DEVELOPMENT OF MICROCOMPUTER MODELS OF TRUCK BRAKING AND HANDLING

Final Report

Paul Fancher
Luis Balderas

August 1987

1. Report No. UMTRI-87-37	2. Govermment Accossion No.		3. Recipient's Cutalog No.	
4. Title and Subtitie Development of Microcomputer Models of Truck Braking and Handling			$\begin{array}{\|c} \text { 5. Report Date } \\ \quad \text { August } 1987 \\ \hline \end{array}$	
7. Author(s)P. Fancher, L. Balderas			8. Performing Organization Report No. UMTRI-87-37	
9. Performing Organization Name and Address The University of Michigan Transportation Research Institute 2901 Baxter Road, Ann Arbor, Michigan 48109			10. Work Unit No. (TRAI 11. Contract or Grant MVMA Pr 13. Type of Report and	j. \#7163 eriod Covered
12 Sponsoring Agency Name and AddreeseMotor Vehicle Manufacturers Association300 City Center BuildingDetroit, Michigan 48202			13. Type of Report and Period CoveredFinal$7 / 1 / 86-6 / 30 / 87$	
15. Supplementary Notes				
16. Abstract This report provides general information on computer programs based on simplified models of truck braking and handling. The following simplified models are discussed: low- and high- speed offtracking, straight line braking, static roll, steady turn, mountain descent, rearward amplification. It includes an outline of a tutorial course explaining the utilization of these models, and the vehicle dynamics concepts involved. Instructions on the use of each of the computer models, and charts summarizing the performance signatures and measures evaluated by each model are provided.				
Simplified models, braking, handling, offtracking, steady turn, static roll, straight line braking, rearward amplification, mountain descent		UNLIMITED		
19. Security Classif. (of this report) NONE	$\begin{aligned} & \text { 20. Security Clasasit. (of this page) } \\ & \text { NONE } \end{aligned}$		$\begin{array}{\|c\|} \hline \text { 21. No. of Pages } \\ 129 \end{array}$	22. Price

TABLE OF CONTENTS

Section Page
1.0 Introduction 1
2.0 Summary of Tutorials on Truck Braking and Handling 2
2.1 Constant Deceleration Braking 2
2.2 Mountain Descent 3
2.3 Low-Speed Offtracking 4
2.4 High-Speed Offtracking. 5
2.5 Steady Turning, Roll. 6
2.6 Steady Turning, Handling 8
2.7 Rearward Amplification. 10
3.0 Explanatory Materials Accompanying the Simplified Models 12
3.1 Introduction and General Information 12
3.2 Explicit Directions for Each Simplified Model 15
4.0 Summary and Concluding Remarks 128

DEVELOPMENT OF MICROCOMPUTER MODELS OF TRUCK BRAKING AND HANDLING

1. INTRODUCTION

This report provides general information on computer programs prepared by The University of Michigan Transportation Research Institute (UMTRI) through support provided by The Motor Vehicle Manufacturers Association (MVMA).

These programs are based on simplified models of truck braking and handling behavior. They are menu-driven and user-friendly. The simplified models are programmed in Microsoft FORTRAN for use on an IBM PC or compatible computer with a minimum of 512 Kilobytes of random access memory (RAM). The models also require either a 8087 or a 80287 math coprocessor and a graphics board to execute properly.

For those who would like explanations of the vehicle dynamics concepts involved in these models, a tutorial course on the utilization of these models is available. A brief summary of the contents of that course is included in the next section (section 2).

The third section of this document contains copies of the explanatory material that accompanies each of the floppy disks containing the models. This material provides step by step instructions for operating the simplified models. It also contains example input data and resulting outputs for each of the models.

The concluding section of this report contains a chart summarizing the performance signatures and measures evaluated by each of the models.

2. SUMMARY OF TUTORIAL ON TRUCK BRAKING AND HANDLING

The following material outlines the contents of the presentations pertaining to each of the maneuvering situations included in the course.

2.1 Constant Deceleration Braking

1. Definition and Motivation

The vehicle is presumed to be decelerating uniformly after the initial braking transient is over. Braking pressure is nearly constant and the influence of fade is neglected. The purpose of the analysis is to examine the relationships between brake proportioning and the wheel loads that prevail during wheels-unlocked stops on surfaces with different levels of tire/road friction. Basically, the program calculates vehicle deceleration and the friction utilization at each axle.

2. Concepts and Principles

- load transfer at constant deceleration
-static axle loads
-equilibrium of forces during constant deceleration
-interaxle load transfer in tandem suspensions
- brake proportioning
- friction utilization
-relationship between braking force and vertical load at each axle
- braking efficiency
-relationship between the level of deceleration and the maximum friction level required at any axle

3. Vehicle Descriptors

- static loads
- axle and hitch locations
- c.g. heights
- brake proportioning (pressure vs. torque)
- interaxle load transfer
- tire radius

4. Performance Signatures and Measures

- signatures (empty and loaded)
-friction utilizations vs. pressure
-deceleration vs. pressure
-braking efficiency vs. deceleration
- measures
-braking efficiency at 0.2 and 0.4 g

2.2 Mountain Descent

1. Definition and Motivation

The vehicle is driven along a selected elevation profile at a selected velocity profile. The heat flow into each brake is determined, and brake temperatures are calculated.
2. Concepts and Principles

- sources of retardation

-foundation brakes
-rolling resistance

-aerodynamic drag
-engine drag and retarders

- the meaning of "bulk" temperature and its dependence upon heat flow -heat flow into the brake -cooling concepts -thermal capacity
- the concept of brake proportioning

3. Vehicle Descriptors

- retardation from sources other than the brakes
- proportioning of braking effort
- cooling coefficients as a function of velocity
- thermal capacities

4. Performance Signatures and Measures

- signatures
-temperature profiles for the brakes
- measures
-maximum temperatures

2.3 Low-Speed Offtracking

1. Definition and Motivation

The vehicle is making a tight turn at nearly zero speed. The front axle follows a predetermined path. The tracking of the trailing axles is computed.

2. Concepts and Principles

- paths taken by "rear" axles
-rear tires move tangent to their paths, that is, along a tractrix
-explanation of the tractrix
-graphical demonstration of the determination of tractrices
- paths taken by hitches
-tractrices for articulated vehicles
- transient and steady-state motions

3. Vehicle Descriptors

- axle and hitch locations
- equivalent wheelbases for units with multiple-axle suspensions

4. Performance Signatures and Measures

- signatures
-the paths of each axle and the rear of the vehicle
- measures
-inward offtracking
-outward swingout

2.4 High-Speed Offtracking

1. Definition and Motivation

The vehicle is performing a steady turn such as that required on an entrance or exit ramp. As in low-speed offtracking, the front axle follows a predetermined path radius. In this case, the vehicle is proceeding at highway speed. The tracking fidelity of the trailing axles is computed.

2. Concepts and Principles

- slip angles of tires and the generation of lateral forces
- the lateral forces required for steady turning
- geometric relationships pertaining to the steady-turning situation
- the factors corresponding to low-speed offtracking and those factors corresponding to the slip angles needed to generate lateral forces

3. Vehicle Descriptors

- axle and hitch locations
- tire cornering stiffnesses
- tire vertical loads
- equivalent wheelbases for units with multiple-axle suspensions

4. Performance Signatures and Measures

- signatures
-the paths of each axle and the rear of the vehicle
- measures
-outwards offtracking (swingout)
-the speed for zero offtracking for the rearmost axle set

2.5 Steady Turn, Roll

1. Definition and Motivation

The vehicle is performing a steady turn and it has reached an equilibrium amount of roll (if one exists for the lateral acceleration level involved). Calculations are made at increasing severities of turning until the level of lateral acceleration equivalent to the vehicle's "rollover threshold" is reached.

2. Concepts and Principles

- sprung and unsprung masses
- suspension roll center heights
- lateral translation of the centers of gravity of sprung and unsprung masses
- roll stiffness definitions and concepts
- saturation of roll stiffness after wheel liftoff
- concept of a "stiff" suspension
- hitches with and without roll coupling

3. Vehicle Descriptors

- c.g. heights of sprung and unsprung masses
- roll center heights
- tire vertical stiffnesses
- between tire track widths
- suspension roll stiffnesses
- sprung and unsprung weights

4. Performance Measures and Signatures

- signatures
-lateral acceleration vs. "roll" angle for each independently rolling unit
- measures
-rollover thresholds

2.6 Steady Turning, Handling

1. Definition and Motivation

The vehicle is again envisioned to be in a steady turn. The lateral acceleration is constant and the rolling motions have reached equilibrium as in the roll analysis. The objective of the calculation is to examine the steering gain in response to small perturbations in front-wheel angle. This program determines the stability margin of the vehicle. If the vehicle can be divergently unstable, the velocity and lateral acceleration levels corresponding to the transition to instability are calculated .

2. Concepts and Principles

Some examples:

- conditions for turning equilibrium
- the handling equation
- the influence of vertical load on cornering stiffness
- side-to-side load transfer
- perturbations about equilibrium conditions
- steering system stiffness and effective cornering stiffness
- multiple-axle suspensions and their influences on damping in yaw, damping in sideslip, and coupling coefficient
- effective wheelbase and understeer coefficient for articulated vehicles with multiple-axle suspensions

3. Vehicle Descriptors

- roll-related parameters
-c.g. heights
-roll center heights
-track widths
-suspension roll stiffnesses
-sprung and unsprung weights
- tracking-related parameters
-axle and hitch locations
- tire properties
-cornering stiffness
-influence of vertical load on cornering stiffness
- steering system properties
-steering compliances
- axle loads, c.g. locations

4. Performance Measures and Signatures

- Signatures
-steering gain as a function of lateral acceleration and velocity
-stability boundary if the vehicle is divergently unstable
-steering angle as a function of lateral acceleration at a selected velocity

- measures

-gain at 0.3 g and 55 mph
-instability speed at 0.3 g if it exists

2.7 Rearward Amplification

1. Definition and Motivation

Rearward amplification pertains to the motions of the rear units of articulated vehicles in response to the motion of the first unit. The lateral acceleration of the last unit may be larger than that of the first unit in rapid obstacle-avoidance maneuvers. Consequently, the rear unit may not follow the path of the front unit with adequate fidelity and the rear unit may be susceptible to early rollover. This phenomenon is quite complicated to analyze in detail, but first-order results can be obtained using frequencydomain techniques. The program computes the transfer function between the lateral accelerations of the first and last units.

2. Concepts and Principles

- transfer functions from c.g.'s to hitches
- transfer functions from hitches to c.g.'s
- simplified transfer functions for full trailers
- the importance of the frequency of the input motion
- the importance of the velocity of the vehicle

3. Vehicle Descriptors

- axle and hitch locations
- tire cornering stiffnesses
- c.g. locations and masses
- yaw moments of inertia (or assumption of uniform loading)

4. Performance Signatures and Measures

- signatures
-plots of transfer function magnitude vs. frequency

- measures

-maximum magnitude and the frequency at which it occurs

3. EXPLANATORY MATERIALS ACCOMPANYING THE SIMPLIFIED MODELS

3.1 Introduction and General Information

Introduction

The simplified models discussed in this manual were developed by The University of Michigan Transportation Research Institute (UMTRI). This document contains instructions for using the various computerized models and provides the specific information required for performing a calculation.

The equilibrium analyses used here are simplified procedures that have been programmed in FORTRAN for use on IBM PC and IBM compatible computers. The following simplified models were developed:

1) Low- and High-Speed Offtracking Model
2) Straight Line Braking Model
3) Static Roll Model
4) Steady Turn Model (Handling)
5) Mountain Descent Model
6) Rearward Amplification Model

Engineering and Computer Requirements

Throughout the simplified models, the English system of units is used. Masses and weights are in units of pounds, with a gravitational constant of $386 \mathrm{in} / \mathrm{sec} / \mathrm{sec}$ assumed.

The simplified models are programmed in Microsoft FORTRAN for use on an IBM PC or compatible computer with a minimum of 512 Kilobytes of random access memory (RAM). The models also require either a 8087 or a 80287 microprocessor and a graphics board (discussed below) to execute properly.

Hardware and Default Information

All the models, Offtracking, Braking, Roll, Handling, Rearward Amplification, and Mountain Descent, are written to support any graphics board and any printer device. The
hardware configuration as well as the simulation increments are now read from a common file containing 10 lines called "HARDWARE.SET". Figure 1 shows a print-out of this file.

Figure 1. Hardware.Set

```
HARDWARE AND INCREMENTS CONFIGURATION
&HALOIBM.DEV&
04
&HALOEPSN.PRN&
01.0000 Offtracking, path increment (ft), low speed transient
01.0000 Braking, treadle pressure increment (psi)
0.001 Roll, roll angle increment (rad)
0.025 Handling, lateral acceleration increment (g's)
0.25 Rearward Amplification, steering frequency increment (rad/sec)
01.00 Mountain Descent, integration time step (sec)
```

The Hardware. Set file must be present on the disk to insure the proper functioning of the models. The contents of this file are as follows:

1) The first line is a comment line and may contain any information.
2) The second line specifies the graphics card existing in the computer to be used. Therefore, it is required to know this information beforehand. Furthermore, the specified graphics card file contained in this line must be present in the disk for proper function of the graphics.
3) The third line specifies the graphics mode. This can be obtained from the HALO reference manual. Some examples are:

Graphics Card	Mode
HALOHERC.DEV	00
HALOIBME.DEV	04

4) The fourth line specifies the printer device. This file must be also present otherwise failures while printing plots may occur.
5) The fifth line specifies the path increment in ft, for low speed transient offtracking. Default 1 ft .
6) The sixth line is the treadle pressure increment, psi, for the braking model. Default 1 psi.
7) The seventh line is the roll angle increment, rad, for the roll model. Default 0.001 rad.
8) The eight line is the lateral acceleration increment, g 's for the handling model. Default 0.025 g's.
9) The ninth line is the steering frequency increment, $\mathrm{rad} / \mathrm{sec}$, for the rearward amplification model. Default $0.25 \mathrm{rad} / \mathrm{sec}$.
10) Increment for Mountain Descent in seconds. Default 1 sec .

The contents of this file can be changed by using any editor program, but it should always contain 10 lines.

3.2 Explicit Directions for Each Model

The following subsections provide documentation to aid users in learning how the programs operate. Each subsection contains detailed instructions on the use of the model being discussed, as well as example input and output from that model. The sections each begin with a "Quick Reference Card" that lists the files necessary to run the model, and the key commands that are available in the model.

Quick Reference Card

OFFTRACKING V2.0
A) General Information:

To Run The Program Type: OFFTRACK
Files required for proper function:

- OFFTRACK.EXE
- TRAILERS
-TRACTOR
- HALO****.DEV
-HALO++++.PRN
- HARDWARE.SET
**** =Name of the Graphics board,e.g,HERC
$++++=$ Name of the printer device, e.g, EPSN.
B) General Commands:

1) EDIT-VIEW DATA:

PgUp=Page Up
PgDn=Page Down
$\uparrow=$ Upper Edit Field
\downarrow or $\downarrow=$ Lower Edit Field
$\mathrm{Ctrl} \rightarrow=$ Right Edit Field (column)
$\mathrm{Ctrl} \leftarrow=$ Left Edit Field (column)
End=Accept or Continue
Esc=Exit to Main menu
$\leftarrow=$ Scrolls cursor to left on current field
$\rightarrow=$ Scrolls cursor to right on current field

2) CALCULATE:

End=OK or Accept
Esc=Exit to Main menu

3) PLOTS:

a) P or p followed by: W or $\mathrm{w}=$ Wide print out T or $\mathrm{t}=$ Tall print out
b) Any other key exits to Main menu.

1) RUNNING THE PROGRAM AND SELECTING NEW DATA

To start running the program insert the program disk in any drive and then type:

OFFTRACK

After few seconds the following message appears on the screen (see screen \#1 below)

Screen \#1

To continue simply hit any key on the keyboard.
The menu to select the source of input appears next, screen \#2. Make your selection by pressing the up (\uparrow) and down (\downarrow) arrow keys and then RETURN (\downarrow) or End.

Screen \#2

If your selection was "FILE", the following screen appears to enter the drive from which data will be entered.

Screen \#3

One more time, make your selection and press the End key. All the files available on that drive will be listed on the screen so that you can select one to be read, see screen \#4.

Screen \#4

The file selection is made by pressing the following keys:

- RETURN key (\lrcorner) or the Ctrl plus the right arrow (\rightarrow) key to select forward
- Ctrl plus the left arrow (\leftarrow) key to select backwards, and
- End to complete the selection.

For "KEYBOARD" selection see the "EDIT-VIEW DATA" section.

2) EDIT-VIEW DATA

Once data has been read into memory, the main selection menu appears (screen \#5.)

Screen \#5

From this menu we could:

- Enter new data. This would return us to screen \#2 (above.)
- Edit and view the current data set (explained in this section.)
- Calculate, which would further take us to another menu to select the type of calculation.
- Print data, that would send to the printer the current data set.
- Save data, which would allow us to save the current or modified data set into a file.
- Quit, that would return us to the operating system shell.

The way this program displays data is called "Page Editing", which shows the information for each unit on a screen page, see screen \#6 and screen \#7. We would have as many pages as number of units on the vehicle.

The controls for page editing are the following:

- Up arrow (\uparrow) key, moves the cursor to the upper next position.
- Down arrow (\downarrow) key, moves the cursor to the lower next position.
- PgUp key (page up), returns to the previous page.
- PgDn key (page down), advances one more page.
- RETURN key (\downarrow), has the same function as the down arrow key.
- Right (\rightarrow) and left (\leftarrow) arrow keys, moves the text cursor on the current edit field. This is used to modify the current value.
- Esc key exits to the main menu at any point during the page editing session.
- End key, gets you out of the Edit mode if you are in the last page; otherwise, has no effect.

If you had selected to enter data from the keyboard, a prompt requesting the number of units appears first, and then the remaining data is entered by page editing.

YNGRMATIDN :UF UNIT \ddagger

```
WHEL GAEE = 144.0QG INGHES
```



```
FFOHT OUFEGSID LJAD = 12GOQ.O LES
```



```
FEF- EUEFENETUN LOAD = 17GO.O LES
TGTA GOFNEFTNG STIFFNESE OF FEAR TIFES - 1GTZ,OO LESDES
```

```
GGn=FGE DOWN EEC=EXIT End=FGDN
```


Screen \#6

INFOFMATTON FDF UMIT \# ב

MEEL EASE $=43200$ INCHES

FEAF EUSPENETON LOAD $=17000.0$ LEG


```
PMUF=FGE UF FGDN=EXIT ESG=EXIT ENU=EMIT
```


Screen \#7

3) PRINT DATA

This option will allow the user to send the data set to the printer. A prompt appears to check whether the printer is connected and turned on. If so, just hit the End key. A sample data is included at the end of this documentation

4) SAVE DATA

Choosing this option allows the user to save a data set into a file. The computer prompts the user for the drive to where data will be stored, see screen \#3, and then prompts for the file name, see screen \#8.

Screen \#8

If the file already exists a message indicating so will be printed on the screen, allowing the user to either replace the old file with the new file, or enter a different name for the new file.

Note that the extension "OFF" is added to all the files. This is an identifier of files to this program.

5) CALCULATE

Selecting this option will display the following menu, see screen \#9.

Screen \#9

From this menu we can select the type of calculation to perform by just pressing the same controls explained on the previous menus (above.)

Low Speed Offtracking Steady State

The user will be prompted to enter the radius of the turn in ft , a default value of 1200 ft is given. The program checks the input for low magnitude turn radius and prints a warning message on the screen. The results will be displayed on the screen and an option to print the results will be asked for. If you wish to do so press the End key or RETURN (ل) key.

Low Speed Offtracking Transient

The user will be prompt to enter the calculation parameters, radius of the turn in ft , default is 45.0 ft , and angle in degrees, default is 90.0°, see screen \#10. The path followed by the rear extremity point of the vehicle has been included in the results.

A default increment of 1 foot is given into the calculations. Therefore, if you entered a very large radius with a large angle a "BEEP" sound and a message will appear indicating that the number of points to plot are too many (see screen \#11)

Screen \#11

By pressing any key you will return to screen \#10.
Once the proper parameters are set a message of "CALCULATING...." will appear on the screen. Once the calculations are completed, the user may print the chart displayed by typing a P (or p) followed by a W (or w) for a wide print-out, or a T (or t) for a tall print-out. To return to the OFFTRACKING menu, press any key.

High Speed Offtracking Steady State

The user is prompted to enter the radius of the turn, the speed in mph and g-level of the maneuver. The program checks the input for low magnitude turn radius and prints a warning message on the screen. The results are displayed on the screen and they may also be sent to the printer.

Exit to Main Menu

Selecting this option will return the user to screen $\# 5$ where further calculations may be made or the user may QUIT the program.

STEADY STATE FESUTS
LOW EPEED OFFTFACKTNG

FILE NGME: © TFGEMT L OFF
FADIUS OF THE TUFN $=1200.00 \mathrm{FT}$

SuF- Num.	FADIUS (FT)
1	1200.00
2	1197.94
3	119740

FEAR EXTREMTY SWRG $=1199.40 \mathrm{FT}$

LOW-SFED OFFTFAKTNG = . 5 GEGFT

DO YOU WANT TO FETAT THE FESULTS TY

FADTUS OF THE TUFN (FT) $=1200$.00 FORHARD VELOCTY (HFH)= $=5$ OO
GMEVEL = $=1684$

$$
E=:=E x T \quad E n=0 t
$$

Straight Line Braking Model

Quick Reference Card.

BRAKING V2.0

A) General Information:

To Run The Program Type: BRAKING
Files required for proper function:

- BRAKING.EXE
-AXIS
-HALO****.DEV
-HALO++++.PRN
-HARDWARE.SET
**** =Name of the Graphics board,e.g,HERC
$++++=$ Name of the printer device, e.g, EPSN.
B) General Commands:

1) EDIT-VIEW DATA:

PgUp=Page Up
PgDn=Page Down
$T=$ Upper Edit Field
\downarrow or $\downarrow=$ Lower Edit Field
$\mathrm{Ctrl} \rightarrow=$ Right Edit Field (column)
$\mathrm{Ctrl} \leftarrow=$ Left Edit Field (column)
End=Accept or Continue
Esc=Exit to Main menu
$\leftarrow=$ Scrolls cursor to left on current field
$\rightarrow=$ Scrolls cursor to right on current field
2) PLOTS:
a) P or p followed by: W or $w=$ Wide print out T or $\mathrm{t}=$ Tall print out
b) Sor s : Enter new Axes limits. Esc will return to the Plot menu.
c) End exits to the Plot menu.
d) \rightarrow and \leftarrow : Move the cross cursor rigth and left.
f) \lrcorner (RETURN key): Shifts the cross cursor among the different curves.
g) \uparrow and $\downarrow:$ Scroll the Y axis up and down
h) PgUp and PgDn : Scroll the X axis right and left.
i) To zoom in or out: Hit the + or - keys (once or twice) followed by the axis to zoom (X or Y).
e) $\mathrm{Ctrl} \rightarrow$ or $\mathrm{Ctrl} \leftarrow$ move the cross cursor right and left at higher increments.

1) RUNNING THE PROGRAM AND SELECTING NEW DATA.

To start running the program insert the program disk in any drive and then type:

BRAKING

After few seconds the following message appears on the screen (see screen \#1 below)

To continue simply hit any key on the keyboard.
The menu to select the source of input appears next, screen \#2. Make your selection by pressing the up (\uparrow) and down (\downarrow) arrow keys and then RETURN $(ل)$ or End.

ENTER DATA FROM:

KEYBOARD
FILE

Screen \#2

If your selection was "FILE", the following screen appears to enter the drive from which data will be entered.

Screen \#3

One more time, make your selection and press the End key. All the files available on that drive will be listed on the screen so that you can select one to be read, see screen \#4.

Screen \#4

The file selection is made by pressing the following keys:

- RETURN key (\checkmark) or the Ctrl plus the right arrow (\rightarrow) key to select forward
- Ctrl plus the left arrow (\leftarrow) key to select backwards, and
- End to complete the selection.

For "KEYBOARD" selection see the "EDIT-VIEW DATA" section.

2) EDIT-VIEW DATA

Once data has been read into memory, the main selection menu appears (screen \#5.)

Screen \#5

From this menu we could:

- Enter new data. This would return us to screen \#2 (above.)
- Edit and view the current data set (explained in this section.)
- Calculate, which would further take us to another menu to select the type of calculation.
- Print data, that would send to the printer the current data set.
- Save data, which would allow us to save the current or modified data set into a file.
- Quit, that would return us to the operating system shell.

The way this program displays data is called "Page Editing", which shows the information for each unit on a screen page, see screen \#6 and screen \#7. We would have as many pages as number of units on the vehicle.

```
FTE NAME:OEDELEE
```

ए-we: 9 - 9.6
Tima: A:

```
Mmformation for Unit # i
    Gwnawel Intowmatum,
```

Totel Weight $=$ i6400.0の bes
Whelbese $=120$-00 inohes
Dstance of Fear Articusaton from Fpont Suspension $=$ itowo inches

Suspension 4 (Single)

A×1= $\ddagger 1$
Redius of a Tire $=2$ O.0 inches
Fuphout Fressure $=7.0 \mathrm{FQI}$

бuspnsion * 2 (6ncle)

M1E $\# 1$

Puenout Fremue $=\quad 7.0$ PGT
Erane fey (1-ninary 2 mon-lineary $=1$

Screen \#6

```
FTE ASE:MOEPDEL,EPG
```



```
Infowet,on for bnit # 2
#matw? Informetion
```



```
Gear meveubaton Heignt == 4.,00 {nches
```



```
                            Supension % 1 (simgle)
```



```
    &x###
```



```
Fu-w% %w%ww = 7.00 FGI
```


Screen \#7

The controls for page editing are the following:

- Up arrow (\uparrow) key, moves the cursor to the upper next position.
- Down arrow (\downarrow) key, moves the cursor to the lower next position.
- PgUp key (page up), returns to the previous page.
- PgDn key (page down), advances one more page.
- RETURN key (\lrcorner), has the same function as the down arrow key.
- Right (\rightarrow) and left (\leftarrow) arrow keys, moves the text cursor on the current edit field. This is used to modify the current value.
- Esc key exits to the main menu at any point during the page editing session.
- End key, gets you out of the Edit mode if you are in the last page; otherwise, has no effect.

If you had selected to enter data from the keyboard, a prompt requesting the number of units appears first, and then the remaining data is entered by page editing.

3) PRINT DATA

This option will allow the user to send the data set to the printer. A prompt appears to check whether the printer is connected and turned on. If so, just hit the End key. A sample data set is included at the end of this documentation.

4) SAVE DATA

Choosing this option allows the user to save a data set into a file. The computer prompts the user for the drive to where data will be stored, see screen \#3, and then prompts for the file name, see screen \#8.

Screen \#8

If the file already exists a message indicating so will be printed on the screen, allowing the user to either replace the old file with the new file, or enter a different name for the new file.

Note that the extension "OFF" is added to all the files. This is an identifier of files to this program.

5) CALCULATE

Selecting this option will display the following, see screen \#9.

Screen \#9

This will be the increment used for the computations. The default value is equal to 1.00 psi. Once you enter the desired number press the End key.

The following prompt will ask whether you want to print the results as they are calcualted or not. If the answer is " Y " or " y " then make sure that the printer in turned on. If the answer is " N " or " n " the results will appear on the screen only.

Calculations are stopped when either:

- the treadle pressure has exceeded a value of 100 psi , or
- A friction utilization for any axle of the vehicle is greater than 1.0.

After the calculations end the following screen appears.

DO YOU WANT TO SEETHE PLOTS? Y

Screen \#10

If your answer is "yes" just press the End key, and the following menu will appear (Screen \#11)

Screen \#11

Once you have made your selection the plot will appear on the screen. Some examples are included on this documentation.

You still can play around with the plot. The following are the controls for the plot:

- Up arrow (\uparrow) key, scrolls the "Y" axis upward.
- Down arrow (\downarrow) key, scrolls the "Y" axis downward.
- PgUp key (page up), scrolls the "X" axis forward.
- PgDn key (page down), scrolls the "X" axis backward.
- RETURN key (\downarrow), shifts the cross cursor among the different curves, and indicates on the lower view port the legend of the curve selected. The " Y " and " X " values at the position of the cursor are shown on the same port.
- Right (\rightarrow) and left (\leftarrow) arrow keys, move the cross cursor on the current curve right or left and updates its position on the lower view port.
- The + (plus) or - (minus) keys hit either once or twice and followed by the letter X or Y will zoom the respective axis up or down.
- P (or p), followed by a \mathbf{W} (or w) for wide, or a \mathbf{T} (or t) for tall, will print the current chart.
- End key, gets you out of the chart and sends you to the plot menu, screen \#11.

Exit to Main Menu

Selecting this option will return the user to screen \#5 where further calculations may be made or the user may QUIT the program.


```
    ASDwnat Mrat: Dally or SEm: = 1
```



```
    Ar|E|
```



```
m+armetym# Far Unit & a
Qna, mbtornetjom
```


G4.ancon 1 (Single)
\therefore a.......n

G:28' DBL ${ }^{\prime} \mathrm{BRH}^{\prime}$

1	10	20	35	40	519	512	20	80
DECEL	$=$. DRa@gs			PRE	$=$. Dpsi	

Quick Reference Card.

ROLL V2.0

A) General Information:

To Run The Program Type: ROLL

Files required for proper function:

- ROLL.EXE
-AXIS
-HALO****.DEV
-HALO++++.PRN
- HARDWARE.SET
**** =Name of the Graphics board,e.g,HERC
$++++=$ Name of the printer device, e.g, EPSN.
B) General Commands:

1) EDIT-VIEW DATA:
 PgUp=Page Up
 PgDn=Page Down
 $T=$ Upper Edit Field
 \downarrow or $\downarrow=$ Lower Edit Field
 $\mathrm{Ctrl} \rightarrow=$ Right Edit Field (column)
 $\mathrm{Ctrl} \leftarrow=$ Left Edit Field (column)
 End=Accept or Continue
 Esc=Exit to Main menu
 $\leftarrow=$ =Scrolls cursor to left on current field
 $\rightarrow=$ Scrolls cursor to right on current field

2) PLOTS:
a) P or p followed by: W or $\mathrm{w}=$ Wide print out T or $\mathrm{t}=$ Tall print out
b) S or s: Enter new Axes limits. Esc will return to the Plot menu.
c) End exits to the Plot menu.
d) \rightarrow and $\leftarrow:$ Move the cross cursor rigth and left.
f) $ل$ (RETURN key): Shifts the cross cursor among the different curves.
g) \uparrow and \downarrow :Scroll the Y axis up and down
h) PgUp and PgDn : Scroll the X axis right and left.
i) To zoom in or out: Hit the + or - keys (once or twice) followed by the axis to zoom (X or Y).
e) $\mathrm{Ctrl} \rightarrow$ or $\mathrm{Ctrl} \leftarrow$ move the cross cursor right and left at higher increments.

1) RUNNING THE PROGRAM AND SELECTING NEW DATA.

To start running the program insert the program disk in any drive and then type:

ROLL

After few seconds the following message appears on the screen (see screen \#1 below)

To continue simply hit any key on the keyboard.
The menu to select the source of input appears next, screen \#2. Make your selection by pressing the up (\uparrow) and down (\downarrow) arrow keys and then RETURN (\downarrow) or End.

Screen \#2
If your selection was "FILE", the following screen appears to enter the drive from which data will be entered.

Screen \#3

One more time, make your selection and press the End key. All the files available on that drive will be listed on the screen so that you can select one to be read, see screen \#4.

Screen \#4

The file selection is made by pressing the following keys:

- RETURN key (\downarrow) or the Ctrl plus the right arrow (\rightarrow) key to select forward
- Ctrl plus the left arrow (\leftarrow) key to select backwards, and
- End to complete the selection.

For "KEYBOARD" selection see the "EDIT-VIEW DATA" section.

2) EDIT-VIEW DATA

Once data has been read into memory, the main selection menu appears (screen \#5.)

Screen \#5

From this menu we could:

- Enter new data. This would return us to screen \#2 (above.)
- Edit and view the current data set (explained in this section.)
- Calculate, which would further take us to another menu to select the type of calculation.
- Print data, that would send to the printer the current data set.
- Save data, which would allow us to save the current or modified data set into a file.
- Quit, that would return us to the operating system shell.

The way this program displays data is called "Page Editing", which shows the information for each unit on a screen page. We would have as many pages as number of units on the vehicle.

The controls for page editing are the following:

- Up arrow (\uparrow) key, moves the cursor to the upper next position.
- Down arrow (\downarrow) key, moves the cursor to the lower next position.
- PgUp key (page up), returns to the previous page.
- PgDn key (page down), advances one more page.
- RETURN key (\downarrow), has the same function as the down arrow key.
- Right (\rightarrow) and left (\leftarrow) arrow keys, moves the text cursor on the current edit field. This is used to modify the current value.
- Esc key exits to the main menu at any point during the page editing session.
- End key, gets you out of the Edit mode if you are in the last page; otherwise, has no effect.

If you had selected to enter data from the keyboard, a prompt requesting the number of units appears first, and then the remaining data is entered by page editing.

3) PRINT DATA

This option will allow the user to send the data set to the printer. A prompt appears to check whether the printer is connected and turned on. If so, just hit the End key. A sample data set is included at the end of this documentation.

4) SAVE DATA

Choosing this option allows the user to save a data set into a file. The computer prompts the user for the drive to where data will be stored, see screen \#3, and then prompts for the file name, see screen \#6.

Screen \#6

If the file already exists a message indicating so will be printed on the screen, allowing the user to either replace the old file with the new file, or enter a different name for the new file.

Note that the extension "ROL" is added to all the files. This is an identifier of files to this program.

5) CALCULATE

Selecting this option will display the following, see screen \#7.

Screen \#7

This will be the increment used for the computations. The default value is equal to 0.0010 radians. Once you enter the desired number press the End key.

The following prompt will ask whether you want to print the results as they are calcualted or not. If the answer is " Y " or " y " then make sure that the printer in turned on. If the answer is " N " or " n " the results will appear on the screen only.

Calculations are stopped when either:

- All the axles have been liftoff the ground, or
- 0.02 radians after the accelerations for the roll units started decreasing.

After the calculations end the following screen appears.

DO YOU WANT TO SEE THE PLOTS? Y

Screen \#8

If your answer is "yes" just press the End key, and the following menu will appear (Screen \#9)

Screen \#9

Once you have made your selection a plot will appear on the screen. Some examples are included at the end of this documentation.
"Ay1" is the lateral acceleration for the first roll unit, e.g., tractor semitrailer, straight truck.
"Ay2" is the lateral acceleration for the second roll unit, e.g., dolly-semitrailer, for a configuration of doubles.

If you have a triples you would obtain a third lateral acceleration, "ay3", corresponding to the third roll unit, i.e., the last dolly-semitrailer.

You can modify the form of the graph. The following keys are the controls for the graph:

- Up arrow (\uparrow) key, scrolls the "Y" axis upward.
- Down arrow (\downarrow) key, scrolls the "Y" axis downward.
- PgUp key (page up), scrolls the "X" axis forward.
- PgDn key (page down), scrolls the "X" axis backward.
- RETURN key (\downarrow), shifts the cross cursor among the different curves, and indicates on the lower view port the legend of the curve selected. The "Y" and "X" values at the position of the cursor are shown on the same port.
- Right (\rightarrow) and left (\leftarrow) arrow keys, move the cross cursor on the current curve right or left and updates its position on the lower view port.
- The + (plus) or - (minus) keys hit either once or twice and followed by the letter X or Y will zoom the respective axis up or down.
- \mathbf{P} (or \mathbf{p}), followed by a \mathbf{W} (or \mathbf{w}) for wide, or a \mathbf{T} (or \mathbf{t}) for tall, will print the current chart.
- End key, gets you out of the chart and sends you to the plot menu, screen \#9.

Exit to Main Menu

Selecting this option will return the user to screen \#5 where further calculations may be made or the user may QUIT the program.

FILE NAME: E:29'DEL FROL

Information for Unit $\# 1$ (Towing Unit.)
 General Information

Total Weight $=16200.00 \mathrm{Lbs}$
Total C.E. Height $=40.00$ inches
Total Number of $A x l e s=2$
Axles Information, Unit \# $\#$
Axle \# 1
Axle loed $=1000.00 \mathrm{Lbs}$
Treck Width of the Axie $=80.00$ inches
Mass of the Axle $=1200.00 \mathrm{Lb}=$
Foll Center Height $=19.00$ inches
Suspension Stiffness (per Spring) $=1200.00 \mathrm{Lbs}$ (in Spacing between Suspension Springs $=2.00$ inches
Ausiliary Foll Stiffness = 8700.00 in-lb/deg
Tire Information
Totel Number of Tires on the fxle $=2$
Vertical Stiffness of a Tirg $=4500.00 \mathrm{Lbs}$ in Fedius of a Tire $=20.00$ inches

ANㅡㄹ 2
Axie load $=19000.00 \mathrm{Lbs}$
Tract Width of the Axie $=72.00$ inches
Mass of the Axie $=2300.00 \mathrm{Lts}$
Foll Center Height $=27.00$ inches
Suspension Stiffness (per Spring) $=5500.00 \mathrm{Lbs} / \mathrm{in}$
Specing between Suspension Springs = 30.00 inches
Aumiliary Foll Stiffness = 11000.00 in-lb/deg
Tire Information
Total Number of Tires on the Axie $=4$
Verticel Stiffness of a Tire $=4500.00 \mathrm{Lbs} / \mathrm{in}$
Radjus of a Tire $=20.00$ inches

FILE NAME:E:28:DEL FROL

```
Information for Unjt # 2 (Semitreiler)
General intormation
```

Total weight $=2960$ ou Lbs
Toted C E. Height $=78.3 \mathrm{inches}$
Totel Humber of $A x l e s=1$

Akles Informationg unit H 2
Axle \# 1

Tract Width of the $A x l e=78.00$ inches
Mess of the Axle $=$ - 5000 Lb
Foll Center Heinht $=27.00$ inches
GuEpension Stiffness (per Spring) = 5EOO. Og Lbs/in
Spacing between Euspension Eprings $=44$ oo inches
Auxiliary Foll Etiffness = 11000,00 in-lt/deg
Tire Information
Total Number of Tires on the Axle $=4$
Vertical Etiffness of e Tire = 4EOGOO Ltsin
Fedjus of a Tire $=20.00$ jnches

FILE NAME:E:2解DEL, ROL

```
Informmtion for Unit # = (Dolly)
General Information
```

Total Weight $=$ EGOQ00 Lbs
Totel C.E. Height $=2 G_{0}$ O inches
Total Number of $A \times 1 E s=1$
Axles Information: Unit \# Z
Ax AE \# 1
Avle load = 17000.00 LhE
Tract width of the $A \times l e=78.00$ inches
Mass of the $A x l e=1500.00 \mathrm{Lb}=$
Foll Center Height $=27.00$ inches
Suspension Stiffness (per Spring) = 5500.00 Lbstin
Eparing between Suspension Springs = 44.00 inches
Auxiliary Foll Stiffness = 11000.00 in-Ib/deg
Tire Information
Totel Number of Tires on the Axle $=4$
Uerticel Stiffness of e Tire = 4500.00 Lbsin
Fiedius of a Tire $=20.00$ inches

Information for Unit H $_{\text {f }} 4$ (Semitrailer)
 General Informetion

Totei beight = EDGQ.0 Lbs
Total ©. E . Height $=79.01$ inches
Totel Number of $A \times l e s=1$

Axjes Informations Unit 拼 4
Axie $\# 1$
AKIE lode $=1700.0$ Lhs
Trect width of the Axle $=78 . \mathrm{g}$ inches
mas of the A\%le $=15000 \mathrm{Lbs}$
Foll Center Height $=27.00$ inches
Suspension Stiffness (per Spring) $=$ SEOO. OO Lbs/in
Spating between Suspension Spmings $=44.0 \mathrm{inches}$
Auriliary Roll Stiffness = 11000:00 in-lb/geg
Tire Information
Totel Number of Tires on the Axle $=4$ Vericel Etiffness of a Tire = 4500.00 Lbs/in Redius of a Tire $=$ Qoo inches

STATIC FOL MODEL
FILE NAME:E:2Q'DBL. ROL

Whit	Axie	Unspruno	Angles (rad)	
			Gprung	Total
1	1.	. 00000	. 00000	, 00000
1	2	. 0000	.00000	- 00000
2	1	. 00000	. 00000	, 00000
\%	1	. 00000	. 00000	. 00000
4	1	. 0000	.00000	. 00000

Lati
Transfer
(Las)
$: 00$
$: 00$
$: 00$
$: 00$
$: 00$

Lod
Roll Angies (rad

Unit	$A x I=$
1	1
1	2
2	1
	1
4	1

Lateral

Unit NO	AniENO
1	2
2	\vdots
	1
4	1

Fioll Angle (rad)
Acceleration (g's)
.09100

- 4.526
.07600
.40 Bi
$=07500$
.07500
$=44374$
.44374
Latexal Acoeleration (gs) us Roll Angle (xad)

Lateral Acoeleration 2(grs) us Holl Angle (rad)

Lateral Accelemations (9 's) us Roll Angle (xad)

Quick Reference Card.

HANDLING V2.0

A) General Information:

To Run The Program Type: HANDLING

Files required for proper function:

- HANDLING.EXE
-AXIS
- HALO****.DEV
-HALO++++.PRN
- HARDWARE.SET
**** =Name of the Graphics board,e.g,HERC
$++++=$ Name of the printer device, e.g, EPSN.
B) General Commands:

1) EDIT-VIEW DATA:

PgUp=Page Up
$\mathrm{PgDn}=$ Page Down
${ }^{\prime} T^{\prime}=$ Upper Edit Field

- or $\downarrow=$ Lower Edit Field
$\mathrm{Ctrl} \rightarrow=$ Right Edit Field (column)
$\mathrm{Ctrl} \leftarrow=$ Left Edit Field (column)
End=Accept or Continue
Esc=Exit to Main menu
$\leftarrow=$ Scrolls cursor to left on current field
$\rightarrow=$ Scrolls cursor to right on current field

3) PLOTS:

a) Por p followed by: W or $w=$ Wide print out T or $\mathrm{t}=$ Tall print out
b) S or s : Enter new Axes limits. Esc will return to the Plot menu.
c) End exits to the Plot menu.
d) \rightarrow and \leftarrow : Move the cross cursor rigth and left.
f) $ل$ (RETURN key): Shifts the cross cursor among the different curves.
g) \upharpoonright and $\downarrow:$ Scroll the Y axis up and down
h) PgUp and PgDn : Scroll the X axis right and left.
i) To zoom in or out: Hit the + or - keys (once or twice) followed by the axis to zoom (X or Y).
e) $\mathrm{Ctrl} \rightarrow$ or $\mathrm{Ctrl} \leftarrow$ move the cross cursor right and left at higher increments.

1) RUNNING THE PROGRAM AND SELECTING NEW DATA.

To start running the program insert the program disk in any drive and then type:

HANDLING

After few seconds the following message appears on the screen (see screen \#1 below)

To continue simply hit any key on the keyboard.

The menu to select the source of input appears next, screen \#2. Make your selection by pressing the up (\uparrow) and down (\downarrow) arrow keys and then RETURN (\downarrow) or End.

ENTER DATA FROM:

KEYBOARD
FILE

Screen \#2

If your selection was "FILE", the following screen appears to enter the drive from which data will be entered.

Screen \#3

One more time, make your selection and press the End key. All the files available on that drive will be listed on the screen so that you can select one to be read, see screen \#4.

```
28'DBL.HND
```


Screen \#4

The file selection is made by pressing the following keys:

- RETURN key (\downarrow) or the Ctrl plus the right arrow (\rightarrow) key to select forward
- Ctrl plus the left arrow (\leftarrow) key to select backwards, and
- End to complete the selection.

For "KEYBOARD" selection see the "EDIT-VIEW DATA" section.

2) EDIT-VIEW DATA

Once data has been read into memory, the main selection menu appears (screen \#5.)

Screen \#5

From this menu we could:

- Enter new data. This would return us to screen \#2 (above.)
- Edit and view the current data set (explained in this section.)
- Calculate, which would further take us to another menu to select the type of calculation.
- Print data, that would send to the printer the current data set.
- Save data, which would allow us to save the current or modified data set into a file.
- Quit, that would return us to the operating system shell.

The way this program displays data is called "Page Editing", which shows the information for each unit on a screen page. We would have as many pages as number of units on the vehicle.

The controls for page editing are the following:

- Up arrow (\uparrow) key, moves the cursor to the upper next position.
- Down arrow (\downarrow) key, moves the cursor to the lower next position.
- PgUp key (page up), returns to the previous page.
- PgDn key (page down), advances one more page.
- RETURN key ($ل$), has the same function as the down arrow key.
- Right (\rightarrow) and left (\leftarrow) arrow keys, moves the text cursor on the current edit field. This is used to modify the current value.
- Esc key exits to the main menu at any point during the page editing session.
- End key, gets you out of the Edit mode if you are in the last page; otherwise, has no effect.

If you had selected to enter data from the keyboard, a prompt requesting the number of units appears first, and then the remaining data is entered by page editing.

3) PRINT DATA

This option will allow the user to send the data set to the printer. A prompt appears to check whether the printer is connected and turned on. If so, just hit the End key. A sample data set is included at the end of this documentation.

4) SAVE DATA

Choosing this option allows the user to save a data set into a file. The computer prompts the user for the drive to where data will be stored, see screen \#3, and then prompts for the file name, see screen \#6.

Screen \#6

If the file already exists a message indicating so will be printed on the screen, allowing the user to either replace the old file with the new file, or enter a different name for the new file.

Note that the extension "HND" is added to all the files. This is an identifier of files to this program.

5) CALCULATE

Selecting this option will display the following, see screen \#7.

Screen \#7

These will be the increments used for the computations. The default values are equal to 0.025 g's, and 55 mph . Once you enter the desired numbers press the End key.

The following prompt will ask whether you want to print the results as they are calculate or not. If the answer is " Y " or " y " then make sure that the printer is turned on. If the answer is " N " or " n " the results will appear on the screen only.

Calculations are stopped when an axle lifts off the ground.
After the calculations end the following screen appears.
\square
Screen \#8

If your answer is "yes" just press the End key, and the following menu will appear (Screen \#9)

SELECT PLOT

Handling Diagram
Critical Velocity (UC)
Steering sensitivity vs. lateral acceleration
Steering angle vs. lateral acceleration
EXIT TO MAIN MENU

Screen \#9

Once you have made your selection a plot will appear on the screen. Some examples are included at the end of this documentation.

The first plot is the handling diagram. Lateral acceleration is plotted versus ($\operatorname{Lr}^{*} \mathrm{r} / \mathrm{u}-$ delta), where:

- Lr is the reference wheelbase (tractor wheelbase),
$-r$ is the yaw rate,
$-u$ is the forward velocity, and,
- delta is the steering angle.

The second plot (critical velocity) is only obtained if there is one, that is if the vehicle becomes unstable. A default value of 600 mph is given to indicate stability.

You can modify the form of the graph. The following keys are the controls for the graph:

- Up arrow (\uparrow) key, scrolls the "Y" axis upward.
- Down arrow (\downarrow) key, scrolls the " Y " axis downward.
- PgUp key (page up), scrolls the "X" axis forward.
- PgDn key (page down), scrolls the "X" axis backward.
- RETURN key (\downarrow), shifts the cross cursor among the different curves, and indicates on the lower view port the legend of the curve selected. The " Y " and " X " values at the position of the cursor are shown on the same port.
- Right (\rightarrow) and left (\leftarrow) arrow keys, move the cross cursor on the current curve right or left and updates its position on the lower view port.
- The + (plus) or - (minus) keys hit either once or twice and followed by the letter X or Y will zoom the respective axis up or down.
- P (or p), followed by a \mathbf{W} (or w) for wide, or a T (or \mathbf{t}) for tall, will print the current chart.
- End key, gets you out of the chart and sends you to the plot menu, screen \#9.

Exit to Main Menu

Selecting this option will return the user to screen \#5 where further calculations may be made or the user may QUIT the program.

FILE NAME:A:28'DEL. HND

General Information
Total Weight $=16400.00$ Lbs
Totel E.G. Height $=40.00$ inches
Total Number of $A \times l e s=2$
Distance from C.G. to Fear Articulation Foint $=58.32$ inches
Steering System Information
Steering Gear Fiatio $=30.00$
Steering Stiffness $=11000.00 \mathrm{in-1b} / \mathrm{deg}$
Tie Fod Stiffness $=11000.00$ in-lb/deg
Mechanical $\operatorname{Trail}=1.000$
Aligning Moment per Tire $=1600.00$ in-lb/deg
Anles Information, Unit \# 1
Akle \# 1
C.G - Axle Distance (negative if rear of CG) $=5 \mathrm{~S} 28$ inches

Axle 10 ad $=10000.00 \mathrm{Lbs}$
Track width of the $A \times l e=80.00$ inches
Mass of the $A x l e=1200.00 \mathrm{Lbs}$
Foll Center Height $=18.25$ inches
Suspension Stiffness (per Spring) $=1400.00 \mathrm{Lbs} / \mathrm{in}$
Spacing between Suspension Springs $=3.00$ inches
Auxiliary Foll Stiffness $=8700.00$ in-lb/deg
Tire Information
Total Number of Tires on the Axle $=2$
Vertical Stiffness of a Tire $=4500.00$ Lbs/in
Fadius of a Tire $=20.00$ inches Nominal Load of the Tire $=6040.00$ Lbs

Cornering Stiffness Table
Vertical Force (Lbs) Cornering Stiffness (Lb/deg) $4000.00 \quad 654.08$ 5000.00 769.20 6000.00 85. 11

Axle \# 2
C. G - Axle Distance (negative if rear of [G) = -bG. 72 inches AxLE load $=17000.00 \mathrm{Lbs}$
Track Width of the Axle $=72.00$ inches
Mass of the Axle $=2500.00 \mathrm{Lbs}$
Foll Center Height $=$ ST. OO inches
Suspension Stiffness (per Spring) $=10600.00 \mathrm{Lbs} / \mathrm{in}$
Spacing between Suspension Springs $=38.00$ inches

```
Ausiliary Foll Stiffness = 30000.00 in-lb/deg
    Tire Information
Total. Number of Tires on the Axle = 4
Vertical Stiffness of a Tire = 4500.00 Lbs/in
Fadius of a Tire = 20.00 inches
Nominal Load of the Tire = 6040.00 Lbs
    Cornering Stiffness Table
    Vertical Force (Lbs) Cornering Stiffness (Lb/deg)
        4000.00
        5000.00
                                654.08
                                769.20
    6000.00
                        85.3.11
```

 Information for Unit \# 2 (Semitrailer)
 General Information
    ```
Totel Weight = 29600.00 Lbs
Total G.G. Height = 78.37 inches
Total Number of Axles = 1
Distance from C.G. to Fiear Articulation Foint = 142.90 inches
Distance from C.G. to Front Articulation Foint = 157.10 inches
```

Axles Information, Unit \# 2
Axle \# 1
C. B - Axle Distance (negative if rear of CG) $=-116.50$ inches

Axle load $=17000.00 \mathrm{Lbs}$
Tract: Width of the Axle $=78.00$ inches
Mass of the $A \times l e=1500.00$ Lbs
Foll Center Height $=27.00$ inches
Suspension Stiffness (per Spring) $=8500.00$ Lbs/in
Spacing between Suspension Springs $=44.00$ inches
Auxiliary Foll Stiffness $=9000.00$ in-lb/deg
Tire Information
Total Number of Tires on the Axle $=4$
Vertical Stiffness of a Tire $=4500.00 \mathrm{Lbs} / \mathrm{in}$
Fadius of a Tire $=20.00$ inches
Nominal Load of the Tire $=6040.00$ Lbs
Cornering Stiffness Table
Vertical Force (Lbs) Cornering Stiffness (Lb/deg)
$4000.00 \quad 654.08$ $5000.00 \quad 769.20$ $6000.00 \quad 853.11$

```
Information for Unit # S (Dolly)
General Information
```

Total Waight $=2500.00$ Lbs
Total C.G. Height $=29.30$ inches
Total Number of $A \times 1 E s=1$
Distance from C.G. to Fiear Articulation Foint $=$. oo inches

```
Distance from C.G. to Front Articulation Foint = 7S.20 inches
```

 Axles Information, Unit \# シ
 Axle \# 1
Cn - Axle Distence (negative if rear of CG) = . OO inches
AKle load $=17000.00 \mathrm{LbS}$
Track: Wiath of the Axle $=78.00$ inches
Mass of the $A x l e=1500.00$ Lbs
Foll Eenter Height $=27.00$ inches
Suspension Stiffness (per Spring) $=8500.00$ Lbs/in
Spacing between Suspension Springs $=44.00$ inches
Auxiliary Foll Stiffness $=9000.00$ in-lb/deg

Tire lnformation
Total Number of Tires on the Axle $=4$
Vertical Stiffness of a Tire $=4500.00 \mathrm{Lbs} / \mathrm{in}$
Fadius of a Tire $=20.00$ inches
Nominal Load of the Tire $=6040.00 \mathrm{Lb}$
Cornering Stiffness Table
Vertical Force (Lbs) Cornering Stiffness (Lb/deg)
$4000.00 \quad 654.08$
$5000.00 \quad 769.20$
6000.0085 .11
Information for Unit \# 4 (Semitrailer)
General Information

Total Weight $=31500.00$ Lbs
Total C.G. Height $=79.01$ inches
Tote] Number of $A \times l e s=1$
Distance from C. G. to Fear Articulation Foint $=$. Oo inches
Distance from C.G. to Front Articulation Foint $=147.65$ inches
Axles Information, Unit \# 4
Axle \# 1
C. G - Axle Distance (negative if rear of CG) $=-125.95$ inches

Axle load $=17000.00$ Lbs
Tract: Width of the $A x l e=78.00$ inches
Mass of the $A \times l e=1500.00$ Lbs
Foll Center Height $=27.00$ inches
Suspension Stiffness (per Spring) $=8500.00 \mathrm{Lbs} / \mathrm{in}$
Spacing between Suspension Springs $=44.00$ inches
Ausiliary Foll Stiffness = 9000.00 in-lb/deg
Tire Informetion
Totel. Number of Tires on the Axle $=4$
Vertical Stiffness of a Tire $=4500.00$ L匕s/in
Fiadjus of a Tire $=20.00$ inches
Nominal Load of the Tire $=6040.00$ Lbs

Cornering Stiffness Table
Vertical Force (Lbs) Cornering Stiffness (Lb/deg)
$4000.00 \quad 654.08$
$500.00 \quad 769.20$

STEADY TURN MODEL
FILE NAME:A:28'DEL. HND

Load
Fioll Angles (rad)

| Unit | ANle |
| :---: | :---: |
| 1 | 1 |
| 1 | 2 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |

Unsprung
.00237
Sprung Total
0128 -01189
$.00519 \quad .01087 \quad .01189$
$.00526 .01108 \quad .01263$
$.00526 \quad .01108 \quad .0126$.

Transfer
(Lbs)
4こ1.07
2160.71
182. . 14
1847.01
1847.01

Lateral Acceleration (g` 5)
.10000
.10000
.10000
.10000
.10000

```
*Effective Wheelbase (Le) = 120.0000 in
*Fiate of Change of Le = .0763 in/s
*Understeer Gradient (Ue) = .0596 rad/s
*Rate of Change of Ue = -.0456 rad
*Critical Velocity = 600.0000 mph
*Steer Angle (delta) = .0109 rad
*Fite of Change of delta = .1045
*Force at the Fifth Wheel = 1260.38 Lbs
```

| Unit | Axle | Fioll
 Unsprung | Angles (rad) | | Load Transfer (Lbs) | Lateral Acceleration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Sprung | Total | | (g's) |
| | 1 | . 00.559 | . 01923 | . 01784 | 646.61 | . 15000 |
| 1 | 2 | . 01000 | . 01475 | . 01784 | 3241.36 | . 15000 |
| 2 | 1 | . 00779 | . 01630 | . 01784 | 2734.72 | . 15000 |
| 3 | 1 | . 00789 | . 01662 | . 01895 | 2770.51 | . 15000 |
| 4 | 1 | . 00789 | . 01662 | . 01895 | 2770.51 | . 15000 |
| | *Reference Wheelbase (Lr) = 120.00 in | | | | | |
| | *Effective Wheelbase (Le) $=120.0000$ in | | | | | |
| | *Rate of Change of Le $=-.2289 \mathrm{in} / \mathrm{g}$ | | | | | |
| | *Understeer Gradient (Ue) $=0.0566 \mathrm{rad} / \mathrm{g}$ | | | | | |
| | *Rite of Change of Ue $=-.0739$ rad | | | | | |
| | *Critical Velocity $=600.0000 \mathrm{mph}$ | | | | | |
| | *Steer Angle (delta) = . 0159 rad | | | | | |
| | *Fite of Change of delta $=0.0950$ | | | | | |
| | *hate of Change of delta $=$.0950 | | | | | |

| Unit | Axle | Fioll | Angles (| | Load Transfer | $\begin{gathered} \text { Lateral } \\ \text { Acceleration } \\ (g ` s) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Unsprung | Sprung | Total | (Lbs) | |
| 1 | 1 | . 00479 | . 02565 | . 02379 | 862.14 | . 20000 |
| 1 | 2 | . 01334 | . 01967 | . 02379 | 4321.81 | . 20000 |
| 2 | 1 | . 01039 | . 02174 | . 02379 | 3646.29 | . 20000 |
| 3 | 1 | . 01052 | . 02215 | . 02527 | 3694.01 | . 20000 |
| 4 | 1 | . 01052 | . 02215 | . 02527 | 3694.01 | . 20000 |
| | *Fieference Wheelbase (Lr) $=120.00$ in | | | | | |
| | *Effective Wheelbase (Le) $=120.0000$ in | | | | | |
| | *Riate of Change of Le $=-.0763 \mathrm{in} / \mathrm{g}$ | | | | | |
| | *Understeer Gradient (Ue) $=0.0521 \mathrm{rad} / \mathrm{s}$ | | | | | |
| | *Rate of Change of Ue $=-.1101$ rad | | | | | |
| | *Critical Velocity $=600.0000 \mathrm{mph}$ | | | | | |
| | *Steer Angle (delta) $=.0203$ rad | | | | | |
| | *Fiate of Change of delta $=0.0795$ | | | | | |
| | *Force at the Fifth Wheel $=2520.76 \mathrm{~L}$ | | | | | |

Fioll Angles (rad)

| Unit | $A \times l e$ |
| :---: | :---: |
| 1 | 1 |
| 1 | 2 |

Unsprung

$$
\begin{aligned}
& .00599 \\
& .01667
\end{aligned}
$$

Spruns
Total .03206 .02459

Load
Transfer (Lbs)
1077.68
5402.26

Lateral
Acceleration
(g's)
.25000
.25000

| 2.01299 | 1 | .02717 | .02973 | 4557.86 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | .01316 | .02769 | .03158 | 4617.51 |
| 4 | | .01516 | .02769 | .03158 | 4617.51 |

```
*)
*Effective Wheelbase (Le) = 120.0000 in
*Fate of Change of Le = .0000 in/g
*Understeer Gradient (Ue) = .0454 rad/s
*Rate of Change of Ue = -. 1602 rad
*Critical Velocity = 600.0000 mph
*Fate of Change of delta = .0547
*Force at the Fifth Wheel = 3150.95 Lbs
```

Foll Angles (rad)

| Unit | $A \times l e$ |
| :---: | :---: |
| 1 | 1 |
| 1 | 2 |
| 2 | 1 |
| \vdots | 1 |
| 4 | 1 |

| Roll | Angles (rad) | |
| :---: | :---: | :---: |
| Unsprung | Sprung | Total |
| .00718 | .0 .847 | .05568 |
| .02001 | .02950 | .03568 |
| .01558 | .03260 | .03568 |
| .01579 | .05325 | .03790 |
| .01579 | .03 .523 | .03790 |

Load
Transfer
(Lbs)
1293.22
6482.72
5469.43
5541.02
5541.02

Lateral Acceleration
(g`s)
.30000
. 30000
.30000
.30000

- 30000

```
*Fieference Wheelbase (Lr) = 120.00 in
*Effective Wheelbase (Le) = 120.0000 in
*Fiate of Change of Le = -.1526 in/s
*Understeer Gradient (Ue) = .0357 rad/s
*Rate of Change of Ue = -.2327 rad
*Critical Velocity = 66.1754 mph
*Steer Angle (delta) = .0255 rad
*Fiate of Change of delta = .0152
*Force at the Fifth Wheel = $781.14 Lbs
```

Load
Fioll Angles (rad)
Unsprung Sprung Total
.00838 .04488 .04163
.02354 .03442 . 04163
.01818 .03804 .04163
.01842 . 03877.04422
.01842 .03877 .04422

Transfer
(Lbs)
1508.75
7563.17
6.581 .00
6464.52
6464.52

Lateral
Acceleration

(9 's)

35000
.35000
.35000
. 55000
.35000

```
*Reference Wheelbase (Lr) = 120.00 in
*Effective Wheelbase (Le) = 120.0000 in
*Rate of Change of Le = -. 1526 in/g
*Understeer Gradient (Ue) = .0214 rad/g
*Rate of Change of Ue = -. 3461 rad
*Critical Velocity = 38.7166 mph
*Steer Angle (delta) = .0248 rad
*Fiate of Change of delta = -.050S
*Force at the Fifth Wheel = 4411.3.E Lbs
```

| | | Foll | Angles (| | Load Transfer | Lateral Acceleration | |
|---|---|---|---|---|---|---|---|
| Unit | Axle | Unsprung | Sprung | Total | (Lbs) | (S^{\prime} 5) |
| 1 | 1 | . 00958 | . 05129 | . 04757 | 1724.29 | .40000 |
| 1 | 2 | . 02668 | . 0.3754 | . 04757 | 8643.62 | . 40000 |
| 2 | 1 | . 02078 | . 04.347 | . 04757 | 7292.58 | .40000 |
| \pm | 1 | . 02105 | . 04431 | . 05054 | 7588.02 | . 40000 |
| 4 | 1 | .02105 | .04431 | . 05054 | 7388.02 | .40000 |
| | | *Feference Wheelbase $(L r)=120.00$ in | | | | |
| | | *Effective Wheelbase (Le) $=120.0000$ in | | | | |
| | | *Riate of Change of Le $=$. $0000 \mathrm{in} / \mathrm{g}$ | | | | |
| | | *Understeer Gradient (Ue) $=-.0002 \mathrm{rad} / \mathrm{s}$ | | | | |
| | | *Rate of Change of Ue $=-.5395$ rad | | | | |
| | | *Critical Velocity $=26.3144 \mathrm{mph}$ | | | | |
| | | *Steer Angle (delta) = .0197 rad | | | | |
| | | *Fiate of Change of delta $=-.1666$ | | | | |
| | | *Force at the Fifth Wheel = | | | 5041.52 Lbs | |
| | | Axle \# 2 of Unit \# 1 has Lift Off | | | | |
| | | Fioll Angles (rad) | | | Load Transfer | Lateral |
| | | | | | Acceleration |
| Unit | Axle | Unsprung | Sprung | Total | | (Lbs) | (g's) |
| 1 | 2 | . 03001 | . 04426 | . 05.55 | 9724.08 | .45000 |

Critical Uelocity, Uc (mph) us Latemal Acoelemation (gs) A: 2B' DBL, HPD

| | 1.15 | 2 | 3 | 55^{5} |
| :---: | :---: | :---: | :---: | :---: |
| Uc | =600. 0000 mph | \boldsymbol{A} | $=$ | - BRADAg |

A: 28' DBL. HND

| Sensitivity | $=$ | $.1113 \mathrm{rad} / \mathrm{g}$ | Ay | $=$ | . 000009 |
| :---: | :---: | :---: | :---: | :---: | :---: |

A: 28' DELL. HMD

| 0 | | . 1.5 | 2 | 25 | 3 | 35 | 45 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| delta | $=$ | . 0000nad | A | | = | . 00000g | |

Lateral AcGeleration (grs) vs Lump/u-deltat A: 28"DBL.HHD

Mountain Descent Model

Quick Reference Card. BRAKE TEMP, MOUNTAIN DESCENT V1.0

A) General Information:

To Run The Program Type: BRAKETEM
Files required for proper function:

- BRAKETEM.EXE
-AXIS
-HALO****.DEV
-HALO++++.PRN
- HARDWARE.SET
**** =Name of the Graphics board,e.g,HERC $++++=$ Name of the printer device, e.g, EPSN.
B) General Commands:

1) EDIT-VIEW DATA:

PgUp=Page Up
PgDn=Page Down
$T=$ Upper Edit Field
\downarrow or $\downarrow=$ Lower Edit Field
$\mathrm{Ctrl} \rightarrow=$ Right Edit Field (column)
$\mathrm{Ctrl} \leftarrow=$ Left Edit Field (column)
End=Accept or Continue
Esc=Exit to Main menu
$\leftarrow=$ Scrolls cursor to left on current field
$\rightarrow=$ Scrolls cursor to right on current field

3) PLOTS:

a) P or p followed by: W or $\mathrm{w}=$ Wide print out T or $\mathrm{t}=$ Tall print out
b) S or s: Enter new Axes limits. Esc will return to the Plot menu.
c) End exits to the Plot menu.
d) \rightarrow and \leftarrow : Move the cross cursor rigth and left.

2) CALCULATE:

End=OK or Accept
Esc=Exit to Main menu
e) $\mathrm{Ctrl} \rightarrow$ or $\mathrm{Ctrl} \leftarrow$ move the cross cursor right and left at higher increments.

1) RUNNING THE PROGRAM AND SELECTING NEW DATA.

To start running the program insert the program disk in any drive and then type:

BRAKETEM

After few seconds the following message appears on the screen (see screen \#1 below)

Screen \#1

To continue simply hit any key on the keyboard.
The menu to select the source of input appears next, screen \#2. Make your selection by pressing the up (\uparrow) and down (\downarrow) arrow keys and then RETURN (\downarrow) or End.

ENTER DATA FROM:
KEYBOARD
FILE

Screen \#2
If your selection was "FILE", the following screen appears to enter the drive from which data will be entered.

Screen \#3

One more time, make your selection and press the End key. All the files available on that drive will be listed on the screen so that you can select one to be read, see screen \#4.

28'DBL. BKT

Screen \#4

The file selection is made by pressing the following keys:

- RETURN key (\downarrow) or the Ctrl plus the right arrow $(\rightarrow$) key to select forward
- Ctrl plus the left arrow (\leftarrow) key to select backwards, and
- End to complete the selection.

For "KEYBOARD" selection see the "EDIT-VIEW DATA" section.

2) EDIT-VIEW DATA

Once data has been read into memory, the main selection menu appears (screen \#5.)

From this menu we could:

- Enter new data. This would return us to screen \#2 (above.)
- Edit and view the current data set (explained in this section.)
- Calculate, which would further take us to another menu to select the type of calculation.
- Print data, that would send to the printer the current data set.
- Save data, which would allow us to save the current or modified data set into a file.
- Quit, that would return us to the operating system shell.

The way this program displays data is called "Page Editing", which shows the information for each unit on a screen page. We would have as many pages as number of units on the vehicle.

The controls for page editing are the following:

- Up arrow (\uparrow) key, moves the cursor to the upper next position.
- Down arrow (\downarrow) key, moves the cursor to the lower next position.
- PgUp key (page up), returns to the previous page.
- PgDn key (page down), advances one more page.
- RETURN key (ل), has the same function as the down arrow key.
- Right (\rightarrow) and left (\leftarrow) arrow keys, moves the text cursor on the current edit field. This is used to modify the current value.
- Esc key exits to the main menu at any point during the page editing session.
- End key, gets you out of the Edit mode if you are in the last page; otherwise, has no effect.

If you had selected to enter data from the keyboard, a prompt requesting the number of units appears first, and then the remaining data is entered by page editing.

3) PRINT DATA

This option will allow the user to send the data set to the printer. A prompt appears to check whether the printer is connected and turned on. If so, just hit the End key. A sample data set is included at the end of this documentation.

4) SAVE DATA

Choosing this option allows the user to save a data set into a file. The computer prompts the user for the drive to where data will be stored, see screen \#3, and then prompts for the file name, see screen \#6.

Screen \#6

If the file already exists a message indicating so will be printed on the screen, allowing the user to either replace the old file with the new file, or enter a different name for the new file.

Note that the extension "BKT" is added to all the files. This is an identifier of files to this program.

5) CALCULATE

Selecting this option will display the following menu, see screen \#7.

Screen \#7

From this menu, the method of calculation to be performed may be selected by using the control explained for the previous menus (above).

The following prompt will ask whether you want to print the results as they are calculate or not. If the answer is " Y " or " y " then make sure that the printer in turned on. If the answer is " N " or " n " the results will appear on the screen only.

After the calculations end the following screen appears.

Screen \#8

If your answer is "yes" just press the End key, and the following menu will appear (Screen \#9)

Screen \#9

Once you have made your selection, another menu will appear to allow you to choose which variables are to be plotted. After the variables are chosen, a plot will appear on the screen. An example is included at the end of this documentation.

You can modify the form of the graph. The following keys are the controls for the graph:

- Up arrow (\uparrow) key, scrolls the "Y" axis upward.
- Down arrow (\downarrow) key, scrolls the "Y" axis downward.
- PgUp key (page up), scrolls the "X" axis forward.
- PgDn key (page down), scrolls the "X" axis backward.
- RETURN key (\downarrow), shifts the cross cursor among the different curves, and indicates on the lower view port the legend of the curve selected. The " Y " and "X" values at the position of the cursor are shown on the same port.
- Right (\rightarrow) and left (\leftarrow) arrow keys, move the cross cursor on the current curve right or left and updates its position on the lower view port.
- The + (plus) or - (minus) keys hit either once or twice and followed by the letter X or Y will zoom the respective axis up or down.
- P (or p), followed by a \mathbf{W} (or \mathbf{w}) for wide, or a \mathbf{T} (or \mathbf{t}) for tall, will print the current chart.
- End key, gets you out of the chart and sends you to the plot menu, screen \#9.

Exit to Main Menu

Selecting this option will return the user to screen \#5 where further calculations may be made or the user may QUIT the program.

VEHICLE FAFAMETERS

```
mTotal Weaght (1b) = Foopo,00
*Frontel Arez (Ft+2)= 100n00
    *Totel Humber af Axles= = ?
    *TyE of TGE=: 2
        |=ETAS FLY = = FADIALS)
```


FOAD AND AMBIENT FAFAMETEFG

NAmbient TEmpereture (F) $=90.00$
*Air Dreg Gaetfjeient = ubgo
*Fom Gurface Coefticient $=1.2000$
Whmaer of Faints in Foed Frofile $=10$
Nomber of Fointe in Aux, Fetarding Tetole $=2$

FGDMFFAEE DOWN EGE=EXIT EnGFFAGE DOWN
total adoilyaf fetabotng fouef table

VELOCITY (MTH)
. 00
40.00

FETAFDING FOWEF (HF)
.0000
100.0000

FGUP:FAGE UF FGDMEFAGE DOWN End=FGDM Esc=EXIT

BRAKE FAFAMETEFS

| TO (F) | Thermel Capewtty MCR (HF-HFAF) | 61 | Cool ing (HF / F) | Coefficients
 K2 (HF/F-mph) | FFOFOFTTONING |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 100.00 | . 0018 | | .0100 | . 0000 e | . 0556 |
| 100.00 | . 001 | | .0100 | . 00008 | n 厄巨¢ |
| 10.00 | - oel | | .0100 | . 000008 | . 056 |
| 100.00 | . 001 E | | .0100 | .000208 | . 056 |
| 100.00 | . 0001 S | | .0100 | - 00008 | , 056 |
| 100.00 | .00¢ | | .0100 | . 00008 | .0556 |
| 100.00 | . 00818 | | .0100 | .000208 | . 055 |
| 100.00 | . 00813 | | .0100 | .000208 | . 056 |
| 100.00 | . 0081 S | | .0 .100 | .000208 | .056 |
| 100.00 | . 0081 E | | .0100 | . 000208 | . 0556 |
| 100.00 | . 00813 | | .0100 | .000208 | . 0556 |
| 100.00 | - 008t | | .0100 | .000208 | . 0556 |
| 100.00 | . 00813 | | .0100 | .000208 | . 0556 |
| 100.00 | .0013 | | .0100 | .000208 | . 0556 |
| 100.00 | .001E | | .0100 | . 000208 | .0556 |
| 100.00 | . oost | | .0100 | .000208 | . 0556 |

FgUp=FAGE UF FGDI:FAGE DOWN EID=FGDN Esc=EXIT

BFARE FAFAMETEFS

| | mel Capawi | Cooli | fricients | |
| :---: | :---: | :---: | :---: | :---: |
| TO (F) | HEp (HF-HF/F) | \&1. (HF / F) | F 2 ($\mathrm{HF} / \mathrm{F}-\mathrm{mph}$) | FFOFOFT IONTNG |
| 100.00 | . 0081 x | .0100 | . 000208 | . 056 |
| 1000 | .091\% | .0100 | . 00020 | . 055 |

FGUP=FAGE UF FGDMFFGE DOWN End=FgDn EEE=EXIT

| DTETANCE (MILES) | ELEVATION (FT) | VELOCITY (MFH) |
| :---: | :---: | :---: |
| - 00 | 1700.00 | 50.00 |
| . 250 | 1615.92 | 49.00 |
| . 500 | 15\%1.04 | 48.00 |
| . 76 | 1446.56 | 47.00 |
| 1.000 | 1362.08 | 46.00 |
| 1.250 | 1277.60 | 45.00 |
| 1.500 | 1193.12 | 44.00 |
| 1.750 | 1108.64 | $4 \mathrm{4}, 00$ |
| 2.000 | 1024.16 | 42.00 |
| 2 EO | 937.68 | 41.00 |

FqUp=FAGE UF FQDn=EXIT ESC=EXIT End=EXIT

MOUNTAIN DESCENT - EFFAKE TEMF. FilE NAME:C:DOUBLE.EFT
TIME HISTOFY OF EFIAKES TEMFEFATURE

Time $=\quad .0000 \mathrm{sec}$
Distance $=\quad .000 \mathrm{Mi}$ Elevation $=1700.00 \mathrm{Ft}$ Velocity $=50.00 \mathrm{MFH}$ Acceleration $=-n 251 E-02$ gs Decel. Demand $=443.1239 \mathrm{HF}$ Total to Br akes $=204.4392 \mathrm{HF}$
Axle No
Axle NO
Axle $\mathrm{E}^{2} \mathrm{No}$

Axle No
4
Axle No
5
Axle No
6
Axle No
7
Axle No
8
Axle No
9

Temp 1 (F) 100.0000

Temp Z (F)
100.0000

Temp 5 (F)
100.0000

Temp 2 (F) 100.000

Temp 4 (F) 100.0000

Temp 6 (F) 100.0000
Temp 7 (F)
100.0000
Temp $9(F)$
100.0000
Temp 11 (F)
100.0000
Temp1
100.0000
Temp 15 (F)
100.0000
Temp 17 (F)
100.0000

Time $=18.1818 \mathrm{sec}$
Distance $=.250 \mathrm{Mi}$
Elevation $=1615.52 \mathrm{Ft}$
Velocity $=49.00 \mathrm{MFH}$
Acceleration $=-.245 E-02$ gs
Decel. Demand $=433.9310 \mathrm{HF}$
Total to Erakes $=202.6926 \mathrm{HF}$

| Temp 1 (F) | Temp 2 (F) |
| :---: | :---: |
| 106.8874 | 106.8874 |
| Temp B (F) | Temp 4 (F) |
| 106.8874 | 106.8874 |
| Temp E (F) | Temp 6 (F) |
| 106.8874 | 106.8874 |
| Temp 7 (F) | Temp 8 (F) |
| 106.8874 | 106.8874 |
| Temp 9 (F) | Templo (F) |
| 106.8874 | 106.8674 |
| Templ1 (F) | Tempie (F) |
| 106.8874 | 106.8874 |
| Temp 13 (F) | Templ 4 (F) |
| 106.8874 | 106.8874 |
| Temp15 (F) | Templ6 (F) |
| 106.8874 | 106.8874 |
| Templ7 (F) | Temple (F) |

Time $=36.7385 \mathrm{sec}$
Distance $=.500 \mathrm{Mi}$
Elevation $=15 \mathrm{S1.04} \mathrm{Ft}$
Velocity $=48.00 \mathrm{MFH}$
Acceleration $=-.240 E-02$ gs
Decel. Demand $=424.7516 \mathrm{HF}$
Total to $\mathrm{Br} a \mathrm{ak}=2=200.8127 \mathrm{HF}$

Axle No
Axle No 2

Axle No Ξ
Axle No 4
Axle No 5
Axle No 6

| Temp 1 (F) |
| :---: |
| 113.6308 |
| Temp B (F) |
| 113.6308 |
| Temp 5 (F) |
| 113.6308 |
| Temp 7 (F) |
| 113.6308 |
| Temp 7 (F) |
| 11.5 .6308 |
| Templ1 (F) |
| 113.6308 |

Temp 2 (F) 113.6308

Temp 4 (F) 113.6508

Temp o (F) 113.6308

Temp 8 (F) 113.608

Templo (F) 11.3.6.308

Templ2 (F) 113.6308
$A \times 1=N o$

Axle No 8
Axle No
9

Temp 13 (F)
Temp14 (F)
11 . 6.308 113.6308

Temp15 (F) 113.6308

Templ7 (F)
$11 \% .6308$

Tempis (F)

 113.6808Temple (F) 113.6308

Time $=55.6859$ sec
Distance $=\quad .750 \mathrm{Mi}$
Elevation $=1446.56 \mathrm{Ft}$
Velocity $=47.00 \mathrm{MFH}$
Acceleration $=-.235 E-02$ gs
Decel. Demand $=415.5862 \mathrm{HF}$
Total to $\mathrm{Brakes}=198.8022 \mathrm{HF}$

| 1 |
| :---: |
| Axle |
| Axle |
| |
| Axle No |
| Axle |
| | |
| |
| 6 |
| xle |
| 7 |

Axle No

| Temp 1 (F) | Temp 2 (F) |
| :---: | :---: |
| 120.2292 | 120.2292 |
| Temp 3 (F) | Temp 4 (F) |
| 120.2292 | 120.2272 |
| Temp 5 (F) | Temp 6 (F) |
| 120.2292 | 120.2292 |
| Temp 7 (F) | Temp 8 (F) |
| 120.2292 | 120.2292 |
| Temp 9 (F) | Templo (F) |
| 120.2272 | 120.2292 |
| Templi (F) | Templ2 (F) |
| 120.2272 | 120.2272 |
| Templs (F) | TEmpl4 (F) |
| 120.2292 | 120.2292 |
| Temp 15 (F) | Temp 16 (F) |
| 120.2292 | 120.2292 |
| Templ7 (F) | Templs (F) |
| 120.2292 | 120.2292 |

Time $=75.0407$ sec
Distance $=1.000 \mathrm{Mi}$
Elevation $=1362.08 \mathrm{Ft}$
Velocity $=46.00 \mathrm{MFH}$

Decel. Demand $=40.43 \mathrm{HF}$
Total to $\mathrm{Brakes}=196.6614 \mathrm{HF}$
Axle No
Axle No
Axle No
Axle No
4
Axle No
Axle No
6 No
Axle No
Axle No
8
Axle No
9

Time $=94.8209 \mathrm{sec}$
Distance $=1.250 \mathrm{Mi}$
Elevation $=1277.60 \mathrm{Ft}$
Velocity $=45.00 \mathrm{MFH}$
Acceleration $=-.225 E-02 \mathrm{gs}$
Decel. Demand $=397.2943 \mathrm{HF}$
Total to Erakes $=194.3541 \mathrm{HF}$
Axle No
1
Axle No
2
Axle No
3
Axle No
4
Axle No
5
Axle No
6
Axle No
7
Axle No
8
Axle No 9

Temp 2 (F) 1356 664
Temp 4 (F) 135.6864

Temp 6 (F) 135.6864

Temp 8 (F) 135.6864

Temp10 (F) 133.6864

Temp 12 (F) 13.66864

Templ4 (F) 13.6864

Temp 16 (F) 133.6864

Temp18 (F) 138.6864

Time $=115.0457$ sec
Distance $=1.500 \mathrm{Mi}$
Elevation $=119 \mathrm{~S} 12 \mathrm{Ft}$
Velocity $=44.00 \mathrm{MFH}$
Acceleration $=-220 E-02$ gs
Decel. Demand $=588.1689 \mathrm{HF}$
Total to Brakes $=192.001 \mathrm{HF}$

| Temp 1 (F) | Temp 2 (F) |
| ---: | ---: |
| 140.106^{9} | 140.5139 |

lemp $\therefore(F)$
140.51 .37

Temp 4 (F)
TEMP 5 (F)
140.5139

Temp 7 (F)
140.51 .39

TEmp 9 (F)
140.5137

Templ1 (F)
140.5159

Templs (F)
140.5139

Temp15 (F)
140.51 .39 140.5189

Axle No Z
Axle No

5 6 7

8 7

Temp 17 (F) 140.5139

```
Time \(=155.735 \mathrm{sec}\)
Distance = 1.750 Mi
Elevation = 1108.64 Ft
Velocity = 43.00 MFH
Acceleration = -.215E-02 gs
```

```
Decel. Demand = 379.0569 HF
Total to Erakes = 189.4866 HF
```


Axle No
1

Axle No 2
Axle No 3
Axle No 4

Temp 1 (F)
147.167E

Temp 3 (F)
147.1673

Temp 5 (F)
147.167E

Temp 7 (F)
147.1673

Temp 9 (F)
147.1673

Templ1 (F) 147.1673

Templs (F) 147.1675

Temp15 (F) 147.1673

Temp 17 (F) 147.1675

Temp 2 (F)
147.167%
Temp 4 (F) 147.1673

Temp 6 (F) 147.167%
Temp B (F) 147.1673

Templo (F) 147.1673

Temp 12 (F) 147.1673

Templ4 (F) 147.167%
Temp16 (F) 147.1673

Temp 18 (F) 147.1673

Time $=156.7118$ sec
Distance $=2.000 \mathrm{Mi}$
Elevation $=1024.16 \mathrm{Ft}$
Velocity $=42.00 \mathrm{MFH}$
Acceleration $=-.210 E-02 \mathrm{gs}$
Decel. Demand $=367.9586 \mathrm{HF}$
Total to Erakes $=186.8509 \mathrm{HF}$

| Temp 1 (F) | Temp 2 (F) |
| :---: | :---: |
| 158.7679 | 153.9677 |
| Temp \vec{B} (F) | Temp 4 (F) |
| 158.9679 | 158.7679 |
| Temp 5 (F) | Temp 6 (F) |
| 153.9677 | 153.7679 |
| Temp 7 (F) | Temp 8 (F) |
| 15\%.9677 | 153.9679 |

FOAD FROFILE ELEUATION (UEL) US. DISTANCE C:DOUBLE.BKT

| 0 | 5 | 1 | 1.5 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| TEMP 1 | $=100.00005$ | DISTANCE | $=$ | . GODOMI LES |

Rearward Amplification Model

Quick Reference Card
 REARWARD AMP. V2.0

A) General Information:

To Run The Program Type: REARWARD
Files required for proper function:

- REARWARDEXE
-AXIS
-HALO****.DEV
-HALO++++.PRN
-HARDWARE.SET
**** =Name of the Graphics board,e.g,HERC
++++=Name of the printer device, e.g, EPSN.
B) General Commands:

1) EDIT-VIEW DATA:

PgUp=Page Up
PgDn=Page Down
$T=$ Upper Edit Field
\downarrow or $\downarrow=$ Lower Edit Field
$\mathrm{Crtr} \rightarrow=$ Right Edit Field (column)
$\mathrm{Crrl} \leftarrow=$ Left Edit Field (column)
End=Accept or Continue
Esc=Exit to Main menu
$\leftarrow=$ Scrolls cursor to left on current field
$\rightarrow=$ Scrolls cursor to right on current field

3) PLOTS:

a) P or p followed by:

W or $w=$ Wide print out
T or $\mathrm{t}=$ Tall print out
b) S or s: Enter new Axes limits. Esc will return to the Plot menu.
c) End exits to the Plot menu.
d) \rightarrow and \leftarrow : Move the cross cursor rigth and left.
2) CALCULATE;

End=OK or Accept
Esc=Exit to Main menu
) $\mathrm{Ctrl} \rightarrow$ or $\mathrm{Ctrl} \leftarrow$ move the cross cursor right and left at higher increments.

1) RUNNING THE PROGRAM AND SELECTING NEW DATA.

To start running the program insert the program disk in any drive and then type:
REARWARD
After a few seconds the following message appears on the screen (see screen \#1 below)

To continue simply hit any key on the keyboard.
The menu to select the source of input appears next, screen \#2. Make your selection by pressing the up (\uparrow) and down (\downarrow) arrow keys and then RETURN (\downarrow) or End.

ENTER DATA FROM:

KEYBOARD
FILE

Screen \#2
If your selection was "FILE", the following screen appears to enter the drive from which data will be entered.

Screen \#3

One more time, make your selection and press the End key. All the files available on that drive will be listed on the screen so that you can select one to be read, see screen \#4.

28'DBL.RWA

Screen \#4

The file selection is made by pressing the following keys:

- RETURN key (ل) or the Ctrl plus the right arrow (\rightarrow) key to select forward
- Ctrl plus the left arrow (\leftarrow) key to select backwards, and
- End to complete the selection.

For "KEYBOARD" selection see the "EDIT-VIEW DATA" section.

2) EDIT-VIEW DATA

Once data has been read into memory, the main selection menu appears (screen \#5.)

Screen \#5

From this menu we could:

- Enter new data. This would return us to screen \#2 (above.)
- Edit and view the current data set (explained in this section.)
- Calculate, which would further take us to another menu to select the type of calculation.
- Print data, that would send to the printer the current data set.
- Save data, which would allow us to save the current or modified data set into a file.
- Quit, that would return us to the operating system shell.

The way this program displays data is called "Page Editing", which shows the information for each unit on a screen page. We would have as many pages as number of units on the vehicle.

The controls for page editing are the following:

- Up arrow (\uparrow) key, moves the cursor to the upper next position.
- Down arrow (\downarrow) key, moves the cursor to the lower next position.
- PgUp key (page up), returns to the previous page.
- PgDn key (page down), advances one more page.
- RETURN key (\downarrow), has the same function as the down arrow key.
- Right (\rightarrow) and left (\leftarrow) arrow keys, moves the text cursor on the current edit field. This is used to modify the current value.
- Esc key exits to the main menu at any point during the page editing session.
- End key, gets you out of the Edit mode if you are in the last page; otherwise, has no effect.

If you had selected to enter data from the keyboard, a prompt requesting the number of units appears first, and then the remaining data is entered by page editing.

3) PRINT DATA

This option will allow the user to send the data set to the printer. A prompt appears to check whether the printer is connected and turned on. If so, just hit the End key. A sample data set is included at the end of this documentation.

4) SAVE DATA

Choosing this option allows the user to save a data set into a file. The computer prompts the user for the drive to where data will be stored, see screen \#3, and then prompts for the file name, see screen \#6.

Screen \#6

If the file already exists a message indicating so will be printed on the screen, allowing the user to either replace the old file with the new file, or enter a different name for the new file.

Note that the extension "RWA" is added to all the files. This is an identifier of files to this program.

5) CALCULATE

Selecting this option will display the following, see screen \#7.

Screen \#7

The default values are displayed above. Once you enter the desired numbers press the End key.

The following prompt will ask whether you want to print the results as they are calculated or not. If the answer is " Y " or " y " then make sure that the printer in turned on. If the answer is " N " or " n " the results will appear on the screen only.

After the calculations end the following screen appears.

Screen \#8

If your answer is "yes" just press the End key, and the following menu will appear (Screen \#9)

| SELECT PLOT
 Ay2R/Ay1cg
 Aycg/Ay2R
 Total of Them
 EXI TO MAIN MENU |
| :--- | :--- |
| Screen \#9 |

Once you have made your selection a plot will appear on the screen. Some examples are included at the end of this documentation. The above example corresponds to a 28 ft . double.

The diagram below depicts the terminology used in the program.

Double

Triple

Straight Truck-Full Trailer

The total transfer function is defined as the product of all the individual transfer functions, for example, for the above example (28'DBL.RWA file):

$$
\text { Total }=(\mathrm{Ay} 3 \mathrm{cg} / \mathrm{Ay} 1 \mathrm{cg})=(\mathrm{Ay} 2 \mathrm{R} / \mathrm{Ay} 1 \mathrm{cg}) *(\mathrm{Ay} 3 \mathrm{cg} / \mathrm{Ay} 2 \mathrm{R})
$$

It is assumed that the transfer function from the tractor C.G. to the semitrailer C.G., i.e., (Ay2cg/Ay1cg), is equal to 1.0

You can modify the form of the graph. The following keys are the controls for the graph:

- Up arrow (\uparrow) key, scrolls the " Y " axis upward.
- Down arrow (\downarrow) key, scrolls the "Y" axis downward.
- PgUp key (page up), scrolls the "X" axis forward.
- PgDn key (page down), scrolls the "X" axis backward.
- RETURN key (\downarrow), shifts the cross cursor among the different curves, and indicates on the lower view port the legend of the curve selected. The " Y " and "X" values at the position of the cursor are shown on the same port.
- Right (\rightarrow) and left (\leftarrow) arrow keys, move the cross cursor on the current curve right or left and updates its position on the lower view port.
- The + (plus) or - (minus) keys hit either once or twice and followed by the letter X or Y will zoom the respective axis up or down.
- P (or p), followed by a \mathbf{W} (or \mathbf{w}) for wide, or a \mathbf{T} (or \mathbf{t}) for tall, will print the current chart.
- End key, gets you out of the chart and sends you to the plot menu, screen \#9.

Exit to Main Menu

Selecting this option will return the user to screen \#5 where further calculations may be made or the user may QUIT the program.

Information for Unit \# 2
 General Information

Total Weight $=29600.00$ Lbs
Yaw Moment of Inertia $=849799.00$ in-lb-sec"2
Distance from C.G. to Front Articulation Foint $=157.10$ inches
Distance from C.G. to Fear Articulation Foint $=142.98$ inches
Total Number of Axles in the Unit $=1$
Axles Information

```
Axle No
    1
```

Axle Cornering Stiffness (Lb/dec 274.3. 12

```
```

CG-Axle Distance (in)

```
CG-Axle Distance (in)
116.50
```

116.50

```

\section*{Information for Unit \# उ}

General Information
Total Weight \(=34000.00\) Lbs
Yaw Moment of Inertia \(=1071143.00\) in-1b-sec^2
Distance from C.G. to Front Articulation Foint \(=210.00\) inches
Distance from C.G. to Fear Articulation Foint \(=172.80\) inches
Total Number of Axles in the Unit \(=2\)
Axles Information
Axle No
CG-Axle Distance (in)
136.80
136.80
Axle Cornering Stiffness (Lb/deg) 2743.12
2743. 12

FEAFWAFD AMFLIFICATION MODEL FILE NAME:A: \(28^{\prime}\) DEL. FWA

Transfer Functions
\begin{tabular}{|c|c|c|c|}
\hline Freq (rad/sec) & Ay 2R/Ay1cg & Ay Scg/Ay 2 R & Total \\
\hline . 5000 & 1.0083 & 1.0091 & 1.0175 \\
\hline . 7500 & 1.0187 & 1.0203 & 1.0394 \\
\hline 1.0000 & 1.0534 & 1.0355 & 1.0701 \\
\hline 1.2500 & 1.0525 & 1.0542 & 1.1095 \\
\hline 1.5000 & 1.0760 & 1.0753 & 1.1571 \\
\hline 1.7500 & 1.1042 & 1.0973 & 1.2116 \\
\hline 2.0000 & 1.1371 & 1.1175 & 1.2708 \\
\hline 2.2500 & 1.1750 & 1.1328 & 1.3510 \\
\hline 2.5000 & 1.2179 & 1.1388 & 1.3870 \\
\hline 2.7500 & 1.2662 & 1.1314 & 1.4325 \\
\hline 3.0000 & 1.3198 & 1.1073 & 1.4615 \\
\hline 3.2500 & 1.3790 & 1.0658 & 1.4697 \\
\hline 3.5000 & 1.4436 & 1.0089 & 1.4565 \\
\hline 3.7500 & 1.5136 & . 9410 & 1.424 .3 \\
\hline 4.0000 & 1.5887 & . 8674 & 1.3781 \\
\hline 4.2500 & 1.6683 & . 79.31 & 1.3230 \\
\hline 4.5000 & 1.7515 & . 7215 & 1.2637 \\
\hline 4.7500 & 1.8373 & . 6548 & 1.2030 \\
\hline 5.0000 & 1.9239 & . 5940 & 1.1428 \\
\hline 5.2500 & 2.0093 & . 5395 & 1.0839 \\
\hline 5.5000 & 2.0911 & . 4908 & 1.0264 \\
\hline 5.7500 & 2.1667 & . 4477 & . 9701 \\
\hline 6.0000 & 2.2356 & . 4095 & . 9146 \\
\hline 6.2500 & 2.2891 & . 3756 & . 8599 \\
\hline 6.5000 & 2.3317 & . 3456 & . 8057 \\
\hline 6.7500 & 2. 3601 & . 3188 & . 7525 \\
\hline 7.0000 & 2.3742 & . 2950 & . 7003 \\
\hline 7.2500 & 2. 3747 & . 2737 & . 6498 \\
\hline 7.5000 & 2. 3629 & . 2545 & . 6014 \\
\hline 7.7500 & 2.3406 & . 2375 & . 5554 \\
\hline 8.0000 & 2. 3099 & . 2218 & . 5122 \\
\hline 8.2500 & 2.2729 & . 2077 & . 4720 \\
\hline 8.5000 & 2.2314 & . 1949 & . 4349 \\
\hline 8.7500 & 2.1870 & . 1835 & . 4008 \\
\hline 9.0000 & 2.1411 & . 1726 & . 3697 \\
\hline 9.2500 & 2.0948 & . 1629 & . 3413 \\
\hline 9.5000 & 2.0488 & . 1540 & . 3155 \\
\hline 9.7500 & 2.0038 & . 1458 & . 2722 \\
\hline 10.0000 & 1.9602 & . 1382 & . 2710 \\
\hline
\end{tabular}

Max Total Transf. Function \(=1.4697\) at \(w=3.250\) rad/sec
Ay2R/Aylcg (Trans Func) us Steering Frequency (xad/sec)


Ay3cg/Ay2R (Trans Func) Us Steexing Frequency (xad/sec)


(Trans Func) us Steexing Frequency (rad/sec)


Transfex Functions us Steexing Frequency (nad/sec)
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}


\section*{4. SUMMARY AND CONCLUDING REMARKS}

The features of the simplified models are summarized in the following table. The amount of input information describing the vehicle depends upon the model involved. As can be seen by inspecting the table, a minimal amount of descriptive information is needed for some of the models. The models are designed to require as little input data as possible. Nevertheless, to use the entire set of models, pertinent information on the force and moment properties of tires, suspensions, and brakes are required as well as information on the layout of the vehicle.

The outputs of the models (see Table 1) are referred to as "performance signatures" (graphs and/or tables) and "performance measures" (numerics). These outputs are tailored to the maneuvers addressed by these simplified models. (The primary method for simplification is to consider the factors that are important in particular maneuvering situations.) The performance signatures and measures are the links to evaluating vehicle designs.

For example, one could set levels of the performance measures to use as performance targets. Then, the simplified models could be used to obtain first order estimates of whether preliminary designs (or existing vehicles) will meet these performance targets. If a design seems to fall short of desired levels of performance, one can use the models to study the influences of changes on the mechanical properties of the vehicle. The results of this process could be either changes in design or changes to more realistic levels of performance expectations. In any event, the ultimate goal is to develop a better understanding of the braking and handling performances of heavy trucks.

Table 1. Features of the Simplified Models
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
MODEL \\
NAME
\end{tabular} & INPUTS & \multicolumn{2}{|r|}{OUTPUTS, performance signatures and measures (graphs) (numerics)} \\
\hline Low-speed offtracking & wheel and hitch locations & paths of each axle in turns of various radii & maximum offtracking \\
\hline High-speed offtracking & the above plus tire cornering stiffnesses and axle loads & steady turn offtracking at various axles & steady turning offtracking at various g-levels \\
\hline Constant deceleration braking & brake force characteristics as a function of treadle pressure, inertial properties, wheel and hitch locations & friction utilization and deceleration as a function of treadle pressure & Braking efficiencies at various g-levels \\
\hline Steady turn,roll & suspension roll properties, axle loads, inertial properties, and tire vertical stiffnesses & roll angle versus lateral acceleration & rollover threshold \\
\hline Handling in a steady turn & the above plus steering system properties, tire cornering stiffnesses, and geometric layout & handling diagram and stability space (if the vehicle is unstable without wheel liftoff), steering sensitivity diagrams & steering gain at various lateral acceleration and velocity levels, stability margin \\
\hline Downhill descent & brake proportioning, thermal properties, velocity and elevation profiles & brake temperatures & maximum brake temperature \\
\hline Obstacle avoidance (rearward amplification) & vehicle layout, inertial properties,tire cornering stiffnesses & rearward amplification versus frequency of steering excitation & maximum reanward amplification at low frequencies \\
\hline
\end{tabular}```

