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ABSTRACT

We introduce a generalized scaling law, M, = 10X A% B?, to look for the minimum scatter in
reconstructing the total mass of hydrodynamically simulated X-ray galaxy clusters, given gas
mass My, luminosity L and temperature 7. We find a locus in the plane of the logarithmic
slopes a and b of the scaling relations where the scatter in mass is minimized. This locus
corresponds to by = —3/2ay + 3/2 and by = —2a; + 3/2 for A = M, and L, respectively,
and B = T. Along these axes, all the known scaling relations can be identified (at different
levels of scatter), plus a new one defined as M, o (LT)"/?. Simple formula to evaluate the
expected evolution with redshift in the self-similar scenario is provided. In this scenario, no
evolution of the scaling relations is predicted for the cases (by; = 0, ayy = 1) and (b, = 7/2,
a;, = —1), respectively. Once the single quantities are normalized to the average values of the
sample under considerations, the normalizations K corresponding to the region with minimum
scatter are very close to zero. The combination of these relations allows one to reduce the
number of free parameters of the fitting function that relates X-ray observables to the total
mass and includes the self-similar redshift evolution.

Key words: galaxies: clusters: general — cosmology: miscellaneous — X-rays: galaxies:

clusters.

1 INTRODUCTION

Galaxy clusters are believed to form under the action of gravity in
the hierarchical scenario of cosmic structure formation (e.g. Voit
2005). They assemble cosmic baryons from the field and heat them
up through adiabatic compression and shocks that take place dur-
ing the dark matter halo collapse and accretion. Simple self-similar
(SS) relations between the physical properties in clusters are then
predicted (e.g. Kaiser 1986, 1991; Evrard & Henry 1991) since
gravity does not have any preferred scale and hydrostatic equilib-
rium between intracluster medium (ICM) emitting in the X-rays
(mostly by thermal bremsstrahlung) and the cluster potential is
a reasonable assumption. These scaling relations are particularly
relevant to connect observed quantities, such as X-ray luminos-
ity, temperature and mass, to total cluster mass, which is used to
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constrain cosmological parameters (e.g. Allen, Evrard & Mantz
2011).

Work in recent years has focused in defining X-ray mass prox-
ies, i.e. observables which are at the same time relatively easy to
measure and tightly related to total cluster mass by scaling relations
having low intrinsic scatter as well as a robustly predicted slope
and redshift evolution (e.g. Kravtsov et al. 2006; Maughan 2007;
Pratt et al. 2009; Short et al. 2010; Stanek et al. 2010; Fabjan et al.
2011). An important role in defining such proxies and assessing
their robustness is played currently by cosmological hydrodynami-
cal simulations, thanks to their ever improving numerical resolution
and sophistication in the description of the physical processes de-
termining the ICM evolution (e.g. Borgani & Kravtsov 2009).

In this Letter, we present and discuss the behaviour of the scaling
relations generalized to include the dependence upon two indepen-
dent observables, one accounting for the gas density distribution
(namely gas mass Mg,, and X-ray luminosity L), the other tracing
the ICM temperature, 7. This Letter is organized as follows. In
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Section 2, we introduce the scaling relations investigated. In Sec-
tion 3, we discuss the redshift evolution and the normalization of
these relations, and how they depend on the selection adopted to
define the sample analysed. In Section 4, we summarize and discuss
our results in view of their application to observational data.

2 THE GENERALIZED SCALING LAWS

Under the assumptions that the smooth and spherically symmet-
ric ICM emits by thermal bremsstrahlung and is in hydrostatic
equilibrium with the underlying gravitational potential, the SS sce-
nario relates bolometric luminosity, L, gas temperature, 7', and gas
mass, M, to the total mass, My, in a simple and straightfor-
ward way. For instance, the equation of hydrostatic equilibrium,
A(pgas T)/Ar X peusGMioi/r?, allows us to write My, o TR, as
long as the slope of temperature and gas density profiles are in-
dependent of cluster mass. By combining it with the definition of
the total mass within a given overdensity A, with respect to the
critical density at the cluster’s redshift z, M o< EZA,R®, one
obtains that E7A§/2M1m o« T37%, where E, = H./Hy = [Qm(1 +
2)* + 1 — Q,]1"/? for a flat cosmology with matter density param-
eter 2, cosmological constant and Hubble constant at the present
time H,. Similarly, the definition of the bremsstrahlung emissiv-
ity € o¢ A(T)ng,, o< T'nz, (the latter being valid for systems
sufficiently hot, e.g. >2keV) relates the bolometric luminosity, L,
and the gas temperature, T: L &~ eR* ~ T1/?| 'gzale%nR’3 ~ -gzaSTz’
where we have made use of the above relation between total mass
and temperature.

By combining these basic equations, we obtain that the scaling
relations among the X-ray properties and the total mass are (see
also Ettori et al. 2004)

(1) E. My T3/,
(ii) Moy Mgy,
(ifi) E. M o (EZ' LY.

Kravtsov et al. (2006) introduced the Yx mass proxy, which is
given by the product of temperature and gas mass. Owing to its
definition, it is related to the total thermal energy of the ICM. They
demonstrated that, among the known mass indicators, Y is a very
robust mass proxy, its scaling relation with M5 being characterized
by an intrinsic scatter of only 5-7 per cent at fixed Yx, regardless
of the dynamical state of the cluster and redshift, with a redshift
evolution very close to the prediction of SS model. Arnaud et al.
(2007) used XMM—-Newton data of a sample of 10 relaxed nearby
clusters spanning a Yx range of 10'*~10'> M, keV, and confirmed
that the Msp0—Yx relation has a slope close to the SS value of 3/5,
independent of the mass range considered. They showed that the
normalization of this relation is about 20 per cent below the predic-
tion of numerical simulations which include cooling and supernova
(SN) feedback, and explained this offset with two different effects:
an underestimate of true mass due to a violation of the assumption
of hydrostatic equilibrium, and an underestimate of hot gas mass
fraction in the simulations (see also Zhang et al. 2008). They con-
firmed that Yx might indeed be a better mass proxy than T and M g
by comparing the functional form and scatter of the relations be-
tween different observables and mass. Extensive use of the ¥ x—M
relation has been made in recent analyses aimed at constraining
cosmological parameters through the evolution of the cluster mass
function (e.g. Vikhlinin et al. 2009) and the properties of the scal-
ing relations (Mantz et al. 2010). Pratt et al. (2009) presented the
X-ray luminosity scaling relations of 31 nearby clusters from the
Representative XMM-Newton Cluster Structure Survey, all having
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temperature in the range 2-9keV and selected in X-ray luminos-
ity so as to properly sample the cluster luminosity function. Their
analysis showed that scaling relations between bolometric X-ray lu-
minosity and temperature and between Yx and total mass are all well
represented by power-law shapes with slopes significantly steeper
than SS predictions. They concluded that structural variations have
little effect on the steepening, whereas it is largely affected by a
systematic variation of the gas content with mass. Maughan (2007)
analysed Chandra ACIS-I data for 115 galaxy clusters at 0.1 < z <
1.3 observed to investigate the relation between luminosity and Yx.
They found that the scatter is dominated by cluster cores, and a tight
Lx-Yx relation (11 per cent intrinsic scatter in L) is recovered if
sufficiently large core regions (0.15Rs0) are excluded. The tight
correlation between Yx and mass and the SS evolution of that scal-
ing relation out to z = 0.6 is confirmed. Fabjan et al. (2011) analysed
an extended set of cosmological simulations of galaxy clusters, and
confirmed that the M—-Yx scaling law is the least sensitive to vari-
ations of the physics in the ICM and very close, in terms of slope
and evolution, to predictions of the SS model. They also pointed
out that M—M,, is the relation with the smallest scatter in mass,
whereas M-T is the one with the largest among the considered
scaling relations.

In the present work, we generalize the definition of the Y'x mass
proxy, by considering the scaling relation between total mass, M,
and a more general proxy defined in such a way that M, A“BP,
where A is either My, or L and B = T. The use of this relation
generalizes the relation M,—Y while maintaining the attitude to
recover total mass by combining information on depth of the halo
gravitational potential (through the gas temperature 7) and distri-
bution of gas density (traced by My, and X-ray luminosity), the
latter being more affected by the physical processes determining
the ICM properties. In doing that, we aim to minimize the scatter in
the relations between total mass and observables by (i) relaxing the
assumption of the self-similarity, (ii) adopting a general and flexible
function with a minimal set of free parameters and (iii) offering a
method that can be readjusted in dependence of the specific sample
selection adopted.

In the recent past, similar work has been done by different authors
with the aim of generalizing the use of simple power-law scaling
relations between cluster observables and total mass. Stanek et al.
(2010) discussed the second moment of the halo scaling relations
by investigating the signal covariance at fixed mass in numerical
simulations. Okabe et al. (2010) used a small sample of 12 objects
observed with Subaru and XMM-Newton to study the covariance
between the intrinsic scatter in M ,—M g5 and M,—T relations and
to propose a method to identify a robust mass proxy based on
principal component analysis. Rozo et al. (2010) presented an ex-
tensive discussion on the relaxation of some assumptions on the
parametrization of the relation between optical richness and total
mass, by introducing the possibility of deviation from a power-law
shape, as well as richness and mass dependence of intrinsic scatter.

To study the behaviour of the M, oc A*B relation in minimizing
the scatter, we used a sample of 24 Lagrangian regions, selected
around the most massive clusters with a radius equal to five times
the virial radius, and extracted from a parent low-resolution N-body
cosmological simulation with a box of size 1 4~! Gpc comoving, as
described in Bonafede et al. (2011). A flat A cold dark matter
cosmological model with 2, = 0.24, Qu,, = 0.04, ny, = 0.96,
og = 0.8 and present-day Hubble constant of 72kms~! Mpc~',
consistent with the 7-year Wilkinson Microwave Anisotropy Probe
cosmological parameters (Komatsu et al. 2011), was assumed. A
set of 24 Lagrangian regions, centred around as many massive
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clusters, were resimulated by increasing mass resolution and adding
high-frequency modes to the power spectrum (Tormen et al. 1997).
Within the high-resolution region, dark matter particles have a mass
mpy = 8.47 x 108 ™' M. The size of each Lagrangian region
was chosen in such a way that by z = 0 there are no low-resolution
particles within at least 5 virial radii from the central cluster. As
a result, the large extent of each of these high-resolution regions
allows one to identify more than one single cluster-sized halo within
it, which is not contaminated by low-resolution particles within its
virial region (Bonafede et al. 2011; Fabjan et al. 2011).

Clusters identified from this set of initial conditions were sim-
ulated with the TreePM-SPH GaDGET-3 code, an improved version
of the original GADGET-2 code (Springel 2005). As described by
Fabjan et al. (2011), simulations have been carried out for two
different prescriptions for the physics determining the evolution
of cosmic baryons: [(i) sample nr] non-radiative physics and [(ii)
sample csf] including metallicity-dependent radiative cooling, a
model for star formation and galactic winds triggered by SN explo-
sions (as described by Springel & Hernquist 2003) with velocity
vy = 500kms~!, and a detailed model of chemical evolution as
described by Tornatore et al. (2007). By selecting only objects with
mass-weighted temperature 7 > 2 keV, we end up with 41 objects in
each sample. A subset of the csf sample has been processed through
the X-MAS tool (e.g. Rasia et al. 2008) to generate Chandra mock
observations and then analysed with an observational-like approach
to measure temperatures and gas masses (xmas sample; Rasia et al.
2011). The latter sample includes all the clusters with spectroscopic-
like temperature larger than 2keV, and observed along three or-
thogonal projection directions, so that we end up with 159 mock
observations of simulated clusters. Total and gas masses within Rsg
are computed as described in Fabjan et al. (2011) and Rasia et al.
(2011). Gas temperatures and luminosities, both bolometric and in
the 0.1-2.4 keV band, are computed after excising cluster core re-
gions, which are defined as the regions enclosed within 0.15Rs0.
The effect of core excision is also considered in the discussion of
the results and is shown not to affect the conclusions of our analysis.

We fit a linear relation to the log—log scaling between total mass
and proxies, normalized to the average values computed within each
sample of simulated clusters:

log,o Moy = K +alog,y A + blog,, B. 6))

Here we defined {Mlol = Mlol/Mloh A= A/A’ B = B/B}, with
barred quantities indicating the average values of the corresponding
quantities.

Within each set of simulated clusters, containing N objects,
we compute for each pair of values of the slopes {a;, b;}
the corresponding scatter, which is defined as o%(a;, b i) =
S v(ogio My — K — a;log,g Ay — b log,y Bu)?/N, where
K =3,_, ylog,g Mk — a;log,y Ay — bjlog,o Bi)/N. We then
find the locus in the {a, b} plane where scatter is minimized simi-
larly. In all cases, this locus is well represented by the lines

(A =My, B=T}= by =—3/2ay +3/2,
{A=L, B=T) = b, = —2a; +3/2, 2)

(see Fig. 1) or, in a more concise form, b = —(1 + 1/2d)a + 3/2,
where d corresponds to the power to which the gas density appears
in the formula of the gas mass (d = 1) and luminosity (d = 2).
This correlation between logarithmic slopes allows us to reduce by
one the number of free parameter in the linear fit of the generalized
scaling law between observables and total mass.

It is worth noting that these relations reduce to the standard SS
predictions in the appropriate cases: My X T3, M xM gas» Mior X

Y3/5 are recovered for ay, = 0, 1 and 3/5, respectively; My L34
and My oc (LT)'/?, which is the corresponding relation of M o
Y3/ once gas mass is replaced by luminosity, are recovered for a; =
3/4 and 1/2, respectively.

However, to represent the tilted shape of the contours encircling
the region with the minimum scatter in the simulated data set in-
vestigated here, we should prefer the following relations among the
logarithmic slopes:

by ~ —19ay + 1.8, by ~ —2.4a; + 1.8,
b~ —(14+4+05d)a+ 1.8, 3)

which are shown as dotted lines in Fig. 1.
In the following discussion, we refer to the SS case described
from the equations (2) as the reference one.

3 EVOLUTION, NORMALIZATION AND
ROBUSTNESS OF THE GENERALIZED
SCALING LAWS

In this section, we discuss some properties on the redshift evolution
and normalization of the generalized scaling laws, and present the
results of the tests by which we have verified the robustness of our
predictions.

3.1 Evolution of the generalized scaling laws

With simple mathematical substitutions, we can predict the redshift
evolution expected for the SS case, My, o F;:

{A = Mgasy B = T} =y = _2/3bM =ay —1,
{A=L, B=T})=c,=b./2—-T7/4=—a, — 1. 4)

We are now in the position to look for the scaling relation which
has the weakest redshift dependence or, on the contrary, the relation
which makes this dependence stronger. We note that there is no
dependence on redshift only in two cases among the scaling relations
investigated here (see Fig. 2): (i) ayy = 1 (and by, = 0), i.e. for the
scaling law My o M,; (ii) a; = —1 (and by = 7/2), i.e. for the
relation M, oc L~'T7/2, The prediction for the lack of evolution of
these scaling relations can be tested against observational data.

3.2 Normalization of the generalized scaling laws

As shown in Fig. 1, the normalization K corresponding to the value
of minimum scatter is close to zero. This is expected once the quan-
tities are normalized to the averaged values M, A, B. However,
only A and B are known for an observed sample. Thus, by adopt-
ing one of the relations in equation (2), one can directly measure
My = Mo/ My and recover the total mass My, only once My
is independently evaluated either through mock samples selected
from catalogues of hydrodynamically simulated objects to contain
the same number of objects, and with similar properties, of the ob-
served ones, or through a self-calibration tuned by a subsample of
clusters for which robust mass estimates are available. Under this
respect, the suggested approach is the standard one, with the same
limitations affecting any other application of the scaling laws: mass
calibration and selection effects. The innovation, we are proposing,
is to add an extra parameter, imposing a new constraint on the slopes
of the scaling laws, to allow a further minimization of the scatter.
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Figure 1. Contour plots that enclose 1.2, 1.5 and two times the minimum scatter, as function of the slopes a and b of the generalized scaling relations, as
indicated in each panel. Also overplotted are the lines from equation (2) (green dashed) and equation (3) (blue dotted). (Top panels) The case of {A = Mgy, B=
T} using (from left to right) observational-like measurements of the xmas csf sample, direct measurements of the csf sample and direct measurements of the
nr sample. (Bottom panels) The same as above, but for the case of {A = L,B = T'}. The insets show the values of the normalization K as a function of the
slope a in the region enclosed within two times the minimum scatter.
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Figure 2. Evolution of the scaling relation parametrized through the quantity F, in the SS scenario and including the relations in equation (2). Solid (dashed)
lines show the behaviour for the relations with A = Mg,s (A = L). (Left) Values of ¢, exponent of F;, from equation (4) as a function of the logarithmic slope b
(c = 0 in the case of no evolution). (Right) Values of F; as a function of the redshift for different scaling relations. As representative cases, two sets of lines
are plotted: thin lines assume b = —1, thick lines adopt b = 3.
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Figure 3. Best-fitting values of the slopes ays and by as a function of the sample examined, (1)—(10) from xmas (Rasia et al. 2011) and (11)—(14) from direct
measurements in the hydrodynamical simulations (Fabjan et al. 2011): (1) at A = 2500, with the spectroscopic-like estimate 7' = T} > 2keV; (2) at A = 2500,
with the X-ray spectroscopically determined, 7= T'x > 2keV; (3) with T'= Tx > 2keV and the core included; (4) with T =T > 2keV; (5) with T = Tx >
2keV: (6) with T = Tq > 4keV; (7) with T = Tx > 4keV; (8) with Mo; > 1014 M@; (9) with T = T'x and 1000 realizations of randomly selected objects with
30 clusters with 2 < T < 4 keV and 40 clusters with 4 < T < 10keV; (10) the same as in (9) but including a relative statistical error of 20 per cent on the total
mass; (11) for the sample nr and excluding the core (0-0.15R500); (12) including the core; (13) for the sample csf and excluding the core; (14) including the
core. For the cases (3)—(14), all quantities are estimated at A = 500. The bottom panels show the corresponding scatter . Green diamonds and blue squares
in the central (lower) panels are the predicted slope by, (scatter) from the SS relations in equation (2) and the corrected relations in equation (3), respectively.

3.3 Robustness of the generalized scaling laws

To assess the robustness of the analysis of the simulated data set, we
have repeated our calculations by extracting the simulated objects
according to different criteria, e.g. including or excluding the cluster
core emission, adopting different overdensity, using different def-
inition for the gas temperature, selecting only very hot or massive
systems. All these samples reproduce consistently the plots shown
in Fig. 1, by varying only the location of the best-fitting values, but
confirming the dependence among the logarithmic slopes over the
region of the parameter space that minimize the measured scatter
(see Fig. 3).

‘When observational data are considered, several other selection
effects can still affect both the definition of a sample and the mea-
surements of the normalization and slope of the adopted scaling
law. A proper treatment of the second-order moments and of the
covariance related to the scaling relation has then to be addressed
(see e.g. Rozo et al. 2009, 2010; Mantz et al. 2010; Stanek et al.
2010).

4 SUMMARY AND DISCUSSION

We have presented new generalized scaling relations with the
prospect to reduce further the scatter between mass proxies and
total cluster mass. We find a locus of minimum scatter that relates
the logarithmic slopes of the two independent variables considered
in the present work, namely temperature 7, which traces the depth of
the cluster potential, and another one accounting for the gas density
distribution, such as gas mass M, or X-ray luminosity L. Within
this approach, all the known scaling relations appear as particular
realizations of generalized scaling relations. For instance, we intro-
duced the scaling relation M\, o< (LT)'/?, which is analogous to the
MY relation, once luminosity is used instead of gas mass.

Also the evolution expected in the framework of the SS model
are predicted for the generalized scaling relations. They can be used
either to maximize the evolutionary effect to test predictions of the

SS models itself or, on the contrary, to minimize them in case of
cosmological applications.

A linear function in the logarithmic space can be then fitted to
the data normalized to the average values measured in the sample:

log,g M = K +alog,y A + blog,, B + clog,, F., )

with K = 0, by = —312ay + 3/2, cy = —2/3by = ay — 1 for
{A=My,, B=T}and K =0, by = —2a; + 3/2, ¢, = by/2 —
7/4 = —a;, — 1 for {A = L, B=T}. In a more concise form, the
above relation can be recast as b = —(1 4+ 1/2d)a + 3/2, where d
corresponds to the power with which gas density appears to define
either gas mass (d = 1) or luminosity (d = 2). This fitting function
has four free parameters that are reduced to one (plus the average
value of the total mass of the objects in the sample) thanks to the
existing tight correlation found between a and b, at least within
the region of the {a, b} parameter space where intrinsic scatter is
minimized.

The method and the results presented in this work offer a robust
framework to relate, with the request of a minimum scatter, the X-
ray observables to the total gravitational mass of galaxy clusters for
studies of their thermodynamical properties and for cosmological
application.
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