
Molecular Ecology (2012) 21, 1019–1031 doi: 10.1111/j.1365-294X.2011.05425.x
Consequences of frugivore-mediated seed dispersal
for the spatial and genetic structures of a neotropical palm
J . CHOO,* T. E . JUENGER† and B. B. SIMPSON†

*Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA, †Section of Integrative

Biology, The University of Texas at Austin, 1 University Station CO930, Austin, TX 78712, USA
Corresponde

E-mail: juanc

� 2012 Black
Abstract

The idiosyncratic behaviours of seed dispersers are important contributors to plant

spatial associations and genetic structures. In this study, we used a combination of field,

molecular and spatial studies to examine the connections between seed dispersal and the

spatial and genetic structures of a dominant neotropical palm Attalea phalerata. Field

observation and genetic parentage analysis both indicated that the majority of

A. phalerata seeds were dispersed locally over short distances (<30 m from the maternal

tree). Spatial and genetic structures between adults and seedlings were consistent with

localized and short-distance seed dispersal. Dispersal contributed to spatial associations

among maternal sibling seedlings and strong spatial and genetic structures in both

seedlings dispersed near (<10 m) and away (>10 m) from maternal palms. Seedlings were

also spatially aggregated with juveniles. These patterns are probably associated with the

dispersal of seeds by rodents and the survival of recruits at specific microsites or

neighbourhoods over successive fruiting periods. Our cross-cohort analyses found palms

in older cohorts and cohort pairs were associated with a lower proportion of offspring

and sibling neighbours and exhibited weaker spatial and genetic structures. Such

patterns are consistent with increased distance- and density-dependent mortality over

time among palms dispersed near maternal palms or siblings. The integrative approaches

used for this study allowed us to infer the importance of seed dispersal activities in

maintaining the aggregated distribution and significant genetic structures among

A. phalerata palms. We further conclude that distance- and density-dependent mortality

is a key postdispersal process regulating this palm population.
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Introduction

Seed dispersal is an important life history event for

plants and has consequences from genes to communi-

ties (Nathan & Muller-Landau 2000). Dispersal contrib-

utes to plant gene flow and is a key mechanism that

generates the genetic structure of plant populations

(Hamrick et al. 1993b). For many tropical plant species,

dispersal is also critical to plant recruitment and regen-

eration because undispersed propagules suffer high

rates of mortality near conspecific adults (distance-
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well Publishing Ltd
dependent mortality) (Terborgh et al. 2008; Swamy &

Terborgh 2010) or under high conspecific densities

(density-dependent mortality) (Harms et al. 2000; Comi-

ta & Hubbell 2009; Bagchi et al. 2010; Metz & Sousa

2010). These patterns of mortalities were proposed to be

important factors that contributed to the diversity of

tropical tree communities (Janzen 1970; Connell 1971).

Most tropical plant species are dispersed by verte-

brate frugivores, and many of them exhibit idiosyn-

cratic behaviours unique to their species or guild

(Howe & Smallwood 1982; Terborgh 1990). Tropical

birds, for instance, frequently disperse seeds under

trees where they roost or forage (Clark et al. 2004;

Sezen et al. 2007). Rodents, including agoutis and
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squirrels, habitually disperse and cache seeds near the

trunks and buttress roots of specific plants or reference

objects such as fallen logs (Heaney & Thorington 1978;

Smythe 1978; Forget 1990; Peres & Baider 1997; Forget

et al. 1999; Silvius & Fragoso 2003; Pimentel & Tabarelli

2004; Aliaga-Rossel et al. 2008; Haugaasen et al. 2010).

Nonrandom dispersal activities contribute not only to

specific patterns of recruitment but also to distinct spa-

tial genetic structures (SGSs) (Clark et al. 2004, 2005;

Russo & Augspurger 2004; Sezen et al. 2009; Karubian

et al. 2010). These spatial and genetic patterns in turn

affect the intensity of ecological interactions and the

evolutionary dynamics of plant populations (Hardy

et al. 2006; Comita & Hubbell 2009). Studying how seed

dispersers influence plant spatial and genetic patterns is

thus an important step towards understanding their

role in plant population dynamics and species coexis-

tence (Levine & Murrell 2003; Snyder & Chesson 2003).

To infer the proximate and ultimate consequences of

vertebrate frugivore seed dispersal on tropical plant

populations, studies should ideally track the fate of dis-

persed seeds over their lifetimes as well as changes in

the plant spatial and genetic patterns. However, such

studies are intractable for many tropical plant species

that are long-lived and slow-growing. To overcome this

problem, a combination of approaches including direct

observations of seed dispersal and studies of plant spa-

tial and genetic structures can be applied to understand

dispersal processes and their consequences over time

(Wang & Smith 2002). To this end, a number of studies

have used cohort- or stand-specific analyses of plant

spatial and genetic structures to work backwards and

indirectly infer the postdispersal fates of plants (e.g. Ba-

rot et al. 1999; Kalisz et al. 2001; Chung et al. 2007;

Fuchs & Hamrick 2010). In addition, spatial analyses

can also be used to investigate the fine-scale interactions

among plant individuals as well as to account for

potential confounding associations that may arise from

habitat heterogeneity (Wiegand & Moloney 2004). The

use of both spatial and genetic information in tandem

can thus strengthen our ability to investigate the conse-

quences of seed dispersal on the spatial and genetic

structures of long-lived plant species (Chung et al.

2007; Jacquemyn et al. 2009).

In this study, we investigated the consequences of

frugivore-mediated seed dispersal on the spatial and

genetic structures of a common canopy palm Attalea

phalerata Mart. ex Spreng. Attalea spp. are among the

largest and most abundant palms in tropical America

(Henderson et al. 1995). They produce large-seeded

fruits that are primarily rodent-dispersed (Forget et al.

1994; Wright & Duber 2001). Seed dispersal is important

for the regeneration of Attalea spp. because palm seeds

experience intense distance-dependent mortality from
the predation by bruchid beetles (Janzen 1971; Wright

1983; Forget et al. 1994; Silvius & Fragoso 2002; Fragoso

et al. 2003; Pimentel & Tabarelli 2004). Rodents fre-

quently scatter-hoard the seeds of Attalea spp. palms to

microsites next to logs, horizontal liana stems on the

ground and the buttress of heterospecific trees (Kiltie

1981; Silvius & Fragoso 2003; Pimentel & Tabarelli 2004;

Bonjorne de Almeida & Galetti 2007). Collectively, these

studies suggest that the nonrandom dispersal of Attalea

spp. seeds will generate distinct spatial patterns and

genetic structures in a population. To examine these

interactions, we used field experiments, molecular and

spatial analytical studies to (i) characterize seed dis-

persal patterns and (ii) examine how contemporary

local seed dispersal influences the recruitment patterns

of seedlings with respect to other conspecifics by study-

ing seedling neighbour composition, spatial associa-

tions, and genetic structures. We further employed

cohort-specific analyses to (iii) infer the evolution of

these patterns over time and to indirectly assess the

long-term consequences of seed dispersal on palm pop-

ulation dynamics and genetics.
Materials and methods

Study site and species

This study was conducted in a 2.25-hectare plot

(150 m · 150 m) at the Cocha Cashu Biology Field Sta-

tion (CC) in Manu National Park, Peru. Attalea phalerata

is one of the most abundant species at CC (Gentry &

Terborgh 1990). This arboreal palm grows to about

25 m tall and produces large leaves than span c. 8 m.

A. phalerata is monoecious, but the staminate and pistil-

late inflorescence on individual palms flower asynchro-

nously so the species is considered functionally

dioecious (Anderson et al. 1988; Pintaud 2008). Palms

within a population flower and fruit asynchronously.

Weevils (Phyllotrox spp.), nitidulid beetles (Mystrops

spp.) and bees (Trigona spp.) are the main pollinators

(Anderson et al. 1988; Henderson et al. 2000; Voeks

2002; Núñez et al. 2005; Fava & Covre 2011). The fruits

are large ellipsoid drupes (mean length of 9.0 ± 0.8 cm

and diameter of 3.7 ± 0.4 cm) with a fleshy mesocarp

surrounding a ‘seed’ (applied here to refer to the hard

woody endocarp and the actual seed) (mean length of

8.2 ± 0.8 cm and diameter of 3.4 ± 0.5 cm).

At Cocha Cashu, rodents and capuchins are among

the most important dispersers of large-seeded palms

(Cintra & Horna 1997; J. Choo, unpublished). Capuchin

monkeys are the primary dispersers (i.e. animals that

remove seeds and fruits directly from a tree) of A. phal-

erata, but they only contribute to limited seed dispersal

within a few metres of palm crowns. This is because
� 2012 Blackwell Publishing Ltd
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capuchins cause large numbers of intact fruits to fall to

the ground directly beneath fruiting palms when they

forage for fruits in the crowns. Capuchins also restrict

their feeding on palm fruits to branches adjacent to palm

crowns and will discard the seeds to the ground before

departing (Cintra & Horna 1997; J. Choo, unpublished).

Medium-sized rodents (squirrels—Sciurus spadiceus;

agoutis—Dasyprocta variegata; and acouchis—Myoprocta

pratti) are the secondary dispersers (i.e. animals that dis-

perse seeds and fruits that have fallen to the ground) of

A. phalerata (Cintra & Horna 1997; J. Choo, unpub-

lished). Seeds of A. phalerata that are not dispersed

away from under parent palms suffer high mortality

rates (c. 80%) from subsequent predation by bruchid

beetles (J. Choo, unpublished).
Palm census and tissue collection

We mapped and tagged all individuals of A. phalerata

found in the study plot. To classify a palm as repro-

ductive, we checked the crowns for evidence of old or

emerging flower spadices and searched the ground

under the palm canopies for old endocarps and flower

spadices. We categorized each nonreproductive palm

in the population as a seedling or one of the two

juvenile cohorts. Seedlings (S) possess entire leaves

and are usually <0.5 m tall. Juvenile palms possess

pinnately divided leaves, and we grouped them into

two subcategories consisting of juveniles not taller

than 3.0 m (J1) and juveniles taller than 3.0 m (J2).

The exact ages of palms are difficult to determine so

size categories served as proxies for the relative ages

of palms.
Seed- and fruit-dispersal experiments

To characterize local patterns of seed dispersal and

their relevance to conspecific palm interactions, we

monitored the dispersal of 288 seeds and 324 fruits. We

divided the plot into 36, 25 · 25 m subplots (i.e. 6 · 6

grid) each with two feeding stations spaced approxi-

mately 12.5 m apart. We obtained seeds and fruits from

four different palm adults in the plot and allocated

them randomly to feeding stations. Each feeding station

was provisioned with four seeds and 4–5 fruits

arranged alternately in a single circle. Seeds and fruits

were each labelled and tagged with a nylon-line and a

flagging tape attached to the end of the line to facilitate

their recovery. All 72 feeding stations were established

on the same day, and we revisited each of them daily

for 3 weeks to measure seed or fruit dispersal distances

and to document the characteristics of the microsites

where they were found. We searched the entire plot

including a 30-m buffer zone for missing seeds or fruits.
� 2012 Blackwell Publishing Ltd
We calculated mean dispersal distances using only data

from dispersed seeds and fruits.
Parentage analysis

We collected leaf samples for all seedling and juvenile

palms and from the canopy leaves of all adults. DNA

was extracted from approximately 100 mg of silica-dried

leaf tissues using a modified CTAB protocol (Doyle &

Doyle 1987). Adult and nonadult palms were genotyped

using ten microsatellite loci developed for A. phalerata

(Choo et al. 2010). Positive and negative controls were

used to detect errors and contamination. We determined

genotyping error rates by regenotyping approximately

15% of alleles (1600 of 10 800). Parent–offspring (mater-

nal and paternal) relationships were reconstructed using

CERVUS software (3.03; Kalinowski et al. 2007) under a

maximum likelihood framework implemented in the

program. This program estimates the likelihood of par-

entage at both relaxed (80%) and strict (95%) confidence

intervals. We selected the 80% confidence for parentage

assignment, although over 82% of the offspring were

assigned to a single parent at a confidence of 95%. We

used 10 000 simulation tests to calculate the critical like-

lihood values. For our analysis, we estimated the num-

ber of candidate parents (43) and the proportion

sampled (0.69) using PASOS software (Duchesne et al.

2005), included genotyping error at 0.014 (based on

assessments of genotyping error above) and proportion

of loci typed at 1 (no missing genotypic data).

CERVUS is unable to distinguish maternal from paternal

parent based on our markers, thus when CERVUS

assigned two adults to an offspring, we assumed that

the nearest adult was the maternal parent and the more

distant palm the paternal parent. These assumptions

were based on the average foraging distances of pollin-

ators associated with A. phalerata, which range between

100 and 500 m (Mora-Urpı́ & Solı́s-Fallas 1980; Heard

1999; Araújo et al. 2004; Franz 2006; Sezen et al. 2007).

Pollen dispersal for A. phalerata is thus more likely to

occur over larger distances than seed dispersal, esti-

mated to be 25 m from field studies of other Attalea spe-

cies (Forget 1990; Pimentel & Tabarelli 2004; Bonjorne

de Almeida & Galetti 2007). Our assumptions could

lead to more conservative estimates of seed dispersal

and recruitment distances. We estimated mean seed dis-

persal distances using the euclidean distances between

seedlings and their assigned maternal parent.

In addition to parentage methods, we applied the

seedling neighbourhood model (SNM) to obtain popula-

tion-level dispersal estimates (Burczyk et al. 2006; Chyb-

icki & Burczyk 2010). The SNM is a probabilistic

method that uses both the spatial positions and the mul-

tilocus genotypes of seedling and parent generations to
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model the probability structure of the data within a

specified neighbourhood. A maximum likelihood

approach is then used to simultaneously estimate dis-

persal distances (Burczyk et al. 2006; Chybicki & Bur-

czyk 2010). For the SNM analysis, we considered all

palm adults in the plot to be within a single neighbour-

hood for all seedlings and set genotyping errors at

0.014. All analyses were carried out using the software

NM+ (Chybicki & Burczyk 2010).

To further examine dispersal patterns, we decomposed

the seedling population into two groups. The first group

consisted of seedlings dispersed ‘near’ maternal parents

(i.e. <10 m) and the second group included seedlings

that were dispersed ‘away’ (i.e. more than 10 m) from

maternal parents. These maternal parents were identified

from parentage analysis (see above). We then deter-

mined the composition of neighbours found within 5 m

of each focal seedling and classified them as maternal

siblings, locals or immigrants. Maternal siblings share

the same maternal palm as a focal seedling. Local indi-

viduals do not share the same maternal palm as a focal

seedling, and their maternal parents are found within

the study plot. Immigrant individuals do not share the

same maternal palm as a focal seedling, and their mater-

nal parents are assumed to originate from palms outside

of the study plot. To infer changes to neighbour compo-

sition over time, we also determined the composition of

neighbours for larger palm cohorts using a wider radius

of 10 m as a result of the lower neighbour abundance.
Fine-scale spatial genetic structure

We tested for fine-scale SGS within palm cohorts as

well as the SGS between palm cohorts (e.g. seedlings

and adults) using the kinship coefficient Fij (Loiselle

et al. 1995). Fij measures pairwise changes in the relat-

edness among palms (either within the same cohort or

between two different cohorts) over spatial distance.

Standard errors of Fij were estimated using a jackknife

procedure. To visualize SGS, we plotted the mean Fij

between individuals at each distance interval r, that is,

F̂ðrÞ against distance r (Vekemans & Hardy 2004). We

selected distance intervals following recommendations

of Degen et al. (2001), Cavers et al. (2005) and Hardy &

Vekemans (2002). Each distance interval contained at

least 100 pairwise comparisons (ranged 106–5917),

included more than 50% participation of individuals

and displayed small standard errors for the estimates of

Fij. Distance intervals for adult cohorts were 50, 80, 110

and 130 m; intervals for cohort-pair A-J2 were 14, 20,

25, 30, 35, 40, 45, 50, 70, 90, 110 and 130 m; intervals for

all other cohorts and cohort pairs were 10, 15, 20, 25,

30, 35, 40, 45, 50, 70, 90, 110 and 130 m. Confidence

intervals (95%) were generated using 10 000 permuta-
tions of individual locations to test whether SGS

departed significantly from zero (i.e. no SGS). The SPA-

GEDI software (Hardy & Vekemans 2002) was used for

the above analyses.

To infer how seed dispersal influenced genetic associ-

ations among seedling populations, we measured the

within-cohort SGS for the pooled seedling population as

well as the decomposed seedling population following

Hampe et al. (2010). The decomposed seedling SGS

included (i) the SGS among seedlings that were dis-

persed ‘near’ (i.e. <10 m) maternal palms, (ii) the SGS

among seedlings dispersed ‘away’ (i.e. >10 m) from

maternal palms and (iii) the SGS between pairs of seed-

lings dispersed ‘near’ and ‘away’ from maternal palms.

Breaking down the within-cohort SGS of the seedling

population into the three-component groups allows the

relative contribution of each seedling group to the total

SGS to be assessed (Hampe et al. 2010). We further

measured the between-cohort SGS for seedlings and

other palm cohorts (J1, J2, and A) to determine the

influence of dispersal on their genetic associations. To

examine the evolution of SGS, we assessed the change

in the strength of the within-cohort SGS from the small-

est to largest nonadult cohorts (i.e. S fi J1 fi J2) and

the change in strength of the between-cohort SGS for

adults and nonadult cohorts (i.e. A-S fi A-J1 fi A-J2)

In addition to SGS, we calculated the Sp statistic of

Vekemans & Hardy (2004) to facilitate comparisons of

the strength of SGS found within and between cohorts.

Sp was calculated across loci as )bF ⁄ [1 ) F(1)], where bF

is the observed regression slope of F̂ðrÞon the logarithm

of distance r, and F(1) is the mean kinship coefficient

between pairs of individuals found within the first-dis-

tance class interval. Behrens–Fisher test implemented in

the R packaged npmc (Munzel & Hothorn 2001) was

used to test for significant differences in the Sp values

within and between cohorts.
Spatial analyses

We used the univariate pair correlation function [PCF;

g11(r)] and the bivariate PCF (g12(r)) to investigate spatial

associations among palm individuals within and

between cohorts, respectively. PCF is defined by the

number of points at distance r from an arbitrary point

divided by the density of the point pattern (Wiegand &

Moloney 2004). Like the kinship coefficient, PCF is not a

cumulative function and allows the strength and range

of spatial structure to be determined at specific distances

r (Wiegand et al. 2007). Observed values of g11(r) or g12(r)

were compared against the Monte Carlo envelopes of

point data simulated under two null models (see below)

that also accounted for environmental heterogeneity

(Wiegand & Moloney 2004). We used the 25th highest
� 2012 Blackwell Publishing Ltd
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and lowest values of 999 simulations to construct the

envelopes following Wiegand et al. (2007). Significant

positive or negative spatial associations were addition-

ally determined using a goodness-of-fit test when values

of g11(r) or g12(r) fell above or below the simulations

envelopes, respectively (Diggle 1985; Wiegand et al.

2007). All spatial analyses were carried out with the soft-

ware PROGRAMITA (Wiegand & Moloney 2004).

We examined spatial associations within cohorts (uni-

variate PCF) using the heterogeneous Poisson null

model (Wiegand & Moloney 2004). The heterogeneous

Poisson null model allowed us to investigate (i) the

implications of dispersal on nonrandom associations

among all seedlings and among seedlings dispersed

‘near’ and ‘away’ from maternal palms and (ii) the evo-

lution of spatial associations among nonadult palms

from the seedling to J2 cohort (i.e. S fi J1 fi J2). The

antecedence null model was used to examine spatial

associations among palms in two different cohorts

(bivariate PCF). This model accounted for the fact that

the point pattern 1 (e.g. adults) may be present in the

system before pattern 2 (e.g. seedlings) (Wiegand &

Moloney 2004). We used the antecedent null model to

detect (i) nonrandom associations between seedlings

and larger palm cohorts (J1, J2, and A) that may arise

as a consequence of seed dispersal and (ii) evolution in

the spatial associations between adults and nonadult

cohorts (i.e. A-S fi A-J1 fi A-J2).

For all within- and between-cohort groups, we also

calculated the mean g(r) over distance r to facilitate

comparisons of the strength of small-scale spatial struc-

ture. We used a distance interval between 0 and 15 m

to calculate mean g(r) as this interval was comparable

in scale to the first-distance class interval used for esti-

mating the strength of genetic structure (i.e. Sp statistic).

Significant differences in mean g(r) within and between

cohorts were tested using the Behrens–Fisher test (Mun-

zel & Hothorn 2001).
Results

Palm census

We identified and mapped a total of 540 palms in our

study plot (Fig. 1). The population comprised of 30

reproductive adults (A), 202 seedlings (S), 154 juveniles

between 0 and 3 m tall (J1) and 154 juveniles taller than

3 m (J2).
Seed- and fruit-dispersal experiments

We found only 30% of tagged fruits (96) and 20% of

tagged seeds (58). The majority of seeds and fruits were

recovered (98%) within the study plot, while 2% were
� 2012 Blackwell Publishing Ltd
recovered outside of plot boundaries. Seeds and fruits

were dispersed to microhabitats near fallen logs, at the

bases of tree trunks and in dense under-story cover of

fallen twigs and vines. Tagged A. phalerata fruits were

also variously codispersed to the same microsites on four

occasions and codispersed near Astrocaryum murumuru

palm seeds on ten occasions. The mean dispersal distance

for both seeds and fruits combined was 5.8 ± 8.6 m. Dis-

persal distances for seeds averaged 3.4 ± 3.5 m (range

0.3–23 m) and was significantly shorter than the dispersal

distances for fruits, which averaged 7.3 ± 8.5 m (range

0.2–70.6 m; Wilcoxon rank sum test, W = 4028,

P < 0.001). Frequency distribution of dispersal distances

indicated that more than 99% of seeds and fruits were

dispersed <30 m from feeding stations (Fig. 2A).
Parentage analysis

A total of 292 nonadult palms (57.2%) in the study plot

were assigned to a maternal parent, while 59 nonadult

palms (11.6%) were assigned to a pair of parents

(maternal and paternal). The remaining 159 nonadult

palms (31.2%) were not assigned to any parents in the

study plot. Among the seedling population, a total of

144 seedlings (71.3%) were assigned to a maternal par-

ent, 33 (16.3%) were assigned to a pair of parents, while

25 (12.4%) were not assigned to any parents in the plot.

As there was no evidence of recently demised adult

palms, we assumed the seedlings that were not

assigned to any parents originated from parents outside

of the study plot (i.e. immigrants).
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The mean dispersal distance of palm offspring based

on the recruitment distance of the 144 seedlings that

were assigned to maternal parents in the plot was

23.8 ± 29.7 m (1–156.4 m). Approximately 73% of geno-

typed seedlings were dispersed within 30 m of their

maternal parent (Fig. 2B). Mean dispersal distances

estimated using the SNM was 20.5 m.

Seedlings dispersed ‘near’ maternal palms were asso-

ciated with seedling neighbours that comprised on

average of 58.5% maternal siblings and 41.5% of both

locals and immigrants. Seedlings dispersed ‘away’ from

maternal parents were associated with seedling neigh-

bours that consisted on average of 33.3% maternal sib-

lings and 66.7% of both locals and immigrants

(Table 1A). The proportion of maternal sibling neigh-

bours decreased by more than threefold for palms in

the J1 or J2 cohort (Table 1A). Similarly, adult palms

were associated with three times lower the proportion

of maternal offspring neighbours in the J2 cohort than

those in the seedling cohort (i.e. S-A > J1-A > J2-A;

Table 1B).
Spatial genetic structure

SGS among seedlings and between seedling and other

cohorts. In general, pairwise comparisons among palm

neighbours indicated that there was significant SGS
(<30 m) for palms within and between cohorts with the

exception of the cohort-pair seedling and J2. Focusing

on seedling cohort, the strength of SGS among seedlings

was significantly higher than those found within J1 and

J2 cohorts (Sp = 0.034; Behrens–Fisher test P < 0.001;

Table 1A, Fig. 3). This strong SGS resulted from posi-

tive kinship associations among the seedlings that were

dispersed ‘near’ and ‘away’ from maternal palms

(Sp = 0.39 and 0.24; Table 1A, Fig. 4). Seedlings also

exhibited strong SGS with adults (Sp = 0.049, Table 1B,

Fig. 5). SGS was relatively weaker between seedling

and J1 cohort and was lost between seedling and J2

(Sp = 0.014 and 0.005, Table 1B, Fig. 5).

Evolution of SGS across cohorts and cohort pairs. The

strength of the within-cohort SGS for nonadult palms

decreased from the smallest to largest cohorts

(S > J1 > J2) with Sp decreasing by threefold from 0.034

to 0.010 (Table 1A, Fig. 3). Similarly, the strength of the

between-cohort SGS for adults and nonadults decreased

by threefold from 0.049 to 0.016 (i.e. S-A > J1-A > J2-A)

(Table 1B, Fig. 5).
Spatial associations

Spatial associations among seedlings and between seedling

and other cohorts. In general, there were significant
� 2012 Blackwell Publishing Ltd



Table 1 Results of the associations

among palms within and between

cohorts showing the strength of genetic

structure (i.e. Sp), spatial structure [i.e.

mean g(r)] and average composition (%)

of neighbours for palm cohorts and

cohort pairs. Neighbour composition

comprised of maternal offspring or sib-

lings, locals (i.e. palms originating from

maternal palms in the plot) and immi-

grants (i.e. palms originating from

maternal parents outside of the plot)

and was estimated from a 10 m radius

around a focal palm (5 m radius was

used for seedlings)

Cohorts Sp Mean g(r)

Offspring ⁄
siblings (%)

Locals

(%)

Immigrants

(%)

(A) Associations among palms within each cohort

S 0.034* 2.55* 39.1 51.5 10.4

S ‘near’ 0.039* 6.90* 58.5 38.5 3.0

S ‘far’ 0.024* 1.42* 33.3 52.2 14.5

J1 0.010* 1.45* 6.2 61.5 32.3

J2 0.010* 1.27* 12.5 50.5 37

A 0.024* 0.96 — — —

(B) Associations among palms in two different cohorts

S and J1 0.014* 1.52* 14.6 73.2 12.1

S and J2 0.005 1.22* 14.9 72.3 12.7

S and A 0.049* 1.53* 31.2 54.1 14.7

J1 and A 0.033* 1.28* 13.9 56.7 29.4

J2 and A 0.016* 0.83 10.5 57.9 31.6

S, seedlings; J1, juveniles £3 m; J2, juveniles >3 m; A, Adults.

(*) indicates significant spatial or genetic structure among palms within a cohort or

among palms in two different cohorts.
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Fig. 3 The spatial genetic structure and spatial associations (inset) of palms within each cohort (solid lines). Grey lines show the

expected values of the null models. Broken lines indicate the upper and lower permutation ⁄ simulation envelopes.
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positive spatial associations at small scales (<20 m;

P < 0.05) for palms within and between cohorts with

the exception of the adult cohort, and the cohort pairs
� 2012 Blackwell Publishing Ltd
adult and J2, and J1 and J2. Seedlings were aggregated

at small scales (0–15 m), and the strength of the spatial

structure was significantly greater than those found in
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J1 or J2 cohorts (mean g(r) = 2.55; Behrens–Fisher test

P < 0.001; Table 1A, Fig. 3). This strong spatial struc-

ture resulted from aggregated patterns among seedlings

dispersed ‘near’ and ‘away’ from maternal parents.

However, the strength of the spatial structure among

seedlings ‘near’ maternal parents was over three times

greater than the ‘far’ seedlings with mean g(r) = 6.9 and

1.4 respectively (Table 1A). The test of antecedence also

indicated that seedlings were aggregated at small scales

(0–15 m) with conspecific adults as well as with juve-

niles in the J1 and J2 cohort (Table 1B, Fig. 5).

Evolution of spatial associations across cohorts and cohort

pairs. The strength of spatial structure among palms

decreased from the smallest to largest cohort

(S > J1 > J2) with mean g(r) decreasing threefold from

2.55 to 1.27 (Table 1A, Fig. 3). Spatial aggregation was

strongest among palms in the adult and seedling cohort

pair, positive but weaker for adult and J1 cohort-pair

and was lost in adult and J2 cohort-pair (S-A > J1-

A > J2-A; mean g(r) decreased from 1.53 to 0.083;

Table 1B, Fig. 5).
Discussion

Seed dispersal and seedling spatial and genetic patterns

Frugivore seed dispersers played an important role in

the recruitment distances of A. phalerata seedlings and
their spatial associations with other conspecifics. Dis-

persal distances estimated from field experiments (seeds:

3.4 m, fruits: 7.3 m) suggest that frugivores moved the

majority of palm seeds and fruits over short distances

and within 30 m of feeding stations. Our findings are

therefore in agreement with the dispersal distances doc-

umented for other Attalea species (Forget et al. 1994;

Pimentel & Tabarelli 2004) as well as other rodent-dis-

persed tropical tree species including Bertholletia excelsa,

Hymenea coubaril and Vouacaoupa americana (Hallwachs

1986; Forget 1990; Forget et al. 1994; Haugaasen et al.

2010). Because A. phalerata seeds and fruits are relatively

large and heavy, medium to large rodents commonly

found at Cocha Cashu including squirrels, agoutis,

pacas, and acouchis are probably responsible for the

small proportion of seeds and fruits that were dispersed

over longer distances (>30 m) (Iob & Vieira 2008).

However, comparisons between field and molecular

methods highlighted a discrepancy in the mean and

distribution of dispersal distances. Both parentage anal-

ysis and the seedling neighbourhood model estimated

mean seed dispersal distance between 20 and 23 m,

which was considerably larger than estimates from

seed- and fruit-tracking experiments (c. 6 m). Moreover,

parentage analysis found higher frequencies (21%) of

dispersal occurring more than 30 m from maternal

palms compared to field estimates (1%). Several factors

may have contributed to this discrepancy. Our field

experiments experienced low recovery rates (30%) of

seeds and fruits likely due to their dispersal into tree

holes, ground holes or beyond our search area. A num-

ber of tags were recovered without their dispersed

seeds or fruits. It is also possible that the tagging of

seeds and fruits may have deterred or hindered the sec-

ondary dispersal of these palm propagules. The loca-

tions where artificial feeding stations were established

could have influenced the frequency distribution of dis-

persal distances documented as the behaviours of seed

dispersers including rodents are influenced by the dis-

tribution of reproductive trees and their fecundities

(Jansen et al. 2004; Robledo-Arnuncio & Garcia 2007).

On the other hand, assumptions used in our parent-

age analysis could have biased estimates of dispersal

distances. Because our markers did not allow us to dis-

tinguish between paternal or maternal parents, we used

the conservative approach of assuming the closest par-

ent as the maternal palm based on available informa-

tion suggesting pollen dispersal in general occurs over

longer distances than seed dispersal (see methods). Fur-

ther biases in dispersal estimates could have arisen

from errors in parentage assignments. Although the

markers used in this study had a high combined exclu-

sion probability of 0.998 and should provide consider-

able power for parentage assignments (Choo et al.
� 2012 Blackwell Publishing Ltd
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2010), common problems including scoring errors, non-

unique parental multilocus genotypes and the presence

of family members other than parents in the population

can still lead to assignment failures or wrong assign-

ments (Jones & Ardren 2003; Jones et al. 2005; Jones &

Muller-Landau 2008).

Despite the limitations of the field and molecular

studies, both methods support that a large proportion

of A. phalerata seeds was locally dispersed and
� 2012 Blackwell Publishing Ltd
recruited within a relatively small neighbourhood. Seed

dispersal thus plays an important role in the local inter-

actions among conspecific palms of this study popula-

tion. Although, both methods support the occurrence of

longer distance seed dispersal (>100 m), the extent and

implications of this cannot be fully examined under the

scale of the present study.

The neighbour composition, spatial and genetic struc-

tures of the decomposed seedling populations bore
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signatures of the seed dispersal behaviours of A. phaler-

ata dispersers. The ‘near’ seedlings (i.e. seedlings found

<10 m from their genotyped maternal palms) were

associated with a relatively high proportion of neigh-

bours that were maternal siblings (58.5%) and exhibited

strong spatial and genetic structures that likely resulted

from the short-distance dispersal of seeds from mater-

nal palms by capuchins and rodents. Significant spatial

and genetic structures as well as the associations of a

relatively high proportion of sibling neighbours (33.3%)

among ‘far’ seedlings (i.e. seedlings found > 10 m from

their genotyped maternal palms) indicated that seed

dispersers were codispersing seeds to the same local

neighbourhoods. Such seed dispersal patterns were also

observed in our field experiments where a small sample

of seeds was codispersed to the same microsites. There

was evidence that seeds were dispersed to same micro-

sites over successive fruiting periods based on the

strong aggregation between seedlings and juveniles in

the J1 and J2 cohorts. These dispersal and recruitment

patterns were probably generated by rodent seed dis-

persers. Rodents are central place foragers, which

means they usually forage in and disperse seeds to mi-

crosites or neighbourhoods near their nests or fruiting

trees (Forget 1990; Aliaga-Rossel et al. 2008). In addi-

tion, differential survival of palm recruits at these mi-

crosites may further promote positive spatial and

genetic structures among dispersed A. phalerata seed-

lings and between palm cohorts. At Cocha Cashu, pec-

caries can cause high mortality and influence

recruitment patterns among seedlings through seed pre-

dation and their trampling and rooting activities. Sil-

man et al. (2003) found that seedlings of a sympatric

palm Astrocaryum murumuru established randomly in

the absence of peccaries. In the presence of peccaries,

however, seedlings established nonrandomly at loca-

tions that included rodent cache sites (e.g. near roots or

logs) where they were protected from peccary activities.

Attalea phalerata recruits may similarly experience differ-

ential survival at rodent cache sites, which can contrib-

ute to patterns of aggregation among dispersed

seedlings and between seedlings and the two juvenile

cohorts.

Local seed dispersal dynamics was also an important

contributor to the significant spatial and genetic associa-

tions between seedlings and adult palms. Significant

SGS between seedlings and adults was detectable up to

c. 30 m, which corresponded with the range of dis-

tances where the majority of seeds and seedlings were

dispersed (99% of seeds; 73% of seedlings). Parentage

analysis indicated that a small proportion of local and

immigrant seedlings (12.4%) contributed to the aggre-

gated spatial patterns between adult palms and seed-

lings. These associations between seedlings and
nonmaternal palms could arise from rodents moving

seeds or fruits away from fruiting palms and burying

them near other adult palms to facilitate relocation as

well as to prevent competitors from finding these

resources (Jansen et al. 2004; Pimentel & Tabarelli 2004;

Galvez et al. 2009). In addition, seed burial has been

shown to contribute to the survival of seeds near con-

specific trees because they are protected against the

predatory activities of bruchid beetles (Smythe 1989).
Evolution of spatial and genetic structure

In general, changes in the spatial and genetic structures

within and between palm cohorts suggest that distance-

and density-dependent mortality were probably impor-

tant processes affecting this palm population following

dispersal and seedling recruitment. Strong aggregation

between adults and seedlings suggests that seedlings

initially experienced relatively weak distance-dependent

mortality. However, the weaker spatial structure

between adults and J1 cohort and subsequent loss of

spatial structure between adults and J2 cohort indicated

the onset of strong negative distance-dependent interac-

tions between adults and juveniles over time. Distant-

dependent interactions also appear to have had a

stronger impact on offspring than nonoffspring counter-

parts. The proportion of offspring neighbours recruiting

near maternal palms decreased by threefold from the

seedling to J2 cohort, whereas the proportion of nonoff-

spring neighbours remained relatively constant from

the seedling to J2 cohort. These patterns suggest that

offspring recruiting near maternal palms may experi-

ence higher mortality and lower likelihood of reaching

reproductive age than their nonoffspring counterparts.

Augspurger & Kelly (1984) have similarly found that

seedlings of Platypodium elegans recruiting under mater-

nal trees experienced higher mortality than those that

established near other conspecific adults. Such patterns

of mortality could result from pathogens causing

greater mortality among offspring than nonoffspring

propagules recruiting near parental trees (Augspurger

& Wilkinson 2007).

Changes in the spatial and genetic patterns across

nonadult cohorts were consistent with negative density-

dependent interactions and mortality among palm con-

specifics. The progressive decrease in the strength of

positive spatial structure among palms from seedling to

adult cohorts suggests larger palms experienced stron-

ger negative plant–plant interactions over time. Den-

sity-dependent mortality also appear to have had a

greater impact on neighbours that were close relatives

based on the weaker SGS and lower proportion of sib-

ling neighbours associated with palms in larger cohorts.

Similar erosion in the SGS among plants in larger
� 2012 Blackwell Publishing Ltd
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cohorts has also been documented in other tropical

trees species (e.g. Hardesty et al. 2005), and studies sug-

gest that selection against inbred individuals may be

involved (Hamrick et al. 1993a; Epperson & Alvarez-

Buylla 1997). The decrease in the strength of within-

cohort SGS from small to large nonadults was, how-

ever, incongruent with the relatively strong SGS

observed in the adult cohort. As SGS in the adult cohort

was estimated from a relatively small sample popula-

tion of 30 individuals, we suspect the estimates may

not be accurate.

In summary, the findings of this study highlight that

seed dispersers play an important role in maintaining

the aggregated distribution and genetic associations of

A. phalerata palms at Cocha Cashu. Our work suggests

that these associations contribute to postdispersal dis-

tance- and density-dependent mortality of this domi-

nant palm and may prevent them from forming

monospecific stands. Differential mortality among clo-

sely aggregated maternal palm relatives are likely to

influence the genetic diversity of palms in this popula-

tion over time although further studies will be neces-

sary to confirm this. We conclude from this study that

disruptions to palm–frugivore seed disperser interac-

tions and the cascading consequences thereafter will

probably have severe implications for the spatial and

genetic structures of this palm population.
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