker Ki (nM) ± SEM Efficacy (%) ± SEM

   μ δ κ μ δ κ 

1 Tyr-c[DCys-Phe-Phe-Cys]NH2 SCH2S 0.016 ± 0.01 1.8 ± 0.8 2.5 ± 1.5 88 ± 1.1 45 ± 2.3 93 ± 3.4 

2 Tyr-c[DCys-1-Nala-Phe-Cys]NH2 SS 0.08 ± 0.04 34 ± 4.5 21 ± 1.7 33 ± 1.6 0 59 ± 3.1 

3 Tyr-c[DCys-1-Nal-Phe-Cys]NH2 SCH2S 0.33 ± 0.04 34 ± 0.7 5.8 ± 2.9 91 ± 4.5 23 ± 3.4 77 ± 6.3 

4 Tyr-c[DCys-2-Nal-Phe-Cys]NH2 SS 0.72 ± 0.05 55 ± 0.3 145 ± 11 34 ± 1.5 0.7 ± 1.0 7.5 ± 2.1 

5 Tyr-c[DCys-2-Nal-Phe-Cys]NH2 SCH2S 0.47 ± 0.2 15 ± 1.7 69 ± 0.6 34 ± 3.8 23 ± 1.6 35 ± 4.0 

6 Tyr-c[DCys-Phe-1-Nal-Cys]NH2 SS 2.5 ± 0.9 7.1 ± 2.3 11 ± 1.8 88 ± 3.6 15 ± 1.5 100 ± 7.4 

7 Tyr-c[DCys-Phe-1-Nal-Cys]NH2 SCH2S 0.61 ± 0.08 5.2 ± 0.4 6.0 ± 1.5 100 ± 3.8 22 ± 2.3 87 ± 2.4 

8 Tyr-c[DCys-Phe-2-Nal-Cys]NH2 SS 1.2 ± 0.3 11 ± 6.4 5.9 ± 0.8 90 ± 1.4 2.0 ± 1.0 49 ± 3.6 

9 Tyr-c[DCys-Phe-2-Nal-Cys]NH2 SCH2S 0.47 ± 0.2 0.48 ± 0.2 1.3 ± 0.4 99 ± 1.8 7.0 ± 2.3 89 ± 3.6 
a3-(1-naphthyl)alanine and 3-(2-naphthyl)alanine substitution abbreviated as 1-Nal and 2-Nal, respectively.  Cyclization abbreviated 
as SS for disulfide linkage and SCH2S for methylene dithioether linkage.  Experiments were performed in C6-μ, C6-δ, or CHO-κ cells 
as described in Methods.  Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]diprenorphine. 
Efficacy of pentapeptides at the three opioid receptors was determined using the [35S]GTPγS binding assay.  Efficacy is presented as 
percent of the maximal level of [35S]GTPγS binding obtained with standard agonists for μ, δ, and κ receptors (DAMGO, SNC80, or 
U69,593, respectively) at a 10 μM concentration.  
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Table 3.2. Analytical data of peptides 2-9. 
Peptide MW 

HPLC (min; Rt)b 

Calculated Observed System A System B 

2 728.2  35.23 31.97 

3 742.3  35.13 31.60 

4 728.2  35.71 32.14 

5 742.3  35.81 32.18 

6 728.2  35.88 33.22 

7 742.3  35.79 32.71 

8 728.2  35.85 32.84 

9 742.3  35.92 33.09 
a  Molecular weights verified by high resolution mass spectrometry (HRMS).  
b Retention time assessed by analytical high-performance liquid chromatography 

(HPLC) using two solvent systems; (A): 0.1% trifluoroacetic acid (TFA) in water 
(w/v)/0.1% TFA in acetonitrile with a gradient of 0–70% organic component in 70 min 
and (B): 0.1% TFA in water/0.1% TFA in methanol with a gradient of 20-70% organic 
component in 50 min, monitored at 230 nm, samples in H2O with 0.1% TFA (elution 
column heated at 35º C). All peptides had > 97% purity determined by HPLC.  
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Figure 3.1:  Modeling of peptide 1 in the binding pocket of putative active and 
inactive conformations of mouse μ and human δ opioid receptors. Peptide 1 docked 
in the putative active (A) and inactive (B) conformation of the μ receptor shows no 
noticeable unfavorable interactions between ligand side chains and residues from the 
receptor binding pocket. Peptide 1 docked in the active conformation of the δ receptor 
(C) shows a steric overlap of the peptide Phe4 side chain with the side chain of receptor 
Trp284 from transmembrane domain (TM) 6, while peptide 1 in the inactive conformation 
of the δ receptor (D) does not show a similar steric hindrance. 



 

54 

 

 

Figure 3.2:  Naphthylalanine-containing analogues of peptide 1.
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Figure 3.3:  Pentapeptide 9 docked in the binding pocket of putative active and 
inactive conformations of mouse μ and human δ opioid receptors. The 2-
naphthylalanine4 side chain of peptide 9 shows minimal hindrance with receptor residue 
Lys303 in the (A) μ receptor active conformation but an increased steric overlap with 
Trp284 side chain in the (C) δ receptor active conformation. These hindrances are absent 
in the inactive conformations of both (B) μ and (D) δ receptor models.
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Figure 3.4: Pharmacological analysis of peptide 9. (A) Activity of peptide 9 in the 
[35S]GTPγS binding assay at μ, δ, and κ receptors. Results are plotted as percent 
stimulation compared to a 10 μM concentration of opioid compounds (μagonist 
DAMGO, δ agonist SNC80, and κ agonist U69,593). Peptide 9 has 10-fold higher 
potency at μ receptors (EC50: 1.2 ± 0.05 nM) than κ receptors (EC50: 12 ± 0.1 nM) and 10 
μM 9 produces only 6.9 ± 2.3% of SNC80-induced stimulation at the δ receptor. (B) δ 
Receptor antagonism of peptide 9 in the [35S]GTPγS binding assay. Peptide 9 (100 nM) 
produces a 3.1-fold rightward shift in the SNC80 dose−response curve, indicating δ 
receptor antagonism. Calculated Ke = 48 ± 9.5 nM. Results are plotted as percentage of 
the maximum level of SNC80-stimulated [35S]GTPγS binding. (C) Partial agonism of 
peptide 9 at the δ receptor as illustrated by inhibition of adenylyl cyclase. Results are 
shown as percent inhibition of 5 μM forskolin-stimulated adenylyl cyclase production in 
C6-δ cells. SNC80 (1 μM) gave 67 ± 4.4% inhibition of adenylyl cyclase production with 
a calculated maximal effect of 76 ± 8.8%, while 1 μM peptide 9 produced 37 ± 4.2% 
inhibition with a calculated maximum of 43 ± 9.0% inhibition. Peptide 9 is more potent 
(EC50 = 36 ± 4.8 nM) than SNC80 (EC50 = 166 ± 43 nM) in this assay. The δ antagonist 
naltrindole (NTI) did not inhibit cAMP accumulation. 

 



 

57 

 

Chapter IV 

Development and in vitro characterization of a novel bifunctional mu agonist/delta 
antagonist opioid tetrapeptide  

 
Summary 

The development of tolerance to and dependence on opioid analgesics greatly 

reduces their long-term usefulness. Previous studies have demonstrated that co-

administration of a mu (μ) opioid receptor agonist and delta (δ) opioid receptor 

antagonist can decrease μ agonist-induced tolerance and dependence development after 

chronic exposure. Clinically, a single ligand displaying multiple efficacies (e.g. μ 

agonism concurrently with δ antagonism) would be of increased value over two drugs 

administered simultaneously. Guided by modeling of receptor-ligand complexes a series 

of potent non-selective opioid tetrapeptides that have differing efficacy at μ and δ 

receptors were developed.  In particular, our lead peptide (KSK-103) binds with equal 

affinity to μ and δ receptors, acting as a μ agonist with similar efficacy but greater 

potency than morphine and a δ antagonist in cellular assays measuring both G protein 

stimulation and adenylyl cyclase inhibition.  

 

Introduction 

Opioid drugs such as morphine are the primary treatment for post-operative and 

chronic pain conditions through their actions at the mu (μ) opioid receptor. However, 

development of tolerance to and dependence on these drugs limits their usefulness. Thus, 

a novel ligand with analgesic properties but lacking tolerance and dependence liability 

would be of great value in clinical settings. Several published reports have documented 

that blockade of the delta (δ) opioid receptor, through either antagonism or knockdown of 

the receptor, leads to decreased development of tolerance or dependence in rodents 
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chronically treated with the μ agonist morphine (Hepburn et al., 1997; Kest et al., 1996; 

Nitsche et al., 2002; Zhu et al., 1999). Evidence for interactions between μ and δ 

receptors leading to altered signaling profiles has also been discussed in reference to 

locomotor sensitization (Chefer et al., 2009; Shippenberg et al., 2009) while other 

research has shown μ and δ cell-surface receptor expression levels to be linked (Cahill et 

al., 2001b; Morinville et al., 2003).  The studies described above have highlighted roles 

for both μ and δ receptors in the development of morphine-provoked analgesic tolerance 

and/or dependence.  

For pain relief, an optimal therapeutic would be a single drug containing two 

opioid receptor actions: μ agonism to promote analgesia along with δ antagonism to 

prevent μ agonist-induced tolerance and dependence development during chronic 

administration. Co-administration of two drugs acting separately at each individual 

receptor could be hampered by increased ‘off-target’ effects, differences in 

pharmacokinetic profiles, and user compliance (Morphy et al., 2005; Morphy et al., 

2009). I focused therefore on the development and characterization of peptide ligands 

that simultaneously display μ agonism and δ antagonism while binding with equivalent 

affinity to each receptor.   

The development of such bifunctional or mixed-efficacy ligands has become a 

topic of increasing interest in several therapeutic areas (Morphy et al., 2009; Schiller, 

2010). For example, bifunctional ligands have been proposed with δ-kappa (κ) opioid 

receptor efficacy (Daniels et al., 2005) or μ-cholecystokinin receptor activities 

(Harikumar et al., 2010), targeting tolerance liability (Lee et al., 2006) or toward novel 

ligands for treatment of cocaine abuse (Maisonneuve et al., 1994; Neumeyer et al., 2003; 

Peng et al., 2006). Similarly, early studies indicating that blockade of the δ receptor 

reduces the development of tolerance to μ agonists have stimulated several investigations 

into mixed μ agonist/δ antagonist compounds (Balboni et al., 2002a; Purington et al., 

2009; Schiller et al., 1999).   

Small peptides and, in particular, receptor-specific ligands provide a means to 

determine structural or conformational requirements of binding to a particular membrane-
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bound receptor. The Mosberg lab has previously used molecular modeling and 

conformationally restricted cyclic peptide ligands as tools to analyze determinants of 

ligand binding to μ, δ, and κ receptors. Through this methodology, the Mosberg lab 

developed peptides that bind selectively to different opioid receptors (McFadyen et al., 

2000b; Mosberg et al., 1983; Mosberg et al., 1988) and have expanded these concepts to 

develop peptides that bind non-selectively but with differing efficacy profiles.  Recent 

work (Purington et al., 2009) described the development of a non-selective opioid cyclic 

pentapeptide that displayed μ agonism, δ partial agonism, and κ agonism. The 

pentapeptides characterized in that study were designed to have decreased δ receptor 

efficacy compared with the parent ligand due to steric interactions inferred from ligand 

docking to a model of the active state of the δ receptor.  Indeed, replacement of Phe 

residues in position 3 or 4 of the pentapeptide with bulkier 1-naphthylalanine (1-Nal) or 

2-naphthylalanine (2-Nal) residues produced analogues with decreased δ efficacy, in 

agreement with modeling studies.  

Current studies have extended this approach by re-examining previously 

synthesized, non-selective opioid peptides. As our earlier studies were aimed at 

development of selective opioid ligands for μ, δ, or κ receptors, resulting non-selective 

cyclic peptides were not evaluated beyond binding affinity. Re-evaluation of these 

previously synthesized ligands has led to the identification of potential leads with μ 

agonist/δ antagonist properties. Among these ligands were several analogs of the μ-

selective tetrapeptide JOM-6 (Tyr-c(SCH2CH2S)[DCys-Phe-DPen]NH2; McFadyen et al., 

2000a) and the δ-selective tetrapeptide JOM-13 (Tyr-c(SS)[DCys-Phe-DPen]OH;  

Mosberg et al., 1994) where DPen is D-penicillamine (β, β−dimethyl-D-cysteine). 

Peptides were cyclized through the side chain sulfurs of DCys and DPen via an ethylene 

dithioether or a disulfide, respectively (denoted as c(SCH2CH2S) and c(SS), 

respectively).  Modifications to these scaffolds included replacement of Phe3 with a 

bulkier or more constrained aromatic residue that might be expected to bind differently to 

the active and inactive states of opioid receptors.  Evaluation and further modification of 

the most promising candidates led to the two new analogs reported here, KSK-102 (Dmt-

c(SCH2CH2S)[DCys-Aci-DPen]NH2) and KSK-103 (Dmt-c(SCH2CH2S)[DCys-Aci-
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DPen]OH), where Dmt is 2’, 6’-dimethyltyrosine and Aci is 2’-aminoindane-2’-

carboxylic acid (Figure 4.1). Of these peptides, KSK-103 displayed the desired 

bifunctional profile and behaved in vitro as a μ agonist with greater potency than the 

clinical standard morphine. KSK-103 was also found to be a δ antagonist at the level of 

receptor-G protein stimulation and at inhibition of the downstream effector enzyme 

adenylyl cyclase. By comparison, DIPP(Ψ)NH2
 (Dmt- Tic(Ψ)[CH2NH2]Phe-PheNH2  

(where Tic is tetrahydroisoquinoline-3-carboxylic acid; Schiller et al., 1999) and UFP-

505 (Dmt-Tic-GlyNH-benzyl;  Balboni et al., 2002a; Balboni et al., 2010b), two 

previously described μ agonist/δ antagonist bifunctional peptides with reported decreased 

propensity to produce tolerance relative to morphine, displayed partial δ agonism in the 

adenylyl cyclase assay and had less desirable receptor binding properties.  

 

Results  

For development of the bifunctional peptides described here, I examined 

alterations to the tetrapeptide JOM-6 scaffold (McFadyen et al., 2000b; Mosberg et al., 

1988) that included replacement of Tyr1 with 2’, 6’dimethyltyrosine (Dmt) and Phe3 with 

the conformationally constrained 2-aminoindane-2-carboxylic acid (Aci). Additionally, 

C-terminal carboxamide (KSK-102) and carboxylic acid (KSK-103) containing analogs 

were compared. The computational docking of these peptides to the ligand binding 

pockets of models of active and inactive states of the μ and δ receptors, illustrated for 

KSK-103 in Figure 4.2, reveals a favorable interaction of Aci3-containing peptides with 

the active and inactive states of the μ receptor (Figure 4.2A and 4.2B) and the inactive 

state of the δ receptor (Figure 4.2D), but a less favorable interaction with the δ receptor in 

the active state (Figure 4.2C).  In particular, the conformationally constrained Aci3 

displays steric overlap with the bulky side chain of Met199 from extracellular loop 2 

(EL2) of the active state δ receptor model.  The corresponding residue in the μ receptor 

(Thr218) has a smaller side chain, allowing favorable docking of Aci to the active μ 

receptor state.   
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Opioid Receptor Binding  

The binding affinity of each peptide was determined at the μ, δ, and κ receptors 

from membrane preparations of C6 rat glioma cells (μ or δ) or CHO cells (κ) (Table 4.1).  

As reported previously, JOM-6 displays 100-fold μ receptor selectivity in binding (Ki = 

0.29 ± 0.04 nM affinity at the μ receptor and 25 ± 1.5 nM at the δ receptor; Table 4.1). 

Replacement of  Tyr1 with Dmt1 and Phe3 with Aci3 while maintaining the same ring size 

with ethylene dithioether cyclization produced KSK-102.  These alterations did not 

change the binding affinity at the μ receptor (0.6 ± 0.1 nM), but significantly increased 

affinity at the δ receptor (0.9 ± 0.2 nM) and at the κ receptor (9.8 ± 3.6 nM). 

Replacement of Tyr1 with Dmt often results in decreased selectivity of the ligand by 

increasing the affinity at the less favored receptor (Balboni et al., 2010a; Salvadori et al., 

1999b).  Modification of the carboxamide by the carboxylic acid in KSK-103 also 

resulted in a slight decrease in binding affinity to both μ and δ receptors (2.4 ± 0.7 nM at 

the μ receptor and 2.3 ± 0.5 nM at the δ receptor) when compared to KSK-102.  

DIPP(Ψ)NH2 and UFP-505 were also analyzed for opioid receptor binding (Table 

4.1). DIPP(Ψ)NH2 binds equally well at μ and δ receptors with affinity values of 0.4 ± 

0.1 nM at the μ receptor and 0.4 ± 0.04 nM at the δ receptor and has 10-fold selectivity 

for these receptors over the κ receptor (3.9 ± 0.2 nM). UFP-505, on the other hand, is 

δ receptor-selective, with a binding affinity of 0.2 ± 0.06 nM. UFP-505 binding affinity at 

the μ receptor is approximately 100-fold lower (26 ± 8 nM) and κ receptor affinity is 

reduced still further (128 ± 42 nM).  

Stimulation of G protein.  

The ability of the peptides to activate G protein at each receptor was assessed 

using the [35S]GTPγS binding stimulation assay (Table 4.2). The [35S]GTPγS binding  

results are reported as both maximal stimulation, employed as a read-out of efficacy as a 

percentage of the [35S]GTPγS incorporation afforded by known opioid receptor agonist 

([D-Ala2-N-Me-Phe4-Gly5-ol]-enkephalin (DAMGO) at μ receptors, D-Pen2,5-enkephalin 

(DPDPE) at δ receptors, and U69,593 at κ receptors) and potency as EC50 values.  
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KSK-102 and KSK-103 behaved as partial agonists at the μ receptor, giving 

maximal stimulation of 58 ± 8% and 59 ± 11%,  respectively, compared to 10 μM 

DAMGO (Table 4.2, Figure 4.3A).  By comparison, the clinically used analgesic 

morphine produced 57 ± 5% of DAMGO-induced stimulation and the endogenous μ 

receptor-selective peptide endomorphin-2 gave 49 ± 7% stimulation.  Both KSK-102 and 

KSK-103 were far more potent at G protein stimulation than morphine (480- and 47-fold, 

respectively) or endomorphin-2 (310- and 31-fold, respectively). DIPP(Ψ)NH2 displayed 

very low efficacy partial agonism at the μ receptor in this assay, giving a relative 

stimulations of 18 ± 1% compared with DAMGO (Table 4.2).  UFP-505 displayed no 

significant efficacy at the μ receptor (maximal stimulation < 10%).  

At the δ receptor, KSK-102 had the highest efficacy of all ligands tested, yielding 

37 ± 4% stimulation compared to the δ peptide agonist DPDPE (Mosberg et al., 1983), 

with an EC50 value of 1.4 ± 0.4 nM.   In contrast, KSK-103 produced no significant 

stimulation of [35S]GTPγS binding at the δ receptor (Table 4.2).  In confirmation of this 

result, KSK-103 acted as an antagonist in this assay and produced a 26-fold rightward 

shift in the concentration-response curve for DPDPE (Figure 4.3B). The EC50 for DPDPE 

was shifted from 246 ± 45 nM to 6300 ± 1000 nM upon the addition of 100 nM KSK-

103. The antagonist affinity constant (Ke) (Kosterlitz et al., 1968) for KSK-103 

calculated from this shift was 4.4 ± 1.4 nM in agreement with the binding affinity of 

KSK-103 for the δ receptor and suggesting neutral antagonism for this peptide.   

Neither UFP-505 nor DIPP(Ψ)NH2 caused detectable stimulation of [35S]GTPγS 

binding at the δ receptor. At the κ receptor, none of the peptides produced significant 

stimulation of [35S]GTPγS binding up to a concentration of 10 μM (Table 4.2).  

Inhibition of Forskolin-Stimulated Adenylyl Cyclase.  

The [35S]GTPγS binding assay requires a compound to activate G protein under 

stringent conditions. As such, it is possible to misclassify a compound with downstream 

partial agonist activity as a pure antagonist in this assay (Purington et al., 2009). 

Therefore, I examined the inhibition of adenylyl cyclase (measured as a decrease in 

forskolin-stimulated cAMP levels) by DPDPE in the presence or absence of KSK-103.  
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KSK-103 maintained the same δ antagonist profile at the downstream cellular effector 

adenylyl cyclase (Figure 4.4A). KSK-103 was  unable to significantly reduce forskolin-

stimulated cAMP accumulation even at a 10 μM concentration (91 ± 6% forskolin 

stimulation, or 9% inhibition) and at 100 nM KSK-103 produced a 9.5-fold rightward 

shift in the DPDPE concentration-response curve (EC50 DPDPE alone: 29 ± 7 nM; EC50 

DPDPE + 100 nM KSK-103: 276 ± 69 nM), giving a calculated Ke value in the nM range 

(12 ± 3.3 nM), similar to results in the [35S]GTPγS assay.   

DIPP(Ψ)NH2  and UFP-505 were also characterized further in the adenylyl 

cyclase inhibition assay. Both pseudopeptides were observed to have significant partial 

agonism at the δ receptor.  DIPP(Ψ)NH2 decreased forskolin stimulation of cAMP levels 

by 30 ± 4% with a potency ( IC50)  of 2.2 ± 0.9 nM, while UFP-505 decreased cAMP 

levels  by  28 ± 2% with an IC50 value of 0.7 ± 0.2 nM. (Figure 4.4B).  

 As both DIPP(Ψ)NH2  and UFP-505 displayed very low μ partial agonist activity 

in the [35S]GTPγS binding assay, they were further examined for the ability to inhibit 

adenylyl cyclase through activation of the μ receptor. Both DIPP(Ψ)NH2 (48 ± 4% 

maximal inhibition, with an IC50 value of 5.1 ± 3.8 nM) and UFP-505 (35 ± 10%  

maximal inhibition with an IC50 value of 45 ± 13 nM) showed significant μ partial 

agonism in this assay (data not shown), underscoring the need to evaluate downstream 

signaling when stimulation of [35S]GTPγS binding yields equivocal results.  

 

Discussion 

Development of bifunctional opioid peptides having distinct efficacy profiles at 

multiple receptors poses a challenge involving both understanding of receptor-ligand 

interactions and requirements for receptor-G protein activation.  The desired profile for a 

μ-δ bifunctional ligand in these studies would combine high affinity binding to μ and δ 

receptors with much lower affinity for the κ receptor together with agonism at the μ 

receptor but antagonism at the δ receptor. I have synthesized and characterized a new 

cyclic tetrapeptide with the desired properties. Utilization of a conformationally 

constrained Aci3, along with replacement of Tyr1 by Dmt1, and a C-terminal carboxylic 
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acid produced, in KSK-103, a ligand displaying the desired characteristics.  This is in 

agreement with predictions from computational modeling of receptor-ligand complexes, 

providing further evidence for the value of receptor models for structure based drug 

design. Different interactions of KSK-103 with distinct functional states of the μ and δ 

receptors predict different efficacy of the ligand at both receptors:  agonist action at the μ 

receptor and antagonist action at the δ receptor. These predictions were tested in in vitro 

assays evaluating receptor binding, G protein activation, and inhibition of cyclic 

adenosine monophosphate (cAMP) production by forskolin-stimulated adenylyl cyclase. 

Additionally, I undertook development of the reported tetrapeptides with the goal 

of removing affinity to the κ receptor. Incorporation of a C-terminal carboxylic acid in 

KSK-103 in place of the carboxamide group of KSK-102 was designed to reduce κ 

receptor affinity, as a negative charge in this part of the ligand causes adverse 

electrostatic interactions at κ (Pogozheva et al., 2005) and previous studies have shown a 

carboxamide to be beneficial in producing κ receptor affinity (Przydzial et al., 2005a).  In 

agreement, a C-terminal carboxylic acid motif for KSK-103 produced a 100-fold 

decrease in κ receptor affinity compared with KSK-102. 

While it may be expected that KSK-102 and KSK-103 should behave similarly, 

having only one small change in the C-terminal sequence between them, KSK-102 

behaved as a δ agonist in the [35S]GTPγS binding assay. The δ agonist activity of KSK-

102, which, like KSK-103, has the Aci3 residue and might be expected to bind poorly to 

the δ receptor active state, is likely attributed to its slightly deeper positioning in the 

binding pocket due to the ability of the KSK-102 C-terminal amide to form an H-bond 

with the backbone carbonyl of Leu200 (not shown).  This slight readjustment of KSK-102 

in the δ receptor binding pocket results in a small shift of Aci3 that relieves the steric 

interaction with the Met199 side chain in the active conformation of the δ receptor.   

Analysis of previously reported pseudopeptides DIPP(Ψ)NH2 and UFP-505 in 

both receptor binding and agonist assays determined alternate profiles from the published 

results. In contrast to KSK-103, neither DIPP(Ψ)NH2 nor UFP-505 display the desired 

bifunctional profile (e.g. equivalent binding to the μ and δ receptors, much lower binding 
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affinity to κ receptors, and μ agonist/δ antagonist efficacies). However, our assays were 

performed using conditions slightly different from those under which these peptides were 

first reported (Balboni et al., 2002a; Schiller et al., 1999), and thus it is reasonable to 

expect our data to be dissimilar. DIPP(Ψ)NH2 had equivalent binding affinities to the μ 

and δ receptors and was only 10-fold selective for these receptors over the κ receptor in 

our binding assays. UFP-505, on the other hand, was determined to be δ receptor-

selective having a 130-fold or 640-fold lower affinity at μ and κ receptors, respectively. 

Moreover, both DIPP(Ψ)NH2 and UFP-505 display partial agonism at the δ receptor, as 

indicated by their ability to inhibit adenylyl cyclase, rather than the desired δ receptor 

antagonism.   

Thus, KSK-103 represents a step forward in the development of novel ligands 

potentially lacking tolerance and dependence liability. Future studies will investigate the 

in vivo actions of KSK-103 after both acute and chronic administration. These studies 

will determine tolerance liability of KSK-103 versus standard opioid ligands including 

DAMGO, morphine, and endomorphin-2.  The propensity of KSK-103 to produce 

dependence using in vitro and in vivo models will also be used to further investigate 

hypothesized interactions between μ and δ receptors which result in adaptive side effects.  

 

Materials and Methods 

Materials. Reagents for peptide synthesis and characterization were from Sigma-

Aldrich unless otherwise indicated. Fetal bovine serum, cell culture media and additives 

were purchased from Gibco Life Sciences. [D-Ala2, NMePhe4, Gly5-ol]-enkephalin 

(DAMGO) and other biochemicals were obtained from Sigma-Aldrich. [35S]-guanosine-

5'-O-(3-thio)triphosphate ([35S]GTPγS; 1250Ci (46.2TBq)/mmol) and [3H]-diprenorphine 

were purchased from Perkin Elmer.  DIPP(Ψ)NH2 was a gift from the National Institute 

on Drug Abuse (NIDA) Drug Supply Program. 

Solid Phase Peptide Synthesis and Cyclization of Peptides. KSK-102 and KSK-

103 were synthesized in a sequential fashion by solid phase methods.  Synthesis of the 

carboxylic acid terminal KSK-103 utilized chloromethylated polystyrene (Merrifield) 

resin crosslinked with 1% divinylbenzene (AdvancedChemTech), while synthesis of the 
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carboxamide terminal analog KSK-102 employed p-methylbenzhydrylamine resin 

(AdvancedChemTech).  t-Butyloxycarbonyl (Boc) protection of the α-amino function 

was used throughout. The labile sulfhydryl groups of the D-Cys and D-Pen were 

protected with the p-methylbenzyl function. Both peptides were cleaved from the resin 

and deprotected by treating with 10 ml anhydrous HF in the presence of 0.5 g thiocresol 

and 0.5 g cresol. After stirring for 1 h at 0oC, the solvent was removed under vacuum and 

the resin was washed several times with dry diethyl ether. The peptide was extracted 

from the resin with 5 ml washes of dimethylformamide (DMF)/80% acetic acid (9:1, 

v/v), diluted 20 fold with aqueous HPLC component, filtered and subjected directly to 

semipreparative HPLC (Waters Corporation).  Purification of the resulting free 

sulfhydryl-containing linear peptides was effected by semi-preparative HPLC (Waters 

Corporation) on a Vydac Protein & Peptide C-18 column (2.2 cm x 25 cm) with the 

solvent system 0.1% trifluoroacetic acid (TFA) in H2O/0.1% TFA in CH3CN, using a 0-

50% gradient of organic component. The identity and purity of the linear peptides were 

determined by electrospray ionization mass spectrometry (ES-MS; Agilent Technology, 

6130 Quadrupole LC-MS) in positive mode. Dmt-Tic-GlyNH-Bzl (UFP-505) was 

synthesized according to the reported protocol (Balboni et al., 2002a).  

 Dithioether cyclization of peptides A DMF solution of the linear peptide (15 

mg/40 ml) containing 10 mol equivalents of 1,2-dibromoethane was added dropwise to a 

cooled round bottom flask containing 10 mol equivalents of potassium tert-butoxide in 

100 ml anhydrous DMF. The stirring continued for 2 hrs and the reaction was quenched 

with 5 ml of acetic acid. Solvents were removed in vacuo and the residue purified using 

preparative RP-HPLC to afford the alkyl dithioether-cyclized peptide. 

The purity of final peptides was determined using a Waters Alliance 2690 

Analytical HPLC and molecular weight confirmed using ES-MS (KSK102 [M+1]=628.1; 

KSK103 [M+1]=629.1; Table 4.3). 

Cell Lines and Membrane Preparations. C6-rat glioma cells stably transfected 

with a rat μ (C6-μ) or δ (C6-δ) opioid receptor (Lee et al., 1999) and Chinese hamster 

ovary (CHO) cells stably expressing a human κ (CHO-κ) opioid receptor (Husbands et 

al., 2005) were used for all in vitro assays. Cells were grown to confluence at 37°C in 5% 
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CO2 in either Dulbecco's Modified Eagle's Medium (DMEM; C6 cells), or DMEM-F12 

Medium (CHO cells) containing 10% fetal bovine serum and 5% penicillin-streptomycin. 

Membranes were prepared by washing confluent cells three times with phosphate-

buffered saline (0.9% NaCl, 0.61 mM Na2HPO4, 0.38 mM KH2PO4, pH 7.4). Cells were 

detached from the plates by incubation in harvesting buffer (20 mM HEPES, 150 mM 

NaCl, 0.68 mM EDTA, pH 7.4) and pelleted by centrifugation at 200xg for 3 min. The 

cell pellet was suspended in ice-cold 50 mM Tris-HCl buffer, pH 7.4 and homogenized 

with a Tissue Tearor (Biospec Products, Inc.) for 20 s at setting 4. The homogenate was 

centrifuged at 20,000xg for 20 min at 4°C and the pellet re-homogenized in 50 mM Tris-

HCl with a Tissue Tearor for 10 s at setting 2, followed by re-centrifugation. The final 

pellet was re-suspended in 50 mM Tris-HCl, to 0.5-1.0 mg/ml protein and frozen in 

aliquots at -80°C (Clark et al., 2003). Protein concentration was determined using the 

BCA protein assay (Thermo Fisher Scientific) using bovine serum albumin as the 

standard.  

Radioligand Binding Assays. Opioid ligand-binding assays (Przydzial et al., 

2005a) were performed using competitive displacement of 0.2 nM [3H]diprenorphine by 

the test compound from membrane preparations containing opioid receptors. The assay 

mixture, containing membrane suspension (20-40 μg protein/tube) in 50 mM Tris-HCl 

buffer (pH 7.4), [3H]diprenorphine, and various concentrations of peptide was incubated 

at 25°C for 1 h to allow binding to reach equilibrium. The samples were rapidly filtered 

through GF/C filters (Whatman) using a Brandel harvester and washed three times with 

50 mM Tris-HCl buffer. The radioactivity retained on dried filters was determined by 

liquid scintillation counting after saturation with EcoLume liquid scintillation cocktail 

(MP Biomedicals) in a Wallac 1450 MicroBeta (Perkin Elmer). Non-specific binding was 

determined using 10 μM naloxone. Ki values were calculated using nonlinear regression 

analysis to fit a logistic equation to the competition data using GraphPad Prism version 

5.01 for Windows. The results presented are the mean ± standard error from at least three 

separate assays performed in duplicate. 

Stimulation of [35S]GTPγS Binding. Agonist stimulation of [35S]GTPγS binding 

was measured as described previously (Traynor et al., 1995).  Briefly, membranes (20–40 
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µg of protein/tube) were incubated 1 hr at 25°C in GTPγS buffer (50 mM Tris-HCl, 100 

mM NaCl, 5 mM MgCl2, pH 7.4) containing 0.1 nM [35S]GTPγS, 100 µM GDP, and 

varying concentrations (0.1–10,000 nM) of peptides. Peptide stimulation of [35S]GTPγS 

was compared with 10 μM standard compounds DAMGO, D-Pen2,5-enkephalin 

(DPDPE), or U69,593. The reaction was terminated by rapidly filtering through GF/C 

filters, washing three times with GTPγS buffer and retained radioactivity measured as 

described above. Experiments were performed at least three times in duplicate and EC50 

values determined using nonlinear regression analysis with GraphPad Prism. To 

determine antagonist properties of peptides at the δ receptor, [35S]GTPγS binding was 

determined for DPDPE in the presence or absence of a single concentration of peptide 

(Kosterlitz et al., 1968). The EC50 value for DPDPE in the presence of peptide was 

divided by the EC50 value for DPDPE alone, and this ratio (DR) was employed to 

calculate the Ke value using the equation Ke = ([antagonist]/(DR-1)).  

Whole Cell Acute Inhibition of Adenylyl Cyclase. Inhibition of adenylyl cyclase 

by opioid agonists or peptides was measured in C6-δ or C6-μ cells grown to confluence in 

96-well plates. Cells were washed in serum-free DMEM at least 30 min prior to the start 

of the assay and incubated with various concentrations (1 – 1000 nM) of DPDPE or 

peptide in serum-free media containing 5 μM forskolin (FSK) and 0.25 mM 3-isobutyl-1-

methylxanthine (IBMX) for 30 min at 37°C. The assay was quenched during a 30 min 

incubation at 4°C by replacing media with 0.1 ml lysis buffer (0.3% Tween-20, 5 μM 

HEPES in dH2O, pH 7.4). Antagonism of DPDPE-mediated inhibition was measured by 

addition of a single concentration of KSK-103 in C6-δ cells, as described above.  Cyclic 

adenosine monophosphate (cAMP) was measured from samples in a 384-well plate with 

a BioTek MultiMode Microplate Reader using the AlphaScreen cAMP detection kit from 

Perkin Elmer according to manufacturer’s instructions. Inhibition of cAMP accumulation 

was calculated as a percent of FSK-stimulated cAMP accumulation in vehicle-treated 

cells. EC50 values were calculated for each compound using GraphPad Prism. 

Experiments were performed in triplicate and repeated a minimum of three times. 

  Modeling. The homology models of human μ receptor (UniProt ID: P35372, 

residues 67-354), in the inactive and active states were developed using crystal structures 
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of bovine rhodopsin in the inactive (PDB ID: 1U19) and photoactivated (PDB ID:3DQB) 

conformations, respectively. The models were generated as previously described for 

gonadotropin-releasing hormone receptor modeling (Janovick et al., 2011). The receptor 

models were refined using distance geometry calculations with structural restraints that 

involved receptor-specific H-bonds, natural and engineered disulfide bonds and metal-

binding clusters described in our earlier publications (Fowler et al., 2004a; Fowler et al., 

2004b), as well as contacts between receptor residues and the native μ agonist, 

endomorphin-1 (Tyr-Pro-Trp-PheNH2) or synthetic μ antagonist, antanal-2 (Dmt-Pro-

Phe-2-NalNH2) (Fichna et al., 2007) docked similarly to cyclic tetrapeptides (Pogozheva 

et al., 2005; Przydzial et al., 2005a). The models of human δ  receptor (UniProt ID: 

P41143, residues 48-336) and human κ receptor (UniProt ID: P41145, residues 58-348) 

were developed from the μ receptor active and inactive state models by residue 

substitution followed by energy minimization with CHARMm potentials (QUANTA, 

Accelrys), dielectric constant, ε = 10, and the adopted basis Newton-Raphson 

minimization method (100 iterations). Coordinates of μ (active and inactive states) and δ 

(inactive state) receptor models with KSK-103 can be downloaded from our web site 

(http://mosberglab.phar.umich.edu/resources/). 

Statistical Analysis. Data were analyzed using Student’s two-tailed t test or 

analysis of variance followed by Bonferroni’s post-hoc test using GraphPad Prism where 

appropriate. A p value less than 0.05 was used to determine significance.  
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Table 4.1: Opioid receptor binding affinity of peptides at μ, δ, and κ receptors a 

Peptide Sequence Ki, nM (μ) (δ) (κ) 

JOM-6 Tyr-c(SCH2CH2S)[DCys-Phe-DPen]NH2 0.3 ± 0.04 b 25 ± 1.5b 9540 ± 620

KSK-102 Dmtc-c(SCH2CH2S)[DCys-Acic-DPen]NH2 0.6 ± 0.1 0.9 ± 0.2 9.8 ± 3.6 

KSK-103 Dmt-c(SCH2CH2S)[DCys-Aci-DPen]OH 2.4 ± 0.7 2.3 ± 0.5 780 ± 150 

DIPP(Ψ)NH2 Dmt-Ticc(Ψ)[CH2NH2]Phe-PheNH2 0.4 ± 0.1 0.4 ± 0.04 3.9 ± 0.2 

UFP-505 Dmt-Tic-GlyNH-Bzl 26 ± 8 0.2 ± 0.06 128 ± 42 
aOpioid receptor binding studies in cell membrane preparations. Experiments were performed as described in Methods and affinity 
was determined by non-linear regression following displacement of 0.2 nM [3H]diprenorphine from membrane preparations of opioid 
receptors individually expressed in C6 rat glioma (μ and δ receptors) or Chinese hamster ovary cells (κ receptors). Results reported as 
mean Ki ± standard error from at least three experiments performed in duplicate. bJOM-6 affinity at μ and δ receptors taken from 
McFadyen, et. al. 2000. cAbbreviations include Dmt for 2’, 6’ dimethyltyrosine, Aci for 2-aminoindane- 2-carboxylic acid, and Tic for 
1,2,3,4-tetrahydroisoquinoline, 3-carboxylic acid. Cyclization of peptides reported as (SCH2CH2S) for ethylene dithioether linkage. 
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Table 4.2: Efficacy and potency of cyclized peptides for stimulation of [35S]GTPγS binding at opioid receptors 
Peptide 

 

Sequence μ δ κ 

% max.a EC50, nMb % max. EC50 % max. EC50 

KSK-102 Dmt-c(SCH2CH2S)[DCys-Aci-DPen]NH2 58 ± 8 0.4 ± 0.02 37 ± 4 1.4 ± 0.4 n.s. c  --- 

KSK-103 Dmt-c(SCH2CH2S)[DCys-Aci-DPen]OH 59 ± 11 4.7 ± 0.7 n.s.  --- n.s. --- 

DIPP(Ψ)NH2 Dmt-Tic(Ψ)[CH2NH2]Phe-PheNH2 18 ± 1 5.7 ± 3.3 n.s. --- n.s. --- 

UFP-505 Dmt-Tic-GlyNH-Bzl n.s.  --- n.s. --- n.s. --- 

Morphine  57 ± 5 194 ± 21 n.t.d n.t. n.t. n.t. 

endomorphin-2  49 ± 7 125 ± 31 n.t. n.t. n.t. n.t. 
aStimulation of [35S]GTPγS binding in membrane preparations from cells stably expressing μ, δ, or κ receptors. % maximum (% max.) 
values represent percent of maximal [35S]GTPγS binding obtained with 10 μM peptide compared to a 10 μM concentration of standard 
agonists DAMGO (μ), DPDPE (δ), and U69,593 (κ). bEC50 values determined from non-linear regression analysis of [35S]GTPγS 
incorporation as described in Methods. Experiments were performed in duplicate at least three times and data reported is the mean ± 
standard error.  cn.s. No significant stimulation (less than 10% of standard compound) , dn.t. - not tested. Abbreviations as in Table 4.1. 
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Table 4.3: Analytical data for KSK-102 and KSK-103 
Peptide Molecular Weighta HPLCb (min; Rt) 

calculated (MW) observed (MW +1)  

KSK-102 627.1 628.1 28.8 

KSK-103 628.1 629.1 30.3 
aObserved molecular weights determined by electrospray ionization mass spectrometry 
(ES-MS).  bRetention times assessed by analytical high-performance liquid 
chromatography (HPLC) using the solvent system 0.1% trifluoroacetic acid (TFA) in 
water (w/v)/0.1% TFA in CH3CN with a gradient of 0-50% organic component in 50 
min, monitored at 230 nm with samples dissolved in a mixture of aqueous and organic 
HPLC components. The column was maintained at 35 °C. Both peptides were found to 
be 98-99% pure. 
 



 

73 

 

 

 
Figure 4.1: Structures of parent peptides (A) JOM-6 and (B) JOM-13 and new 
analogs (C) KSK-102 and (D) KSK-103. 
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Figure 4.2: Computational modeling of KSK-103 in μ and δ receptor ligand binding 
pockets reveals structural determinants of ligand efficacy. KSK-103 can be docked 
without steric hindrances into the ligand binding pocket of the μ receptor models in the 
(A) active and (B) inactive conformations, but displays significant overlap between Aci3 
of the ligand and Met199 of the receptor in the δ receptor (C) active conformation. This 
overlap is removed in the δ (D) inactive conformation, where Met199 is shifted away from 
the ligand binding pocket.  
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Figure 4.3: KSK-103 behaves as a μ agonist and δ antagonist in the [35S]GTPγS 
stimulation assay. Incorporation of [35S]GTPγS as a measure of G protein stimulation 
was analyzed in cell membrane preparations from C6-rat glioma cells stably expressing 
either the μ or δ receptors. (A) At the μ receptor, KSK-103 behaved as a partial agonist, 
producing 59 ± 11% stimulation of G protein compared to μ agonist DAMGO (filled 
squares). Morphine (open circles) and endomorphin-2 (filled triangles) produced a 
similar percent stimulation; however, they were less potent than KSK-103. (B) Addition 
of 100 nM KSK-103 (open circles) produced a 26–fold rightward shift in the 
concentration-response curve for DPDPE at the δ receptor, affording a Ke value for the 
antagonist of 4.4 ± 1.4 nM. 
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Figure 4.4:  KSK-103 is a δ receptor antagonist in adenylyl cyclase inhibition while 
reference peptides DIPP(Ψ)NH2 and UFP-505 display partial agonist efficacies. 
Inhibition of forskolin-stimulated cAMP production was measured utilizing a whole cell 
assay in C6-rat glioma cells stably expressing the δ receptor. (A) In this assay, 10 μM 
KSK-103 (filled circle) was unable to significantly inhibit forskolin-stimulated cAMP 
levels (91 ± 6%) while addition of 100 nM KSK-103 (open triangles) produced a 9.5-fold 
rightward shift in the concentration-response curve for DPDPE.  This afforded a Ke value 
for antagonism of 12 ± 3.3 nM. (B) Peptides DIPP(Ψ)NH2 (filled squares) and UFP-505 
(open triangles) behaved as partial agonists at the δ receptor in this assay, able to reduce  
forskolin-stimulated cyclase to 65 ± 10% and 72 ± 2%, of controls respectively. 1 μM δ 
peptide agonist DPDPE (filled diamond) inhibited forskolin stimulation to 52 ± 12%. 
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Chapter V 

Discussion and Future Directions 

 
Overview 

Opioid agonists, while extremely useful in producing analgesia, are hampered by 

their propensity to develop tolerance and dependence. Previous studies, and research 

detailed in this thesis, have shown evidence for interactions between μ and δ receptors in 

the production of these unwanted effects. In particular, δ receptor blockade via 

antagonism reduces tolerance and dependence liability, measured both in vivo and ex vivo 

after a single administration of the μ agonist morphine. Previous studies that examined 

the role of the δ receptor in these phenomenon focused on tolerance or dependence 

appearing after chronic (5-7 day) exposure to morphine. My examination of behavioral 

and biochemical results after acute morphine exposure lends increased relevance to the 

hypothesis that δ antagonism produces alterations in subsequent μ receptor activity such 

that development of tolerance and dependence is lessened and that the interaction occurs 

early in the adaptive process. Although on a different time scale of morphine exposure, 

these results agree with the previously published data demonstrating in rodents 

(Abdelhamid et al., 1991; Hepburn et al., 1997) that δ antagonism is a viable target for 

reducing tolerance liability of opioid drugs. Therefore, a drug that contains both μ agonist 

and δ antagonist properties might be a viable analgesic with reduced tolerance and 

dependence liability. 

 As a start toward such a drug, development and characterization of bifunctional 

opioid peptides displaying μ agonism and δ antagonism simultaneously and utilizing two 

scaffolding systems (both penta- and tetrapeptides) was completed.  These peptides are 

proposed first ligands in the development of novel improved clinical candidates for pain 

treatment while reducing the risk for tolerance and/or dependence development. The use 
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of constrained amino acid analogs and analysis of peptide binding to putative 

computational models of both the μ and δ receptor revealed important structural 

characteristics in these peptides. These results demonstrate that rational drug design is a 

useful tool to differentiate efficacy profiles between targets and can aid in designing 

peptides with dual actions at one or more receptors. 

 Whereas peptides themselves are not drug targets, modeling studies utilizing these 

constrained peptides can provide information on the structural components of efficacy.  

Indeed, studies described in this thesis have identified a region of the δ receptor that may 

be important in activation and production of downstream signaling. The results show the 

utility of structure-based design in the development of bifunctional ligands and provide 

strengthening evidence for the validity of the computational model receptor systems. 

Identification of favorable and unfavorable interactions between the proposed peptide 

ligands and the ligand binding domains of each receptor may be significant for the future 

development of more drug-like, non-peptidic ligands.  

 

Role for the δ receptor in modulating μ receptor-induced tolerance: Interactions 

between receptors 

My results examining acute tolerance in vivo demonstrated that co-administration 

of a δ antagonist compound can decrease both tolerance and dependence development, in 

agreement with previously published reports showing a role for δ receptor blockade in 

ameliorating effects of long-term treatment with morphine (Abdelhamid et al., 1991; 

Hepburn et al., 1997). The behavioral studies were complemented with ex vivo analysis 

of changes in receptor-G protein coupling and expression of high-affinity μ receptor 

binding sites to better understand cellular changes occurring upon agonist exposure. 

There was a loss of G protein stimulation on subsequent agonist administration following 

4 h morphine exposure in vivo, as well as a loss of high-affinity, G protein bound μ 

receptors but not total opioid receptor expression.  

Previous studies in our lab (Bradbury et al., 2009; Levitt et al., 2011) and others 

(Bailey et al., 2005; Bohn et al., 2000) have shown evidence for numerous, overlapping 

signaling pathways (e.g. GRK, β-arrestin, and protein kinase C) in tolerance mechanisms 
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at the single cell level after opioid agonist exposure. It is likely that the mechanism(s) 

producing tolerance utilize many signaling processes and cellular modulators, making it 

relatively difficult to differentially target and block the development of tolerance entirely. 

My results provide strong evidence for cross-talk between opioid receptors in the 

production of this adaptive effect. On the other hand, other research groups have found 

evidence for opioid agonists indirectly inducing non-opioid signaling mechanisms to 

overcome tolerance, including activation of N-methyl-D-aspartate (NMDA) or other 

glutamatergic signaling processes (Mao, 1999; Mao et al., 1995).  Conversely, inhibition 

of NMDA receptors via antagonism was demonstrated to decrease tolerance development 

(Trujillo et al., 1991), showing a link between multiple receptors or signaling pathways in 

the production of adaptive effects.  

The findings presented in this thesis agree with previous findings that 

development of receptor desensitization leads to reduced opioid receptor activation. In 

particular, it has been noted in several studies (McPherson et al., 2010; von Zastrow et 

al., 2003; Whistler et al., 1999), that morphine is a μ agonist unable to induce receptor 

internalization, but still produces profound clinical analgesic tolerance. Results from 

studies in this dissertation show that the tolerance developed after an acute, single 

morphine exposure is due to an uncoupling of the μ receptor from G proteins and a 

decrease in subsequent agonist efficacy. This supports a theory that acute receptor 

desensitization is a precursor to complete tolerance development. While I have shown 

evidence for acute tolerance in the 129S6 mouse strain, the inability to visualize greater 

tolerance after chronic morphine administration studies points to the likelihood of more 

complex compensatory mechanisms (including glutamatergic activation or other cell 

signaling or gene expression modifications) in masking opioid tolerance in the particular 

mouse strain utilized for these studies. Further investigation of why this particular strain 

is resistant to tolerance, compared to other strains such as Swiss-Webster (Abdelhamid et 

al., 1991) or C57BL6/129SvJ animals (Bohn et al., 2000), previously shown to develop 

tolerance after chronic morphine exposure, may be very helpful in understanding 

mechanisms underlying tolerance. To further probe interactions between μ and δ 

receptors, it would be necessary to investigate more thoroughly endpoints beyond 
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antinociception, utilizing both in vivo behavioral studies, including conditioned place 

preference, sensitization paradigms, or respiratory depression experiments. In vitro model 

systems expressing both μ and δ receptors have been used to show interactions between 

these receptors (George et al., 2000), however these studies were predominantly 

performed in heterologous systems, which may decrease the relevance of published 

results.  

In conclusion, my results demonstrating interactions between μ and δ receptors in 

the development of both tolerance and dependence support suggestions that a mixed-

efficacy approach would be beneficial in clinical applications. 

 

Examination of interactions between μ and δ receptors using endogenous systems 

An in vitro cellular system expressing both μ and δ receptors as a model to 

examine interactions between these receptors and to test the utility of the novel 

bifunctional opioid peptides described above would be advantageous. It is difficult to 

examine the long-term effects of the developed peptide ligands in vivo due to their 

instability and poor bioavailability and reported methodologies are few. An in vitro 

model system would allow fast and easy characterization of tolerance and dependence 

liability of novel peptidic ligands and also provides a method to study interactions 

between μ and δ receptors directly. This type of system would be a useful tool to 

determine whether the proposed interactions between μ and δ receptors are due to 

intracellular mechanisms based on access to common downstream signaling components 

(Levitt et al., 2011), or intercellular mechanisms whereby both receptors activate their 

respective pathways and activation or blockade has a physiological effect at a distinct 

cellular location (Scherrer et al., 2009).  

There are several reasons to choose an endogenous cell system to study 

interactions between GPCRs.  While a great deal of research has been published 

demonstrating the existence and alternate signaling of putative opioid (and other GPCR) 

heterodimers (George et al., 2000; Gomes et al., 2004; Rozenfeld et al., 2007a), much of 

this research was performed using heterologously expressed cell systems.  Over-

expressed heterologous systems may lack crucial proteins or other components for proper 
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opioid signaling and desensitization (Bailey et al., 2005).  This is especially important 

when comparing to signaling in distinct brain regions. For example, neuronal cell 

membranes have increased cholesterol compared to other cells and this has been shown 

to be important for opioid receptor signaling (Levitt et al., 2009). In addition, over-

expression of the protein or receptor being studied may lead to non-specific interactions 

which would not normally occur in vivo.  Using endogenous systems gives a more 

accurate indication of the necessary regulatory processes underlying adaptations after 

drug exposure (including tolerance and dependence) and endogenous systems provide the 

ability to view putative receptor interactions on a scale similar to that encountered in 

vivo.  Such native systems may also be used to verify previously published results 

obtained in over-expression models. However, interactions between two receptors may be 

difficult to determine using this type of system due to the smaller number of receptors 

expressed. If interactions can be identified in an endogenous cell system or tissue 

preparation, previously reported results including the hypothesis that μ and δ receptor 

interactions led directly to decreased tolerance development (Hepburn et al., 1997) might 

be further clarified. 

 

Use of SH-SY5Y cells to examine cross-talk between μ and δ receptors 

One such endogenous model system is the human SH-SY5Y neuroblastoma cell 

line.  SH-SY5Y cells are second-generation subclone of SK-N-SH neuroblastoma cells 

(Biedler et al., 1978). Our lab has used the SH-SY5Y cells extensively to better 

characterize opioid receptor signaling (Alt et al., 2002; Elliott et al., 1997; Elliott et al., 

1994; Levitt et al., 2011; Wang et al., 2009). The Traynor lab has shown that several 

GPCRs coupled to inhibitory G proteins (Gi/o) are endogenously expressed in these cells 

and compete for access to both G proteins and adenylyl cyclase enzymes (Alt et al., 

2002; Levitt et al., 2011).  In these SH-SY5Y cells, μ and δ receptors are expressed in a 

ratio of approximately 3 μ receptors:1 δ receptor.   

Importantly, tolerance to μ agonists may be visualized in these cells (Alt et al., 

2002; Elliott et al., 1997).  Thus, pretreatment of SH-SY5Y cell monolayers with the μ 

agonist DAMGO resulted in a significant decrease in the amount of subsequent G protein 



 

82 

 

activation and a decrease in the number of μ receptors present on the plasma membrane 

(Elliott et al., 1997). The apparent ‘tolerant’ effect in the treated cells was most likely due 

to desensitization and/or internalization of the μ receptor (Elliott et al., 1997).   

I have performed preliminary studies in the SH-SY5Y cells utilizing co-

administration of the μ agonist DAMGO with or without the δ antagonist naltrindole 

(NTI). DAMGO treatment for 24 h produced a decrease in the level of μ cell-surface 

receptor expression measured by binding of the non-specific opioid antagonist 

[3H]diprenorphine ([3H]DPN; Figure 5.1A) without a loss of cell-surface δ receptors 

(Figure 5.1B) as measured by binding of the δ-selective antagonist [3H]naltrindole 

([3H]NTI).  This was coupled with a loss of DAMGO-induced G protein stimulation 

(Figure 5.1C).  A similar decrease in [35S]GTPγS binding stimulated by morphine (Figure 

5.2A) was seen. Addition of a δ-selective NTI concentration (10 nM; Figure 5.2B) during 

the 24 h treatment was unable to prevent the loss of μ agonist-mediated [35S]GTPγS 

binding (Figure 5.2C).  Similar decreases in μ receptor cell-surface expression and loss in 

subsequent [35S]GTPγS binding were also observed after 1 h of μ agonist DAMGO 

exposure, while application of the δ antagonist during this time was again unable to block 

these events (data not shown). In light of my in vivo results after a single administration 

of morphine, studies examining both the time-course of decreased [35S]GTPγS binding 

after DAMGO exposure or with varying concentrations of DAMGO should be 

performed. Further studies in this system could analyze the effects of μ agonist treatment 

on the trafficking of δ receptors to the plasma membrane to examine correlates between 

this system and others previously reported (Cahill et al., 2007; Cahill et al., 2001b). 

Examination of δ receptor trafficking in response to μ agonist exposure (and vice versa) 

in the SH-SY5Y cells might provide further evidence for interactions between the 

receptors.  Such studies could lend strength to the hypothesis for basal enkephalinergic 

tone which is maintained via trafficking of δ receptors in response to μ agonist-induced 

down-regulation (Cahill et al., 2007). Effects with the δ receptor inverse agonist ICI 

174864 in my preliminary studies which showed increased μ agonist-induced [35S]GTPγS 

binding following ICI 174864 pretreatment point to such an interaction between μ and δ 
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receptors. However, it is unclear how these interactions could influence tolerance 

development in a single cell.  

 

Mouse vas deferens as a model system for examining μ-δ receptor interactions 

Another potential in vitro model for the analysis of μ and δ receptor interactions 

is the mouse vas deferens (MVD). The MVD was used as a system for the identification 

and analysis of novel opioid ligands until the cloning and over-expression of receptors in 

cellular systems became popular (Lee et al., 1993).  One advantage of the use of 

peripheral opioid systems including the MVD is that they respond rapidly to drug 

administration, do not need blood-brain barrier penetrating agents, and can be used to test 

a complete series of concentrations without loss of signal (Kosterlitz et al., 1975).  While 

the sensitivity of the system may be less than heterologous, over-expressed cell lines, the 

endogenous opioid receptor expression can provide insight into in vivo behavioral results 

on a mechanistic basis.  

The MVD was shown to express all three opioid receptor subtypes (Lord et al., 

1977), but predominately expresses δ receptors (Wild et al., 1993) and μ receptors over κ 

receptors.  As an endogenous system, it is also suitable for examination of interactions 

between opioid receptors (Elliott et al., 1995).  μ and δ Receptors are not only present in 

this tissue, but have been shown to exist on the same neuron (Rogers et al., 1990), 

although there is no evidence for a direct interaction between the two (Sheehan et al., 

1986).  Additionally, the MVD was demonstrated to be an advantageous system in the 

study of tolerance development following morphine administration in vivo, as shown by 

several groups (Marshall et al., 1981; Schulz et al., 1984; Schulz et al., 2004; Wuster et 

al., 1982).  Using this procedure, tolerance to either μ− or δ-selective agonists could be 

produced, but cross-tolerance between the two receptors was not seen (Herz et al., 1982; 

Wuster et al., 1983).  These findings indicate the two receptors may not be intrinsically 

linked (e.g. no heterodimerization) and instead share cellular signaling proteins and 

downstream effectors.  Interactions between μ and δ receptors in the development of 

tolerance have never been directly studied using this system.  
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The MVD tissue preparation provides a unique method to analyze signaling 

between μ and δ receptors outside of the central nervous system.  While it is possible that 

the receptors contained in this tissue are different and signal in a differential manner than 

receptors expressed in the brain or spinal cord (Takemori et al., 1989), similar G proteins 

and downstream effector molecules (including adenylyl cyclase; Bhoola et al., 1986) 

have been identified in the MVD as in the brain. The endogenous expression of μ and δ 

receptors in this tissue and the reports that the two receptors may be expressed on the 

same neuron makes it a good candidate system for further studies of the research 

described in this thesis.  Analysis of μ-specific tolerance development in the MVD with 

or without concurrent δ antagonism might further knowledge of reported interactions 

(Abdelhamid et al., 1991; Hepburn et al., 1997) between these two receptors.  

 

Structural Components of Efficacy: Development of multi-functional ligands as 

tools to investigate interactions between opioid receptors 

Bifunctional ligands having differential efficacy profiles at distinct sites of actions 

have numerous positive qualities. Firstly, bifunctional ligands are desirable in a clinical 

setting and would have improved relevance over a polypharmacy (either two drugs 

administered separately or a mixture of two different drugs administered simultaneously) 

technique (Morphy et al., 2005). Secondly, a single bifunctional drug is a more desirable 

candidate over multiple drugs for patient compliance and would not have the complicated 

pharmacokinetic or pharmacodynamic profile of an administered mixture (Morphy et al., 

2009). 

Use of both penta- and tetrapeptide scaffolds with incorporation of bulky, 

aromatic substituents and computational modeling studies identified several regions of 

interest in both the μ and δ receptor ligand binding pockets. Both peptide scaffolds 

incorporated bulky and constrained side groups to explore the limits of the δ receptor 

binding domain. While the hydrophobic residues incorporated into the 3rd and 4th 

positions of the tetra- and pentapeptide scaffolds did not appear to limit binding affinity 

or decrease agonist efficacy at the μ receptor, there was significant overlap between these 

residues and amino acids in the δ receptor binding pocket. The active and inactive 



 

85 

 

computational models of the μ and δ receptors were designed on homology modeling of 

the rhodopsin crystal structure in inactive (Palczewski et al., 2000b) and photoactive 

(Salom et al., 2006) states.    

The pentapeptide scaffold led to development of lead peptide 9 via 

naphthylalanine incorporation, and identified a favorable interaction in the μ receptor 

‘active’ state between the Tyr1 of peptide 9 and Trp318 of the receptor as described in 

Chapter 3 (Figure 3.3C).  While no favorable or unfavorable interactions were noted in 

the ‘inactive’ states of either μ or δ receptor with docked peptide 9, analysis of the δ 

receptor active state identified a region of steric overlap between the 2-Nal4 of the peptide 

and Trp284 of the receptor. I hypothesized that hindrance in binding the δ active 

conformation (due to steric overlap) decreased the agonist efficacy of peptide 9 compared 

to the parent peptide.  Peptide 9 was noted to be a partial agonist at the δ receptor when 

analyzed for ability to inhibit cAMP accumulation and also bound to the κ receptor with 

high affinity and was an agonist at this receptor. 

 Activity at the κ receptor is a complication in the design of bifunctional ligands as 

κ agonism produces dysphoria in humans. Thus, subsequent peptides were developed 

from leads which were devoid of κ receptor binding affinity. The tetrapeptide series 

described in Chapter 4, including KSK-103 (Figure 4.1), bound with very low affinity to 

the κ receptor, especially when compared to the μ and δ receptors.  KSK-103 is a μ 

agonist and δ antagonist peptide (both at the level of G protein and adenylyl cyclase 

enzymes) and bound with equivalent affinity to both receptors. When analyzed for 

binding to the computational models of μ and δ receptors, KSK-103 was shown to have a 

favorable interaction with Lys303 in the μ receptor ‘active’ state, similar to the favorable 

interaction shown between peptide 9 and the μ receptor. This interaction was not 

sufficient to produce μ agonist efficacy on the same level as peptide 9; however, KSK-

103 had agonist ability on par with the standard drug morphine. Additionally, the 

conformationally constrained Phe analog 2-aminoindan, 2-carboxylic acid (Aci) moiety 

of KSK-103 showed a great deal of overlap with Met199 in the δ receptor ‘active’ 

conformation. This was not observed in the μ receptor, which has Thr218 in this position. 
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Again, this was hypothesized to prevent δ receptor-bound KSK-103 from producing a 

conformational shift in the receptor, activation of signaling and produced an antagonist 

profile. KSK-103 represents a promising lead in developing bifunctional μ agonist/δ 

antagonist therapies. Initial in vivo studies in mice with KSK-103 after central (i.c.v.) 

administration demonstrated a short-lived partial agonist antinociceptive profile of this 

peptide. Due to the instability of KSK-103 in vivo, in vitro screening methods will 

provide a faster and easier technique to assess tolerance liability of these bifunctional 

ligands.  

The above discussion strengthens the hypothesis for modeling G protein-coupled 

receptor activation using a two-state receptor theory (Black et al., 1983). This theory 

proposes agonist ligand incorporation in an ‘inactive’ state of the receptor, followed by a 

conformational shift to the ‘active’ state of receptor and subsequent downstream 

signaling or binding of ligand to a previously established active state. The ‘inactive’ state 

would allow equivalent binding of ligands behaving as either antagonists or agonists. 

However, the difference in efficacy between these ligands becomes apparent when the 

ability to produce a conformational change in the receptor to ‘active’ is measured, such 

that bound heterotrimeric G protein is activated. Agonist compounds elicit the 

conformational change in the receptor to activate downstream signaling processes (Leff, 

1995), while antagonist ligands (such as KSK-103 at the δ receptor) are unable to 

produce this shift due to unfavorable interactions with the ‘active’ conformation of the 

receptor, therefore maintaining the receptor in an inactive, antagonist-bound position. As 

antagonist ligands can bind to the ‘inactive’ state (sometimes with very high affinity), 

they can prevent agonists of the receptor from binding and inducing the conformational 

shift necessary for agonist effects.  

My studies examining the efficacy profiles of penta- and tetrapeptides revealed 

the importance of utilizing the correct assay to confirm antagonist efficacy (Nickolls et 

al., 2011). It is not sufficient to hypothesize antagonism based on the absence of agonist 

actions at the level of G protein activation, as studies have found these assay conditions 

to be stringent and agonists with low partial agonist activity can be masked (Harrison et 

al., 2003). Determination of antagonism can only be established via the ability to block a 
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known agonist’s signaling processes (e.g. production of a rightward shift in the dose-

response curve for G protein activation) as well as a lack of ability to alter downstream 

endpoints which take advantage of signal amplification (such as adenylyl cyclase 

inhibition). This was particularly noticeable in characterization of lead peptide 9 and 

reference peptides DIPP(Ψ)NH2 and UFP-505, as all three demonstrated little to no 

[35S]GTPγS binding at the δ receptor, but were able to inhibit cAMP accumulation 

showing they are partial δ agonists, not antagonists. 

 

Future directions for development of bifunctional ligands  

Further research should focus on more clinically viable therapeutics. While 

derivatives and analogs of endogenous neuropeptides are a logical drug category, little 

progress has been made in development of peptides as drugs due to their inherent 

instability and inactivity when administered peripherally.  Upon the discovery of 

endogenous neuropeptides, including the β-endorphins, dynorphins, and enkephalins 

(Hughes et al., 1975), it was hypothesized that novel neuropeptidic drugs could replace 

older drugs that had greater side effect and toxicity profiles (Polt et al., 2005). However, 

the majority of synthesized opioid neuropeptides (including the μ agonist DAMGO) fail 

to cross the blood-brain barrier (BBB) and therefore cannot exert their actions after 

therapeutically viable (i.e. oral or parenteral) administration methods. An important goal 

in the development of novel opioid therapeutics is the synthesis of stable, potent ligands 

providing the desired analgesia with reduced side effect profiles. Whereas peptides 

provide a unique and rapid system for the analysis of structural components of efficacy, 

these are poor drug candidates. Thus, synthesis of more ‘drug-like’ peptide analogs has 

focused on improving peptide stability through a number of modifications. 

 

Improving bioavailability by glycosylation of peptide ligands 

Bioavailability of peptides can be improved in a number of ways that increase 

plasma half-life, stability in the brain, and entry via the BBB. Alteration of the peptide 

ligand through such processes as glycosylation has been shown to improve access of the 

synthesized peptide to the brain by increasing blood-brain barrier permeability (Egleton 
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et al., 2001). Other ligand alterations, including N-methylation (Biron et al., 2008; 

Dechantsreiter et al., 1999), have been used with success to improve BBB penetration for 

a variety of peptidic ligands (Biron et al., 2008; Egleton et al., 2005; Lowery et al., 

2007). In addition, modifications including polyethylene glycol (PEG)-ylation (Roberts et 

al., 2002) or lipidization (Flinn et al., 1996) have been demonstrated to improve both 

plasma bioavailability and brain penetration.   

Glycosylation has been shown to improve the biodistribution of opioid ligands, 

including the δ agonist deltorphin (Tomatis et al., 1997), met-enkephalin (Egleton et al., 

2000; Polt et al., 1994), and leu-enkephalin (Bilsky et al., 2000) and improved 

antinociceptive potencies upon peripheral administration. The hypothesis underlying 

these improvements focuses on the so-called ‘biousian effect’ (Dhanasekaran et al., 

2005). Glycosylation allows transport of the peptide through the BBB via a number of 

potential mechanisms, including the glucose transporter (Nomoto et al., 1998), organic 

anion-transporting peptide transporter (Gao et al., 2000), and/or via an adsorptive 

endocytotic mechanism (Banks et al., 1997).  

To glycosylate the bifunctional peptide KSK-103 would require incorporation of a 

C-terminal Ser or Thr residue, followed by attachment of the sugar moiety. It is critically 

important to re-evaluate the binding and efficacy characteristics of each iteration of KSK-

103, as incorporation of any structural modifications may lead to differential changes in 

binding affinity or efficacy.  

 

Peptidomimetic scaffolding for novel therapeutics 

 ‘Peptide mimic’ drugs, or peptidomimetics, resemble a lead peptide but contain 

some synthetic, unnatural elements that help to reduce metabolism; these can be obtained 

through a variety of modifications (Pauletti et al., 1997) and are useful to reduce the size 

and hydrophobicity of the compounds, aiding in absorption and bioavailability.  The 

peptidomimetic approach to create more ‘drug-like’ compounds is not restricted to opioid 

chemistry, although many opioid peptidomimetics have been characterized (Ballet et al., 

2006; Birkas et al., 2008; Liao et al., 1998). Development of peptidomimetics in a 

number of fields including substance P antagonists (Tong et al., 2000; Walpole et al., 
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1998), bradykinin (Abe et al., 1998), and endothelin analogs (Murugesan et al., 1998) has 

resulted in orally available derivatives that are undergoing further clinical analysis, 

demonstrating the viability of this technique for furthering development of novel 

therapeutics. Synthetic alterations to create peptidomimetics focus on limiting peptide 

bond hydrolysis through modification of the peptide backbone in a number of ways. 

Firstly, addition of molecules designed to protect or hide the peptide bond from enzymes 

decreases metabolism, as does replacement of the peptide bond altogether using another 

linkage system (Patel et al., 2009).  Also, global changes to the peptide have been used to 

render the peptidomimetic unrecognizable to peptidases or other enzymes in order to 

prevent degradation (Plummer et al., 1997). Examples of peptidomimetic alterations to 

improve stability and bioavailability include amide bond replacement (Shiosaki et al., 

1993; Shue et al., 1993; Wang et al., 1998) or cyclization (Li et al., 2002) and have 

shown great success. Additionally, incorporation of unnatural amino acid derivatives to 

mimic transition state peptides has provided methods to bypass systemic degradation and 

promote receptor activation (Liao et al., 2007).  These alterations were noted to increase 

ligand selectivity, increase the plasma half-life, and are hypothesized to decrease 

apparent side effects, although there is limited data available to support such a 

hypothesis.  

Utilization of an alternative scaffolding system taking advantage of identified key 

structural components represents another method by which to continue the development 

of bifunctional peptide ligands, such as KSK-103 described in this thesis into clinically 

relevant drugs. Our group has previously demonstrated the ability to produce these types 

of peptidomimetic drugs (Wang et al., 1998) which behave similarly in vitro to their 

peptide counterparts but are able to be studied in vivo with less difficulty.   

 

Overall summary and significance  

The results presented in this thesis demonstrate a link between μ and δ receptors 

in the production of μ agonist-induced tolerance and dependence, after a single 

administration of μ agonist. Tolerance was developed both in vivo and ex vivo, while 

dependence was only seen in vivo. Due to the inability to establish dependence ex vivo, I 
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hypothesize that development of these adaptations is a short-term change in receptor 

signaling that does not persist following the cell membrane preparation process prior to 

ex vivo assays. The inability to produce tolerance after long-term morphine 

administration in the mice used in this study may be due in part to complex physiological 

mechanisms as well as complementary changes in gene expression. It is likely that 

production of cellular signaling processes (both acute and chronic) are very tightly 

regulated by many cellular modulators (e.g. G protein receptor kinases, β-arrestin, PKC, 

Gi/o coupled receptors, etc.).  The in vivo/ex vivo results demonstrated receptor 

desensitization occurs after acute morphine treatment, such that both antinociceptive and 

G protein tolerance is observed. Future work should analyze cellular dependence 

mechanisms after a different time-course of agonist exposure and ex vivo using 

endogenous systems to investigate interactions between μ and δ receptors, which may be 

due to distinct neuronal pathways. 

Additionally, development of an in vitro model system with which to screen novel 

ligands for bifunctional efficacies is an important goal in furthering development of 

therapeutics devoid of tolerance and dependence liabilities. Future work should assess the 

effect δ antagonism has on μ agonist-induced cellular endpoints (including MAP kinase 

activation, inhibition of GIRK channels, and Ca2+ channel activity) to determine if there 

is a link between these cellular endpoints and tolerance development. Behavioral tests 

beyond antinociception and withdrawal should also be examined. Links have been 

demonstrated between μ and δ receptors in production of conditioned place preference to 

morphine (Chefer et al., 2009; Shippenberg et al., 2009; Timar et al., 2005) and 

locomotor sensitization (Shippenberg et al., 2009; Timar et al., 2005) after long-term 

exposure. It would help to complete the picture of the role of the δ receptor by 

performing these assays after morphine exposure.  

The studies performed in this thesis have added to knowledge of modulation of 

morphine tolerance and dependence by the δ  receptor. Examining both behavioral and 

biochemical measures helped to frame the cellular changes occurring after μ agonist 

exposure. These results are significant in that they furthered the relevance of bifunctional 

drug therapy with reduced tolerance/dependence liability in the treatment of pain 
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conditions. In this regard, I have successfully developed and characterized two series of 

non-selective mixed μ/δ efficacy opioid peptide ligands. Studies with these ligands also 

highlighted rational structure-based drug design and the use of computational modeling 

to differentially create efficacies in a single ligand. The designed peptides identified 

important limits in the δ receptor binding pocket important for agonist efficacy.  

In terms of clinical relevance, I have demonstrated that co-administration of μ 

agonist and δ antagonist ligands helps reduce tolerance development and argued that a 

ligand displaying this profile could be extremely useful in the treatment of chronic pain 

conditions by reducing the need to continuously increase dosage to achieve desired 

effects.  Bifunctional ligands also display the advantages of simultaneous therapy over 

polypharmacy, highlighting important targets in future drug development. Future work 

should focus first on improving bioavailability and brain penetration of these ligands. 

Such compounds might then be used to demonstrate effective antinociception with 

reduced tolerance development after both acute and chronic exposure paradigms. 
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Figure 5.1 24 h treatment of SH-SY5Y cells with 1 μM μ agonist DAMGO. (A) There 
is a loss in [3H]diprenorphine binding to SH-SY5Y cell membrane preparations after 24 h 
treatment with DAMGO indicating a decrease in cell-surface μ receptors but (B) no 
change in cell-surface δ receptors as binding with the δ-selective antagonist 
[3H]naltrindole (NTI) is unchanged between treatment groups. (C) Application of 
μ agonist DAMGO in treated cell membrane preparations shows decreased ability to 
stimulate [35S]GTPγS binding compared to untreated SH-SY5Y membranes. 
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Figure 5.2 Co-administration of 1 μM μ agonist DAMGO and 10 nM δ antagonist 
naltrindole cannot prevent DAMGO-induced decreased [35S]GTPγS binding by 
subsequent μ agonist application. (A) 24 h treatment of SH-SY5Y cells with 1 μM 
DAMGO produces less [35S]GTPgS binding after application of the μ agonist morphine 
to cell membrane preparations compared to control cells. (B) A 10 nM concentration of 
the δ antagonist naltrindole (NTI) was determined to be a δ-selective concentration, as it 
was unable to produce any change in the dose-response curve for μ agonist DAMGO in 
untreated SH-SY5Y membrane preparations. (C) Co-administration of μ agonist 
DAMGO and δ antagonist NTI does not prevent the decreased [35S]GTPγS binding by 
morphine in cell membrane preparations. 
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